qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "qemu/rcu.h"
  21#include "qemu/madvise.h"
  22#include "exec/target_page.h"
  23#include "migration.h"
  24#include "qemu-file.h"
  25#include "savevm.h"
  26#include "postcopy-ram.h"
  27#include "ram.h"
  28#include "qapi/error.h"
  29#include "qemu/notify.h"
  30#include "qemu/rcu.h"
  31#include "sysemu/sysemu.h"
  32#include "qemu/error-report.h"
  33#include "trace.h"
  34#include "hw/boards.h"
  35#include "exec/ramblock.h"
  36
  37/* Arbitrary limit on size of each discard command,
  38 * keeps them around ~200 bytes
  39 */
  40#define MAX_DISCARDS_PER_COMMAND 12
  41
  42struct PostcopyDiscardState {
  43    const char *ramblock_name;
  44    uint16_t cur_entry;
  45    /*
  46     * Start and length of a discard range (bytes)
  47     */
  48    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  49    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  50    unsigned int nsentwords;
  51    unsigned int nsentcmds;
  52};
  53
  54static NotifierWithReturnList postcopy_notifier_list;
  55
  56void postcopy_infrastructure_init(void)
  57{
  58    notifier_with_return_list_init(&postcopy_notifier_list);
  59}
  60
  61void postcopy_add_notifier(NotifierWithReturn *nn)
  62{
  63    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  64}
  65
  66void postcopy_remove_notifier(NotifierWithReturn *n)
  67{
  68    notifier_with_return_remove(n);
  69}
  70
  71int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  72{
  73    struct PostcopyNotifyData pnd;
  74    pnd.reason = reason;
  75    pnd.errp = errp;
  76
  77    return notifier_with_return_list_notify(&postcopy_notifier_list,
  78                                            &pnd);
  79}
  80
  81/*
  82 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
  83 * should be good enough for migration's purposes.
  84 */
  85void postcopy_thread_create(MigrationIncomingState *mis,
  86                            QemuThread *thread, const char *name,
  87                            void *(*fn)(void *), int joinable)
  88{
  89    qemu_sem_init(&mis->thread_sync_sem, 0);
  90    qemu_thread_create(thread, name, fn, mis, joinable);
  91    qemu_sem_wait(&mis->thread_sync_sem);
  92    qemu_sem_destroy(&mis->thread_sync_sem);
  93}
  94
  95/* Postcopy needs to detect accesses to pages that haven't yet been copied
  96 * across, and efficiently map new pages in, the techniques for doing this
  97 * are target OS specific.
  98 */
  99#if defined(__linux__)
 100
 101#include <poll.h>
 102#include <sys/ioctl.h>
 103#include <sys/syscall.h>
 104#include <asm/types.h> /* for __u64 */
 105#endif
 106
 107#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
 108#include <sys/eventfd.h>
 109#include <linux/userfaultfd.h>
 110
 111typedef struct PostcopyBlocktimeContext {
 112    /* time when page fault initiated per vCPU */
 113    uint32_t *page_fault_vcpu_time;
 114    /* page address per vCPU */
 115    uintptr_t *vcpu_addr;
 116    uint32_t total_blocktime;
 117    /* blocktime per vCPU */
 118    uint32_t *vcpu_blocktime;
 119    /* point in time when last page fault was initiated */
 120    uint32_t last_begin;
 121    /* number of vCPU are suspended */
 122    int smp_cpus_down;
 123    uint64_t start_time;
 124
 125    /*
 126     * Handler for exit event, necessary for
 127     * releasing whole blocktime_ctx
 128     */
 129    Notifier exit_notifier;
 130} PostcopyBlocktimeContext;
 131
 132static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 133{
 134    g_free(ctx->page_fault_vcpu_time);
 135    g_free(ctx->vcpu_addr);
 136    g_free(ctx->vcpu_blocktime);
 137    g_free(ctx);
 138}
 139
 140static void migration_exit_cb(Notifier *n, void *data)
 141{
 142    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 143                                                 exit_notifier);
 144    destroy_blocktime_context(ctx);
 145}
 146
 147static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 148{
 149    MachineState *ms = MACHINE(qdev_get_machine());
 150    unsigned int smp_cpus = ms->smp.cpus;
 151    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 152    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 153    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 154    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 155
 156    ctx->exit_notifier.notify = migration_exit_cb;
 157    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 158    qemu_add_exit_notifier(&ctx->exit_notifier);
 159    return ctx;
 160}
 161
 162static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 163{
 164    MachineState *ms = MACHINE(qdev_get_machine());
 165    uint32List *list = NULL;
 166    int i;
 167
 168    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 169        QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
 170    }
 171
 172    return list;
 173}
 174
 175/*
 176 * This function just populates MigrationInfo from postcopy's
 177 * blocktime context. It will not populate MigrationInfo,
 178 * unless postcopy-blocktime capability was set.
 179 *
 180 * @info: pointer to MigrationInfo to populate
 181 */
 182void fill_destination_postcopy_migration_info(MigrationInfo *info)
 183{
 184    MigrationIncomingState *mis = migration_incoming_get_current();
 185    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 186
 187    if (!bc) {
 188        return;
 189    }
 190
 191    info->has_postcopy_blocktime = true;
 192    info->postcopy_blocktime = bc->total_blocktime;
 193    info->has_postcopy_vcpu_blocktime = true;
 194    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 195}
 196
 197static uint32_t get_postcopy_total_blocktime(void)
 198{
 199    MigrationIncomingState *mis = migration_incoming_get_current();
 200    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 201
 202    if (!bc) {
 203        return 0;
 204    }
 205
 206    return bc->total_blocktime;
 207}
 208
 209/**
 210 * receive_ufd_features: check userfault fd features, to request only supported
 211 * features in the future.
 212 *
 213 * Returns: true on success
 214 *
 215 * __NR_userfaultfd - should be checked before
 216 *  @features: out parameter will contain uffdio_api.features provided by kernel
 217 *              in case of success
 218 */
 219static bool receive_ufd_features(uint64_t *features)
 220{
 221    struct uffdio_api api_struct = {0};
 222    int ufd;
 223    bool ret = true;
 224
 225    /* if we are here __NR_userfaultfd should exists */
 226    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 227    if (ufd == -1) {
 228        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 229                     strerror(errno));
 230        return false;
 231    }
 232
 233    /* ask features */
 234    api_struct.api = UFFD_API;
 235    api_struct.features = 0;
 236    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 237        error_report("%s: UFFDIO_API failed: %s", __func__,
 238                     strerror(errno));
 239        ret = false;
 240        goto release_ufd;
 241    }
 242
 243    *features = api_struct.features;
 244
 245release_ufd:
 246    close(ufd);
 247    return ret;
 248}
 249
 250/**
 251 * request_ufd_features: this function should be called only once on a newly
 252 * opened ufd, subsequent calls will lead to error.
 253 *
 254 * Returns: true on success
 255 *
 256 * @ufd: fd obtained from userfaultfd syscall
 257 * @features: bit mask see UFFD_API_FEATURES
 258 */
 259static bool request_ufd_features(int ufd, uint64_t features)
 260{
 261    struct uffdio_api api_struct = {0};
 262    uint64_t ioctl_mask;
 263
 264    api_struct.api = UFFD_API;
 265    api_struct.features = features;
 266    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 267        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 268                     strerror(errno));
 269        return false;
 270    }
 271
 272    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 273                 (__u64)1 << _UFFDIO_UNREGISTER;
 274    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 275        error_report("Missing userfault features: %" PRIx64,
 276                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 277        return false;
 278    }
 279
 280    return true;
 281}
 282
 283static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 284{
 285    uint64_t asked_features = 0;
 286    static uint64_t supported_features;
 287
 288    /*
 289     * it's not possible to
 290     * request UFFD_API twice per one fd
 291     * userfault fd features is persistent
 292     */
 293    if (!supported_features) {
 294        if (!receive_ufd_features(&supported_features)) {
 295            error_report("%s failed", __func__);
 296            return false;
 297        }
 298    }
 299
 300#ifdef UFFD_FEATURE_THREAD_ID
 301    if (UFFD_FEATURE_THREAD_ID & supported_features) {
 302        asked_features |= UFFD_FEATURE_THREAD_ID;
 303        if (migrate_postcopy_blocktime()) {
 304            if (!mis->blocktime_ctx) {
 305                mis->blocktime_ctx = blocktime_context_new();
 306            }
 307        }
 308    }
 309#endif
 310
 311    /*
 312     * request features, even if asked_features is 0, due to
 313     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 314     * userfault file descriptor
 315     */
 316    if (!request_ufd_features(ufd, asked_features)) {
 317        error_report("%s failed: features %" PRIu64, __func__,
 318                     asked_features);
 319        return false;
 320    }
 321
 322    if (qemu_real_host_page_size != ram_pagesize_summary()) {
 323        bool have_hp = false;
 324        /* We've got a huge page */
 325#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 326        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 327#endif
 328        if (!have_hp) {
 329            error_report("Userfault on this host does not support huge pages");
 330            return false;
 331        }
 332    }
 333    return true;
 334}
 335
 336/* Callback from postcopy_ram_supported_by_host block iterator.
 337 */
 338static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 339{
 340    const char *block_name = qemu_ram_get_idstr(rb);
 341    ram_addr_t length = qemu_ram_get_used_length(rb);
 342    size_t pagesize = qemu_ram_pagesize(rb);
 343
 344    if (length % pagesize) {
 345        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 346                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 347                     "page size of 0x%zx", block_name, length, pagesize);
 348        return 1;
 349    }
 350    return 0;
 351}
 352
 353/*
 354 * Note: This has the side effect of munlock'ing all of RAM, that's
 355 * normally fine since if the postcopy succeeds it gets turned back on at the
 356 * end.
 357 */
 358bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 359{
 360    long pagesize = qemu_real_host_page_size;
 361    int ufd = -1;
 362    bool ret = false; /* Error unless we change it */
 363    void *testarea = NULL;
 364    struct uffdio_register reg_struct;
 365    struct uffdio_range range_struct;
 366    uint64_t feature_mask;
 367    Error *local_err = NULL;
 368
 369    if (qemu_target_page_size() > pagesize) {
 370        error_report("Target page size bigger than host page size");
 371        goto out;
 372    }
 373
 374    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 375    if (ufd == -1) {
 376        error_report("%s: userfaultfd not available: %s", __func__,
 377                     strerror(errno));
 378        goto out;
 379    }
 380
 381    /* Give devices a chance to object */
 382    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 383        error_report_err(local_err);
 384        goto out;
 385    }
 386
 387    /* Version and features check */
 388    if (!ufd_check_and_apply(ufd, mis)) {
 389        goto out;
 390    }
 391
 392    /* We don't support postcopy with shared RAM yet */
 393    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 394        goto out;
 395    }
 396
 397    /*
 398     * userfault and mlock don't go together; we'll put it back later if
 399     * it was enabled.
 400     */
 401    if (munlockall()) {
 402        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 403        goto out;
 404    }
 405
 406    /*
 407     *  We need to check that the ops we need are supported on anon memory
 408     *  To do that we need to register a chunk and see the flags that
 409     *  are returned.
 410     */
 411    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 412                                    MAP_ANONYMOUS, -1, 0);
 413    if (testarea == MAP_FAILED) {
 414        error_report("%s: Failed to map test area: %s", __func__,
 415                     strerror(errno));
 416        goto out;
 417    }
 418    g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
 419
 420    reg_struct.range.start = (uintptr_t)testarea;
 421    reg_struct.range.len = pagesize;
 422    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 423
 424    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 425        error_report("%s userfault register: %s", __func__, strerror(errno));
 426        goto out;
 427    }
 428
 429    range_struct.start = (uintptr_t)testarea;
 430    range_struct.len = pagesize;
 431    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 432        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 433        goto out;
 434    }
 435
 436    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 437                   (__u64)1 << _UFFDIO_COPY |
 438                   (__u64)1 << _UFFDIO_ZEROPAGE;
 439    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 440        error_report("Missing userfault map features: %" PRIx64,
 441                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 442        goto out;
 443    }
 444
 445    /* Success! */
 446    ret = true;
 447out:
 448    if (testarea) {
 449        munmap(testarea, pagesize);
 450    }
 451    if (ufd != -1) {
 452        close(ufd);
 453    }
 454    return ret;
 455}
 456
 457/*
 458 * Setup an area of RAM so that it *can* be used for postcopy later; this
 459 * must be done right at the start prior to pre-copy.
 460 * opaque should be the MIS.
 461 */
 462static int init_range(RAMBlock *rb, void *opaque)
 463{
 464    const char *block_name = qemu_ram_get_idstr(rb);
 465    void *host_addr = qemu_ram_get_host_addr(rb);
 466    ram_addr_t offset = qemu_ram_get_offset(rb);
 467    ram_addr_t length = qemu_ram_get_used_length(rb);
 468    trace_postcopy_init_range(block_name, host_addr, offset, length);
 469
 470    /*
 471     * Save the used_length before running the guest. In case we have to
 472     * resize RAM blocks when syncing RAM block sizes from the source during
 473     * precopy, we'll update it manually via the ram block notifier.
 474     */
 475    rb->postcopy_length = length;
 476
 477    /*
 478     * We need the whole of RAM to be truly empty for postcopy, so things
 479     * like ROMs and any data tables built during init must be zero'd
 480     * - we're going to get the copy from the source anyway.
 481     * (Precopy will just overwrite this data, so doesn't need the discard)
 482     */
 483    if (ram_discard_range(block_name, 0, length)) {
 484        return -1;
 485    }
 486
 487    return 0;
 488}
 489
 490/*
 491 * At the end of migration, undo the effects of init_range
 492 * opaque should be the MIS.
 493 */
 494static int cleanup_range(RAMBlock *rb, void *opaque)
 495{
 496    const char *block_name = qemu_ram_get_idstr(rb);
 497    void *host_addr = qemu_ram_get_host_addr(rb);
 498    ram_addr_t offset = qemu_ram_get_offset(rb);
 499    ram_addr_t length = rb->postcopy_length;
 500    MigrationIncomingState *mis = opaque;
 501    struct uffdio_range range_struct;
 502    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 503
 504    /*
 505     * We turned off hugepage for the precopy stage with postcopy enabled
 506     * we can turn it back on now.
 507     */
 508    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 509
 510    /*
 511     * We can also turn off userfault now since we should have all the
 512     * pages.   It can be useful to leave it on to debug postcopy
 513     * if you're not sure it's always getting every page.
 514     */
 515    range_struct.start = (uintptr_t)host_addr;
 516    range_struct.len = length;
 517
 518    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 519        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 520
 521        return -1;
 522    }
 523
 524    return 0;
 525}
 526
 527/*
 528 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 529 * postcopy later; must be called prior to any precopy.
 530 * called from arch_init's similarly named ram_postcopy_incoming_init
 531 */
 532int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 533{
 534    if (foreach_not_ignored_block(init_range, NULL)) {
 535        return -1;
 536    }
 537
 538    return 0;
 539}
 540
 541static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
 542{
 543    int i;
 544
 545    if (mis->postcopy_tmp_pages) {
 546        for (i = 0; i < mis->postcopy_channels; i++) {
 547            if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
 548                munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
 549                       mis->largest_page_size);
 550                mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
 551            }
 552        }
 553        g_free(mis->postcopy_tmp_pages);
 554        mis->postcopy_tmp_pages = NULL;
 555    }
 556
 557    if (mis->postcopy_tmp_zero_page) {
 558        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 559        mis->postcopy_tmp_zero_page = NULL;
 560    }
 561}
 562
 563/*
 564 * At the end of a migration where postcopy_ram_incoming_init was called.
 565 */
 566int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 567{
 568    trace_postcopy_ram_incoming_cleanup_entry();
 569
 570    if (mis->have_fault_thread) {
 571        Error *local_err = NULL;
 572
 573        /* Let the fault thread quit */
 574        qatomic_set(&mis->fault_thread_quit, 1);
 575        postcopy_fault_thread_notify(mis);
 576        trace_postcopy_ram_incoming_cleanup_join();
 577        qemu_thread_join(&mis->fault_thread);
 578
 579        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 580            error_report_err(local_err);
 581            return -1;
 582        }
 583
 584        if (foreach_not_ignored_block(cleanup_range, mis)) {
 585            return -1;
 586        }
 587
 588        trace_postcopy_ram_incoming_cleanup_closeuf();
 589        close(mis->userfault_fd);
 590        close(mis->userfault_event_fd);
 591        mis->have_fault_thread = false;
 592    }
 593
 594    if (enable_mlock) {
 595        if (os_mlock() < 0) {
 596            error_report("mlock: %s", strerror(errno));
 597            /*
 598             * It doesn't feel right to fail at this point, we have a valid
 599             * VM state.
 600             */
 601        }
 602    }
 603
 604    postcopy_temp_pages_cleanup(mis);
 605
 606    trace_postcopy_ram_incoming_cleanup_blocktime(
 607            get_postcopy_total_blocktime());
 608
 609    trace_postcopy_ram_incoming_cleanup_exit();
 610    return 0;
 611}
 612
 613/*
 614 * Disable huge pages on an area
 615 */
 616static int nhp_range(RAMBlock *rb, void *opaque)
 617{
 618    const char *block_name = qemu_ram_get_idstr(rb);
 619    void *host_addr = qemu_ram_get_host_addr(rb);
 620    ram_addr_t offset = qemu_ram_get_offset(rb);
 621    ram_addr_t length = rb->postcopy_length;
 622    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 623
 624    /*
 625     * Before we do discards we need to ensure those discards really
 626     * do delete areas of the page, even if THP thinks a hugepage would
 627     * be a good idea, so force hugepages off.
 628     */
 629    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 630
 631    return 0;
 632}
 633
 634/*
 635 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 636 * however leaving it until after precopy means that most of the precopy
 637 * data is still THPd
 638 */
 639int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 640{
 641    if (foreach_not_ignored_block(nhp_range, mis)) {
 642        return -1;
 643    }
 644
 645    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 646
 647    return 0;
 648}
 649
 650/*
 651 * Mark the given area of RAM as requiring notification to unwritten areas
 652 * Used as a  callback on foreach_not_ignored_block.
 653 *   host_addr: Base of area to mark
 654 *   offset: Offset in the whole ram arena
 655 *   length: Length of the section
 656 *   opaque: MigrationIncomingState pointer
 657 * Returns 0 on success
 658 */
 659static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 660{
 661    MigrationIncomingState *mis = opaque;
 662    struct uffdio_register reg_struct;
 663
 664    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 665    reg_struct.range.len = rb->postcopy_length;
 666    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 667
 668    /* Now tell our userfault_fd that it's responsible for this area */
 669    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 670        error_report("%s userfault register: %s", __func__, strerror(errno));
 671        return -1;
 672    }
 673    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 674        error_report("%s userfault: Region doesn't support COPY", __func__);
 675        return -1;
 676    }
 677    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 678        qemu_ram_set_uf_zeroable(rb);
 679    }
 680
 681    return 0;
 682}
 683
 684int postcopy_wake_shared(struct PostCopyFD *pcfd,
 685                         uint64_t client_addr,
 686                         RAMBlock *rb)
 687{
 688    size_t pagesize = qemu_ram_pagesize(rb);
 689    struct uffdio_range range;
 690    int ret;
 691    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 692    range.start = ROUND_DOWN(client_addr, pagesize);
 693    range.len = pagesize;
 694    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 695    if (ret) {
 696        error_report("%s: Failed to wake: %zx in %s (%s)",
 697                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 698                     strerror(errno));
 699    }
 700    return ret;
 701}
 702
 703static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
 704                                 ram_addr_t start, uint64_t haddr)
 705{
 706    void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
 707
 708    /*
 709     * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
 710     * access, place a zeropage, which will also set the relevant bits in the
 711     * recv_bitmap accordingly, so we won't try placing a zeropage twice.
 712     *
 713     * Checking a single bit is sufficient to handle pagesize > TPS as either
 714     * all relevant bits are set or not.
 715     */
 716    assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
 717    if (ramblock_page_is_discarded(rb, start)) {
 718        bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
 719
 720        return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
 721    }
 722
 723    return migrate_send_rp_req_pages(mis, rb, start, haddr);
 724}
 725
 726/*
 727 * Callback from shared fault handlers to ask for a page,
 728 * the page must be specified by a RAMBlock and an offset in that rb
 729 * Note: Only for use by shared fault handlers (in fault thread)
 730 */
 731int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 732                                 uint64_t client_addr, uint64_t rb_offset)
 733{
 734    uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
 735    MigrationIncomingState *mis = migration_incoming_get_current();
 736
 737    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 738                                       rb_offset);
 739    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 740        trace_postcopy_request_shared_page_present(pcfd->idstr,
 741                                        qemu_ram_get_idstr(rb), rb_offset);
 742        return postcopy_wake_shared(pcfd, client_addr, rb);
 743    }
 744    postcopy_request_page(mis, rb, aligned_rbo, client_addr);
 745    return 0;
 746}
 747
 748static int get_mem_fault_cpu_index(uint32_t pid)
 749{
 750    CPUState *cpu_iter;
 751
 752    CPU_FOREACH(cpu_iter) {
 753        if (cpu_iter->thread_id == pid) {
 754            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 755            return cpu_iter->cpu_index;
 756        }
 757    }
 758    trace_get_mem_fault_cpu_index(-1, pid);
 759    return -1;
 760}
 761
 762static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 763{
 764    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 765                                    dc->start_time;
 766    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 767}
 768
 769/*
 770 * This function is being called when pagefault occurs. It
 771 * tracks down vCPU blocking time.
 772 *
 773 * @addr: faulted host virtual address
 774 * @ptid: faulted process thread id
 775 * @rb: ramblock appropriate to addr
 776 */
 777static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 778                                          RAMBlock *rb)
 779{
 780    int cpu, already_received;
 781    MigrationIncomingState *mis = migration_incoming_get_current();
 782    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 783    uint32_t low_time_offset;
 784
 785    if (!dc || ptid == 0) {
 786        return;
 787    }
 788    cpu = get_mem_fault_cpu_index(ptid);
 789    if (cpu < 0) {
 790        return;
 791    }
 792
 793    low_time_offset = get_low_time_offset(dc);
 794    if (dc->vcpu_addr[cpu] == 0) {
 795        qatomic_inc(&dc->smp_cpus_down);
 796    }
 797
 798    qatomic_xchg(&dc->last_begin, low_time_offset);
 799    qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 800    qatomic_xchg(&dc->vcpu_addr[cpu], addr);
 801
 802    /*
 803     * check it here, not at the beginning of the function,
 804     * due to, check could occur early than bitmap_set in
 805     * qemu_ufd_copy_ioctl
 806     */
 807    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 808    if (already_received) {
 809        qatomic_xchg(&dc->vcpu_addr[cpu], 0);
 810        qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 811        qatomic_dec(&dc->smp_cpus_down);
 812    }
 813    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 814                                        cpu, already_received);
 815}
 816
 817/*
 818 *  This function just provide calculated blocktime per cpu and trace it.
 819 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 820 *
 821 *
 822 * Assume we have 3 CPU
 823 *
 824 *      S1        E1           S1               E1
 825 * -----***********------------xxx***************------------------------> CPU1
 826 *
 827 *             S2                E2
 828 * ------------****************xxx---------------------------------------> CPU2
 829 *
 830 *                         S3            E3
 831 * ------------------------****xxx********-------------------------------> CPU3
 832 *
 833 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 834 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 835 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 836 *            it's a part of total blocktime.
 837 * S1 - here is last_begin
 838 * Legend of the picture is following:
 839 *              * - means blocktime per vCPU
 840 *              x - means overlapped blocktime (total blocktime)
 841 *
 842 * @addr: host virtual address
 843 */
 844static void mark_postcopy_blocktime_end(uintptr_t addr)
 845{
 846    MigrationIncomingState *mis = migration_incoming_get_current();
 847    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 848    MachineState *ms = MACHINE(qdev_get_machine());
 849    unsigned int smp_cpus = ms->smp.cpus;
 850    int i, affected_cpu = 0;
 851    bool vcpu_total_blocktime = false;
 852    uint32_t read_vcpu_time, low_time_offset;
 853
 854    if (!dc) {
 855        return;
 856    }
 857
 858    low_time_offset = get_low_time_offset(dc);
 859    /* lookup cpu, to clear it,
 860     * that algorithm looks straightforward, but it's not
 861     * optimal, more optimal algorithm is keeping tree or hash
 862     * where key is address value is a list of  */
 863    for (i = 0; i < smp_cpus; i++) {
 864        uint32_t vcpu_blocktime = 0;
 865
 866        read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 867        if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 868            read_vcpu_time == 0) {
 869            continue;
 870        }
 871        qatomic_xchg(&dc->vcpu_addr[i], 0);
 872        vcpu_blocktime = low_time_offset - read_vcpu_time;
 873        affected_cpu += 1;
 874        /* we need to know is that mark_postcopy_end was due to
 875         * faulted page, another possible case it's prefetched
 876         * page and in that case we shouldn't be here */
 877        if (!vcpu_total_blocktime &&
 878            qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 879            vcpu_total_blocktime = true;
 880        }
 881        /* continue cycle, due to one page could affect several vCPUs */
 882        dc->vcpu_blocktime[i] += vcpu_blocktime;
 883    }
 884
 885    qatomic_sub(&dc->smp_cpus_down, affected_cpu);
 886    if (vcpu_total_blocktime) {
 887        dc->total_blocktime += low_time_offset - qatomic_fetch_add(
 888                &dc->last_begin, 0);
 889    }
 890    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 891                                      affected_cpu);
 892}
 893
 894static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
 895{
 896    trace_postcopy_pause_fault_thread();
 897    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 898    trace_postcopy_pause_fault_thread_continued();
 899}
 900
 901/*
 902 * Handle faults detected by the USERFAULT markings
 903 */
 904static void *postcopy_ram_fault_thread(void *opaque)
 905{
 906    MigrationIncomingState *mis = opaque;
 907    struct uffd_msg msg;
 908    int ret;
 909    size_t index;
 910    RAMBlock *rb = NULL;
 911
 912    trace_postcopy_ram_fault_thread_entry();
 913    rcu_register_thread();
 914    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 915    qemu_sem_post(&mis->thread_sync_sem);
 916
 917    struct pollfd *pfd;
 918    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 919
 920    pfd = g_new0(struct pollfd, pfd_len);
 921
 922    pfd[0].fd = mis->userfault_fd;
 923    pfd[0].events = POLLIN;
 924    pfd[1].fd = mis->userfault_event_fd;
 925    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 926    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 927    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 928        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 929                                                 struct PostCopyFD, index);
 930        pfd[2 + index].fd = pcfd->fd;
 931        pfd[2 + index].events = POLLIN;
 932        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 933                                                  pcfd->fd);
 934    }
 935
 936    while (true) {
 937        ram_addr_t rb_offset;
 938        int poll_result;
 939
 940        /*
 941         * We're mainly waiting for the kernel to give us a faulting HVA,
 942         * however we can be told to quit via userfault_quit_fd which is
 943         * an eventfd
 944         */
 945
 946        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 947        if (poll_result == -1) {
 948            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 949            break;
 950        }
 951
 952        if (!mis->to_src_file) {
 953            /*
 954             * Possibly someone tells us that the return path is
 955             * broken already using the event. We should hold until
 956             * the channel is rebuilt.
 957             */
 958            postcopy_pause_fault_thread(mis);
 959        }
 960
 961        if (pfd[1].revents) {
 962            uint64_t tmp64 = 0;
 963
 964            /* Consume the signal */
 965            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 966                /* Nothing obviously nicer than posting this error. */
 967                error_report("%s: read() failed", __func__);
 968            }
 969
 970            if (qatomic_read(&mis->fault_thread_quit)) {
 971                trace_postcopy_ram_fault_thread_quit();
 972                break;
 973            }
 974        }
 975
 976        if (pfd[0].revents) {
 977            poll_result--;
 978            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 979            if (ret != sizeof(msg)) {
 980                if (errno == EAGAIN) {
 981                    /*
 982                     * if a wake up happens on the other thread just after
 983                     * the poll, there is nothing to read.
 984                     */
 985                    continue;
 986                }
 987                if (ret < 0) {
 988                    error_report("%s: Failed to read full userfault "
 989                                 "message: %s",
 990                                 __func__, strerror(errno));
 991                    break;
 992                } else {
 993                    error_report("%s: Read %d bytes from userfaultfd "
 994                                 "expected %zd",
 995                                 __func__, ret, sizeof(msg));
 996                    break; /* Lost alignment, don't know what we'd read next */
 997                }
 998            }
 999            if (msg.event != UFFD_EVENT_PAGEFAULT) {
1000                error_report("%s: Read unexpected event %ud from userfaultfd",
1001                             __func__, msg.event);
1002                continue; /* It's not a page fault, shouldn't happen */
1003            }
1004
1005            rb = qemu_ram_block_from_host(
1006                     (void *)(uintptr_t)msg.arg.pagefault.address,
1007                     true, &rb_offset);
1008            if (!rb) {
1009                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1010                             PRIx64, (uint64_t)msg.arg.pagefault.address);
1011                break;
1012            }
1013
1014            rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1015            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1016                                                qemu_ram_get_idstr(rb),
1017                                                rb_offset,
1018                                                msg.arg.pagefault.feat.ptid);
1019            mark_postcopy_blocktime_begin(
1020                    (uintptr_t)(msg.arg.pagefault.address),
1021                                msg.arg.pagefault.feat.ptid, rb);
1022
1023retry:
1024            /*
1025             * Send the request to the source - we want to request one
1026             * of our host page sizes (which is >= TPS)
1027             */
1028            ret = postcopy_request_page(mis, rb, rb_offset,
1029                                        msg.arg.pagefault.address);
1030            if (ret) {
1031                /* May be network failure, try to wait for recovery */
1032                postcopy_pause_fault_thread(mis);
1033                goto retry;
1034            }
1035        }
1036
1037        /* Now handle any requests from external processes on shared memory */
1038        /* TODO: May need to handle devices deregistering during postcopy */
1039        for (index = 2; index < pfd_len && poll_result; index++) {
1040            if (pfd[index].revents) {
1041                struct PostCopyFD *pcfd =
1042                    &g_array_index(mis->postcopy_remote_fds,
1043                                   struct PostCopyFD, index - 2);
1044
1045                poll_result--;
1046                if (pfd[index].revents & POLLERR) {
1047                    error_report("%s: POLLERR on poll %zd fd=%d",
1048                                 __func__, index, pcfd->fd);
1049                    pfd[index].events = 0;
1050                    continue;
1051                }
1052
1053                ret = read(pcfd->fd, &msg, sizeof(msg));
1054                if (ret != sizeof(msg)) {
1055                    if (errno == EAGAIN) {
1056                        /*
1057                         * if a wake up happens on the other thread just after
1058                         * the poll, there is nothing to read.
1059                         */
1060                        continue;
1061                    }
1062                    if (ret < 0) {
1063                        error_report("%s: Failed to read full userfault "
1064                                     "message: %s (shared) revents=%d",
1065                                     __func__, strerror(errno),
1066                                     pfd[index].revents);
1067                        /*TODO: Could just disable this sharer */
1068                        break;
1069                    } else {
1070                        error_report("%s: Read %d bytes from userfaultfd "
1071                                     "expected %zd (shared)",
1072                                     __func__, ret, sizeof(msg));
1073                        /*TODO: Could just disable this sharer */
1074                        break; /*Lost alignment,don't know what we'd read next*/
1075                    }
1076                }
1077                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1078                    error_report("%s: Read unexpected event %ud "
1079                                 "from userfaultfd (shared)",
1080                                 __func__, msg.event);
1081                    continue; /* It's not a page fault, shouldn't happen */
1082                }
1083                /* Call the device handler registered with us */
1084                ret = pcfd->handler(pcfd, &msg);
1085                if (ret) {
1086                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1087                                 __func__, index, pcfd->idstr);
1088                    /* TODO: Fail? Disable this sharer? */
1089                }
1090            }
1091        }
1092    }
1093    rcu_unregister_thread();
1094    trace_postcopy_ram_fault_thread_exit();
1095    g_free(pfd);
1096    return NULL;
1097}
1098
1099static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1100{
1101    PostcopyTmpPage *tmp_page;
1102    int err, i, channels;
1103    void *temp_page;
1104
1105    /* TODO: will be boosted when enable postcopy preemption */
1106    mis->postcopy_channels = 1;
1107
1108    channels = mis->postcopy_channels;
1109    mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1110
1111    for (i = 0; i < channels; i++) {
1112        tmp_page = &mis->postcopy_tmp_pages[i];
1113        temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1114                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1115        if (temp_page == MAP_FAILED) {
1116            err = errno;
1117            error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1118                         __func__, i, strerror(err));
1119            /* Clean up will be done later */
1120            return -err;
1121        }
1122        tmp_page->tmp_huge_page = temp_page;
1123        /* Initialize default states for each tmp page */
1124        postcopy_temp_page_reset(tmp_page);
1125    }
1126
1127    /*
1128     * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1129     */
1130    mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1131                                       PROT_READ | PROT_WRITE,
1132                                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1133    if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1134        err = errno;
1135        mis->postcopy_tmp_zero_page = NULL;
1136        error_report("%s: Failed to map large zero page %s",
1137                     __func__, strerror(err));
1138        return -err;
1139    }
1140
1141    memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1142
1143    return 0;
1144}
1145
1146int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1147{
1148    /* Open the fd for the kernel to give us userfaults */
1149    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1150    if (mis->userfault_fd == -1) {
1151        error_report("%s: Failed to open userfault fd: %s", __func__,
1152                     strerror(errno));
1153        return -1;
1154    }
1155
1156    /*
1157     * Although the host check already tested the API, we need to
1158     * do the check again as an ABI handshake on the new fd.
1159     */
1160    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1161        return -1;
1162    }
1163
1164    /* Now an eventfd we use to tell the fault-thread to quit */
1165    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1166    if (mis->userfault_event_fd == -1) {
1167        error_report("%s: Opening userfault_event_fd: %s", __func__,
1168                     strerror(errno));
1169        close(mis->userfault_fd);
1170        return -1;
1171    }
1172
1173    postcopy_thread_create(mis, &mis->fault_thread, "postcopy/fault",
1174                           postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1175    mis->have_fault_thread = true;
1176
1177    /* Mark so that we get notified of accesses to unwritten areas */
1178    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1179        error_report("ram_block_enable_notify failed");
1180        return -1;
1181    }
1182
1183    if (postcopy_temp_pages_setup(mis)) {
1184        /* Error dumped in the sub-function */
1185        return -1;
1186    }
1187
1188    trace_postcopy_ram_enable_notify();
1189
1190    return 0;
1191}
1192
1193static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1194                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1195{
1196    int userfault_fd = mis->userfault_fd;
1197    int ret;
1198
1199    if (from_addr) {
1200        struct uffdio_copy copy_struct;
1201        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1202        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1203        copy_struct.len = pagesize;
1204        copy_struct.mode = 0;
1205        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1206    } else {
1207        struct uffdio_zeropage zero_struct;
1208        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1209        zero_struct.range.len = pagesize;
1210        zero_struct.mode = 0;
1211        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1212    }
1213    if (!ret) {
1214        qemu_mutex_lock(&mis->page_request_mutex);
1215        ramblock_recv_bitmap_set_range(rb, host_addr,
1216                                       pagesize / qemu_target_page_size());
1217        /*
1218         * If this page resolves a page fault for a previous recorded faulted
1219         * address, take a special note to maintain the requested page list.
1220         */
1221        if (g_tree_lookup(mis->page_requested, host_addr)) {
1222            g_tree_remove(mis->page_requested, host_addr);
1223            mis->page_requested_count--;
1224            trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1225        }
1226        qemu_mutex_unlock(&mis->page_request_mutex);
1227        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1228    }
1229    return ret;
1230}
1231
1232int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1233{
1234    int i;
1235    MigrationIncomingState *mis = migration_incoming_get_current();
1236    GArray *pcrfds = mis->postcopy_remote_fds;
1237
1238    for (i = 0; i < pcrfds->len; i++) {
1239        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1240        int ret = cur->waker(cur, rb, offset);
1241        if (ret) {
1242            return ret;
1243        }
1244    }
1245    return 0;
1246}
1247
1248/*
1249 * Place a host page (from) at (host) atomically
1250 * returns 0 on success
1251 */
1252int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1253                        RAMBlock *rb)
1254{
1255    size_t pagesize = qemu_ram_pagesize(rb);
1256
1257    /* copy also acks to the kernel waking the stalled thread up
1258     * TODO: We can inhibit that ack and only do it if it was requested
1259     * which would be slightly cheaper, but we'd have to be careful
1260     * of the order of updating our page state.
1261     */
1262    if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1263        int e = errno;
1264        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1265                     __func__, strerror(e), host, from, pagesize);
1266
1267        return -e;
1268    }
1269
1270    trace_postcopy_place_page(host);
1271    return postcopy_notify_shared_wake(rb,
1272                                       qemu_ram_block_host_offset(rb, host));
1273}
1274
1275/*
1276 * Place a zero page at (host) atomically
1277 * returns 0 on success
1278 */
1279int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1280                             RAMBlock *rb)
1281{
1282    size_t pagesize = qemu_ram_pagesize(rb);
1283    trace_postcopy_place_page_zero(host);
1284
1285    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1286     * but it's not available for everything (e.g. hugetlbpages)
1287     */
1288    if (qemu_ram_is_uf_zeroable(rb)) {
1289        if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1290            int e = errno;
1291            error_report("%s: %s zero host: %p",
1292                         __func__, strerror(e), host);
1293
1294            return -e;
1295        }
1296        return postcopy_notify_shared_wake(rb,
1297                                           qemu_ram_block_host_offset(rb,
1298                                                                      host));
1299    } else {
1300        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1301    }
1302}
1303
1304#else
1305/* No target OS support, stubs just fail */
1306void fill_destination_postcopy_migration_info(MigrationInfo *info)
1307{
1308}
1309
1310bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1311{
1312    error_report("%s: No OS support", __func__);
1313    return false;
1314}
1315
1316int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1317{
1318    error_report("postcopy_ram_incoming_init: No OS support");
1319    return -1;
1320}
1321
1322int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1323{
1324    assert(0);
1325    return -1;
1326}
1327
1328int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1329{
1330    assert(0);
1331    return -1;
1332}
1333
1334int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1335                                 uint64_t client_addr, uint64_t rb_offset)
1336{
1337    assert(0);
1338    return -1;
1339}
1340
1341int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1342{
1343    assert(0);
1344    return -1;
1345}
1346
1347int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1348                        RAMBlock *rb)
1349{
1350    assert(0);
1351    return -1;
1352}
1353
1354int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1355                        RAMBlock *rb)
1356{
1357    assert(0);
1358    return -1;
1359}
1360
1361int postcopy_wake_shared(struct PostCopyFD *pcfd,
1362                         uint64_t client_addr,
1363                         RAMBlock *rb)
1364{
1365    assert(0);
1366    return -1;
1367}
1368#endif
1369
1370/* ------------------------------------------------------------------------- */
1371void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1372{
1373    tmp_page->target_pages = 0;
1374    tmp_page->host_addr = NULL;
1375    /*
1376     * This is set to true when reset, and cleared as long as we received any
1377     * of the non-zero small page within this huge page.
1378     */
1379    tmp_page->all_zero = true;
1380}
1381
1382void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1383{
1384    uint64_t tmp64 = 1;
1385
1386    /*
1387     * Wakeup the fault_thread.  It's an eventfd that should currently
1388     * be at 0, we're going to increment it to 1
1389     */
1390    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1391        /* Not much we can do here, but may as well report it */
1392        error_report("%s: incrementing failed: %s", __func__,
1393                     strerror(errno));
1394    }
1395}
1396
1397/**
1398 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1399 *   asking to discard individual ranges.
1400 *
1401 * @ms: The current migration state.
1402 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1403 * @name: RAMBlock that discards will operate on.
1404 */
1405static PostcopyDiscardState pds = {0};
1406void postcopy_discard_send_init(MigrationState *ms, const char *name)
1407{
1408    pds.ramblock_name = name;
1409    pds.cur_entry = 0;
1410    pds.nsentwords = 0;
1411    pds.nsentcmds = 0;
1412}
1413
1414/**
1415 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1416 *   discard. May send a discard message, may just leave it queued to
1417 *   be sent later.
1418 *
1419 * @ms: Current migration state.
1420 * @start,@length: a range of pages in the migration bitmap in the
1421 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1422 */
1423void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1424                                 unsigned long length)
1425{
1426    size_t tp_size = qemu_target_page_size();
1427    /* Convert to byte offsets within the RAM block */
1428    pds.start_list[pds.cur_entry] = start  * tp_size;
1429    pds.length_list[pds.cur_entry] = length * tp_size;
1430    trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1431    pds.cur_entry++;
1432    pds.nsentwords++;
1433
1434    if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1435        /* Full set, ship it! */
1436        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1437                                              pds.ramblock_name,
1438                                              pds.cur_entry,
1439                                              pds.start_list,
1440                                              pds.length_list);
1441        pds.nsentcmds++;
1442        pds.cur_entry = 0;
1443    }
1444}
1445
1446/**
1447 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1448 * bitmap code. Sends any outstanding discard messages, frees the PDS
1449 *
1450 * @ms: Current migration state.
1451 */
1452void postcopy_discard_send_finish(MigrationState *ms)
1453{
1454    /* Anything unsent? */
1455    if (pds.cur_entry) {
1456        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1457                                              pds.ramblock_name,
1458                                              pds.cur_entry,
1459                                              pds.start_list,
1460                                              pds.length_list);
1461        pds.nsentcmds++;
1462    }
1463
1464    trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1465                                       pds.nsentcmds);
1466}
1467
1468/*
1469 * Current state of incoming postcopy; note this is not part of
1470 * MigrationIncomingState since it's state is used during cleanup
1471 * at the end as MIS is being freed.
1472 */
1473static PostcopyState incoming_postcopy_state;
1474
1475PostcopyState  postcopy_state_get(void)
1476{
1477    return qatomic_mb_read(&incoming_postcopy_state);
1478}
1479
1480/* Set the state and return the old state */
1481PostcopyState postcopy_state_set(PostcopyState new_state)
1482{
1483    return qatomic_xchg(&incoming_postcopy_state, new_state);
1484}
1485
1486/* Register a handler for external shared memory postcopy
1487 * called on the destination.
1488 */
1489void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1490{
1491    MigrationIncomingState *mis = migration_incoming_get_current();
1492
1493    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1494                                                  *pcfd);
1495}
1496
1497/* Unregister a handler for external shared memory postcopy
1498 */
1499void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1500{
1501    guint i;
1502    MigrationIncomingState *mis = migration_incoming_get_current();
1503    GArray *pcrfds = mis->postcopy_remote_fds;
1504
1505    if (!pcrfds) {
1506        /* migration has already finished and freed the array */
1507        return;
1508    }
1509    for (i = 0; i < pcrfds->len; i++) {
1510        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1511        if (cur->fd == pcfd->fd) {
1512            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1513            return;
1514        }
1515    }
1516}
1517