qemu/plugins/api.c
<<
>>
Prefs
   1/*
   2 * QEMU Plugin API
   3 *
   4 * This provides the API that is available to the plugins to interact
   5 * with QEMU. We have to be careful not to expose internal details of
   6 * how QEMU works so we abstract out things like translation and
   7 * instructions to anonymous data types:
   8 *
   9 *  qemu_plugin_tb
  10 *  qemu_plugin_insn
  11 *
  12 * Which can then be passed back into the API to do additional things.
  13 * As such all the public functions in here are exported in
  14 * qemu-plugin.h.
  15 *
  16 * The general life-cycle of a plugin is:
  17 *
  18 *  - plugin is loaded, public qemu_plugin_install called
  19 *    - the install func registers callbacks for events
  20 *    - usually an atexit_cb is registered to dump info at the end
  21 *  - when a registered event occurs the plugin is called
  22 *     - some events pass additional info
  23 *     - during translation the plugin can decide to instrument any
  24 *       instruction
  25 *  - when QEMU exits all the registered atexit callbacks are called
  26 *
  27 * Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
  28 * Copyright (C) 2019, Linaro
  29 *
  30 * License: GNU GPL, version 2 or later.
  31 *   See the COPYING file in the top-level directory.
  32 *
  33 * SPDX-License-Identifier: GPL-2.0-or-later
  34 *
  35 */
  36
  37#include "qemu/osdep.h"
  38#include "qemu/plugin.h"
  39#include "qemu/log.h"
  40#include "tcg/tcg.h"
  41#include "exec/exec-all.h"
  42#include "exec/ram_addr.h"
  43#include "disas/disas.h"
  44#include "plugin.h"
  45#ifndef CONFIG_USER_ONLY
  46#include "qemu/plugin-memory.h"
  47#include "hw/boards.h"
  48#else
  49#include "qemu.h"
  50#ifdef CONFIG_LINUX
  51#include "loader.h"
  52#endif
  53#endif
  54
  55/* Uninstall and Reset handlers */
  56
  57void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
  58{
  59    plugin_reset_uninstall(id, cb, false);
  60}
  61
  62void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
  63{
  64    plugin_reset_uninstall(id, cb, true);
  65}
  66
  67/*
  68 * Plugin Register Functions
  69 *
  70 * This allows the plugin to register callbacks for various events
  71 * during the translation.
  72 */
  73
  74void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
  75                                       qemu_plugin_vcpu_simple_cb_t cb)
  76{
  77    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
  78}
  79
  80void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
  81                                       qemu_plugin_vcpu_simple_cb_t cb)
  82{
  83    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
  84}
  85
  86void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
  87                                          qemu_plugin_vcpu_udata_cb_t cb,
  88                                          enum qemu_plugin_cb_flags flags,
  89                                          void *udata)
  90{
  91    if (!tb->mem_only) {
  92        plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR],
  93                                      cb, flags, udata);
  94    }
  95}
  96
  97void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb,
  98                                              enum qemu_plugin_op op,
  99                                              void *ptr, uint64_t imm)
 100{
 101    if (!tb->mem_only) {
 102        plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm);
 103    }
 104}
 105
 106void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
 107                                            qemu_plugin_vcpu_udata_cb_t cb,
 108                                            enum qemu_plugin_cb_flags flags,
 109                                            void *udata)
 110{
 111    if (!insn->mem_only) {
 112        plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR],
 113                                      cb, flags, udata);
 114    }
 115}
 116
 117void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn,
 118                                                enum qemu_plugin_op op,
 119                                                void *ptr, uint64_t imm)
 120{
 121    if (!insn->mem_only) {
 122        plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
 123                                  0, op, ptr, imm);
 124    }
 125}
 126
 127
 128/*
 129 * We always plant memory instrumentation because they don't finalise until
 130 * after the operation has complete.
 131 */
 132void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
 133                                      qemu_plugin_vcpu_mem_cb_t cb,
 134                                      enum qemu_plugin_cb_flags flags,
 135                                      enum qemu_plugin_mem_rw rw,
 136                                      void *udata)
 137{
 138    plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR],
 139                                    cb, flags, rw, udata);
 140}
 141
 142void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn,
 143                                          enum qemu_plugin_mem_rw rw,
 144                                          enum qemu_plugin_op op, void *ptr,
 145                                          uint64_t imm)
 146{
 147    plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE],
 148                              rw, op, ptr, imm);
 149}
 150
 151void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
 152                                           qemu_plugin_vcpu_tb_trans_cb_t cb)
 153{
 154    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
 155}
 156
 157void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
 158                                          qemu_plugin_vcpu_syscall_cb_t cb)
 159{
 160    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
 161}
 162
 163void
 164qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
 165                                         qemu_plugin_vcpu_syscall_ret_cb_t cb)
 166{
 167    plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
 168}
 169
 170/*
 171 * Plugin Queries
 172 *
 173 * These are queries that the plugin can make to gauge information
 174 * from our opaque data types. We do not want to leak internal details
 175 * here just information useful to the plugin.
 176 */
 177
 178/*
 179 * Translation block information:
 180 *
 181 * A plugin can query the virtual address of the start of the block
 182 * and the number of instructions in it. It can also get access to
 183 * each translated instruction.
 184 */
 185
 186size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
 187{
 188    return tb->n;
 189}
 190
 191uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
 192{
 193    return tb->vaddr;
 194}
 195
 196struct qemu_plugin_insn *
 197qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
 198{
 199    struct qemu_plugin_insn *insn;
 200    if (unlikely(idx >= tb->n)) {
 201        return NULL;
 202    }
 203    insn = g_ptr_array_index(tb->insns, idx);
 204    insn->mem_only = tb->mem_only;
 205    return insn;
 206}
 207
 208/*
 209 * Instruction information
 210 *
 211 * These queries allow the plugin to retrieve information about each
 212 * instruction being translated.
 213 */
 214
 215const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn)
 216{
 217    return insn->data->data;
 218}
 219
 220size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
 221{
 222    return insn->data->len;
 223}
 224
 225uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
 226{
 227    return insn->vaddr;
 228}
 229
 230void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
 231{
 232    return insn->haddr;
 233}
 234
 235char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
 236{
 237    CPUState *cpu = current_cpu;
 238    return plugin_disas(cpu, insn->vaddr, insn->data->len);
 239}
 240
 241const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
 242{
 243    const char *sym = lookup_symbol(insn->vaddr);
 244    return sym[0] != 0 ? sym : NULL;
 245}
 246
 247/*
 248 * The memory queries allow the plugin to query information about a
 249 * memory access.
 250 */
 251
 252unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
 253{
 254    MemOp op = get_memop(info);
 255    return op & MO_SIZE;
 256}
 257
 258bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
 259{
 260    MemOp op = get_memop(info);
 261    return op & MO_SIGN;
 262}
 263
 264bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
 265{
 266    MemOp op = get_memop(info);
 267    return (op & MO_BSWAP) == MO_BE;
 268}
 269
 270bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
 271{
 272    return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
 273}
 274
 275/*
 276 * Virtual Memory queries
 277 */
 278
 279#ifdef CONFIG_SOFTMMU
 280static __thread struct qemu_plugin_hwaddr hwaddr_info;
 281#endif
 282
 283struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info,
 284                                                  uint64_t vaddr)
 285{
 286#ifdef CONFIG_SOFTMMU
 287    CPUState *cpu = current_cpu;
 288    unsigned int mmu_idx = get_mmuidx(info);
 289    enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
 290    hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0;
 291
 292    if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx,
 293                           hwaddr_info.is_store, &hwaddr_info)) {
 294        error_report("invalid use of qemu_plugin_get_hwaddr");
 295        return NULL;
 296    }
 297
 298    return &hwaddr_info;
 299#else
 300    return NULL;
 301#endif
 302}
 303
 304bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr)
 305{
 306#ifdef CONFIG_SOFTMMU
 307    return haddr->is_io;
 308#else
 309    return false;
 310#endif
 311}
 312
 313uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr)
 314{
 315#ifdef CONFIG_SOFTMMU
 316    if (haddr) {
 317        if (!haddr->is_io) {
 318            RAMBlock *block;
 319            ram_addr_t offset;
 320            void *hostaddr = haddr->v.ram.hostaddr;
 321
 322            block = qemu_ram_block_from_host(hostaddr, false, &offset);
 323            if (!block) {
 324                error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr);
 325                abort();
 326            }
 327
 328            return block->offset + offset + block->mr->addr;
 329        } else {
 330            MemoryRegionSection *mrs = haddr->v.io.section;
 331            return mrs->offset_within_address_space + haddr->v.io.offset;
 332        }
 333    }
 334#endif
 335    return 0;
 336}
 337
 338const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h)
 339{
 340#ifdef CONFIG_SOFTMMU
 341    if (h && h->is_io) {
 342        MemoryRegionSection *mrs = h->v.io.section;
 343        if (!mrs->mr->name) {
 344            unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr;
 345            g_autofree char *temp = g_strdup_printf("anon%08lx", maddr);
 346            return g_intern_string(temp);
 347        } else {
 348            return g_intern_string(mrs->mr->name);
 349        }
 350    } else {
 351        return g_intern_static_string("RAM");
 352    }
 353#else
 354    return g_intern_static_string("Invalid");
 355#endif
 356}
 357
 358/*
 359 * Queries to the number and potential maximum number of vCPUs there
 360 * will be. This helps the plugin dimension per-vcpu arrays.
 361 */
 362
 363#ifndef CONFIG_USER_ONLY
 364static MachineState * get_ms(void)
 365{
 366    return MACHINE(qdev_get_machine());
 367}
 368#endif
 369
 370int qemu_plugin_n_vcpus(void)
 371{
 372#ifdef CONFIG_USER_ONLY
 373    return -1;
 374#else
 375    return get_ms()->smp.cpus;
 376#endif
 377}
 378
 379int qemu_plugin_n_max_vcpus(void)
 380{
 381#ifdef CONFIG_USER_ONLY
 382    return -1;
 383#else
 384    return get_ms()->smp.max_cpus;
 385#endif
 386}
 387
 388/*
 389 * Plugin output
 390 */
 391void qemu_plugin_outs(const char *string)
 392{
 393    qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
 394}
 395
 396bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
 397{
 398    return name && value && qapi_bool_parse(name, value, ret, NULL);
 399}
 400
 401/*
 402 * Binary path, start and end locations
 403 */
 404const char *qemu_plugin_path_to_binary(void)
 405{
 406    char *path = NULL;
 407#ifdef CONFIG_USER_ONLY
 408    TaskState *ts = (TaskState *) current_cpu->opaque;
 409    path = g_strdup(ts->bprm->filename);
 410#endif
 411    return path;
 412}
 413
 414uint64_t qemu_plugin_start_code(void)
 415{
 416    uint64_t start = 0;
 417#ifdef CONFIG_USER_ONLY
 418    TaskState *ts = (TaskState *) current_cpu->opaque;
 419    start = ts->info->start_code;
 420#endif
 421    return start;
 422}
 423
 424uint64_t qemu_plugin_end_code(void)
 425{
 426    uint64_t end = 0;
 427#ifdef CONFIG_USER_ONLY
 428    TaskState *ts = (TaskState *) current_cpu->opaque;
 429    end = ts->info->end_code;
 430#endif
 431    return end;
 432}
 433
 434uint64_t qemu_plugin_entry_code(void)
 435{
 436    uint64_t entry = 0;
 437#ifdef CONFIG_USER_ONLY
 438    TaskState *ts = (TaskState *) current_cpu->opaque;
 439    entry = ts->info->entry;
 440#endif
 441    return entry;
 442}
 443