qemu/softmmu/memory.c
<<
>>
Prefs
   1/*
   2 * Physical memory management
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 * Contributions after 2012-01-13 are licensed under the terms of the
  13 * GNU GPL, version 2 or (at your option) any later version.
  14 */
  15
  16#include "qemu/osdep.h"
  17#include "qemu/log.h"
  18#include "qapi/error.h"
  19#include "exec/memory.h"
  20#include "qapi/visitor.h"
  21#include "qemu/bitops.h"
  22#include "qemu/error-report.h"
  23#include "qemu/main-loop.h"
  24#include "qemu/qemu-print.h"
  25#include "qom/object.h"
  26#include "trace.h"
  27
  28#include "exec/memory-internal.h"
  29#include "exec/ram_addr.h"
  30#include "sysemu/kvm.h"
  31#include "sysemu/runstate.h"
  32#include "sysemu/tcg.h"
  33#include "qemu/accel.h"
  34#include "hw/boards.h"
  35#include "migration/vmstate.h"
  36
  37//#define DEBUG_UNASSIGNED
  38
  39static unsigned memory_region_transaction_depth;
  40static bool memory_region_update_pending;
  41static bool ioeventfd_update_pending;
  42unsigned int global_dirty_tracking;
  43
  44static QTAILQ_HEAD(, MemoryListener) memory_listeners
  45    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  46
  47static QTAILQ_HEAD(, AddressSpace) address_spaces
  48    = QTAILQ_HEAD_INITIALIZER(address_spaces);
  49
  50static GHashTable *flat_views;
  51
  52typedef struct AddrRange AddrRange;
  53
  54/*
  55 * Note that signed integers are needed for negative offsetting in aliases
  56 * (large MemoryRegion::alias_offset).
  57 */
  58struct AddrRange {
  59    Int128 start;
  60    Int128 size;
  61};
  62
  63static AddrRange addrrange_make(Int128 start, Int128 size)
  64{
  65    return (AddrRange) { start, size };
  66}
  67
  68static bool addrrange_equal(AddrRange r1, AddrRange r2)
  69{
  70    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  71}
  72
  73static Int128 addrrange_end(AddrRange r)
  74{
  75    return int128_add(r.start, r.size);
  76}
  77
  78static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  79{
  80    int128_addto(&range.start, delta);
  81    return range;
  82}
  83
  84static bool addrrange_contains(AddrRange range, Int128 addr)
  85{
  86    return int128_ge(addr, range.start)
  87        && int128_lt(addr, addrrange_end(range));
  88}
  89
  90static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  91{
  92    return addrrange_contains(r1, r2.start)
  93        || addrrange_contains(r2, r1.start);
  94}
  95
  96static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  97{
  98    Int128 start = int128_max(r1.start, r2.start);
  99    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
 100    return addrrange_make(start, int128_sub(end, start));
 101}
 102
 103enum ListenerDirection { Forward, Reverse };
 104
 105#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
 106    do {                                                                \
 107        MemoryListener *_listener;                                      \
 108                                                                        \
 109        switch (_direction) {                                           \
 110        case Forward:                                                   \
 111            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 112                if (_listener->_callback) {                             \
 113                    _listener->_callback(_listener, ##_args);           \
 114                }                                                       \
 115            }                                                           \
 116            break;                                                      \
 117        case Reverse:                                                   \
 118            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
 119                if (_listener->_callback) {                             \
 120                    _listener->_callback(_listener, ##_args);           \
 121                }                                                       \
 122            }                                                           \
 123            break;                                                      \
 124        default:                                                        \
 125            abort();                                                    \
 126        }                                                               \
 127    } while (0)
 128
 129#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
 130    do {                                                                \
 131        MemoryListener *_listener;                                      \
 132                                                                        \
 133        switch (_direction) {                                           \
 134        case Forward:                                                   \
 135            QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
 136                if (_listener->_callback) {                             \
 137                    _listener->_callback(_listener, _section, ##_args); \
 138                }                                                       \
 139            }                                                           \
 140            break;                                                      \
 141        case Reverse:                                                   \
 142            QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
 143                if (_listener->_callback) {                             \
 144                    _listener->_callback(_listener, _section, ##_args); \
 145                }                                                       \
 146            }                                                           \
 147            break;                                                      \
 148        default:                                                        \
 149            abort();                                                    \
 150        }                                                               \
 151    } while (0)
 152
 153/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
 154#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
 155    do {                                                                \
 156        MemoryRegionSection mrs = section_from_flat_range(fr,           \
 157                address_space_to_flatview(as));                         \
 158        MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
 159    } while(0)
 160
 161struct CoalescedMemoryRange {
 162    AddrRange addr;
 163    QTAILQ_ENTRY(CoalescedMemoryRange) link;
 164};
 165
 166struct MemoryRegionIoeventfd {
 167    AddrRange addr;
 168    bool match_data;
 169    uint64_t data;
 170    EventNotifier *e;
 171};
 172
 173static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
 174                                           MemoryRegionIoeventfd *b)
 175{
 176    if (int128_lt(a->addr.start, b->addr.start)) {
 177        return true;
 178    } else if (int128_gt(a->addr.start, b->addr.start)) {
 179        return false;
 180    } else if (int128_lt(a->addr.size, b->addr.size)) {
 181        return true;
 182    } else if (int128_gt(a->addr.size, b->addr.size)) {
 183        return false;
 184    } else if (a->match_data < b->match_data) {
 185        return true;
 186    } else  if (a->match_data > b->match_data) {
 187        return false;
 188    } else if (a->match_data) {
 189        if (a->data < b->data) {
 190            return true;
 191        } else if (a->data > b->data) {
 192            return false;
 193        }
 194    }
 195    if (a->e < b->e) {
 196        return true;
 197    } else if (a->e > b->e) {
 198        return false;
 199    }
 200    return false;
 201}
 202
 203static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
 204                                          MemoryRegionIoeventfd *b)
 205{
 206    if (int128_eq(a->addr.start, b->addr.start) &&
 207        (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
 208         (int128_eq(a->addr.size, b->addr.size) &&
 209          (a->match_data == b->match_data) &&
 210          ((a->match_data && (a->data == b->data)) || !a->match_data) &&
 211          (a->e == b->e))))
 212        return true;
 213
 214    return false;
 215}
 216
 217/* Range of memory in the global map.  Addresses are absolute. */
 218struct FlatRange {
 219    MemoryRegion *mr;
 220    hwaddr offset_in_region;
 221    AddrRange addr;
 222    uint8_t dirty_log_mask;
 223    bool romd_mode;
 224    bool readonly;
 225    bool nonvolatile;
 226};
 227
 228#define FOR_EACH_FLAT_RANGE(var, view)          \
 229    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
 230
 231static inline MemoryRegionSection
 232section_from_flat_range(FlatRange *fr, FlatView *fv)
 233{
 234    return (MemoryRegionSection) {
 235        .mr = fr->mr,
 236        .fv = fv,
 237        .offset_within_region = fr->offset_in_region,
 238        .size = fr->addr.size,
 239        .offset_within_address_space = int128_get64(fr->addr.start),
 240        .readonly = fr->readonly,
 241        .nonvolatile = fr->nonvolatile,
 242    };
 243}
 244
 245static bool flatrange_equal(FlatRange *a, FlatRange *b)
 246{
 247    return a->mr == b->mr
 248        && addrrange_equal(a->addr, b->addr)
 249        && a->offset_in_region == b->offset_in_region
 250        && a->romd_mode == b->romd_mode
 251        && a->readonly == b->readonly
 252        && a->nonvolatile == b->nonvolatile;
 253}
 254
 255static FlatView *flatview_new(MemoryRegion *mr_root)
 256{
 257    FlatView *view;
 258
 259    view = g_new0(FlatView, 1);
 260    view->ref = 1;
 261    view->root = mr_root;
 262    memory_region_ref(mr_root);
 263    trace_flatview_new(view, mr_root);
 264
 265    return view;
 266}
 267
 268/* Insert a range into a given position.  Caller is responsible for maintaining
 269 * sorting order.
 270 */
 271static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
 272{
 273    if (view->nr == view->nr_allocated) {
 274        view->nr_allocated = MAX(2 * view->nr, 10);
 275        view->ranges = g_realloc(view->ranges,
 276                                    view->nr_allocated * sizeof(*view->ranges));
 277    }
 278    memmove(view->ranges + pos + 1, view->ranges + pos,
 279            (view->nr - pos) * sizeof(FlatRange));
 280    view->ranges[pos] = *range;
 281    memory_region_ref(range->mr);
 282    ++view->nr;
 283}
 284
 285static void flatview_destroy(FlatView *view)
 286{
 287    int i;
 288
 289    trace_flatview_destroy(view, view->root);
 290    if (view->dispatch) {
 291        address_space_dispatch_free(view->dispatch);
 292    }
 293    for (i = 0; i < view->nr; i++) {
 294        memory_region_unref(view->ranges[i].mr);
 295    }
 296    g_free(view->ranges);
 297    memory_region_unref(view->root);
 298    g_free(view);
 299}
 300
 301static bool flatview_ref(FlatView *view)
 302{
 303    return qatomic_fetch_inc_nonzero(&view->ref) > 0;
 304}
 305
 306void flatview_unref(FlatView *view)
 307{
 308    if (qatomic_fetch_dec(&view->ref) == 1) {
 309        trace_flatview_destroy_rcu(view, view->root);
 310        assert(view->root);
 311        call_rcu(view, flatview_destroy, rcu);
 312    }
 313}
 314
 315static bool can_merge(FlatRange *r1, FlatRange *r2)
 316{
 317    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
 318        && r1->mr == r2->mr
 319        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
 320                                r1->addr.size),
 321                     int128_make64(r2->offset_in_region))
 322        && r1->dirty_log_mask == r2->dirty_log_mask
 323        && r1->romd_mode == r2->romd_mode
 324        && r1->readonly == r2->readonly
 325        && r1->nonvolatile == r2->nonvolatile;
 326}
 327
 328/* Attempt to simplify a view by merging adjacent ranges */
 329static void flatview_simplify(FlatView *view)
 330{
 331    unsigned i, j, k;
 332
 333    i = 0;
 334    while (i < view->nr) {
 335        j = i + 1;
 336        while (j < view->nr
 337               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
 338            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
 339            ++j;
 340        }
 341        ++i;
 342        for (k = i; k < j; k++) {
 343            memory_region_unref(view->ranges[k].mr);
 344        }
 345        memmove(&view->ranges[i], &view->ranges[j],
 346                (view->nr - j) * sizeof(view->ranges[j]));
 347        view->nr -= j - i;
 348    }
 349}
 350
 351static bool memory_region_big_endian(MemoryRegion *mr)
 352{
 353#ifdef TARGET_WORDS_BIGENDIAN
 354    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
 355#else
 356    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 357#endif
 358}
 359
 360static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
 361{
 362    if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
 363        switch (op & MO_SIZE) {
 364        case MO_8:
 365            break;
 366        case MO_16:
 367            *data = bswap16(*data);
 368            break;
 369        case MO_32:
 370            *data = bswap32(*data);
 371            break;
 372        case MO_64:
 373            *data = bswap64(*data);
 374            break;
 375        default:
 376            g_assert_not_reached();
 377        }
 378    }
 379}
 380
 381static inline void memory_region_shift_read_access(uint64_t *value,
 382                                                   signed shift,
 383                                                   uint64_t mask,
 384                                                   uint64_t tmp)
 385{
 386    if (shift >= 0) {
 387        *value |= (tmp & mask) << shift;
 388    } else {
 389        *value |= (tmp & mask) >> -shift;
 390    }
 391}
 392
 393static inline uint64_t memory_region_shift_write_access(uint64_t *value,
 394                                                        signed shift,
 395                                                        uint64_t mask)
 396{
 397    uint64_t tmp;
 398
 399    if (shift >= 0) {
 400        tmp = (*value >> shift) & mask;
 401    } else {
 402        tmp = (*value << -shift) & mask;
 403    }
 404
 405    return tmp;
 406}
 407
 408static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
 409{
 410    MemoryRegion *root;
 411    hwaddr abs_addr = offset;
 412
 413    abs_addr += mr->addr;
 414    for (root = mr; root->container; ) {
 415        root = root->container;
 416        abs_addr += root->addr;
 417    }
 418
 419    return abs_addr;
 420}
 421
 422static int get_cpu_index(void)
 423{
 424    if (current_cpu) {
 425        return current_cpu->cpu_index;
 426    }
 427    return -1;
 428}
 429
 430static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
 431                                                hwaddr addr,
 432                                                uint64_t *value,
 433                                                unsigned size,
 434                                                signed shift,
 435                                                uint64_t mask,
 436                                                MemTxAttrs attrs)
 437{
 438    uint64_t tmp;
 439
 440    tmp = mr->ops->read(mr->opaque, addr, size);
 441    if (mr->subpage) {
 442        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 443    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
 444        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 445        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
 446                                     memory_region_name(mr));
 447    }
 448    memory_region_shift_read_access(value, shift, mask, tmp);
 449    return MEMTX_OK;
 450}
 451
 452static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
 453                                                          hwaddr addr,
 454                                                          uint64_t *value,
 455                                                          unsigned size,
 456                                                          signed shift,
 457                                                          uint64_t mask,
 458                                                          MemTxAttrs attrs)
 459{
 460    uint64_t tmp = 0;
 461    MemTxResult r;
 462
 463    r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
 464    if (mr->subpage) {
 465        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 466    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
 467        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 468        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
 469                                     memory_region_name(mr));
 470    }
 471    memory_region_shift_read_access(value, shift, mask, tmp);
 472    return r;
 473}
 474
 475static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
 476                                                hwaddr addr,
 477                                                uint64_t *value,
 478                                                unsigned size,
 479                                                signed shift,
 480                                                uint64_t mask,
 481                                                MemTxAttrs attrs)
 482{
 483    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
 484
 485    if (mr->subpage) {
 486        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 487    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
 488        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 489        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
 490                                      memory_region_name(mr));
 491    }
 492    mr->ops->write(mr->opaque, addr, tmp, size);
 493    return MEMTX_OK;
 494}
 495
 496static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
 497                                                           hwaddr addr,
 498                                                           uint64_t *value,
 499                                                           unsigned size,
 500                                                           signed shift,
 501                                                           uint64_t mask,
 502                                                           MemTxAttrs attrs)
 503{
 504    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
 505
 506    if (mr->subpage) {
 507        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 508    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
 509        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 510        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
 511                                      memory_region_name(mr));
 512    }
 513    return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
 514}
 515
 516static MemTxResult access_with_adjusted_size(hwaddr addr,
 517                                      uint64_t *value,
 518                                      unsigned size,
 519                                      unsigned access_size_min,
 520                                      unsigned access_size_max,
 521                                      MemTxResult (*access_fn)
 522                                                  (MemoryRegion *mr,
 523                                                   hwaddr addr,
 524                                                   uint64_t *value,
 525                                                   unsigned size,
 526                                                   signed shift,
 527                                                   uint64_t mask,
 528                                                   MemTxAttrs attrs),
 529                                      MemoryRegion *mr,
 530                                      MemTxAttrs attrs)
 531{
 532    uint64_t access_mask;
 533    unsigned access_size;
 534    unsigned i;
 535    MemTxResult r = MEMTX_OK;
 536
 537    if (!access_size_min) {
 538        access_size_min = 1;
 539    }
 540    if (!access_size_max) {
 541        access_size_max = 4;
 542    }
 543
 544    /* FIXME: support unaligned access? */
 545    access_size = MAX(MIN(size, access_size_max), access_size_min);
 546    access_mask = MAKE_64BIT_MASK(0, access_size * 8);
 547    if (memory_region_big_endian(mr)) {
 548        for (i = 0; i < size; i += access_size) {
 549            r |= access_fn(mr, addr + i, value, access_size,
 550                        (size - access_size - i) * 8, access_mask, attrs);
 551        }
 552    } else {
 553        for (i = 0; i < size; i += access_size) {
 554            r |= access_fn(mr, addr + i, value, access_size, i * 8,
 555                        access_mask, attrs);
 556        }
 557    }
 558    return r;
 559}
 560
 561static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
 562{
 563    AddressSpace *as;
 564
 565    while (mr->container) {
 566        mr = mr->container;
 567    }
 568    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 569        if (mr == as->root) {
 570            return as;
 571        }
 572    }
 573    return NULL;
 574}
 575
 576/* Render a memory region into the global view.  Ranges in @view obscure
 577 * ranges in @mr.
 578 */
 579static void render_memory_region(FlatView *view,
 580                                 MemoryRegion *mr,
 581                                 Int128 base,
 582                                 AddrRange clip,
 583                                 bool readonly,
 584                                 bool nonvolatile)
 585{
 586    MemoryRegion *subregion;
 587    unsigned i;
 588    hwaddr offset_in_region;
 589    Int128 remain;
 590    Int128 now;
 591    FlatRange fr;
 592    AddrRange tmp;
 593
 594    if (!mr->enabled) {
 595        return;
 596    }
 597
 598    int128_addto(&base, int128_make64(mr->addr));
 599    readonly |= mr->readonly;
 600    nonvolatile |= mr->nonvolatile;
 601
 602    tmp = addrrange_make(base, mr->size);
 603
 604    if (!addrrange_intersects(tmp, clip)) {
 605        return;
 606    }
 607
 608    clip = addrrange_intersection(tmp, clip);
 609
 610    if (mr->alias) {
 611        int128_subfrom(&base, int128_make64(mr->alias->addr));
 612        int128_subfrom(&base, int128_make64(mr->alias_offset));
 613        render_memory_region(view, mr->alias, base, clip,
 614                             readonly, nonvolatile);
 615        return;
 616    }
 617
 618    /* Render subregions in priority order. */
 619    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
 620        render_memory_region(view, subregion, base, clip,
 621                             readonly, nonvolatile);
 622    }
 623
 624    if (!mr->terminates) {
 625        return;
 626    }
 627
 628    offset_in_region = int128_get64(int128_sub(clip.start, base));
 629    base = clip.start;
 630    remain = clip.size;
 631
 632    fr.mr = mr;
 633    fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 634    fr.romd_mode = mr->romd_mode;
 635    fr.readonly = readonly;
 636    fr.nonvolatile = nonvolatile;
 637
 638    /* Render the region itself into any gaps left by the current view. */
 639    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
 640        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
 641            continue;
 642        }
 643        if (int128_lt(base, view->ranges[i].addr.start)) {
 644            now = int128_min(remain,
 645                             int128_sub(view->ranges[i].addr.start, base));
 646            fr.offset_in_region = offset_in_region;
 647            fr.addr = addrrange_make(base, now);
 648            flatview_insert(view, i, &fr);
 649            ++i;
 650            int128_addto(&base, now);
 651            offset_in_region += int128_get64(now);
 652            int128_subfrom(&remain, now);
 653        }
 654        now = int128_sub(int128_min(int128_add(base, remain),
 655                                    addrrange_end(view->ranges[i].addr)),
 656                         base);
 657        int128_addto(&base, now);
 658        offset_in_region += int128_get64(now);
 659        int128_subfrom(&remain, now);
 660    }
 661    if (int128_nz(remain)) {
 662        fr.offset_in_region = offset_in_region;
 663        fr.addr = addrrange_make(base, remain);
 664        flatview_insert(view, i, &fr);
 665    }
 666}
 667
 668void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
 669{
 670    FlatRange *fr;
 671
 672    assert(fv);
 673    assert(cb);
 674
 675    FOR_EACH_FLAT_RANGE(fr, fv) {
 676        if (cb(fr->addr.start, fr->addr.size, fr->mr,
 677               fr->offset_in_region, opaque)) {
 678            break;
 679        }
 680    }
 681}
 682
 683static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
 684{
 685    while (mr->enabled) {
 686        if (mr->alias) {
 687            if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
 688                /* The alias is included in its entirety.  Use it as
 689                 * the "real" root, so that we can share more FlatViews.
 690                 */
 691                mr = mr->alias;
 692                continue;
 693            }
 694        } else if (!mr->terminates) {
 695            unsigned int found = 0;
 696            MemoryRegion *child, *next = NULL;
 697            QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
 698                if (child->enabled) {
 699                    if (++found > 1) {
 700                        next = NULL;
 701                        break;
 702                    }
 703                    if (!child->addr && int128_ge(mr->size, child->size)) {
 704                        /* A child is included in its entirety.  If it's the only
 705                         * enabled one, use it in the hope of finding an alias down the
 706                         * way. This will also let us share FlatViews.
 707                         */
 708                        next = child;
 709                    }
 710                }
 711            }
 712            if (found == 0) {
 713                return NULL;
 714            }
 715            if (next) {
 716                mr = next;
 717                continue;
 718            }
 719        }
 720
 721        return mr;
 722    }
 723
 724    return NULL;
 725}
 726
 727/* Render a memory topology into a list of disjoint absolute ranges. */
 728static FlatView *generate_memory_topology(MemoryRegion *mr)
 729{
 730    int i;
 731    FlatView *view;
 732
 733    view = flatview_new(mr);
 734
 735    if (mr) {
 736        render_memory_region(view, mr, int128_zero(),
 737                             addrrange_make(int128_zero(), int128_2_64()),
 738                             false, false);
 739    }
 740    flatview_simplify(view);
 741
 742    view->dispatch = address_space_dispatch_new(view);
 743    for (i = 0; i < view->nr; i++) {
 744        MemoryRegionSection mrs =
 745            section_from_flat_range(&view->ranges[i], view);
 746        flatview_add_to_dispatch(view, &mrs);
 747    }
 748    address_space_dispatch_compact(view->dispatch);
 749    g_hash_table_replace(flat_views, mr, view);
 750
 751    return view;
 752}
 753
 754static void address_space_add_del_ioeventfds(AddressSpace *as,
 755                                             MemoryRegionIoeventfd *fds_new,
 756                                             unsigned fds_new_nb,
 757                                             MemoryRegionIoeventfd *fds_old,
 758                                             unsigned fds_old_nb)
 759{
 760    unsigned iold, inew;
 761    MemoryRegionIoeventfd *fd;
 762    MemoryRegionSection section;
 763
 764    /* Generate a symmetric difference of the old and new fd sets, adding
 765     * and deleting as necessary.
 766     */
 767
 768    iold = inew = 0;
 769    while (iold < fds_old_nb || inew < fds_new_nb) {
 770        if (iold < fds_old_nb
 771            && (inew == fds_new_nb
 772                || memory_region_ioeventfd_before(&fds_old[iold],
 773                                                  &fds_new[inew]))) {
 774            fd = &fds_old[iold];
 775            section = (MemoryRegionSection) {
 776                .fv = address_space_to_flatview(as),
 777                .offset_within_address_space = int128_get64(fd->addr.start),
 778                .size = fd->addr.size,
 779            };
 780            MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
 781                                 fd->match_data, fd->data, fd->e);
 782            ++iold;
 783        } else if (inew < fds_new_nb
 784                   && (iold == fds_old_nb
 785                       || memory_region_ioeventfd_before(&fds_new[inew],
 786                                                         &fds_old[iold]))) {
 787            fd = &fds_new[inew];
 788            section = (MemoryRegionSection) {
 789                .fv = address_space_to_flatview(as),
 790                .offset_within_address_space = int128_get64(fd->addr.start),
 791                .size = fd->addr.size,
 792            };
 793            MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
 794                                 fd->match_data, fd->data, fd->e);
 795            ++inew;
 796        } else {
 797            ++iold;
 798            ++inew;
 799        }
 800    }
 801}
 802
 803FlatView *address_space_get_flatview(AddressSpace *as)
 804{
 805    FlatView *view;
 806
 807    RCU_READ_LOCK_GUARD();
 808    do {
 809        view = address_space_to_flatview(as);
 810        /* If somebody has replaced as->current_map concurrently,
 811         * flatview_ref returns false.
 812         */
 813    } while (!flatview_ref(view));
 814    return view;
 815}
 816
 817static void address_space_update_ioeventfds(AddressSpace *as)
 818{
 819    FlatView *view;
 820    FlatRange *fr;
 821    unsigned ioeventfd_nb = 0;
 822    unsigned ioeventfd_max;
 823    MemoryRegionIoeventfd *ioeventfds;
 824    AddrRange tmp;
 825    unsigned i;
 826
 827    /*
 828     * It is likely that the number of ioeventfds hasn't changed much, so use
 829     * the previous size as the starting value, with some headroom to avoid
 830     * gratuitous reallocations.
 831     */
 832    ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
 833    ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
 834
 835    view = address_space_get_flatview(as);
 836    FOR_EACH_FLAT_RANGE(fr, view) {
 837        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
 838            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
 839                                  int128_sub(fr->addr.start,
 840                                             int128_make64(fr->offset_in_region)));
 841            if (addrrange_intersects(fr->addr, tmp)) {
 842                ++ioeventfd_nb;
 843                if (ioeventfd_nb > ioeventfd_max) {
 844                    ioeventfd_max = MAX(ioeventfd_max * 2, 4);
 845                    ioeventfds = g_realloc(ioeventfds,
 846                            ioeventfd_max * sizeof(*ioeventfds));
 847                }
 848                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
 849                ioeventfds[ioeventfd_nb-1].addr = tmp;
 850            }
 851        }
 852    }
 853
 854    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
 855                                     as->ioeventfds, as->ioeventfd_nb);
 856
 857    g_free(as->ioeventfds);
 858    as->ioeventfds = ioeventfds;
 859    as->ioeventfd_nb = ioeventfd_nb;
 860    flatview_unref(view);
 861}
 862
 863/*
 864 * Notify the memory listeners about the coalesced IO change events of
 865 * range `cmr'.  Only the part that has intersection of the specified
 866 * FlatRange will be sent.
 867 */
 868static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
 869                                           CoalescedMemoryRange *cmr, bool add)
 870{
 871    AddrRange tmp;
 872
 873    tmp = addrrange_shift(cmr->addr,
 874                          int128_sub(fr->addr.start,
 875                                     int128_make64(fr->offset_in_region)));
 876    if (!addrrange_intersects(tmp, fr->addr)) {
 877        return;
 878    }
 879    tmp = addrrange_intersection(tmp, fr->addr);
 880
 881    if (add) {
 882        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
 883                                      int128_get64(tmp.start),
 884                                      int128_get64(tmp.size));
 885    } else {
 886        MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
 887                                      int128_get64(tmp.start),
 888                                      int128_get64(tmp.size));
 889    }
 890}
 891
 892static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
 893{
 894    CoalescedMemoryRange *cmr;
 895
 896    QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
 897        flat_range_coalesced_io_notify(fr, as, cmr, false);
 898    }
 899}
 900
 901static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
 902{
 903    MemoryRegion *mr = fr->mr;
 904    CoalescedMemoryRange *cmr;
 905
 906    if (QTAILQ_EMPTY(&mr->coalesced)) {
 907        return;
 908    }
 909
 910    QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
 911        flat_range_coalesced_io_notify(fr, as, cmr, true);
 912    }
 913}
 914
 915static void address_space_update_topology_pass(AddressSpace *as,
 916                                               const FlatView *old_view,
 917                                               const FlatView *new_view,
 918                                               bool adding)
 919{
 920    unsigned iold, inew;
 921    FlatRange *frold, *frnew;
 922
 923    /* Generate a symmetric difference of the old and new memory maps.
 924     * Kill ranges in the old map, and instantiate ranges in the new map.
 925     */
 926    iold = inew = 0;
 927    while (iold < old_view->nr || inew < new_view->nr) {
 928        if (iold < old_view->nr) {
 929            frold = &old_view->ranges[iold];
 930        } else {
 931            frold = NULL;
 932        }
 933        if (inew < new_view->nr) {
 934            frnew = &new_view->ranges[inew];
 935        } else {
 936            frnew = NULL;
 937        }
 938
 939        if (frold
 940            && (!frnew
 941                || int128_lt(frold->addr.start, frnew->addr.start)
 942                || (int128_eq(frold->addr.start, frnew->addr.start)
 943                    && !flatrange_equal(frold, frnew)))) {
 944            /* In old but not in new, or in both but attributes changed. */
 945
 946            if (!adding) {
 947                flat_range_coalesced_io_del(frold, as);
 948                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
 949            }
 950
 951            ++iold;
 952        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
 953            /* In both and unchanged (except logging may have changed) */
 954
 955            if (adding) {
 956                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
 957                if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
 958                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
 959                                                  frold->dirty_log_mask,
 960                                                  frnew->dirty_log_mask);
 961                }
 962                if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
 963                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
 964                                                  frold->dirty_log_mask,
 965                                                  frnew->dirty_log_mask);
 966                }
 967            }
 968
 969            ++iold;
 970            ++inew;
 971        } else {
 972            /* In new */
 973
 974            if (adding) {
 975                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
 976                flat_range_coalesced_io_add(frnew, as);
 977            }
 978
 979            ++inew;
 980        }
 981    }
 982}
 983
 984static void flatviews_init(void)
 985{
 986    static FlatView *empty_view;
 987
 988    if (flat_views) {
 989        return;
 990    }
 991
 992    flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
 993                                       (GDestroyNotify) flatview_unref);
 994    if (!empty_view) {
 995        empty_view = generate_memory_topology(NULL);
 996        /* We keep it alive forever in the global variable.  */
 997        flatview_ref(empty_view);
 998    } else {
 999        g_hash_table_replace(flat_views, NULL, empty_view);
1000        flatview_ref(empty_view);
1001    }
1002}
1003
1004static void flatviews_reset(void)
1005{
1006    AddressSpace *as;
1007
1008    if (flat_views) {
1009        g_hash_table_unref(flat_views);
1010        flat_views = NULL;
1011    }
1012    flatviews_init();
1013
1014    /* Render unique FVs */
1015    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1016        MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1017
1018        if (g_hash_table_lookup(flat_views, physmr)) {
1019            continue;
1020        }
1021
1022        generate_memory_topology(physmr);
1023    }
1024}
1025
1026static void address_space_set_flatview(AddressSpace *as)
1027{
1028    FlatView *old_view = address_space_to_flatview(as);
1029    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1030    FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1031
1032    assert(new_view);
1033
1034    if (old_view == new_view) {
1035        return;
1036    }
1037
1038    if (old_view) {
1039        flatview_ref(old_view);
1040    }
1041
1042    flatview_ref(new_view);
1043
1044    if (!QTAILQ_EMPTY(&as->listeners)) {
1045        FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1046
1047        if (!old_view2) {
1048            old_view2 = &tmpview;
1049        }
1050        address_space_update_topology_pass(as, old_view2, new_view, false);
1051        address_space_update_topology_pass(as, old_view2, new_view, true);
1052    }
1053
1054    /* Writes are protected by the BQL.  */
1055    qatomic_rcu_set(&as->current_map, new_view);
1056    if (old_view) {
1057        flatview_unref(old_view);
1058    }
1059
1060    /* Note that all the old MemoryRegions are still alive up to this
1061     * point.  This relieves most MemoryListeners from the need to
1062     * ref/unref the MemoryRegions they get---unless they use them
1063     * outside the iothread mutex, in which case precise reference
1064     * counting is necessary.
1065     */
1066    if (old_view) {
1067        flatview_unref(old_view);
1068    }
1069}
1070
1071static void address_space_update_topology(AddressSpace *as)
1072{
1073    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1074
1075    flatviews_init();
1076    if (!g_hash_table_lookup(flat_views, physmr)) {
1077        generate_memory_topology(physmr);
1078    }
1079    address_space_set_flatview(as);
1080}
1081
1082void memory_region_transaction_begin(void)
1083{
1084    qemu_flush_coalesced_mmio_buffer();
1085    ++memory_region_transaction_depth;
1086}
1087
1088void memory_region_transaction_commit(void)
1089{
1090    AddressSpace *as;
1091
1092    assert(memory_region_transaction_depth);
1093    assert(qemu_mutex_iothread_locked());
1094
1095    --memory_region_transaction_depth;
1096    if (!memory_region_transaction_depth) {
1097        if (memory_region_update_pending) {
1098            flatviews_reset();
1099
1100            MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1101
1102            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1103                address_space_set_flatview(as);
1104                address_space_update_ioeventfds(as);
1105            }
1106            memory_region_update_pending = false;
1107            ioeventfd_update_pending = false;
1108            MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1109        } else if (ioeventfd_update_pending) {
1110            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1111                address_space_update_ioeventfds(as);
1112            }
1113            ioeventfd_update_pending = false;
1114        }
1115   }
1116}
1117
1118static void memory_region_destructor_none(MemoryRegion *mr)
1119{
1120}
1121
1122static void memory_region_destructor_ram(MemoryRegion *mr)
1123{
1124    qemu_ram_free(mr->ram_block);
1125}
1126
1127static bool memory_region_need_escape(char c)
1128{
1129    return c == '/' || c == '[' || c == '\\' || c == ']';
1130}
1131
1132static char *memory_region_escape_name(const char *name)
1133{
1134    const char *p;
1135    char *escaped, *q;
1136    uint8_t c;
1137    size_t bytes = 0;
1138
1139    for (p = name; *p; p++) {
1140        bytes += memory_region_need_escape(*p) ? 4 : 1;
1141    }
1142    if (bytes == p - name) {
1143       return g_memdup(name, bytes + 1);
1144    }
1145
1146    escaped = g_malloc(bytes + 1);
1147    for (p = name, q = escaped; *p; p++) {
1148        c = *p;
1149        if (unlikely(memory_region_need_escape(c))) {
1150            *q++ = '\\';
1151            *q++ = 'x';
1152            *q++ = "0123456789abcdef"[c >> 4];
1153            c = "0123456789abcdef"[c & 15];
1154        }
1155        *q++ = c;
1156    }
1157    *q = 0;
1158    return escaped;
1159}
1160
1161static void memory_region_do_init(MemoryRegion *mr,
1162                                  Object *owner,
1163                                  const char *name,
1164                                  uint64_t size)
1165{
1166    mr->size = int128_make64(size);
1167    if (size == UINT64_MAX) {
1168        mr->size = int128_2_64();
1169    }
1170    mr->name = g_strdup(name);
1171    mr->owner = owner;
1172    mr->ram_block = NULL;
1173
1174    if (name) {
1175        char *escaped_name = memory_region_escape_name(name);
1176        char *name_array = g_strdup_printf("%s[*]", escaped_name);
1177
1178        if (!owner) {
1179            owner = container_get(qdev_get_machine(), "/unattached");
1180        }
1181
1182        object_property_add_child(owner, name_array, OBJECT(mr));
1183        object_unref(OBJECT(mr));
1184        g_free(name_array);
1185        g_free(escaped_name);
1186    }
1187}
1188
1189void memory_region_init(MemoryRegion *mr,
1190                        Object *owner,
1191                        const char *name,
1192                        uint64_t size)
1193{
1194    object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1195    memory_region_do_init(mr, owner, name, size);
1196}
1197
1198static void memory_region_get_container(Object *obj, Visitor *v,
1199                                        const char *name, void *opaque,
1200                                        Error **errp)
1201{
1202    MemoryRegion *mr = MEMORY_REGION(obj);
1203    char *path = (char *)"";
1204
1205    if (mr->container) {
1206        path = object_get_canonical_path(OBJECT(mr->container));
1207    }
1208    visit_type_str(v, name, &path, errp);
1209    if (mr->container) {
1210        g_free(path);
1211    }
1212}
1213
1214static Object *memory_region_resolve_container(Object *obj, void *opaque,
1215                                               const char *part)
1216{
1217    MemoryRegion *mr = MEMORY_REGION(obj);
1218
1219    return OBJECT(mr->container);
1220}
1221
1222static void memory_region_get_priority(Object *obj, Visitor *v,
1223                                       const char *name, void *opaque,
1224                                       Error **errp)
1225{
1226    MemoryRegion *mr = MEMORY_REGION(obj);
1227    int32_t value = mr->priority;
1228
1229    visit_type_int32(v, name, &value, errp);
1230}
1231
1232static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1233                                   void *opaque, Error **errp)
1234{
1235    MemoryRegion *mr = MEMORY_REGION(obj);
1236    uint64_t value = memory_region_size(mr);
1237
1238    visit_type_uint64(v, name, &value, errp);
1239}
1240
1241static void memory_region_initfn(Object *obj)
1242{
1243    MemoryRegion *mr = MEMORY_REGION(obj);
1244    ObjectProperty *op;
1245
1246    mr->ops = &unassigned_mem_ops;
1247    mr->enabled = true;
1248    mr->romd_mode = true;
1249    mr->destructor = memory_region_destructor_none;
1250    QTAILQ_INIT(&mr->subregions);
1251    QTAILQ_INIT(&mr->coalesced);
1252
1253    op = object_property_add(OBJECT(mr), "container",
1254                             "link<" TYPE_MEMORY_REGION ">",
1255                             memory_region_get_container,
1256                             NULL, /* memory_region_set_container */
1257                             NULL, NULL);
1258    op->resolve = memory_region_resolve_container;
1259
1260    object_property_add_uint64_ptr(OBJECT(mr), "addr",
1261                                   &mr->addr, OBJ_PROP_FLAG_READ);
1262    object_property_add(OBJECT(mr), "priority", "uint32",
1263                        memory_region_get_priority,
1264                        NULL, /* memory_region_set_priority */
1265                        NULL, NULL);
1266    object_property_add(OBJECT(mr), "size", "uint64",
1267                        memory_region_get_size,
1268                        NULL, /* memory_region_set_size, */
1269                        NULL, NULL);
1270}
1271
1272static void iommu_memory_region_initfn(Object *obj)
1273{
1274    MemoryRegion *mr = MEMORY_REGION(obj);
1275
1276    mr->is_iommu = true;
1277}
1278
1279static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1280                                    unsigned size)
1281{
1282#ifdef DEBUG_UNASSIGNED
1283    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1284#endif
1285    return 0;
1286}
1287
1288static void unassigned_mem_write(void *opaque, hwaddr addr,
1289                                 uint64_t val, unsigned size)
1290{
1291#ifdef DEBUG_UNASSIGNED
1292    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1293#endif
1294}
1295
1296static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1297                                   unsigned size, bool is_write,
1298                                   MemTxAttrs attrs)
1299{
1300    return false;
1301}
1302
1303const MemoryRegionOps unassigned_mem_ops = {
1304    .valid.accepts = unassigned_mem_accepts,
1305    .endianness = DEVICE_NATIVE_ENDIAN,
1306};
1307
1308static uint64_t memory_region_ram_device_read(void *opaque,
1309                                              hwaddr addr, unsigned size)
1310{
1311    MemoryRegion *mr = opaque;
1312    uint64_t data = (uint64_t)~0;
1313
1314    switch (size) {
1315    case 1:
1316        data = *(uint8_t *)(mr->ram_block->host + addr);
1317        break;
1318    case 2:
1319        data = *(uint16_t *)(mr->ram_block->host + addr);
1320        break;
1321    case 4:
1322        data = *(uint32_t *)(mr->ram_block->host + addr);
1323        break;
1324    case 8:
1325        data = *(uint64_t *)(mr->ram_block->host + addr);
1326        break;
1327    }
1328
1329    trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1330
1331    return data;
1332}
1333
1334static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1335                                           uint64_t data, unsigned size)
1336{
1337    MemoryRegion *mr = opaque;
1338
1339    trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1340
1341    switch (size) {
1342    case 1:
1343        *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1344        break;
1345    case 2:
1346        *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1347        break;
1348    case 4:
1349        *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1350        break;
1351    case 8:
1352        *(uint64_t *)(mr->ram_block->host + addr) = data;
1353        break;
1354    }
1355}
1356
1357static const MemoryRegionOps ram_device_mem_ops = {
1358    .read = memory_region_ram_device_read,
1359    .write = memory_region_ram_device_write,
1360    .endianness = DEVICE_HOST_ENDIAN,
1361    .valid = {
1362        .min_access_size = 1,
1363        .max_access_size = 8,
1364        .unaligned = true,
1365    },
1366    .impl = {
1367        .min_access_size = 1,
1368        .max_access_size = 8,
1369        .unaligned = true,
1370    },
1371};
1372
1373bool memory_region_access_valid(MemoryRegion *mr,
1374                                hwaddr addr,
1375                                unsigned size,
1376                                bool is_write,
1377                                MemTxAttrs attrs)
1378{
1379    if (mr->ops->valid.accepts
1380        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1381        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1382                      ", size %u, region '%s', reason: rejected\n",
1383                      is_write ? "write" : "read",
1384                      addr, size, memory_region_name(mr));
1385        return false;
1386    }
1387
1388    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1389        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1390                      ", size %u, region '%s', reason: unaligned\n",
1391                      is_write ? "write" : "read",
1392                      addr, size, memory_region_name(mr));
1393        return false;
1394    }
1395
1396    /* Treat zero as compatibility all valid */
1397    if (!mr->ops->valid.max_access_size) {
1398        return true;
1399    }
1400
1401    if (size > mr->ops->valid.max_access_size
1402        || size < mr->ops->valid.min_access_size) {
1403        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1404                      ", size %u, region '%s', reason: invalid size "
1405                      "(min:%u max:%u)\n",
1406                      is_write ? "write" : "read",
1407                      addr, size, memory_region_name(mr),
1408                      mr->ops->valid.min_access_size,
1409                      mr->ops->valid.max_access_size);
1410        return false;
1411    }
1412    return true;
1413}
1414
1415static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1416                                                hwaddr addr,
1417                                                uint64_t *pval,
1418                                                unsigned size,
1419                                                MemTxAttrs attrs)
1420{
1421    *pval = 0;
1422
1423    if (mr->ops->read) {
1424        return access_with_adjusted_size(addr, pval, size,
1425                                         mr->ops->impl.min_access_size,
1426                                         mr->ops->impl.max_access_size,
1427                                         memory_region_read_accessor,
1428                                         mr, attrs);
1429    } else {
1430        return access_with_adjusted_size(addr, pval, size,
1431                                         mr->ops->impl.min_access_size,
1432                                         mr->ops->impl.max_access_size,
1433                                         memory_region_read_with_attrs_accessor,
1434                                         mr, attrs);
1435    }
1436}
1437
1438MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1439                                        hwaddr addr,
1440                                        uint64_t *pval,
1441                                        MemOp op,
1442                                        MemTxAttrs attrs)
1443{
1444    unsigned size = memop_size(op);
1445    MemTxResult r;
1446
1447    if (mr->alias) {
1448        return memory_region_dispatch_read(mr->alias,
1449                                           mr->alias_offset + addr,
1450                                           pval, op, attrs);
1451    }
1452    if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1453        *pval = unassigned_mem_read(mr, addr, size);
1454        return MEMTX_DECODE_ERROR;
1455    }
1456
1457    r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1458    adjust_endianness(mr, pval, op);
1459    return r;
1460}
1461
1462/* Return true if an eventfd was signalled */
1463static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1464                                                    hwaddr addr,
1465                                                    uint64_t data,
1466                                                    unsigned size,
1467                                                    MemTxAttrs attrs)
1468{
1469    MemoryRegionIoeventfd ioeventfd = {
1470        .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1471        .data = data,
1472    };
1473    unsigned i;
1474
1475    for (i = 0; i < mr->ioeventfd_nb; i++) {
1476        ioeventfd.match_data = mr->ioeventfds[i].match_data;
1477        ioeventfd.e = mr->ioeventfds[i].e;
1478
1479        if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1480            event_notifier_set(ioeventfd.e);
1481            return true;
1482        }
1483    }
1484
1485    return false;
1486}
1487
1488MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1489                                         hwaddr addr,
1490                                         uint64_t data,
1491                                         MemOp op,
1492                                         MemTxAttrs attrs)
1493{
1494    unsigned size = memop_size(op);
1495
1496    if (mr->alias) {
1497        return memory_region_dispatch_write(mr->alias,
1498                                            mr->alias_offset + addr,
1499                                            data, op, attrs);
1500    }
1501    if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1502        unassigned_mem_write(mr, addr, data, size);
1503        return MEMTX_DECODE_ERROR;
1504    }
1505
1506    adjust_endianness(mr, &data, op);
1507
1508    if ((!kvm_eventfds_enabled()) &&
1509        memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1510        return MEMTX_OK;
1511    }
1512
1513    if (mr->ops->write) {
1514        return access_with_adjusted_size(addr, &data, size,
1515                                         mr->ops->impl.min_access_size,
1516                                         mr->ops->impl.max_access_size,
1517                                         memory_region_write_accessor, mr,
1518                                         attrs);
1519    } else {
1520        return
1521            access_with_adjusted_size(addr, &data, size,
1522                                      mr->ops->impl.min_access_size,
1523                                      mr->ops->impl.max_access_size,
1524                                      memory_region_write_with_attrs_accessor,
1525                                      mr, attrs);
1526    }
1527}
1528
1529void memory_region_init_io(MemoryRegion *mr,
1530                           Object *owner,
1531                           const MemoryRegionOps *ops,
1532                           void *opaque,
1533                           const char *name,
1534                           uint64_t size)
1535{
1536    memory_region_init(mr, owner, name, size);
1537    mr->ops = ops ? ops : &unassigned_mem_ops;
1538    mr->opaque = opaque;
1539    mr->terminates = true;
1540}
1541
1542void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1543                                      Object *owner,
1544                                      const char *name,
1545                                      uint64_t size,
1546                                      Error **errp)
1547{
1548    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1549}
1550
1551void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1552                                            Object *owner,
1553                                            const char *name,
1554                                            uint64_t size,
1555                                            uint32_t ram_flags,
1556                                            Error **errp)
1557{
1558    Error *err = NULL;
1559    memory_region_init(mr, owner, name, size);
1560    mr->ram = true;
1561    mr->terminates = true;
1562    mr->destructor = memory_region_destructor_ram;
1563    mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1564    if (err) {
1565        mr->size = int128_zero();
1566        object_unparent(OBJECT(mr));
1567        error_propagate(errp, err);
1568    }
1569}
1570
1571void memory_region_init_resizeable_ram(MemoryRegion *mr,
1572                                       Object *owner,
1573                                       const char *name,
1574                                       uint64_t size,
1575                                       uint64_t max_size,
1576                                       void (*resized)(const char*,
1577                                                       uint64_t length,
1578                                                       void *host),
1579                                       Error **errp)
1580{
1581    Error *err = NULL;
1582    memory_region_init(mr, owner, name, size);
1583    mr->ram = true;
1584    mr->terminates = true;
1585    mr->destructor = memory_region_destructor_ram;
1586    mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1587                                              mr, &err);
1588    if (err) {
1589        mr->size = int128_zero();
1590        object_unparent(OBJECT(mr));
1591        error_propagate(errp, err);
1592    }
1593}
1594
1595#ifdef CONFIG_POSIX
1596void memory_region_init_ram_from_file(MemoryRegion *mr,
1597                                      Object *owner,
1598                                      const char *name,
1599                                      uint64_t size,
1600                                      uint64_t align,
1601                                      uint32_t ram_flags,
1602                                      const char *path,
1603                                      bool readonly,
1604                                      Error **errp)
1605{
1606    Error *err = NULL;
1607    memory_region_init(mr, owner, name, size);
1608    mr->ram = true;
1609    mr->readonly = readonly;
1610    mr->terminates = true;
1611    mr->destructor = memory_region_destructor_ram;
1612    mr->align = align;
1613    mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1614                                             readonly, &err);
1615    if (err) {
1616        mr->size = int128_zero();
1617        object_unparent(OBJECT(mr));
1618        error_propagate(errp, err);
1619    }
1620}
1621
1622void memory_region_init_ram_from_fd(MemoryRegion *mr,
1623                                    Object *owner,
1624                                    const char *name,
1625                                    uint64_t size,
1626                                    uint32_t ram_flags,
1627                                    int fd,
1628                                    ram_addr_t offset,
1629                                    Error **errp)
1630{
1631    Error *err = NULL;
1632    memory_region_init(mr, owner, name, size);
1633    mr->ram = true;
1634    mr->terminates = true;
1635    mr->destructor = memory_region_destructor_ram;
1636    mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1637                                           false, &err);
1638    if (err) {
1639        mr->size = int128_zero();
1640        object_unparent(OBJECT(mr));
1641        error_propagate(errp, err);
1642    }
1643}
1644#endif
1645
1646void memory_region_init_ram_ptr(MemoryRegion *mr,
1647                                Object *owner,
1648                                const char *name,
1649                                uint64_t size,
1650                                void *ptr)
1651{
1652    memory_region_init(mr, owner, name, size);
1653    mr->ram = true;
1654    mr->terminates = true;
1655    mr->destructor = memory_region_destructor_ram;
1656
1657    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1658    assert(ptr != NULL);
1659    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1660}
1661
1662void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1663                                       Object *owner,
1664                                       const char *name,
1665                                       uint64_t size,
1666                                       void *ptr)
1667{
1668    memory_region_init(mr, owner, name, size);
1669    mr->ram = true;
1670    mr->terminates = true;
1671    mr->ram_device = true;
1672    mr->ops = &ram_device_mem_ops;
1673    mr->opaque = mr;
1674    mr->destructor = memory_region_destructor_ram;
1675
1676    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1677    assert(ptr != NULL);
1678    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1679}
1680
1681void memory_region_init_alias(MemoryRegion *mr,
1682                              Object *owner,
1683                              const char *name,
1684                              MemoryRegion *orig,
1685                              hwaddr offset,
1686                              uint64_t size)
1687{
1688    memory_region_init(mr, owner, name, size);
1689    mr->alias = orig;
1690    mr->alias_offset = offset;
1691}
1692
1693void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1694                                      Object *owner,
1695                                      const char *name,
1696                                      uint64_t size,
1697                                      Error **errp)
1698{
1699    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1700    mr->readonly = true;
1701}
1702
1703void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1704                                             Object *owner,
1705                                             const MemoryRegionOps *ops,
1706                                             void *opaque,
1707                                             const char *name,
1708                                             uint64_t size,
1709                                             Error **errp)
1710{
1711    Error *err = NULL;
1712    assert(ops);
1713    memory_region_init(mr, owner, name, size);
1714    mr->ops = ops;
1715    mr->opaque = opaque;
1716    mr->terminates = true;
1717    mr->rom_device = true;
1718    mr->destructor = memory_region_destructor_ram;
1719    mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1720    if (err) {
1721        mr->size = int128_zero();
1722        object_unparent(OBJECT(mr));
1723        error_propagate(errp, err);
1724    }
1725}
1726
1727void memory_region_init_iommu(void *_iommu_mr,
1728                              size_t instance_size,
1729                              const char *mrtypename,
1730                              Object *owner,
1731                              const char *name,
1732                              uint64_t size)
1733{
1734    struct IOMMUMemoryRegion *iommu_mr;
1735    struct MemoryRegion *mr;
1736
1737    object_initialize(_iommu_mr, instance_size, mrtypename);
1738    mr = MEMORY_REGION(_iommu_mr);
1739    memory_region_do_init(mr, owner, name, size);
1740    iommu_mr = IOMMU_MEMORY_REGION(mr);
1741    mr->terminates = true;  /* then re-forwards */
1742    QLIST_INIT(&iommu_mr->iommu_notify);
1743    iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1744}
1745
1746static void memory_region_finalize(Object *obj)
1747{
1748    MemoryRegion *mr = MEMORY_REGION(obj);
1749
1750    assert(!mr->container);
1751
1752    /* We know the region is not visible in any address space (it
1753     * does not have a container and cannot be a root either because
1754     * it has no references, so we can blindly clear mr->enabled.
1755     * memory_region_set_enabled instead could trigger a transaction
1756     * and cause an infinite loop.
1757     */
1758    mr->enabled = false;
1759    memory_region_transaction_begin();
1760    while (!QTAILQ_EMPTY(&mr->subregions)) {
1761        MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1762        memory_region_del_subregion(mr, subregion);
1763    }
1764    memory_region_transaction_commit();
1765
1766    mr->destructor(mr);
1767    memory_region_clear_coalescing(mr);
1768    g_free((char *)mr->name);
1769    g_free(mr->ioeventfds);
1770}
1771
1772Object *memory_region_owner(MemoryRegion *mr)
1773{
1774    Object *obj = OBJECT(mr);
1775    return obj->parent;
1776}
1777
1778void memory_region_ref(MemoryRegion *mr)
1779{
1780    /* MMIO callbacks most likely will access data that belongs
1781     * to the owner, hence the need to ref/unref the owner whenever
1782     * the memory region is in use.
1783     *
1784     * The memory region is a child of its owner.  As long as the
1785     * owner doesn't call unparent itself on the memory region,
1786     * ref-ing the owner will also keep the memory region alive.
1787     * Memory regions without an owner are supposed to never go away;
1788     * we do not ref/unref them because it slows down DMA sensibly.
1789     */
1790    if (mr && mr->owner) {
1791        object_ref(mr->owner);
1792    }
1793}
1794
1795void memory_region_unref(MemoryRegion *mr)
1796{
1797    if (mr && mr->owner) {
1798        object_unref(mr->owner);
1799    }
1800}
1801
1802uint64_t memory_region_size(MemoryRegion *mr)
1803{
1804    if (int128_eq(mr->size, int128_2_64())) {
1805        return UINT64_MAX;
1806    }
1807    return int128_get64(mr->size);
1808}
1809
1810const char *memory_region_name(const MemoryRegion *mr)
1811{
1812    if (!mr->name) {
1813        ((MemoryRegion *)mr)->name =
1814            g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1815    }
1816    return mr->name;
1817}
1818
1819bool memory_region_is_ram_device(MemoryRegion *mr)
1820{
1821    return mr->ram_device;
1822}
1823
1824bool memory_region_is_protected(MemoryRegion *mr)
1825{
1826    return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1827}
1828
1829uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1830{
1831    uint8_t mask = mr->dirty_log_mask;
1832    RAMBlock *rb = mr->ram_block;
1833
1834    if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1835                             memory_region_is_iommu(mr))) {
1836        mask |= (1 << DIRTY_MEMORY_MIGRATION);
1837    }
1838
1839    if (tcg_enabled() && rb) {
1840        /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1841        mask |= (1 << DIRTY_MEMORY_CODE);
1842    }
1843    return mask;
1844}
1845
1846bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1847{
1848    return memory_region_get_dirty_log_mask(mr) & (1 << client);
1849}
1850
1851static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1852                                                   Error **errp)
1853{
1854    IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1855    IOMMUNotifier *iommu_notifier;
1856    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1857    int ret = 0;
1858
1859    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1860        flags |= iommu_notifier->notifier_flags;
1861    }
1862
1863    if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1864        ret = imrc->notify_flag_changed(iommu_mr,
1865                                        iommu_mr->iommu_notify_flags,
1866                                        flags, errp);
1867    }
1868
1869    if (!ret) {
1870        iommu_mr->iommu_notify_flags = flags;
1871    }
1872    return ret;
1873}
1874
1875int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1876                                           uint64_t page_size_mask,
1877                                           Error **errp)
1878{
1879    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1880    int ret = 0;
1881
1882    if (imrc->iommu_set_page_size_mask) {
1883        ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1884    }
1885    return ret;
1886}
1887
1888int memory_region_register_iommu_notifier(MemoryRegion *mr,
1889                                          IOMMUNotifier *n, Error **errp)
1890{
1891    IOMMUMemoryRegion *iommu_mr;
1892    int ret;
1893
1894    if (mr->alias) {
1895        return memory_region_register_iommu_notifier(mr->alias, n, errp);
1896    }
1897
1898    /* We need to register for at least one bitfield */
1899    iommu_mr = IOMMU_MEMORY_REGION(mr);
1900    assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1901    assert(n->start <= n->end);
1902    assert(n->iommu_idx >= 0 &&
1903           n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1904
1905    QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1906    ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1907    if (ret) {
1908        QLIST_REMOVE(n, node);
1909    }
1910    return ret;
1911}
1912
1913uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1914{
1915    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1916
1917    if (imrc->get_min_page_size) {
1918        return imrc->get_min_page_size(iommu_mr);
1919    }
1920    return TARGET_PAGE_SIZE;
1921}
1922
1923void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1924{
1925    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1926    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1927    hwaddr addr, granularity;
1928    IOMMUTLBEntry iotlb;
1929
1930    /* If the IOMMU has its own replay callback, override */
1931    if (imrc->replay) {
1932        imrc->replay(iommu_mr, n);
1933        return;
1934    }
1935
1936    granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1937
1938    for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1939        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1940        if (iotlb.perm != IOMMU_NONE) {
1941            n->notify(n, &iotlb);
1942        }
1943
1944        /* if (2^64 - MR size) < granularity, it's possible to get an
1945         * infinite loop here.  This should catch such a wraparound */
1946        if ((addr + granularity) < addr) {
1947            break;
1948        }
1949    }
1950}
1951
1952void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1953                                             IOMMUNotifier *n)
1954{
1955    IOMMUMemoryRegion *iommu_mr;
1956
1957    if (mr->alias) {
1958        memory_region_unregister_iommu_notifier(mr->alias, n);
1959        return;
1960    }
1961    QLIST_REMOVE(n, node);
1962    iommu_mr = IOMMU_MEMORY_REGION(mr);
1963    memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1964}
1965
1966void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1967                                    IOMMUTLBEvent *event)
1968{
1969    IOMMUTLBEntry *entry = &event->entry;
1970    hwaddr entry_end = entry->iova + entry->addr_mask;
1971    IOMMUTLBEntry tmp = *entry;
1972
1973    if (event->type == IOMMU_NOTIFIER_UNMAP) {
1974        assert(entry->perm == IOMMU_NONE);
1975    }
1976
1977    /*
1978     * Skip the notification if the notification does not overlap
1979     * with registered range.
1980     */
1981    if (notifier->start > entry_end || notifier->end < entry->iova) {
1982        return;
1983    }
1984
1985    if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1986        /* Crop (iova, addr_mask) to range */
1987        tmp.iova = MAX(tmp.iova, notifier->start);
1988        tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1989    } else {
1990        assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1991    }
1992
1993    if (event->type & notifier->notifier_flags) {
1994        notifier->notify(notifier, &tmp);
1995    }
1996}
1997
1998void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1999                                int iommu_idx,
2000                                IOMMUTLBEvent event)
2001{
2002    IOMMUNotifier *iommu_notifier;
2003
2004    assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2005
2006    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2007        if (iommu_notifier->iommu_idx == iommu_idx) {
2008            memory_region_notify_iommu_one(iommu_notifier, &event);
2009        }
2010    }
2011}
2012
2013int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2014                                 enum IOMMUMemoryRegionAttr attr,
2015                                 void *data)
2016{
2017    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2018
2019    if (!imrc->get_attr) {
2020        return -EINVAL;
2021    }
2022
2023    return imrc->get_attr(iommu_mr, attr, data);
2024}
2025
2026int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2027                                       MemTxAttrs attrs)
2028{
2029    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2030
2031    if (!imrc->attrs_to_index) {
2032        return 0;
2033    }
2034
2035    return imrc->attrs_to_index(iommu_mr, attrs);
2036}
2037
2038int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2039{
2040    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2041
2042    if (!imrc->num_indexes) {
2043        return 1;
2044    }
2045
2046    return imrc->num_indexes(iommu_mr);
2047}
2048
2049RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2050{
2051    if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2052        return NULL;
2053    }
2054    return mr->rdm;
2055}
2056
2057void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2058                                           RamDiscardManager *rdm)
2059{
2060    g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2061    g_assert(!rdm || !mr->rdm);
2062    mr->rdm = rdm;
2063}
2064
2065uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2066                                                 const MemoryRegion *mr)
2067{
2068    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2069
2070    g_assert(rdmc->get_min_granularity);
2071    return rdmc->get_min_granularity(rdm, mr);
2072}
2073
2074bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2075                                      const MemoryRegionSection *section)
2076{
2077    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2078
2079    g_assert(rdmc->is_populated);
2080    return rdmc->is_populated(rdm, section);
2081}
2082
2083int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2084                                         MemoryRegionSection *section,
2085                                         ReplayRamPopulate replay_fn,
2086                                         void *opaque)
2087{
2088    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2089
2090    g_assert(rdmc->replay_populated);
2091    return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2092}
2093
2094void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2095                                          MemoryRegionSection *section,
2096                                          ReplayRamDiscard replay_fn,
2097                                          void *opaque)
2098{
2099    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2100
2101    g_assert(rdmc->replay_discarded);
2102    rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2103}
2104
2105void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2106                                           RamDiscardListener *rdl,
2107                                           MemoryRegionSection *section)
2108{
2109    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2110
2111    g_assert(rdmc->register_listener);
2112    rdmc->register_listener(rdm, rdl, section);
2113}
2114
2115void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2116                                             RamDiscardListener *rdl)
2117{
2118    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2119
2120    g_assert(rdmc->unregister_listener);
2121    rdmc->unregister_listener(rdm, rdl);
2122}
2123
2124void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2125{
2126    uint8_t mask = 1 << client;
2127    uint8_t old_logging;
2128
2129    assert(client == DIRTY_MEMORY_VGA);
2130    old_logging = mr->vga_logging_count;
2131    mr->vga_logging_count += log ? 1 : -1;
2132    if (!!old_logging == !!mr->vga_logging_count) {
2133        return;
2134    }
2135
2136    memory_region_transaction_begin();
2137    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2138    memory_region_update_pending |= mr->enabled;
2139    memory_region_transaction_commit();
2140}
2141
2142void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2143                             hwaddr size)
2144{
2145    assert(mr->ram_block);
2146    cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2147                                        size,
2148                                        memory_region_get_dirty_log_mask(mr));
2149}
2150
2151/*
2152 * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2153 * dirty bitmap for the specified memory region.
2154 */
2155static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2156{
2157    MemoryListener *listener;
2158    AddressSpace *as;
2159    FlatView *view;
2160    FlatRange *fr;
2161
2162    /* If the same address space has multiple log_sync listeners, we
2163     * visit that address space's FlatView multiple times.  But because
2164     * log_sync listeners are rare, it's still cheaper than walking each
2165     * address space once.
2166     */
2167    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2168        if (listener->log_sync) {
2169            as = listener->address_space;
2170            view = address_space_get_flatview(as);
2171            FOR_EACH_FLAT_RANGE(fr, view) {
2172                if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2173                    MemoryRegionSection mrs = section_from_flat_range(fr, view);
2174                    listener->log_sync(listener, &mrs);
2175                }
2176            }
2177            flatview_unref(view);
2178            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2179        } else if (listener->log_sync_global) {
2180            /*
2181             * No matter whether MR is specified, what we can do here
2182             * is to do a global sync, because we are not capable to
2183             * sync in a finer granularity.
2184             */
2185            listener->log_sync_global(listener);
2186            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2187        }
2188    }
2189}
2190
2191void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2192                                      hwaddr len)
2193{
2194    MemoryRegionSection mrs;
2195    MemoryListener *listener;
2196    AddressSpace *as;
2197    FlatView *view;
2198    FlatRange *fr;
2199    hwaddr sec_start, sec_end, sec_size;
2200
2201    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2202        if (!listener->log_clear) {
2203            continue;
2204        }
2205        as = listener->address_space;
2206        view = address_space_get_flatview(as);
2207        FOR_EACH_FLAT_RANGE(fr, view) {
2208            if (!fr->dirty_log_mask || fr->mr != mr) {
2209                /*
2210                 * Clear dirty bitmap operation only applies to those
2211                 * regions whose dirty logging is at least enabled
2212                 */
2213                continue;
2214            }
2215
2216            mrs = section_from_flat_range(fr, view);
2217
2218            sec_start = MAX(mrs.offset_within_region, start);
2219            sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2220            sec_end = MIN(sec_end, start + len);
2221
2222            if (sec_start >= sec_end) {
2223                /*
2224                 * If this memory region section has no intersection
2225                 * with the requested range, skip.
2226                 */
2227                continue;
2228            }
2229
2230            /* Valid case; shrink the section if needed */
2231            mrs.offset_within_address_space +=
2232                sec_start - mrs.offset_within_region;
2233            mrs.offset_within_region = sec_start;
2234            sec_size = sec_end - sec_start;
2235            mrs.size = int128_make64(sec_size);
2236            listener->log_clear(listener, &mrs);
2237        }
2238        flatview_unref(view);
2239    }
2240}
2241
2242DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2243                                                            hwaddr addr,
2244                                                            hwaddr size,
2245                                                            unsigned client)
2246{
2247    DirtyBitmapSnapshot *snapshot;
2248    assert(mr->ram_block);
2249    memory_region_sync_dirty_bitmap(mr);
2250    snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2251    memory_global_after_dirty_log_sync();
2252    return snapshot;
2253}
2254
2255bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2256                                      hwaddr addr, hwaddr size)
2257{
2258    assert(mr->ram_block);
2259    return cpu_physical_memory_snapshot_get_dirty(snap,
2260                memory_region_get_ram_addr(mr) + addr, size);
2261}
2262
2263void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2264{
2265    if (mr->readonly != readonly) {
2266        memory_region_transaction_begin();
2267        mr->readonly = readonly;
2268        memory_region_update_pending |= mr->enabled;
2269        memory_region_transaction_commit();
2270    }
2271}
2272
2273void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2274{
2275    if (mr->nonvolatile != nonvolatile) {
2276        memory_region_transaction_begin();
2277        mr->nonvolatile = nonvolatile;
2278        memory_region_update_pending |= mr->enabled;
2279        memory_region_transaction_commit();
2280    }
2281}
2282
2283void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2284{
2285    if (mr->romd_mode != romd_mode) {
2286        memory_region_transaction_begin();
2287        mr->romd_mode = romd_mode;
2288        memory_region_update_pending |= mr->enabled;
2289        memory_region_transaction_commit();
2290    }
2291}
2292
2293void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2294                               hwaddr size, unsigned client)
2295{
2296    assert(mr->ram_block);
2297    cpu_physical_memory_test_and_clear_dirty(
2298        memory_region_get_ram_addr(mr) + addr, size, client);
2299}
2300
2301int memory_region_get_fd(MemoryRegion *mr)
2302{
2303    int fd;
2304
2305    RCU_READ_LOCK_GUARD();
2306    while (mr->alias) {
2307        mr = mr->alias;
2308    }
2309    fd = mr->ram_block->fd;
2310
2311    return fd;
2312}
2313
2314void *memory_region_get_ram_ptr(MemoryRegion *mr)
2315{
2316    void *ptr;
2317    uint64_t offset = 0;
2318
2319    RCU_READ_LOCK_GUARD();
2320    while (mr->alias) {
2321        offset += mr->alias_offset;
2322        mr = mr->alias;
2323    }
2324    assert(mr->ram_block);
2325    ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2326
2327    return ptr;
2328}
2329
2330MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2331{
2332    RAMBlock *block;
2333
2334    block = qemu_ram_block_from_host(ptr, false, offset);
2335    if (!block) {
2336        return NULL;
2337    }
2338
2339    return block->mr;
2340}
2341
2342ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2343{
2344    return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2345}
2346
2347void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2348{
2349    assert(mr->ram_block);
2350
2351    qemu_ram_resize(mr->ram_block, newsize, errp);
2352}
2353
2354void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2355{
2356    if (mr->ram_block) {
2357        qemu_ram_msync(mr->ram_block, addr, size);
2358    }
2359}
2360
2361void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2362{
2363    /*
2364     * Might be extended case needed to cover
2365     * different types of memory regions
2366     */
2367    if (mr->dirty_log_mask) {
2368        memory_region_msync(mr, addr, size);
2369    }
2370}
2371
2372/*
2373 * Call proper memory listeners about the change on the newly
2374 * added/removed CoalescedMemoryRange.
2375 */
2376static void memory_region_update_coalesced_range(MemoryRegion *mr,
2377                                                 CoalescedMemoryRange *cmr,
2378                                                 bool add)
2379{
2380    AddressSpace *as;
2381    FlatView *view;
2382    FlatRange *fr;
2383
2384    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2385        view = address_space_get_flatview(as);
2386        FOR_EACH_FLAT_RANGE(fr, view) {
2387            if (fr->mr == mr) {
2388                flat_range_coalesced_io_notify(fr, as, cmr, add);
2389            }
2390        }
2391        flatview_unref(view);
2392    }
2393}
2394
2395void memory_region_set_coalescing(MemoryRegion *mr)
2396{
2397    memory_region_clear_coalescing(mr);
2398    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2399}
2400
2401void memory_region_add_coalescing(MemoryRegion *mr,
2402                                  hwaddr offset,
2403                                  uint64_t size)
2404{
2405    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2406
2407    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2408    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2409    memory_region_update_coalesced_range(mr, cmr, true);
2410    memory_region_set_flush_coalesced(mr);
2411}
2412
2413void memory_region_clear_coalescing(MemoryRegion *mr)
2414{
2415    CoalescedMemoryRange *cmr;
2416
2417    if (QTAILQ_EMPTY(&mr->coalesced)) {
2418        return;
2419    }
2420
2421    qemu_flush_coalesced_mmio_buffer();
2422    mr->flush_coalesced_mmio = false;
2423
2424    while (!QTAILQ_EMPTY(&mr->coalesced)) {
2425        cmr = QTAILQ_FIRST(&mr->coalesced);
2426        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2427        memory_region_update_coalesced_range(mr, cmr, false);
2428        g_free(cmr);
2429    }
2430}
2431
2432void memory_region_set_flush_coalesced(MemoryRegion *mr)
2433{
2434    mr->flush_coalesced_mmio = true;
2435}
2436
2437void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2438{
2439    qemu_flush_coalesced_mmio_buffer();
2440    if (QTAILQ_EMPTY(&mr->coalesced)) {
2441        mr->flush_coalesced_mmio = false;
2442    }
2443}
2444
2445static bool userspace_eventfd_warning;
2446
2447void memory_region_add_eventfd(MemoryRegion *mr,
2448                               hwaddr addr,
2449                               unsigned size,
2450                               bool match_data,
2451                               uint64_t data,
2452                               EventNotifier *e)
2453{
2454    MemoryRegionIoeventfd mrfd = {
2455        .addr.start = int128_make64(addr),
2456        .addr.size = int128_make64(size),
2457        .match_data = match_data,
2458        .data = data,
2459        .e = e,
2460    };
2461    unsigned i;
2462
2463    if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2464                            userspace_eventfd_warning))) {
2465        userspace_eventfd_warning = true;
2466        error_report("Using eventfd without MMIO binding in KVM. "
2467                     "Suboptimal performance expected");
2468    }
2469
2470    if (size) {
2471        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2472    }
2473    memory_region_transaction_begin();
2474    for (i = 0; i < mr->ioeventfd_nb; ++i) {
2475        if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2476            break;
2477        }
2478    }
2479    ++mr->ioeventfd_nb;
2480    mr->ioeventfds = g_realloc(mr->ioeventfds,
2481                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2482    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2483            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2484    mr->ioeventfds[i] = mrfd;
2485    ioeventfd_update_pending |= mr->enabled;
2486    memory_region_transaction_commit();
2487}
2488
2489void memory_region_del_eventfd(MemoryRegion *mr,
2490                               hwaddr addr,
2491                               unsigned size,
2492                               bool match_data,
2493                               uint64_t data,
2494                               EventNotifier *e)
2495{
2496    MemoryRegionIoeventfd mrfd = {
2497        .addr.start = int128_make64(addr),
2498        .addr.size = int128_make64(size),
2499        .match_data = match_data,
2500        .data = data,
2501        .e = e,
2502    };
2503    unsigned i;
2504
2505    if (size) {
2506        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2507    }
2508    memory_region_transaction_begin();
2509    for (i = 0; i < mr->ioeventfd_nb; ++i) {
2510        if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2511            break;
2512        }
2513    }
2514    assert(i != mr->ioeventfd_nb);
2515    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2516            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2517    --mr->ioeventfd_nb;
2518    mr->ioeventfds = g_realloc(mr->ioeventfds,
2519                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2520    ioeventfd_update_pending |= mr->enabled;
2521    memory_region_transaction_commit();
2522}
2523
2524static void memory_region_update_container_subregions(MemoryRegion *subregion)
2525{
2526    MemoryRegion *mr = subregion->container;
2527    MemoryRegion *other;
2528
2529    memory_region_transaction_begin();
2530
2531    memory_region_ref(subregion);
2532    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2533        if (subregion->priority >= other->priority) {
2534            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2535            goto done;
2536        }
2537    }
2538    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2539done:
2540    memory_region_update_pending |= mr->enabled && subregion->enabled;
2541    memory_region_transaction_commit();
2542}
2543
2544static void memory_region_add_subregion_common(MemoryRegion *mr,
2545                                               hwaddr offset,
2546                                               MemoryRegion *subregion)
2547{
2548    MemoryRegion *alias;
2549
2550    assert(!subregion->container);
2551    subregion->container = mr;
2552    for (alias = subregion->alias; alias; alias = alias->alias) {
2553        alias->mapped_via_alias++;
2554    }
2555    subregion->addr = offset;
2556    memory_region_update_container_subregions(subregion);
2557}
2558
2559void memory_region_add_subregion(MemoryRegion *mr,
2560                                 hwaddr offset,
2561                                 MemoryRegion *subregion)
2562{
2563    subregion->priority = 0;
2564    memory_region_add_subregion_common(mr, offset, subregion);
2565}
2566
2567void memory_region_add_subregion_overlap(MemoryRegion *mr,
2568                                         hwaddr offset,
2569                                         MemoryRegion *subregion,
2570                                         int priority)
2571{
2572    subregion->priority = priority;
2573    memory_region_add_subregion_common(mr, offset, subregion);
2574}
2575
2576void memory_region_del_subregion(MemoryRegion *mr,
2577                                 MemoryRegion *subregion)
2578{
2579    MemoryRegion *alias;
2580
2581    memory_region_transaction_begin();
2582    assert(subregion->container == mr);
2583    subregion->container = NULL;
2584    for (alias = subregion->alias; alias; alias = alias->alias) {
2585        alias->mapped_via_alias--;
2586        assert(alias->mapped_via_alias >= 0);
2587    }
2588    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2589    memory_region_unref(subregion);
2590    memory_region_update_pending |= mr->enabled && subregion->enabled;
2591    memory_region_transaction_commit();
2592}
2593
2594void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2595{
2596    if (enabled == mr->enabled) {
2597        return;
2598    }
2599    memory_region_transaction_begin();
2600    mr->enabled = enabled;
2601    memory_region_update_pending = true;
2602    memory_region_transaction_commit();
2603}
2604
2605void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2606{
2607    Int128 s = int128_make64(size);
2608
2609    if (size == UINT64_MAX) {
2610        s = int128_2_64();
2611    }
2612    if (int128_eq(s, mr->size)) {
2613        return;
2614    }
2615    memory_region_transaction_begin();
2616    mr->size = s;
2617    memory_region_update_pending = true;
2618    memory_region_transaction_commit();
2619}
2620
2621static void memory_region_readd_subregion(MemoryRegion *mr)
2622{
2623    MemoryRegion *container = mr->container;
2624
2625    if (container) {
2626        memory_region_transaction_begin();
2627        memory_region_ref(mr);
2628        memory_region_del_subregion(container, mr);
2629        memory_region_add_subregion_common(container, mr->addr, mr);
2630        memory_region_unref(mr);
2631        memory_region_transaction_commit();
2632    }
2633}
2634
2635void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2636{
2637    if (addr != mr->addr) {
2638        mr->addr = addr;
2639        memory_region_readd_subregion(mr);
2640    }
2641}
2642
2643void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2644{
2645    assert(mr->alias);
2646
2647    if (offset == mr->alias_offset) {
2648        return;
2649    }
2650
2651    memory_region_transaction_begin();
2652    mr->alias_offset = offset;
2653    memory_region_update_pending |= mr->enabled;
2654    memory_region_transaction_commit();
2655}
2656
2657uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2658{
2659    return mr->align;
2660}
2661
2662static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2663{
2664    const AddrRange *addr = addr_;
2665    const FlatRange *fr = fr_;
2666
2667    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2668        return -1;
2669    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2670        return 1;
2671    }
2672    return 0;
2673}
2674
2675static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2676{
2677    return bsearch(&addr, view->ranges, view->nr,
2678                   sizeof(FlatRange), cmp_flatrange_addr);
2679}
2680
2681bool memory_region_is_mapped(MemoryRegion *mr)
2682{
2683    return !!mr->container || mr->mapped_via_alias;
2684}
2685
2686/* Same as memory_region_find, but it does not add a reference to the
2687 * returned region.  It must be called from an RCU critical section.
2688 */
2689static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2690                                                  hwaddr addr, uint64_t size)
2691{
2692    MemoryRegionSection ret = { .mr = NULL };
2693    MemoryRegion *root;
2694    AddressSpace *as;
2695    AddrRange range;
2696    FlatView *view;
2697    FlatRange *fr;
2698
2699    addr += mr->addr;
2700    for (root = mr; root->container; ) {
2701        root = root->container;
2702        addr += root->addr;
2703    }
2704
2705    as = memory_region_to_address_space(root);
2706    if (!as) {
2707        return ret;
2708    }
2709    range = addrrange_make(int128_make64(addr), int128_make64(size));
2710
2711    view = address_space_to_flatview(as);
2712    fr = flatview_lookup(view, range);
2713    if (!fr) {
2714        return ret;
2715    }
2716
2717    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2718        --fr;
2719    }
2720
2721    ret.mr = fr->mr;
2722    ret.fv = view;
2723    range = addrrange_intersection(range, fr->addr);
2724    ret.offset_within_region = fr->offset_in_region;
2725    ret.offset_within_region += int128_get64(int128_sub(range.start,
2726                                                        fr->addr.start));
2727    ret.size = range.size;
2728    ret.offset_within_address_space = int128_get64(range.start);
2729    ret.readonly = fr->readonly;
2730    ret.nonvolatile = fr->nonvolatile;
2731    return ret;
2732}
2733
2734MemoryRegionSection memory_region_find(MemoryRegion *mr,
2735                                       hwaddr addr, uint64_t size)
2736{
2737    MemoryRegionSection ret;
2738    RCU_READ_LOCK_GUARD();
2739    ret = memory_region_find_rcu(mr, addr, size);
2740    if (ret.mr) {
2741        memory_region_ref(ret.mr);
2742    }
2743    return ret;
2744}
2745
2746MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2747{
2748    MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2749
2750    *tmp = *s;
2751    if (tmp->mr) {
2752        memory_region_ref(tmp->mr);
2753    }
2754    if (tmp->fv) {
2755        bool ret  = flatview_ref(tmp->fv);
2756
2757        g_assert(ret);
2758    }
2759    return tmp;
2760}
2761
2762void memory_region_section_free_copy(MemoryRegionSection *s)
2763{
2764    if (s->fv) {
2765        flatview_unref(s->fv);
2766    }
2767    if (s->mr) {
2768        memory_region_unref(s->mr);
2769    }
2770    g_free(s);
2771}
2772
2773bool memory_region_present(MemoryRegion *container, hwaddr addr)
2774{
2775    MemoryRegion *mr;
2776
2777    RCU_READ_LOCK_GUARD();
2778    mr = memory_region_find_rcu(container, addr, 1).mr;
2779    return mr && mr != container;
2780}
2781
2782void memory_global_dirty_log_sync(void)
2783{
2784    memory_region_sync_dirty_bitmap(NULL);
2785}
2786
2787void memory_global_after_dirty_log_sync(void)
2788{
2789    MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2790}
2791
2792/*
2793 * Dirty track stop flags that are postponed due to VM being stopped.  Should
2794 * only be used within vmstate_change hook.
2795 */
2796static unsigned int postponed_stop_flags;
2797static VMChangeStateEntry *vmstate_change;
2798static void memory_global_dirty_log_stop_postponed_run(void);
2799
2800void memory_global_dirty_log_start(unsigned int flags)
2801{
2802    unsigned int old_flags;
2803
2804    assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2805
2806    if (vmstate_change) {
2807        /* If there is postponed stop(), operate on it first */
2808        postponed_stop_flags &= ~flags;
2809        memory_global_dirty_log_stop_postponed_run();
2810    }
2811
2812    flags &= ~global_dirty_tracking;
2813    if (!flags) {
2814        return;
2815    }
2816
2817    old_flags = global_dirty_tracking;
2818    global_dirty_tracking |= flags;
2819    trace_global_dirty_changed(global_dirty_tracking);
2820
2821    if (!old_flags) {
2822        MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2823        memory_region_transaction_begin();
2824        memory_region_update_pending = true;
2825        memory_region_transaction_commit();
2826    }
2827}
2828
2829static void memory_global_dirty_log_do_stop(unsigned int flags)
2830{
2831    assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2832    assert((global_dirty_tracking & flags) == flags);
2833    global_dirty_tracking &= ~flags;
2834
2835    trace_global_dirty_changed(global_dirty_tracking);
2836
2837    if (!global_dirty_tracking) {
2838        memory_region_transaction_begin();
2839        memory_region_update_pending = true;
2840        memory_region_transaction_commit();
2841        MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2842    }
2843}
2844
2845/*
2846 * Execute the postponed dirty log stop operations if there is, then reset
2847 * everything (including the flags and the vmstate change hook).
2848 */
2849static void memory_global_dirty_log_stop_postponed_run(void)
2850{
2851    /* This must be called with the vmstate handler registered */
2852    assert(vmstate_change);
2853
2854    /* Note: postponed_stop_flags can be cleared in log start routine */
2855    if (postponed_stop_flags) {
2856        memory_global_dirty_log_do_stop(postponed_stop_flags);
2857        postponed_stop_flags = 0;
2858    }
2859
2860    qemu_del_vm_change_state_handler(vmstate_change);
2861    vmstate_change = NULL;
2862}
2863
2864static void memory_vm_change_state_handler(void *opaque, bool running,
2865                                           RunState state)
2866{
2867    if (running) {
2868        memory_global_dirty_log_stop_postponed_run();
2869    }
2870}
2871
2872void memory_global_dirty_log_stop(unsigned int flags)
2873{
2874    if (!runstate_is_running()) {
2875        /* Postpone the dirty log stop, e.g., to when VM starts again */
2876        if (vmstate_change) {
2877            /* Batch with previous postponed flags */
2878            postponed_stop_flags |= flags;
2879        } else {
2880            postponed_stop_flags = flags;
2881            vmstate_change = qemu_add_vm_change_state_handler(
2882                memory_vm_change_state_handler, NULL);
2883        }
2884        return;
2885    }
2886
2887    memory_global_dirty_log_do_stop(flags);
2888}
2889
2890static void listener_add_address_space(MemoryListener *listener,
2891                                       AddressSpace *as)
2892{
2893    FlatView *view;
2894    FlatRange *fr;
2895
2896    if (listener->begin) {
2897        listener->begin(listener);
2898    }
2899    if (global_dirty_tracking) {
2900        if (listener->log_global_start) {
2901            listener->log_global_start(listener);
2902        }
2903    }
2904
2905    view = address_space_get_flatview(as);
2906    FOR_EACH_FLAT_RANGE(fr, view) {
2907        MemoryRegionSection section = section_from_flat_range(fr, view);
2908
2909        if (listener->region_add) {
2910            listener->region_add(listener, &section);
2911        }
2912        if (fr->dirty_log_mask && listener->log_start) {
2913            listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2914        }
2915    }
2916    if (listener->commit) {
2917        listener->commit(listener);
2918    }
2919    flatview_unref(view);
2920}
2921
2922static void listener_del_address_space(MemoryListener *listener,
2923                                       AddressSpace *as)
2924{
2925    FlatView *view;
2926    FlatRange *fr;
2927
2928    if (listener->begin) {
2929        listener->begin(listener);
2930    }
2931    view = address_space_get_flatview(as);
2932    FOR_EACH_FLAT_RANGE(fr, view) {
2933        MemoryRegionSection section = section_from_flat_range(fr, view);
2934
2935        if (fr->dirty_log_mask && listener->log_stop) {
2936            listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2937        }
2938        if (listener->region_del) {
2939            listener->region_del(listener, &section);
2940        }
2941    }
2942    if (listener->commit) {
2943        listener->commit(listener);
2944    }
2945    flatview_unref(view);
2946}
2947
2948void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2949{
2950    MemoryListener *other = NULL;
2951
2952    /* Only one of them can be defined for a listener */
2953    assert(!(listener->log_sync && listener->log_sync_global));
2954
2955    listener->address_space = as;
2956    if (QTAILQ_EMPTY(&memory_listeners)
2957        || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2958        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2959    } else {
2960        QTAILQ_FOREACH(other, &memory_listeners, link) {
2961            if (listener->priority < other->priority) {
2962                break;
2963            }
2964        }
2965        QTAILQ_INSERT_BEFORE(other, listener, link);
2966    }
2967
2968    if (QTAILQ_EMPTY(&as->listeners)
2969        || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2970        QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2971    } else {
2972        QTAILQ_FOREACH(other, &as->listeners, link_as) {
2973            if (listener->priority < other->priority) {
2974                break;
2975            }
2976        }
2977        QTAILQ_INSERT_BEFORE(other, listener, link_as);
2978    }
2979
2980    listener_add_address_space(listener, as);
2981}
2982
2983void memory_listener_unregister(MemoryListener *listener)
2984{
2985    if (!listener->address_space) {
2986        return;
2987    }
2988
2989    listener_del_address_space(listener, listener->address_space);
2990    QTAILQ_REMOVE(&memory_listeners, listener, link);
2991    QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2992    listener->address_space = NULL;
2993}
2994
2995void address_space_remove_listeners(AddressSpace *as)
2996{
2997    while (!QTAILQ_EMPTY(&as->listeners)) {
2998        memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2999    }
3000}
3001
3002void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3003{
3004    memory_region_ref(root);
3005    as->root = root;
3006    as->current_map = NULL;
3007    as->ioeventfd_nb = 0;
3008    as->ioeventfds = NULL;
3009    QTAILQ_INIT(&as->listeners);
3010    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3011    as->name = g_strdup(name ? name : "anonymous");
3012    address_space_update_topology(as);
3013    address_space_update_ioeventfds(as);
3014}
3015
3016static void do_address_space_destroy(AddressSpace *as)
3017{
3018    assert(QTAILQ_EMPTY(&as->listeners));
3019
3020    flatview_unref(as->current_map);
3021    g_free(as->name);
3022    g_free(as->ioeventfds);
3023    memory_region_unref(as->root);
3024}
3025
3026void address_space_destroy(AddressSpace *as)
3027{
3028    MemoryRegion *root = as->root;
3029
3030    /* Flush out anything from MemoryListeners listening in on this */
3031    memory_region_transaction_begin();
3032    as->root = NULL;
3033    memory_region_transaction_commit();
3034    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3035
3036    /* At this point, as->dispatch and as->current_map are dummy
3037     * entries that the guest should never use.  Wait for the old
3038     * values to expire before freeing the data.
3039     */
3040    as->root = root;
3041    call_rcu(as, do_address_space_destroy, rcu);
3042}
3043
3044static const char *memory_region_type(MemoryRegion *mr)
3045{
3046    if (mr->alias) {
3047        return memory_region_type(mr->alias);
3048    }
3049    if (memory_region_is_ram_device(mr)) {
3050        return "ramd";
3051    } else if (memory_region_is_romd(mr)) {
3052        return "romd";
3053    } else if (memory_region_is_rom(mr)) {
3054        return "rom";
3055    } else if (memory_region_is_ram(mr)) {
3056        return "ram";
3057    } else {
3058        return "i/o";
3059    }
3060}
3061
3062typedef struct MemoryRegionList MemoryRegionList;
3063
3064struct MemoryRegionList {
3065    const MemoryRegion *mr;
3066    QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3067};
3068
3069typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3070
3071#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3072                           int128_sub((size), int128_one())) : 0)
3073#define MTREE_INDENT "  "
3074
3075static void mtree_expand_owner(const char *label, Object *obj)
3076{
3077    DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3078
3079    qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3080    if (dev && dev->id) {
3081        qemu_printf(" id=%s", dev->id);
3082    } else {
3083        char *canonical_path = object_get_canonical_path(obj);
3084        if (canonical_path) {
3085            qemu_printf(" path=%s", canonical_path);
3086            g_free(canonical_path);
3087        } else {
3088            qemu_printf(" type=%s", object_get_typename(obj));
3089        }
3090    }
3091    qemu_printf("}");
3092}
3093
3094static void mtree_print_mr_owner(const MemoryRegion *mr)
3095{
3096    Object *owner = mr->owner;
3097    Object *parent = memory_region_owner((MemoryRegion *)mr);
3098
3099    if (!owner && !parent) {
3100        qemu_printf(" orphan");
3101        return;
3102    }
3103    if (owner) {
3104        mtree_expand_owner("owner", owner);
3105    }
3106    if (parent && parent != owner) {
3107        mtree_expand_owner("parent", parent);
3108    }
3109}
3110
3111static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3112                           hwaddr base,
3113                           MemoryRegionListHead *alias_print_queue,
3114                           bool owner, bool display_disabled)
3115{
3116    MemoryRegionList *new_ml, *ml, *next_ml;
3117    MemoryRegionListHead submr_print_queue;
3118    const MemoryRegion *submr;
3119    unsigned int i;
3120    hwaddr cur_start, cur_end;
3121
3122    if (!mr) {
3123        return;
3124    }
3125
3126    cur_start = base + mr->addr;
3127    cur_end = cur_start + MR_SIZE(mr->size);
3128
3129    /*
3130     * Try to detect overflow of memory region. This should never
3131     * happen normally. When it happens, we dump something to warn the
3132     * user who is observing this.
3133     */
3134    if (cur_start < base || cur_end < cur_start) {
3135        qemu_printf("[DETECTED OVERFLOW!] ");
3136    }
3137
3138    if (mr->alias) {
3139        MemoryRegionList *ml;
3140        bool found = false;
3141
3142        /* check if the alias is already in the queue */
3143        QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3144            if (ml->mr == mr->alias) {
3145                found = true;
3146            }
3147        }
3148
3149        if (!found) {
3150            ml = g_new(MemoryRegionList, 1);
3151            ml->mr = mr->alias;
3152            QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3153        }
3154        if (mr->enabled || display_disabled) {
3155            for (i = 0; i < level; i++) {
3156                qemu_printf(MTREE_INDENT);
3157            }
3158            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3159                        " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3160                        "-" TARGET_FMT_plx "%s",
3161                        cur_start, cur_end,
3162                        mr->priority,
3163                        mr->nonvolatile ? "nv-" : "",
3164                        memory_region_type((MemoryRegion *)mr),
3165                        memory_region_name(mr),
3166                        memory_region_name(mr->alias),
3167                        mr->alias_offset,
3168                        mr->alias_offset + MR_SIZE(mr->size),
3169                        mr->enabled ? "" : " [disabled]");
3170            if (owner) {
3171                mtree_print_mr_owner(mr);
3172            }
3173            qemu_printf("\n");
3174        }
3175    } else {
3176        if (mr->enabled || display_disabled) {
3177            for (i = 0; i < level; i++) {
3178                qemu_printf(MTREE_INDENT);
3179            }
3180            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3181                        " (prio %d, %s%s): %s%s",
3182                        cur_start, cur_end,
3183                        mr->priority,
3184                        mr->nonvolatile ? "nv-" : "",
3185                        memory_region_type((MemoryRegion *)mr),
3186                        memory_region_name(mr),
3187                        mr->enabled ? "" : " [disabled]");
3188            if (owner) {
3189                mtree_print_mr_owner(mr);
3190            }
3191            qemu_printf("\n");
3192        }
3193    }
3194
3195    QTAILQ_INIT(&submr_print_queue);
3196
3197    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3198        new_ml = g_new(MemoryRegionList, 1);
3199        new_ml->mr = submr;
3200        QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3201            if (new_ml->mr->addr < ml->mr->addr ||
3202                (new_ml->mr->addr == ml->mr->addr &&
3203                 new_ml->mr->priority > ml->mr->priority)) {
3204                QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3205                new_ml = NULL;
3206                break;
3207            }
3208        }
3209        if (new_ml) {
3210            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3211        }
3212    }
3213
3214    QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3215        mtree_print_mr(ml->mr, level + 1, cur_start,
3216                       alias_print_queue, owner, display_disabled);
3217    }
3218
3219    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3220        g_free(ml);
3221    }
3222}
3223
3224struct FlatViewInfo {
3225    int counter;
3226    bool dispatch_tree;
3227    bool owner;
3228    AccelClass *ac;
3229};
3230
3231static void mtree_print_flatview(gpointer key, gpointer value,
3232                                 gpointer user_data)
3233{
3234    FlatView *view = key;
3235    GArray *fv_address_spaces = value;
3236    struct FlatViewInfo *fvi = user_data;
3237    FlatRange *range = &view->ranges[0];
3238    MemoryRegion *mr;
3239    int n = view->nr;
3240    int i;
3241    AddressSpace *as;
3242
3243    qemu_printf("FlatView #%d\n", fvi->counter);
3244    ++fvi->counter;
3245
3246    for (i = 0; i < fv_address_spaces->len; ++i) {
3247        as = g_array_index(fv_address_spaces, AddressSpace*, i);
3248        qemu_printf(" AS \"%s\", root: %s",
3249                    as->name, memory_region_name(as->root));
3250        if (as->root->alias) {
3251            qemu_printf(", alias %s", memory_region_name(as->root->alias));
3252        }
3253        qemu_printf("\n");
3254    }
3255
3256    qemu_printf(" Root memory region: %s\n",
3257      view->root ? memory_region_name(view->root) : "(none)");
3258
3259    if (n <= 0) {
3260        qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3261        return;
3262    }
3263
3264    while (n--) {
3265        mr = range->mr;
3266        if (range->offset_in_region) {
3267            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3268                        " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3269                        int128_get64(range->addr.start),
3270                        int128_get64(range->addr.start)
3271                        + MR_SIZE(range->addr.size),
3272                        mr->priority,
3273                        range->nonvolatile ? "nv-" : "",
3274                        range->readonly ? "rom" : memory_region_type(mr),
3275                        memory_region_name(mr),
3276                        range->offset_in_region);
3277        } else {
3278            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3279                        " (prio %d, %s%s): %s",
3280                        int128_get64(range->addr.start),
3281                        int128_get64(range->addr.start)
3282                        + MR_SIZE(range->addr.size),
3283                        mr->priority,
3284                        range->nonvolatile ? "nv-" : "",
3285                        range->readonly ? "rom" : memory_region_type(mr),
3286                        memory_region_name(mr));
3287        }
3288        if (fvi->owner) {
3289            mtree_print_mr_owner(mr);
3290        }
3291
3292        if (fvi->ac) {
3293            for (i = 0; i < fv_address_spaces->len; ++i) {
3294                as = g_array_index(fv_address_spaces, AddressSpace*, i);
3295                if (fvi->ac->has_memory(current_machine, as,
3296                                        int128_get64(range->addr.start),
3297                                        MR_SIZE(range->addr.size) + 1)) {
3298                    qemu_printf(" %s", fvi->ac->name);
3299                }
3300            }
3301        }
3302        qemu_printf("\n");
3303        range++;
3304    }
3305
3306#if !defined(CONFIG_USER_ONLY)
3307    if (fvi->dispatch_tree && view->root) {
3308        mtree_print_dispatch(view->dispatch, view->root);
3309    }
3310#endif
3311
3312    qemu_printf("\n");
3313}
3314
3315static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3316                                      gpointer user_data)
3317{
3318    FlatView *view = key;
3319    GArray *fv_address_spaces = value;
3320
3321    g_array_unref(fv_address_spaces);
3322    flatview_unref(view);
3323
3324    return true;
3325}
3326
3327static void mtree_info_flatview(bool dispatch_tree, bool owner)
3328{
3329    struct FlatViewInfo fvi = {
3330        .counter = 0,
3331        .dispatch_tree = dispatch_tree,
3332        .owner = owner,
3333    };
3334    AddressSpace *as;
3335    FlatView *view;
3336    GArray *fv_address_spaces;
3337    GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3338    AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3339
3340    if (ac->has_memory) {
3341        fvi.ac = ac;
3342    }
3343
3344    /* Gather all FVs in one table */
3345    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3346        view = address_space_get_flatview(as);
3347
3348        fv_address_spaces = g_hash_table_lookup(views, view);
3349        if (!fv_address_spaces) {
3350            fv_address_spaces = g_array_new(false, false, sizeof(as));
3351            g_hash_table_insert(views, view, fv_address_spaces);
3352        }
3353
3354        g_array_append_val(fv_address_spaces, as);
3355    }
3356
3357    /* Print */
3358    g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3359
3360    /* Free */
3361    g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3362    g_hash_table_unref(views);
3363}
3364
3365struct AddressSpaceInfo {
3366    MemoryRegionListHead *ml_head;
3367    bool owner;
3368    bool disabled;
3369};
3370
3371/* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3372static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3373{
3374    const AddressSpace *as_a = a;
3375    const AddressSpace *as_b = b;
3376
3377    return g_strcmp0(as_a->name, as_b->name);
3378}
3379
3380static void mtree_print_as_name(gpointer data, gpointer user_data)
3381{
3382    AddressSpace *as = data;
3383
3384    qemu_printf("address-space: %s\n", as->name);
3385}
3386
3387static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3388{
3389    MemoryRegion *mr = key;
3390    GSList *as_same_root_mr_list = value;
3391    struct AddressSpaceInfo *asi = user_data;
3392
3393    g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3394    mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3395    qemu_printf("\n");
3396}
3397
3398static gboolean mtree_info_as_free(gpointer key, gpointer value,
3399                                   gpointer user_data)
3400{
3401    GSList *as_same_root_mr_list = value;
3402
3403    g_slist_free(as_same_root_mr_list);
3404
3405    return true;
3406}
3407
3408static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3409{
3410    MemoryRegionListHead ml_head;
3411    MemoryRegionList *ml, *ml2;
3412    AddressSpace *as;
3413    GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3414    GSList *as_same_root_mr_list;
3415    struct AddressSpaceInfo asi = {
3416        .ml_head = &ml_head,
3417        .owner = owner,
3418        .disabled = disabled,
3419    };
3420
3421    QTAILQ_INIT(&ml_head);
3422
3423    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3424        /* Create hashtable, key=AS root MR, value = list of AS */
3425        as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3426        as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3427                                                     address_space_compare_name);
3428        g_hash_table_insert(views, as->root, as_same_root_mr_list);
3429    }
3430
3431    /* print address spaces */
3432    g_hash_table_foreach(views, mtree_print_as, &asi);
3433    g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3434    g_hash_table_unref(views);
3435
3436    /* print aliased regions */
3437    QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3438        qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3439        mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3440        qemu_printf("\n");
3441    }
3442
3443    QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3444        g_free(ml);
3445    }
3446}
3447
3448void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3449{
3450    if (flatview) {
3451        mtree_info_flatview(dispatch_tree, owner);
3452    } else {
3453        mtree_info_as(dispatch_tree, owner, disabled);
3454    }
3455}
3456
3457void memory_region_init_ram(MemoryRegion *mr,
3458                            Object *owner,
3459                            const char *name,
3460                            uint64_t size,
3461                            Error **errp)
3462{
3463    DeviceState *owner_dev;
3464    Error *err = NULL;
3465
3466    memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3467    if (err) {
3468        error_propagate(errp, err);
3469        return;
3470    }
3471    /* This will assert if owner is neither NULL nor a DeviceState.
3472     * We only want the owner here for the purposes of defining a
3473     * unique name for migration. TODO: Ideally we should implement
3474     * a naming scheme for Objects which are not DeviceStates, in
3475     * which case we can relax this restriction.
3476     */
3477    owner_dev = DEVICE(owner);
3478    vmstate_register_ram(mr, owner_dev);
3479}
3480
3481void memory_region_init_rom(MemoryRegion *mr,
3482                            Object *owner,
3483                            const char *name,
3484                            uint64_t size,
3485                            Error **errp)
3486{
3487    DeviceState *owner_dev;
3488    Error *err = NULL;
3489
3490    memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3491    if (err) {
3492        error_propagate(errp, err);
3493        return;
3494    }
3495    /* This will assert if owner is neither NULL nor a DeviceState.
3496     * We only want the owner here for the purposes of defining a
3497     * unique name for migration. TODO: Ideally we should implement
3498     * a naming scheme for Objects which are not DeviceStates, in
3499     * which case we can relax this restriction.
3500     */
3501    owner_dev = DEVICE(owner);
3502    vmstate_register_ram(mr, owner_dev);
3503}
3504
3505void memory_region_init_rom_device(MemoryRegion *mr,
3506                                   Object *owner,
3507                                   const MemoryRegionOps *ops,
3508                                   void *opaque,
3509                                   const char *name,
3510                                   uint64_t size,
3511                                   Error **errp)
3512{
3513    DeviceState *owner_dev;
3514    Error *err = NULL;
3515
3516    memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3517                                            name, size, &err);
3518    if (err) {
3519        error_propagate(errp, err);
3520        return;
3521    }
3522    /* This will assert if owner is neither NULL nor a DeviceState.
3523     * We only want the owner here for the purposes of defining a
3524     * unique name for migration. TODO: Ideally we should implement
3525     * a naming scheme for Objects which are not DeviceStates, in
3526     * which case we can relax this restriction.
3527     */
3528    owner_dev = DEVICE(owner);
3529    vmstate_register_ram(mr, owner_dev);
3530}
3531
3532/*
3533 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3534 * the fuzz_dma_read_cb callback
3535 */
3536#ifdef CONFIG_FUZZ
3537void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3538                      size_t len,
3539                      MemoryRegion *mr)
3540{
3541}
3542#endif
3543
3544static const TypeInfo memory_region_info = {
3545    .parent             = TYPE_OBJECT,
3546    .name               = TYPE_MEMORY_REGION,
3547    .class_size         = sizeof(MemoryRegionClass),
3548    .instance_size      = sizeof(MemoryRegion),
3549    .instance_init      = memory_region_initfn,
3550    .instance_finalize  = memory_region_finalize,
3551};
3552
3553static const TypeInfo iommu_memory_region_info = {
3554    .parent             = TYPE_MEMORY_REGION,
3555    .name               = TYPE_IOMMU_MEMORY_REGION,
3556    .class_size         = sizeof(IOMMUMemoryRegionClass),
3557    .instance_size      = sizeof(IOMMUMemoryRegion),
3558    .instance_init      = iommu_memory_region_initfn,
3559    .abstract           = true,
3560};
3561
3562static const TypeInfo ram_discard_manager_info = {
3563    .parent             = TYPE_INTERFACE,
3564    .name               = TYPE_RAM_DISCARD_MANAGER,
3565    .class_size         = sizeof(RamDiscardManagerClass),
3566};
3567
3568static void memory_register_types(void)
3569{
3570    type_register_static(&memory_region_info);
3571    type_register_static(&iommu_memory_region_info);
3572    type_register_static(&ram_discard_manager_info);
3573}
3574
3575type_init(memory_register_types)
3576