qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu/timer.h"
  24#include "qemu/log.h"
  25#include "qemu-common.h"
  26#include "target/arm/idau.h"
  27#include "qemu/module.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "cpu.h"
  31#ifdef CONFIG_TCG
  32#include "hw/core/tcg-cpu-ops.h"
  33#endif /* CONFIG_TCG */
  34#include "internals.h"
  35#include "exec/exec-all.h"
  36#include "hw/qdev-properties.h"
  37#if !defined(CONFIG_USER_ONLY)
  38#include "hw/loader.h"
  39#include "hw/boards.h"
  40#endif
  41#include "sysemu/tcg.h"
  42#include "sysemu/hw_accel.h"
  43#include "kvm_arm.h"
  44#include "disas/capstone.h"
  45#include "fpu/softfloat.h"
  46
  47static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  48{
  49    ARMCPU *cpu = ARM_CPU(cs);
  50    CPUARMState *env = &cpu->env;
  51
  52    if (is_a64(env)) {
  53        env->pc = value;
  54        env->thumb = 0;
  55    } else {
  56        env->regs[15] = value & ~1;
  57        env->thumb = value & 1;
  58    }
  59}
  60
  61#ifdef CONFIG_TCG
  62void arm_cpu_synchronize_from_tb(CPUState *cs,
  63                                 const TranslationBlock *tb)
  64{
  65    ARMCPU *cpu = ARM_CPU(cs);
  66    CPUARMState *env = &cpu->env;
  67
  68    /*
  69     * It's OK to look at env for the current mode here, because it's
  70     * never possible for an AArch64 TB to chain to an AArch32 TB.
  71     */
  72    if (is_a64(env)) {
  73        env->pc = tb->pc;
  74    } else {
  75        env->regs[15] = tb->pc;
  76    }
  77}
  78#endif /* CONFIG_TCG */
  79
  80static bool arm_cpu_has_work(CPUState *cs)
  81{
  82    ARMCPU *cpu = ARM_CPU(cs);
  83
  84    return (cpu->power_state != PSCI_OFF)
  85        && cs->interrupt_request &
  86        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  87         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  88         | CPU_INTERRUPT_EXITTB);
  89}
  90
  91void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  92                                 void *opaque)
  93{
  94    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  95
  96    entry->hook = hook;
  97    entry->opaque = opaque;
  98
  99    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
 100}
 101
 102void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 103                                 void *opaque)
 104{
 105    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 106
 107    entry->hook = hook;
 108    entry->opaque = opaque;
 109
 110    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 111}
 112
 113static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 114{
 115    /* Reset a single ARMCPRegInfo register */
 116    ARMCPRegInfo *ri = value;
 117    ARMCPU *cpu = opaque;
 118
 119    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 120        return;
 121    }
 122
 123    if (ri->resetfn) {
 124        ri->resetfn(&cpu->env, ri);
 125        return;
 126    }
 127
 128    /* A zero offset is never possible as it would be regs[0]
 129     * so we use it to indicate that reset is being handled elsewhere.
 130     * This is basically only used for fields in non-core coprocessors
 131     * (like the pxa2xx ones).
 132     */
 133    if (!ri->fieldoffset) {
 134        return;
 135    }
 136
 137    if (cpreg_field_is_64bit(ri)) {
 138        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 139    } else {
 140        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 141    }
 142}
 143
 144static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 145{
 146    /* Purely an assertion check: we've already done reset once,
 147     * so now check that running the reset for the cpreg doesn't
 148     * change its value. This traps bugs where two different cpregs
 149     * both try to reset the same state field but to different values.
 150     */
 151    ARMCPRegInfo *ri = value;
 152    ARMCPU *cpu = opaque;
 153    uint64_t oldvalue, newvalue;
 154
 155    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 156        return;
 157    }
 158
 159    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 160    cp_reg_reset(key, value, opaque);
 161    newvalue = read_raw_cp_reg(&cpu->env, ri);
 162    assert(oldvalue == newvalue);
 163}
 164
 165static void arm_cpu_reset(DeviceState *dev)
 166{
 167    CPUState *s = CPU(dev);
 168    ARMCPU *cpu = ARM_CPU(s);
 169    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 170    CPUARMState *env = &cpu->env;
 171
 172    acc->parent_reset(dev);
 173
 174    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 175
 176    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 177    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 178
 179    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 180    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 181    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 182    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 183
 184    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 185
 186    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 187        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 188    }
 189
 190    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 191        /* 64 bit CPUs always start in 64 bit mode */
 192        env->aarch64 = 1;
 193#if defined(CONFIG_USER_ONLY)
 194        env->pstate = PSTATE_MODE_EL0t;
 195        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 196        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 197        /* Enable all PAC keys.  */
 198        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 199                                  SCTLR_EnDA | SCTLR_EnDB);
 200        /* and to the FP/Neon instructions */
 201        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 202        /* and to the SVE instructions */
 203        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 204        /* with reasonable vector length */
 205        if (cpu_isar_feature(aa64_sve, cpu)) {
 206            env->vfp.zcr_el[1] =
 207                aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
 208        }
 209        /*
 210         * Enable 48-bit address space (TODO: take reserved_va into account).
 211         * Enable TBI0 but not TBI1.
 212         * Note that this must match useronly_clean_ptr.
 213         */
 214        env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
 215
 216        /* Enable MTE */
 217        if (cpu_isar_feature(aa64_mte, cpu)) {
 218            /* Enable tag access, but leave TCF0 as No Effect (0). */
 219            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 220            /*
 221             * Exclude all tags, so that tag 0 is always used.
 222             * This corresponds to Linux current->thread.gcr_incl = 0.
 223             *
 224             * Set RRND, so that helper_irg() will generate a seed later.
 225             * Here in cpu_reset(), the crypto subsystem has not yet been
 226             * initialized.
 227             */
 228            env->cp15.gcr_el1 = 0x1ffff;
 229        }
 230#else
 231        /* Reset into the highest available EL */
 232        if (arm_feature(env, ARM_FEATURE_EL3)) {
 233            env->pstate = PSTATE_MODE_EL3h;
 234        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 235            env->pstate = PSTATE_MODE_EL2h;
 236        } else {
 237            env->pstate = PSTATE_MODE_EL1h;
 238        }
 239
 240        /* Sample rvbar at reset.  */
 241        env->cp15.rvbar = cpu->rvbar_prop;
 242        env->pc = env->cp15.rvbar;
 243#endif
 244    } else {
 245#if defined(CONFIG_USER_ONLY)
 246        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 247        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 248#endif
 249    }
 250
 251#if defined(CONFIG_USER_ONLY)
 252    env->uncached_cpsr = ARM_CPU_MODE_USR;
 253    /* For user mode we must enable access to coprocessors */
 254    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 255    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 256        env->cp15.c15_cpar = 3;
 257    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 258        env->cp15.c15_cpar = 1;
 259    }
 260#else
 261
 262    /*
 263     * If the highest available EL is EL2, AArch32 will start in Hyp
 264     * mode; otherwise it starts in SVC. Note that if we start in
 265     * AArch64 then these values in the uncached_cpsr will be ignored.
 266     */
 267    if (arm_feature(env, ARM_FEATURE_EL2) &&
 268        !arm_feature(env, ARM_FEATURE_EL3)) {
 269        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 270    } else {
 271        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 272    }
 273    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 274
 275    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 276     * executing as AArch32 then check if highvecs are enabled and
 277     * adjust the PC accordingly.
 278     */
 279    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 280        env->regs[15] = 0xFFFF0000;
 281    }
 282
 283    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 284#endif
 285
 286    if (arm_feature(env, ARM_FEATURE_M)) {
 287#ifndef CONFIG_USER_ONLY
 288        uint32_t initial_msp; /* Loaded from 0x0 */
 289        uint32_t initial_pc; /* Loaded from 0x4 */
 290        uint8_t *rom;
 291        uint32_t vecbase;
 292#endif
 293
 294        if (cpu_isar_feature(aa32_lob, cpu)) {
 295            /*
 296             * LTPSIZE is constant 4 if MVE not implemented, and resets
 297             * to an UNKNOWN value if MVE is implemented. We choose to
 298             * always reset to 4.
 299             */
 300            env->v7m.ltpsize = 4;
 301            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 302            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 303            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 304        }
 305
 306        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 307            env->v7m.secure = true;
 308        } else {
 309            /* This bit resets to 0 if security is supported, but 1 if
 310             * it is not. The bit is not present in v7M, but we set it
 311             * here so we can avoid having to make checks on it conditional
 312             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 313             */
 314            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 315            /*
 316             * Set NSACR to indicate "NS access permitted to everything";
 317             * this avoids having to have all the tests of it being
 318             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 319             * v8.1M the guest-visible value of NSACR in a CPU without the
 320             * Security Extension is 0xcff.
 321             */
 322            env->v7m.nsacr = 0xcff;
 323        }
 324
 325        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 326         * that it resets to 1, so QEMU always does that rather than making
 327         * it dependent on CPU model. In v8M it is RES1.
 328         */
 329        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 330        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 331        if (arm_feature(env, ARM_FEATURE_V8)) {
 332            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 333            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 334            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 335        }
 336        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 337            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 338            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 339        }
 340
 341        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 342            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 343            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 344                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 345        }
 346
 347#ifndef CONFIG_USER_ONLY
 348        /* Unlike A/R profile, M profile defines the reset LR value */
 349        env->regs[14] = 0xffffffff;
 350
 351        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 352        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 353
 354        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 355        vecbase = env->v7m.vecbase[env->v7m.secure];
 356        rom = rom_ptr_for_as(s->as, vecbase, 8);
 357        if (rom) {
 358            /* Address zero is covered by ROM which hasn't yet been
 359             * copied into physical memory.
 360             */
 361            initial_msp = ldl_p(rom);
 362            initial_pc = ldl_p(rom + 4);
 363        } else {
 364            /* Address zero not covered by a ROM blob, or the ROM blob
 365             * is in non-modifiable memory and this is a second reset after
 366             * it got copied into memory. In the latter case, rom_ptr
 367             * will return a NULL pointer and we should use ldl_phys instead.
 368             */
 369            initial_msp = ldl_phys(s->as, vecbase);
 370            initial_pc = ldl_phys(s->as, vecbase + 4);
 371        }
 372
 373        qemu_log_mask(CPU_LOG_INT,
 374                      "Loaded reset SP 0x%x PC 0x%x from vector table\n",
 375                      initial_msp, initial_pc);
 376
 377        env->regs[13] = initial_msp & 0xFFFFFFFC;
 378        env->regs[15] = initial_pc & ~1;
 379        env->thumb = initial_pc & 1;
 380#else
 381        /*
 382         * For user mode we run non-secure and with access to the FPU.
 383         * The FPU context is active (ie does not need further setup)
 384         * and is owned by non-secure.
 385         */
 386        env->v7m.secure = false;
 387        env->v7m.nsacr = 0xcff;
 388        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 389        env->v7m.fpccr[M_REG_S] &=
 390            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 391        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 392#endif
 393    }
 394
 395    /* M profile requires that reset clears the exclusive monitor;
 396     * A profile does not, but clearing it makes more sense than having it
 397     * set with an exclusive access on address zero.
 398     */
 399    arm_clear_exclusive(env);
 400
 401    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 402        if (cpu->pmsav7_dregion > 0) {
 403            if (arm_feature(env, ARM_FEATURE_V8)) {
 404                memset(env->pmsav8.rbar[M_REG_NS], 0,
 405                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 406                       * cpu->pmsav7_dregion);
 407                memset(env->pmsav8.rlar[M_REG_NS], 0,
 408                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 409                       * cpu->pmsav7_dregion);
 410                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 411                    memset(env->pmsav8.rbar[M_REG_S], 0,
 412                           sizeof(*env->pmsav8.rbar[M_REG_S])
 413                           * cpu->pmsav7_dregion);
 414                    memset(env->pmsav8.rlar[M_REG_S], 0,
 415                           sizeof(*env->pmsav8.rlar[M_REG_S])
 416                           * cpu->pmsav7_dregion);
 417                }
 418            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 419                memset(env->pmsav7.drbar, 0,
 420                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 421                memset(env->pmsav7.drsr, 0,
 422                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 423                memset(env->pmsav7.dracr, 0,
 424                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 425            }
 426        }
 427        env->pmsav7.rnr[M_REG_NS] = 0;
 428        env->pmsav7.rnr[M_REG_S] = 0;
 429        env->pmsav8.mair0[M_REG_NS] = 0;
 430        env->pmsav8.mair0[M_REG_S] = 0;
 431        env->pmsav8.mair1[M_REG_NS] = 0;
 432        env->pmsav8.mair1[M_REG_S] = 0;
 433    }
 434
 435    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 436        if (cpu->sau_sregion > 0) {
 437            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 438            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 439        }
 440        env->sau.rnr = 0;
 441        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 442         * the Cortex-M33 does.
 443         */
 444        env->sau.ctrl = 0;
 445    }
 446
 447    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 448    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 449    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 450    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 451    set_float_detect_tininess(float_tininess_before_rounding,
 452                              &env->vfp.fp_status);
 453    set_float_detect_tininess(float_tininess_before_rounding,
 454                              &env->vfp.standard_fp_status);
 455    set_float_detect_tininess(float_tininess_before_rounding,
 456                              &env->vfp.fp_status_f16);
 457    set_float_detect_tininess(float_tininess_before_rounding,
 458                              &env->vfp.standard_fp_status_f16);
 459#ifndef CONFIG_USER_ONLY
 460    if (kvm_enabled()) {
 461        kvm_arm_reset_vcpu(cpu);
 462    }
 463#endif
 464
 465    hw_breakpoint_update_all(cpu);
 466    hw_watchpoint_update_all(cpu);
 467    arm_rebuild_hflags(env);
 468}
 469
 470#ifndef CONFIG_USER_ONLY
 471
 472static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 473                                     unsigned int target_el,
 474                                     unsigned int cur_el, bool secure,
 475                                     uint64_t hcr_el2)
 476{
 477    CPUARMState *env = cs->env_ptr;
 478    bool pstate_unmasked;
 479    bool unmasked = false;
 480
 481    /*
 482     * Don't take exceptions if they target a lower EL.
 483     * This check should catch any exceptions that would not be taken
 484     * but left pending.
 485     */
 486    if (cur_el > target_el) {
 487        return false;
 488    }
 489
 490    switch (excp_idx) {
 491    case EXCP_FIQ:
 492        pstate_unmasked = !(env->daif & PSTATE_F);
 493        break;
 494
 495    case EXCP_IRQ:
 496        pstate_unmasked = !(env->daif & PSTATE_I);
 497        break;
 498
 499    case EXCP_VFIQ:
 500        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 501            /* VFIQs are only taken when hypervized.  */
 502            return false;
 503        }
 504        return !(env->daif & PSTATE_F);
 505    case EXCP_VIRQ:
 506        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 507            /* VIRQs are only taken when hypervized.  */
 508            return false;
 509        }
 510        return !(env->daif & PSTATE_I);
 511    default:
 512        g_assert_not_reached();
 513    }
 514
 515    /*
 516     * Use the target EL, current execution state and SCR/HCR settings to
 517     * determine whether the corresponding CPSR bit is used to mask the
 518     * interrupt.
 519     */
 520    if ((target_el > cur_el) && (target_el != 1)) {
 521        /* Exceptions targeting a higher EL may not be maskable */
 522        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 523            /*
 524             * 64-bit masking rules are simple: exceptions to EL3
 525             * can't be masked, and exceptions to EL2 can only be
 526             * masked from Secure state. The HCR and SCR settings
 527             * don't affect the masking logic, only the interrupt routing.
 528             */
 529            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 530                unmasked = true;
 531            }
 532        } else {
 533            /*
 534             * The old 32-bit-only environment has a more complicated
 535             * masking setup. HCR and SCR bits not only affect interrupt
 536             * routing but also change the behaviour of masking.
 537             */
 538            bool hcr, scr;
 539
 540            switch (excp_idx) {
 541            case EXCP_FIQ:
 542                /*
 543                 * If FIQs are routed to EL3 or EL2 then there are cases where
 544                 * we override the CPSR.F in determining if the exception is
 545                 * masked or not. If neither of these are set then we fall back
 546                 * to the CPSR.F setting otherwise we further assess the state
 547                 * below.
 548                 */
 549                hcr = hcr_el2 & HCR_FMO;
 550                scr = (env->cp15.scr_el3 & SCR_FIQ);
 551
 552                /*
 553                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 554                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 555                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 556                 * when non-secure but only when FIQs are only routed to EL3.
 557                 */
 558                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 559                break;
 560            case EXCP_IRQ:
 561                /*
 562                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 563                 * we may override the CPSR.I masking when in non-secure state.
 564                 * The SCR.IRQ setting has already been taken into consideration
 565                 * when setting the target EL, so it does not have a further
 566                 * affect here.
 567                 */
 568                hcr = hcr_el2 & HCR_IMO;
 569                scr = false;
 570                break;
 571            default:
 572                g_assert_not_reached();
 573            }
 574
 575            if ((scr || hcr) && !secure) {
 576                unmasked = true;
 577            }
 578        }
 579    }
 580
 581    /*
 582     * The PSTATE bits only mask the interrupt if we have not overriden the
 583     * ability above.
 584     */
 585    return unmasked || pstate_unmasked;
 586}
 587
 588static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 589{
 590    CPUClass *cc = CPU_GET_CLASS(cs);
 591    CPUARMState *env = cs->env_ptr;
 592    uint32_t cur_el = arm_current_el(env);
 593    bool secure = arm_is_secure(env);
 594    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 595    uint32_t target_el;
 596    uint32_t excp_idx;
 597
 598    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 599
 600    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 601        excp_idx = EXCP_FIQ;
 602        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 603        if (arm_excp_unmasked(cs, excp_idx, target_el,
 604                              cur_el, secure, hcr_el2)) {
 605            goto found;
 606        }
 607    }
 608    if (interrupt_request & CPU_INTERRUPT_HARD) {
 609        excp_idx = EXCP_IRQ;
 610        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 611        if (arm_excp_unmasked(cs, excp_idx, target_el,
 612                              cur_el, secure, hcr_el2)) {
 613            goto found;
 614        }
 615    }
 616    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 617        excp_idx = EXCP_VIRQ;
 618        target_el = 1;
 619        if (arm_excp_unmasked(cs, excp_idx, target_el,
 620                              cur_el, secure, hcr_el2)) {
 621            goto found;
 622        }
 623    }
 624    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 625        excp_idx = EXCP_VFIQ;
 626        target_el = 1;
 627        if (arm_excp_unmasked(cs, excp_idx, target_el,
 628                              cur_el, secure, hcr_el2)) {
 629            goto found;
 630        }
 631    }
 632    return false;
 633
 634 found:
 635    cs->exception_index = excp_idx;
 636    env->exception.target_el = target_el;
 637    cc->tcg_ops->do_interrupt(cs);
 638    return true;
 639}
 640#endif /* !CONFIG_USER_ONLY */
 641
 642void arm_cpu_update_virq(ARMCPU *cpu)
 643{
 644    /*
 645     * Update the interrupt level for VIRQ, which is the logical OR of
 646     * the HCR_EL2.VI bit and the input line level from the GIC.
 647     */
 648    CPUARMState *env = &cpu->env;
 649    CPUState *cs = CPU(cpu);
 650
 651    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 652        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 653
 654    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 655        if (new_state) {
 656            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 657        } else {
 658            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 659        }
 660    }
 661}
 662
 663void arm_cpu_update_vfiq(ARMCPU *cpu)
 664{
 665    /*
 666     * Update the interrupt level for VFIQ, which is the logical OR of
 667     * the HCR_EL2.VF bit and the input line level from the GIC.
 668     */
 669    CPUARMState *env = &cpu->env;
 670    CPUState *cs = CPU(cpu);
 671
 672    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 673        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 674
 675    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 676        if (new_state) {
 677            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 678        } else {
 679            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 680        }
 681    }
 682}
 683
 684#ifndef CONFIG_USER_ONLY
 685static void arm_cpu_set_irq(void *opaque, int irq, int level)
 686{
 687    ARMCPU *cpu = opaque;
 688    CPUARMState *env = &cpu->env;
 689    CPUState *cs = CPU(cpu);
 690    static const int mask[] = {
 691        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 692        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 693        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 694        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 695    };
 696
 697    if (level) {
 698        env->irq_line_state |= mask[irq];
 699    } else {
 700        env->irq_line_state &= ~mask[irq];
 701    }
 702
 703    switch (irq) {
 704    case ARM_CPU_VIRQ:
 705        assert(arm_feature(env, ARM_FEATURE_EL2));
 706        arm_cpu_update_virq(cpu);
 707        break;
 708    case ARM_CPU_VFIQ:
 709        assert(arm_feature(env, ARM_FEATURE_EL2));
 710        arm_cpu_update_vfiq(cpu);
 711        break;
 712    case ARM_CPU_IRQ:
 713    case ARM_CPU_FIQ:
 714        if (level) {
 715            cpu_interrupt(cs, mask[irq]);
 716        } else {
 717            cpu_reset_interrupt(cs, mask[irq]);
 718        }
 719        break;
 720    default:
 721        g_assert_not_reached();
 722    }
 723}
 724
 725static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 726{
 727#ifdef CONFIG_KVM
 728    ARMCPU *cpu = opaque;
 729    CPUARMState *env = &cpu->env;
 730    CPUState *cs = CPU(cpu);
 731    uint32_t linestate_bit;
 732    int irq_id;
 733
 734    switch (irq) {
 735    case ARM_CPU_IRQ:
 736        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 737        linestate_bit = CPU_INTERRUPT_HARD;
 738        break;
 739    case ARM_CPU_FIQ:
 740        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 741        linestate_bit = CPU_INTERRUPT_FIQ;
 742        break;
 743    default:
 744        g_assert_not_reached();
 745    }
 746
 747    if (level) {
 748        env->irq_line_state |= linestate_bit;
 749    } else {
 750        env->irq_line_state &= ~linestate_bit;
 751    }
 752    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 753#endif
 754}
 755
 756static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 757{
 758    ARMCPU *cpu = ARM_CPU(cs);
 759    CPUARMState *env = &cpu->env;
 760
 761    cpu_synchronize_state(cs);
 762    return arm_cpu_data_is_big_endian(env);
 763}
 764
 765#endif
 766
 767static int
 768print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 769{
 770  return print_insn_arm(pc | 1, info);
 771}
 772
 773static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 774{
 775    ARMCPU *ac = ARM_CPU(cpu);
 776    CPUARMState *env = &ac->env;
 777    bool sctlr_b;
 778
 779    if (is_a64(env)) {
 780        /* We might not be compiled with the A64 disassembler
 781         * because it needs a C++ compiler. Leave print_insn
 782         * unset in this case to use the caller default behaviour.
 783         */
 784#if defined(CONFIG_ARM_A64_DIS)
 785        info->print_insn = print_insn_arm_a64;
 786#endif
 787        info->cap_arch = CS_ARCH_ARM64;
 788        info->cap_insn_unit = 4;
 789        info->cap_insn_split = 4;
 790    } else {
 791        int cap_mode;
 792        if (env->thumb) {
 793            info->print_insn = print_insn_thumb1;
 794            info->cap_insn_unit = 2;
 795            info->cap_insn_split = 4;
 796            cap_mode = CS_MODE_THUMB;
 797        } else {
 798            info->print_insn = print_insn_arm;
 799            info->cap_insn_unit = 4;
 800            info->cap_insn_split = 4;
 801            cap_mode = CS_MODE_ARM;
 802        }
 803        if (arm_feature(env, ARM_FEATURE_V8)) {
 804            cap_mode |= CS_MODE_V8;
 805        }
 806        if (arm_feature(env, ARM_FEATURE_M)) {
 807            cap_mode |= CS_MODE_MCLASS;
 808        }
 809        info->cap_arch = CS_ARCH_ARM;
 810        info->cap_mode = cap_mode;
 811    }
 812
 813    sctlr_b = arm_sctlr_b(env);
 814    if (bswap_code(sctlr_b)) {
 815#ifdef TARGET_WORDS_BIGENDIAN
 816        info->endian = BFD_ENDIAN_LITTLE;
 817#else
 818        info->endian = BFD_ENDIAN_BIG;
 819#endif
 820    }
 821    info->flags &= ~INSN_ARM_BE32;
 822#ifndef CONFIG_USER_ONLY
 823    if (sctlr_b) {
 824        info->flags |= INSN_ARM_BE32;
 825    }
 826#endif
 827}
 828
 829#ifdef TARGET_AARCH64
 830
 831static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 832{
 833    ARMCPU *cpu = ARM_CPU(cs);
 834    CPUARMState *env = &cpu->env;
 835    uint32_t psr = pstate_read(env);
 836    int i;
 837    int el = arm_current_el(env);
 838    const char *ns_status;
 839
 840    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 841    for (i = 0; i < 32; i++) {
 842        if (i == 31) {
 843            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 844        } else {
 845            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 846                         (i + 2) % 3 ? " " : "\n");
 847        }
 848    }
 849
 850    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 851        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 852    } else {
 853        ns_status = "";
 854    }
 855    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 856                 psr,
 857                 psr & PSTATE_N ? 'N' : '-',
 858                 psr & PSTATE_Z ? 'Z' : '-',
 859                 psr & PSTATE_C ? 'C' : '-',
 860                 psr & PSTATE_V ? 'V' : '-',
 861                 ns_status,
 862                 el,
 863                 psr & PSTATE_SP ? 'h' : 't');
 864
 865    if (cpu_isar_feature(aa64_bti, cpu)) {
 866        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 867    }
 868    if (!(flags & CPU_DUMP_FPU)) {
 869        qemu_fprintf(f, "\n");
 870        return;
 871    }
 872    if (fp_exception_el(env, el) != 0) {
 873        qemu_fprintf(f, "    FPU disabled\n");
 874        return;
 875    }
 876    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 877                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 878
 879    if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
 880        int j, zcr_len = sve_zcr_len_for_el(env, el);
 881
 882        for (i = 0; i <= FFR_PRED_NUM; i++) {
 883            bool eol;
 884            if (i == FFR_PRED_NUM) {
 885                qemu_fprintf(f, "FFR=");
 886                /* It's last, so end the line.  */
 887                eol = true;
 888            } else {
 889                qemu_fprintf(f, "P%02d=", i);
 890                switch (zcr_len) {
 891                case 0:
 892                    eol = i % 8 == 7;
 893                    break;
 894                case 1:
 895                    eol = i % 6 == 5;
 896                    break;
 897                case 2:
 898                case 3:
 899                    eol = i % 3 == 2;
 900                    break;
 901                default:
 902                    /* More than one quadword per predicate.  */
 903                    eol = true;
 904                    break;
 905                }
 906            }
 907            for (j = zcr_len / 4; j >= 0; j--) {
 908                int digits;
 909                if (j * 4 + 4 <= zcr_len + 1) {
 910                    digits = 16;
 911                } else {
 912                    digits = (zcr_len % 4 + 1) * 4;
 913                }
 914                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 915                             env->vfp.pregs[i].p[j],
 916                             j ? ":" : eol ? "\n" : " ");
 917            }
 918        }
 919
 920        for (i = 0; i < 32; i++) {
 921            if (zcr_len == 0) {
 922                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 923                             i, env->vfp.zregs[i].d[1],
 924                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 925            } else if (zcr_len == 1) {
 926                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 927                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 928                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 929                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 930            } else {
 931                for (j = zcr_len; j >= 0; j--) {
 932                    bool odd = (zcr_len - j) % 2 != 0;
 933                    if (j == zcr_len) {
 934                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
 935                    } else if (!odd) {
 936                        if (j > 0) {
 937                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
 938                        } else {
 939                            qemu_fprintf(f, "     [%x]=", j);
 940                        }
 941                    }
 942                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
 943                                 env->vfp.zregs[i].d[j * 2 + 1],
 944                                 env->vfp.zregs[i].d[j * 2],
 945                                 odd || j == 0 ? "\n" : ":");
 946                }
 947            }
 948        }
 949    } else {
 950        for (i = 0; i < 32; i++) {
 951            uint64_t *q = aa64_vfp_qreg(env, i);
 952            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 953                         i, q[1], q[0], (i & 1 ? "\n" : " "));
 954        }
 955    }
 956}
 957
 958#else
 959
 960static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 961{
 962    g_assert_not_reached();
 963}
 964
 965#endif
 966
 967static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 968{
 969    ARMCPU *cpu = ARM_CPU(cs);
 970    CPUARMState *env = &cpu->env;
 971    int i;
 972
 973    if (is_a64(env)) {
 974        aarch64_cpu_dump_state(cs, f, flags);
 975        return;
 976    }
 977
 978    for (i = 0; i < 16; i++) {
 979        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
 980        if ((i % 4) == 3) {
 981            qemu_fprintf(f, "\n");
 982        } else {
 983            qemu_fprintf(f, " ");
 984        }
 985    }
 986
 987    if (arm_feature(env, ARM_FEATURE_M)) {
 988        uint32_t xpsr = xpsr_read(env);
 989        const char *mode;
 990        const char *ns_status = "";
 991
 992        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 993            ns_status = env->v7m.secure ? "S " : "NS ";
 994        }
 995
 996        if (xpsr & XPSR_EXCP) {
 997            mode = "handler";
 998        } else {
 999            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1000                mode = "unpriv-thread";
1001            } else {
1002                mode = "priv-thread";
1003            }
1004        }
1005
1006        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1007                     xpsr,
1008                     xpsr & XPSR_N ? 'N' : '-',
1009                     xpsr & XPSR_Z ? 'Z' : '-',
1010                     xpsr & XPSR_C ? 'C' : '-',
1011                     xpsr & XPSR_V ? 'V' : '-',
1012                     xpsr & XPSR_T ? 'T' : 'A',
1013                     ns_status,
1014                     mode);
1015    } else {
1016        uint32_t psr = cpsr_read(env);
1017        const char *ns_status = "";
1018
1019        if (arm_feature(env, ARM_FEATURE_EL3) &&
1020            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1021            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1022        }
1023
1024        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1025                     psr,
1026                     psr & CPSR_N ? 'N' : '-',
1027                     psr & CPSR_Z ? 'Z' : '-',
1028                     psr & CPSR_C ? 'C' : '-',
1029                     psr & CPSR_V ? 'V' : '-',
1030                     psr & CPSR_T ? 'T' : 'A',
1031                     ns_status,
1032                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1033    }
1034
1035    if (flags & CPU_DUMP_FPU) {
1036        int numvfpregs = 0;
1037        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1038            numvfpregs = 32;
1039        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1040            numvfpregs = 16;
1041        }
1042        for (i = 0; i < numvfpregs; i++) {
1043            uint64_t v = *aa32_vfp_dreg(env, i);
1044            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1045                         i * 2, (uint32_t)v,
1046                         i * 2 + 1, (uint32_t)(v >> 32),
1047                         i, v);
1048        }
1049        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1050        if (cpu_isar_feature(aa32_mve, cpu)) {
1051            qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1052        }
1053    }
1054}
1055
1056uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1057{
1058    uint32_t Aff1 = idx / clustersz;
1059    uint32_t Aff0 = idx % clustersz;
1060    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1061}
1062
1063static void cpreg_hashtable_data_destroy(gpointer data)
1064{
1065    /*
1066     * Destroy function for cpu->cp_regs hashtable data entries.
1067     * We must free the name string because it was g_strdup()ed in
1068     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1069     * from r->name because we know we definitely allocated it.
1070     */
1071    ARMCPRegInfo *r = data;
1072
1073    g_free((void *)r->name);
1074    g_free(r);
1075}
1076
1077static void arm_cpu_initfn(Object *obj)
1078{
1079    ARMCPU *cpu = ARM_CPU(obj);
1080
1081    cpu_set_cpustate_pointers(cpu);
1082    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1083                                         g_free, cpreg_hashtable_data_destroy);
1084
1085    QLIST_INIT(&cpu->pre_el_change_hooks);
1086    QLIST_INIT(&cpu->el_change_hooks);
1087
1088#ifdef CONFIG_USER_ONLY
1089# ifdef TARGET_AARCH64
1090    /*
1091     * The linux kernel defaults to 512-bit vectors, when sve is supported.
1092     * See documentation for /proc/sys/abi/sve_default_vector_length, and
1093     * our corresponding sve-default-vector-length cpu property.
1094     */
1095    cpu->sve_default_vq = 4;
1096# endif
1097#else
1098    /* Our inbound IRQ and FIQ lines */
1099    if (kvm_enabled()) {
1100        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1101         * the same interface as non-KVM CPUs.
1102         */
1103        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1104    } else {
1105        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1106    }
1107
1108    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1109                       ARRAY_SIZE(cpu->gt_timer_outputs));
1110
1111    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1112                             "gicv3-maintenance-interrupt", 1);
1113    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1114                             "pmu-interrupt", 1);
1115#endif
1116
1117    /* DTB consumers generally don't in fact care what the 'compatible'
1118     * string is, so always provide some string and trust that a hypothetical
1119     * picky DTB consumer will also provide a helpful error message.
1120     */
1121    cpu->dtb_compatible = "qemu,unknown";
1122    cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1123    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1124
1125    if (tcg_enabled() || hvf_enabled()) {
1126        /* TCG and HVF implement PSCI 1.1 */
1127        cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1128    }
1129}
1130
1131static Property arm_cpu_gt_cntfrq_property =
1132            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1133                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1134
1135static Property arm_cpu_reset_cbar_property =
1136            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1137
1138static Property arm_cpu_reset_hivecs_property =
1139            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1140
1141#ifndef CONFIG_USER_ONLY
1142static Property arm_cpu_has_el2_property =
1143            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1144
1145static Property arm_cpu_has_el3_property =
1146            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1147#endif
1148
1149static Property arm_cpu_cfgend_property =
1150            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1151
1152static Property arm_cpu_has_vfp_property =
1153            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1154
1155static Property arm_cpu_has_neon_property =
1156            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1157
1158static Property arm_cpu_has_dsp_property =
1159            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1160
1161static Property arm_cpu_has_mpu_property =
1162            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1163
1164/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1165 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1166 * the right value for that particular CPU type, and we don't want
1167 * to override that with an incorrect constant value.
1168 */
1169static Property arm_cpu_pmsav7_dregion_property =
1170            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1171                                           pmsav7_dregion,
1172                                           qdev_prop_uint32, uint32_t);
1173
1174static bool arm_get_pmu(Object *obj, Error **errp)
1175{
1176    ARMCPU *cpu = ARM_CPU(obj);
1177
1178    return cpu->has_pmu;
1179}
1180
1181static void arm_set_pmu(Object *obj, bool value, Error **errp)
1182{
1183    ARMCPU *cpu = ARM_CPU(obj);
1184
1185    if (value) {
1186        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1187            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1188            return;
1189        }
1190        set_feature(&cpu->env, ARM_FEATURE_PMU);
1191    } else {
1192        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1193    }
1194    cpu->has_pmu = value;
1195}
1196
1197unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1198{
1199    /*
1200     * The exact approach to calculating guest ticks is:
1201     *
1202     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1203     *              NANOSECONDS_PER_SECOND);
1204     *
1205     * We don't do that. Rather we intentionally use integer division
1206     * truncation below and in the caller for the conversion of host monotonic
1207     * time to guest ticks to provide the exact inverse for the semantics of
1208     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1209     * it loses precision when representing frequencies where
1210     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1211     * provide an exact inverse leads to scheduling timers with negative
1212     * periods, which in turn leads to sticky behaviour in the guest.
1213     *
1214     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1215     * cannot become zero.
1216     */
1217    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1218      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1219}
1220
1221void arm_cpu_post_init(Object *obj)
1222{
1223    ARMCPU *cpu = ARM_CPU(obj);
1224
1225    /* M profile implies PMSA. We have to do this here rather than
1226     * in realize with the other feature-implication checks because
1227     * we look at the PMSA bit to see if we should add some properties.
1228     */
1229    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1230        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1231    }
1232
1233    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1234        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1235        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1236    }
1237
1238    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1239        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1240    }
1241
1242    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1243        object_property_add_uint64_ptr(obj, "rvbar",
1244                                       &cpu->rvbar_prop,
1245                                       OBJ_PROP_FLAG_READWRITE);
1246    }
1247
1248#ifndef CONFIG_USER_ONLY
1249    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1250        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1251         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1252         */
1253        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1254
1255        object_property_add_link(obj, "secure-memory",
1256                                 TYPE_MEMORY_REGION,
1257                                 (Object **)&cpu->secure_memory,
1258                                 qdev_prop_allow_set_link_before_realize,
1259                                 OBJ_PROP_LINK_STRONG);
1260    }
1261
1262    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1263        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1264    }
1265#endif
1266
1267    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1268        cpu->has_pmu = true;
1269        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1270    }
1271
1272    /*
1273     * Allow user to turn off VFP and Neon support, but only for TCG --
1274     * KVM does not currently allow us to lie to the guest about its
1275     * ID/feature registers, so the guest always sees what the host has.
1276     */
1277    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1278        ? cpu_isar_feature(aa64_fp_simd, cpu)
1279        : cpu_isar_feature(aa32_vfp, cpu)) {
1280        cpu->has_vfp = true;
1281        if (!kvm_enabled()) {
1282            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1283        }
1284    }
1285
1286    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1287        cpu->has_neon = true;
1288        if (!kvm_enabled()) {
1289            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1290        }
1291    }
1292
1293    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1294        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1295        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1296    }
1297
1298    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1299        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1300        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1301            qdev_property_add_static(DEVICE(obj),
1302                                     &arm_cpu_pmsav7_dregion_property);
1303        }
1304    }
1305
1306    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1307        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1308                                 qdev_prop_allow_set_link_before_realize,
1309                                 OBJ_PROP_LINK_STRONG);
1310        /*
1311         * M profile: initial value of the Secure VTOR. We can't just use
1312         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1313         * the property to be set after realize.
1314         */
1315        object_property_add_uint32_ptr(obj, "init-svtor",
1316                                       &cpu->init_svtor,
1317                                       OBJ_PROP_FLAG_READWRITE);
1318    }
1319    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1320        /*
1321         * Initial value of the NS VTOR (for cores without the Security
1322         * extension, this is the only VTOR)
1323         */
1324        object_property_add_uint32_ptr(obj, "init-nsvtor",
1325                                       &cpu->init_nsvtor,
1326                                       OBJ_PROP_FLAG_READWRITE);
1327    }
1328
1329    /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1330    object_property_add_uint32_ptr(obj, "psci-conduit",
1331                                   &cpu->psci_conduit,
1332                                   OBJ_PROP_FLAG_READWRITE);
1333
1334    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1335
1336    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1337        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1338    }
1339
1340    if (kvm_enabled()) {
1341        kvm_arm_add_vcpu_properties(obj);
1342    }
1343
1344#ifndef CONFIG_USER_ONLY
1345    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1346        cpu_isar_feature(aa64_mte, cpu)) {
1347        object_property_add_link(obj, "tag-memory",
1348                                 TYPE_MEMORY_REGION,
1349                                 (Object **)&cpu->tag_memory,
1350                                 qdev_prop_allow_set_link_before_realize,
1351                                 OBJ_PROP_LINK_STRONG);
1352
1353        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1354            object_property_add_link(obj, "secure-tag-memory",
1355                                     TYPE_MEMORY_REGION,
1356                                     (Object **)&cpu->secure_tag_memory,
1357                                     qdev_prop_allow_set_link_before_realize,
1358                                     OBJ_PROP_LINK_STRONG);
1359        }
1360    }
1361#endif
1362}
1363
1364static void arm_cpu_finalizefn(Object *obj)
1365{
1366    ARMCPU *cpu = ARM_CPU(obj);
1367    ARMELChangeHook *hook, *next;
1368
1369    g_hash_table_destroy(cpu->cp_regs);
1370
1371    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1372        QLIST_REMOVE(hook, node);
1373        g_free(hook);
1374    }
1375    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1376        QLIST_REMOVE(hook, node);
1377        g_free(hook);
1378    }
1379#ifndef CONFIG_USER_ONLY
1380    if (cpu->pmu_timer) {
1381        timer_free(cpu->pmu_timer);
1382    }
1383#endif
1384}
1385
1386void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1387{
1388    Error *local_err = NULL;
1389
1390    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1391        arm_cpu_sve_finalize(cpu, &local_err);
1392        if (local_err != NULL) {
1393            error_propagate(errp, local_err);
1394            return;
1395        }
1396
1397        arm_cpu_pauth_finalize(cpu, &local_err);
1398        if (local_err != NULL) {
1399            error_propagate(errp, local_err);
1400            return;
1401        }
1402
1403        arm_cpu_lpa2_finalize(cpu, &local_err);
1404        if (local_err != NULL) {
1405            error_propagate(errp, local_err);
1406            return;
1407        }
1408    }
1409
1410    if (kvm_enabled()) {
1411        kvm_arm_steal_time_finalize(cpu, &local_err);
1412        if (local_err != NULL) {
1413            error_propagate(errp, local_err);
1414            return;
1415        }
1416    }
1417}
1418
1419static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1420{
1421    CPUState *cs = CPU(dev);
1422    ARMCPU *cpu = ARM_CPU(dev);
1423    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1424    CPUARMState *env = &cpu->env;
1425    int pagebits;
1426    Error *local_err = NULL;
1427    bool no_aa32 = false;
1428
1429    /* If we needed to query the host kernel for the CPU features
1430     * then it's possible that might have failed in the initfn, but
1431     * this is the first point where we can report it.
1432     */
1433    if (cpu->host_cpu_probe_failed) {
1434        if (!kvm_enabled() && !hvf_enabled()) {
1435            error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1436        } else {
1437            error_setg(errp, "Failed to retrieve host CPU features");
1438        }
1439        return;
1440    }
1441
1442#ifndef CONFIG_USER_ONLY
1443    /* The NVIC and M-profile CPU are two halves of a single piece of
1444     * hardware; trying to use one without the other is a command line
1445     * error and will result in segfaults if not caught here.
1446     */
1447    if (arm_feature(env, ARM_FEATURE_M)) {
1448        if (!env->nvic) {
1449            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1450            return;
1451        }
1452    } else {
1453        if (env->nvic) {
1454            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1455            return;
1456        }
1457    }
1458
1459    if (kvm_enabled()) {
1460        /*
1461         * Catch all the cases which might cause us to create more than one
1462         * address space for the CPU (otherwise we will assert() later in
1463         * cpu_address_space_init()).
1464         */
1465        if (arm_feature(env, ARM_FEATURE_M)) {
1466            error_setg(errp,
1467                       "Cannot enable KVM when using an M-profile guest CPU");
1468            return;
1469        }
1470        if (cpu->has_el3) {
1471            error_setg(errp,
1472                       "Cannot enable KVM when guest CPU has EL3 enabled");
1473            return;
1474        }
1475        if (cpu->tag_memory) {
1476            error_setg(errp,
1477                       "Cannot enable KVM when guest CPUs has MTE enabled");
1478            return;
1479        }
1480    }
1481
1482    {
1483        uint64_t scale;
1484
1485        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1486            if (!cpu->gt_cntfrq_hz) {
1487                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1488                           cpu->gt_cntfrq_hz);
1489                return;
1490            }
1491            scale = gt_cntfrq_period_ns(cpu);
1492        } else {
1493            scale = GTIMER_SCALE;
1494        }
1495
1496        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1497                                               arm_gt_ptimer_cb, cpu);
1498        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1499                                               arm_gt_vtimer_cb, cpu);
1500        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1501                                              arm_gt_htimer_cb, cpu);
1502        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1503                                              arm_gt_stimer_cb, cpu);
1504        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1505                                                  arm_gt_hvtimer_cb, cpu);
1506    }
1507#endif
1508
1509    cpu_exec_realizefn(cs, &local_err);
1510    if (local_err != NULL) {
1511        error_propagate(errp, local_err);
1512        return;
1513    }
1514
1515    arm_cpu_finalize_features(cpu, &local_err);
1516    if (local_err != NULL) {
1517        error_propagate(errp, local_err);
1518        return;
1519    }
1520
1521    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1522        cpu->has_vfp != cpu->has_neon) {
1523        /*
1524         * This is an architectural requirement for AArch64; AArch32 is
1525         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1526         */
1527        error_setg(errp,
1528                   "AArch64 CPUs must have both VFP and Neon or neither");
1529        return;
1530    }
1531
1532    if (!cpu->has_vfp) {
1533        uint64_t t;
1534        uint32_t u;
1535
1536        t = cpu->isar.id_aa64isar1;
1537        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1538        cpu->isar.id_aa64isar1 = t;
1539
1540        t = cpu->isar.id_aa64pfr0;
1541        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1542        cpu->isar.id_aa64pfr0 = t;
1543
1544        u = cpu->isar.id_isar6;
1545        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1546        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1547        cpu->isar.id_isar6 = u;
1548
1549        u = cpu->isar.mvfr0;
1550        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1551        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1552        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1553        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1554        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1555        if (!arm_feature(env, ARM_FEATURE_M)) {
1556            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1557            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1558        }
1559        cpu->isar.mvfr0 = u;
1560
1561        u = cpu->isar.mvfr1;
1562        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1563        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1564        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1565        if (arm_feature(env, ARM_FEATURE_M)) {
1566            u = FIELD_DP32(u, MVFR1, FP16, 0);
1567        }
1568        cpu->isar.mvfr1 = u;
1569
1570        u = cpu->isar.mvfr2;
1571        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1572        cpu->isar.mvfr2 = u;
1573    }
1574
1575    if (!cpu->has_neon) {
1576        uint64_t t;
1577        uint32_t u;
1578
1579        unset_feature(env, ARM_FEATURE_NEON);
1580
1581        t = cpu->isar.id_aa64isar0;
1582        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1583        cpu->isar.id_aa64isar0 = t;
1584
1585        t = cpu->isar.id_aa64isar1;
1586        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1587        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1588        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1589        cpu->isar.id_aa64isar1 = t;
1590
1591        t = cpu->isar.id_aa64pfr0;
1592        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1593        cpu->isar.id_aa64pfr0 = t;
1594
1595        u = cpu->isar.id_isar5;
1596        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1597        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1598        cpu->isar.id_isar5 = u;
1599
1600        u = cpu->isar.id_isar6;
1601        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1602        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1603        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1604        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1605        cpu->isar.id_isar6 = u;
1606
1607        if (!arm_feature(env, ARM_FEATURE_M)) {
1608            u = cpu->isar.mvfr1;
1609            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1610            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1611            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1612            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1613            cpu->isar.mvfr1 = u;
1614
1615            u = cpu->isar.mvfr2;
1616            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1617            cpu->isar.mvfr2 = u;
1618        }
1619    }
1620
1621    if (!cpu->has_neon && !cpu->has_vfp) {
1622        uint64_t t;
1623        uint32_t u;
1624
1625        t = cpu->isar.id_aa64isar0;
1626        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1627        cpu->isar.id_aa64isar0 = t;
1628
1629        t = cpu->isar.id_aa64isar1;
1630        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1631        cpu->isar.id_aa64isar1 = t;
1632
1633        u = cpu->isar.mvfr0;
1634        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1635        cpu->isar.mvfr0 = u;
1636
1637        /* Despite the name, this field covers both VFP and Neon */
1638        u = cpu->isar.mvfr1;
1639        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1640        cpu->isar.mvfr1 = u;
1641    }
1642
1643    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1644        uint32_t u;
1645
1646        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1647
1648        u = cpu->isar.id_isar1;
1649        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1650        cpu->isar.id_isar1 = u;
1651
1652        u = cpu->isar.id_isar2;
1653        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1654        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1655        cpu->isar.id_isar2 = u;
1656
1657        u = cpu->isar.id_isar3;
1658        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1659        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1660        cpu->isar.id_isar3 = u;
1661    }
1662
1663    /* Some features automatically imply others: */
1664    if (arm_feature(env, ARM_FEATURE_V8)) {
1665        if (arm_feature(env, ARM_FEATURE_M)) {
1666            set_feature(env, ARM_FEATURE_V7);
1667        } else {
1668            set_feature(env, ARM_FEATURE_V7VE);
1669        }
1670    }
1671
1672    /*
1673     * There exist AArch64 cpus without AArch32 support.  When KVM
1674     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1675     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1676     * As a general principle, we also do not make ID register
1677     * consistency checks anywhere unless using TCG, because only
1678     * for TCG would a consistency-check failure be a QEMU bug.
1679     */
1680    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1681        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1682    }
1683
1684    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1685        /* v7 Virtualization Extensions. In real hardware this implies
1686         * EL2 and also the presence of the Security Extensions.
1687         * For QEMU, for backwards-compatibility we implement some
1688         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1689         * include the various other features that V7VE implies.
1690         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1691         * Security Extensions is ARM_FEATURE_EL3.
1692         */
1693        assert(!tcg_enabled() || no_aa32 ||
1694               cpu_isar_feature(aa32_arm_div, cpu));
1695        set_feature(env, ARM_FEATURE_LPAE);
1696        set_feature(env, ARM_FEATURE_V7);
1697    }
1698    if (arm_feature(env, ARM_FEATURE_V7)) {
1699        set_feature(env, ARM_FEATURE_VAPA);
1700        set_feature(env, ARM_FEATURE_THUMB2);
1701        set_feature(env, ARM_FEATURE_MPIDR);
1702        if (!arm_feature(env, ARM_FEATURE_M)) {
1703            set_feature(env, ARM_FEATURE_V6K);
1704        } else {
1705            set_feature(env, ARM_FEATURE_V6);
1706        }
1707
1708        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1709         * non-EL3 configs. This is needed by some legacy boards.
1710         */
1711        set_feature(env, ARM_FEATURE_VBAR);
1712    }
1713    if (arm_feature(env, ARM_FEATURE_V6K)) {
1714        set_feature(env, ARM_FEATURE_V6);
1715        set_feature(env, ARM_FEATURE_MVFR);
1716    }
1717    if (arm_feature(env, ARM_FEATURE_V6)) {
1718        set_feature(env, ARM_FEATURE_V5);
1719        if (!arm_feature(env, ARM_FEATURE_M)) {
1720            assert(!tcg_enabled() || no_aa32 ||
1721                   cpu_isar_feature(aa32_jazelle, cpu));
1722            set_feature(env, ARM_FEATURE_AUXCR);
1723        }
1724    }
1725    if (arm_feature(env, ARM_FEATURE_V5)) {
1726        set_feature(env, ARM_FEATURE_V4T);
1727    }
1728    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1729        set_feature(env, ARM_FEATURE_V7MP);
1730    }
1731    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1732        set_feature(env, ARM_FEATURE_CBAR);
1733    }
1734    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1735        !arm_feature(env, ARM_FEATURE_M)) {
1736        set_feature(env, ARM_FEATURE_THUMB_DSP);
1737    }
1738
1739    /*
1740     * We rely on no XScale CPU having VFP so we can use the same bits in the
1741     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1742     */
1743    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1744           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1745           !arm_feature(env, ARM_FEATURE_XSCALE));
1746
1747    if (arm_feature(env, ARM_FEATURE_V7) &&
1748        !arm_feature(env, ARM_FEATURE_M) &&
1749        !arm_feature(env, ARM_FEATURE_PMSA)) {
1750        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1751         * can use 4K pages.
1752         */
1753        pagebits = 12;
1754    } else {
1755        /* For CPUs which might have tiny 1K pages, or which have an
1756         * MPU and might have small region sizes, stick with 1K pages.
1757         */
1758        pagebits = 10;
1759    }
1760    if (!set_preferred_target_page_bits(pagebits)) {
1761        /* This can only ever happen for hotplugging a CPU, or if
1762         * the board code incorrectly creates a CPU which it has
1763         * promised via minimum_page_size that it will not.
1764         */
1765        error_setg(errp, "This CPU requires a smaller page size than the "
1766                   "system is using");
1767        return;
1768    }
1769
1770    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1771     * We don't support setting cluster ID ([16..23]) (known as Aff2
1772     * in later ARM ARM versions), or any of the higher affinity level fields,
1773     * so these bits always RAZ.
1774     */
1775    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1776        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1777                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1778    }
1779
1780    if (cpu->reset_hivecs) {
1781            cpu->reset_sctlr |= (1 << 13);
1782    }
1783
1784    if (cpu->cfgend) {
1785        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1786            cpu->reset_sctlr |= SCTLR_EE;
1787        } else {
1788            cpu->reset_sctlr |= SCTLR_B;
1789        }
1790    }
1791
1792    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1793        /* If the has_el3 CPU property is disabled then we need to disable the
1794         * feature.
1795         */
1796        unset_feature(env, ARM_FEATURE_EL3);
1797
1798        /* Disable the security extension feature bits in the processor feature
1799         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1800         */
1801        cpu->isar.id_pfr1 &= ~0xf0;
1802        cpu->isar.id_aa64pfr0 &= ~0xf000;
1803    }
1804
1805    if (!cpu->has_el2) {
1806        unset_feature(env, ARM_FEATURE_EL2);
1807    }
1808
1809    if (!cpu->has_pmu) {
1810        unset_feature(env, ARM_FEATURE_PMU);
1811    }
1812    if (arm_feature(env, ARM_FEATURE_PMU)) {
1813        pmu_init(cpu);
1814
1815        if (!kvm_enabled()) {
1816            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1817            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1818        }
1819
1820#ifndef CONFIG_USER_ONLY
1821        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1822                cpu);
1823#endif
1824    } else {
1825        cpu->isar.id_aa64dfr0 =
1826            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1827        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1828        cpu->pmceid0 = 0;
1829        cpu->pmceid1 = 0;
1830    }
1831
1832    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1833        /* Disable the hypervisor feature bits in the processor feature
1834         * registers if we don't have EL2. These are id_pfr1[15:12] and
1835         * id_aa64pfr0_el1[11:8].
1836         */
1837        cpu->isar.id_aa64pfr0 &= ~0xf00;
1838        cpu->isar.id_pfr1 &= ~0xf000;
1839    }
1840
1841#ifndef CONFIG_USER_ONLY
1842    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1843        /*
1844         * Disable the MTE feature bits if we do not have tag-memory
1845         * provided by the machine.
1846         */
1847        cpu->isar.id_aa64pfr1 =
1848            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1849    }
1850#endif
1851
1852    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1853     * to false or by setting pmsav7-dregion to 0.
1854     */
1855    if (!cpu->has_mpu) {
1856        cpu->pmsav7_dregion = 0;
1857    }
1858    if (cpu->pmsav7_dregion == 0) {
1859        cpu->has_mpu = false;
1860    }
1861
1862    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1863        arm_feature(env, ARM_FEATURE_V7)) {
1864        uint32_t nr = cpu->pmsav7_dregion;
1865
1866        if (nr > 0xff) {
1867            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1868            return;
1869        }
1870
1871        if (nr) {
1872            if (arm_feature(env, ARM_FEATURE_V8)) {
1873                /* PMSAv8 */
1874                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1875                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1876                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1877                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1878                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1879                }
1880            } else {
1881                env->pmsav7.drbar = g_new0(uint32_t, nr);
1882                env->pmsav7.drsr = g_new0(uint32_t, nr);
1883                env->pmsav7.dracr = g_new0(uint32_t, nr);
1884            }
1885        }
1886    }
1887
1888    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1889        uint32_t nr = cpu->sau_sregion;
1890
1891        if (nr > 0xff) {
1892            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1893            return;
1894        }
1895
1896        if (nr) {
1897            env->sau.rbar = g_new0(uint32_t, nr);
1898            env->sau.rlar = g_new0(uint32_t, nr);
1899        }
1900    }
1901
1902    if (arm_feature(env, ARM_FEATURE_EL3)) {
1903        set_feature(env, ARM_FEATURE_VBAR);
1904    }
1905
1906    register_cp_regs_for_features(cpu);
1907    arm_cpu_register_gdb_regs_for_features(cpu);
1908
1909    init_cpreg_list(cpu);
1910
1911#ifndef CONFIG_USER_ONLY
1912    MachineState *ms = MACHINE(qdev_get_machine());
1913    unsigned int smp_cpus = ms->smp.cpus;
1914    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1915
1916    /*
1917     * We must set cs->num_ases to the final value before
1918     * the first call to cpu_address_space_init.
1919     */
1920    if (cpu->tag_memory != NULL) {
1921        cs->num_ases = 3 + has_secure;
1922    } else {
1923        cs->num_ases = 1 + has_secure;
1924    }
1925
1926    if (has_secure) {
1927        if (!cpu->secure_memory) {
1928            cpu->secure_memory = cs->memory;
1929        }
1930        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1931                               cpu->secure_memory);
1932    }
1933
1934    if (cpu->tag_memory != NULL) {
1935        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1936                               cpu->tag_memory);
1937        if (has_secure) {
1938            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1939                                   cpu->secure_tag_memory);
1940        }
1941    }
1942
1943    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1944
1945    /* No core_count specified, default to smp_cpus. */
1946    if (cpu->core_count == -1) {
1947        cpu->core_count = smp_cpus;
1948    }
1949#endif
1950
1951    if (tcg_enabled()) {
1952        int dcz_blocklen = 4 << cpu->dcz_blocksize;
1953
1954        /*
1955         * We only support DCZ blocklen that fits on one page.
1956         *
1957         * Architectually this is always true.  However TARGET_PAGE_SIZE
1958         * is variable and, for compatibility with -machine virt-2.7,
1959         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1960         * But even then, while the largest architectural DCZ blocklen
1961         * is 2KiB, no cpu actually uses such a large blocklen.
1962         */
1963        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1964
1965        /*
1966         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1967         * both nibbles of each byte storing tag data may be written at once.
1968         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1969         */
1970        if (cpu_isar_feature(aa64_mte, cpu)) {
1971            assert(dcz_blocklen >= 2 * TAG_GRANULE);
1972        }
1973    }
1974
1975    qemu_init_vcpu(cs);
1976    cpu_reset(cs);
1977
1978    acc->parent_realize(dev, errp);
1979}
1980
1981static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1982{
1983    ObjectClass *oc;
1984    char *typename;
1985    char **cpuname;
1986    const char *cpunamestr;
1987
1988    cpuname = g_strsplit(cpu_model, ",", 1);
1989    cpunamestr = cpuname[0];
1990#ifdef CONFIG_USER_ONLY
1991    /* For backwards compatibility usermode emulation allows "-cpu any",
1992     * which has the same semantics as "-cpu max".
1993     */
1994    if (!strcmp(cpunamestr, "any")) {
1995        cpunamestr = "max";
1996    }
1997#endif
1998    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1999    oc = object_class_by_name(typename);
2000    g_strfreev(cpuname);
2001    g_free(typename);
2002    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2003        object_class_is_abstract(oc)) {
2004        return NULL;
2005    }
2006    return oc;
2007}
2008
2009static Property arm_cpu_properties[] = {
2010    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2011    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2012                        mp_affinity, ARM64_AFFINITY_INVALID),
2013    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2014    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2015    DEFINE_PROP_END_OF_LIST()
2016};
2017
2018static gchar *arm_gdb_arch_name(CPUState *cs)
2019{
2020    ARMCPU *cpu = ARM_CPU(cs);
2021    CPUARMState *env = &cpu->env;
2022
2023    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2024        return g_strdup("iwmmxt");
2025    }
2026    return g_strdup("arm");
2027}
2028
2029#ifndef CONFIG_USER_ONLY
2030#include "hw/core/sysemu-cpu-ops.h"
2031
2032static const struct SysemuCPUOps arm_sysemu_ops = {
2033    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2034    .asidx_from_attrs = arm_asidx_from_attrs,
2035    .write_elf32_note = arm_cpu_write_elf32_note,
2036    .write_elf64_note = arm_cpu_write_elf64_note,
2037    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2038    .legacy_vmsd = &vmstate_arm_cpu,
2039};
2040#endif
2041
2042#ifdef CONFIG_TCG
2043static const struct TCGCPUOps arm_tcg_ops = {
2044    .initialize = arm_translate_init,
2045    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2046    .debug_excp_handler = arm_debug_excp_handler,
2047
2048#ifdef CONFIG_USER_ONLY
2049    .record_sigsegv = arm_cpu_record_sigsegv,
2050    .record_sigbus = arm_cpu_record_sigbus,
2051#else
2052    .tlb_fill = arm_cpu_tlb_fill,
2053    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2054    .do_interrupt = arm_cpu_do_interrupt,
2055    .do_transaction_failed = arm_cpu_do_transaction_failed,
2056    .do_unaligned_access = arm_cpu_do_unaligned_access,
2057    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2058    .debug_check_watchpoint = arm_debug_check_watchpoint,
2059    .debug_check_breakpoint = arm_debug_check_breakpoint,
2060#endif /* !CONFIG_USER_ONLY */
2061};
2062#endif /* CONFIG_TCG */
2063
2064static void arm_cpu_class_init(ObjectClass *oc, void *data)
2065{
2066    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2067    CPUClass *cc = CPU_CLASS(acc);
2068    DeviceClass *dc = DEVICE_CLASS(oc);
2069
2070    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2071                                    &acc->parent_realize);
2072
2073    device_class_set_props(dc, arm_cpu_properties);
2074    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2075
2076    cc->class_by_name = arm_cpu_class_by_name;
2077    cc->has_work = arm_cpu_has_work;
2078    cc->dump_state = arm_cpu_dump_state;
2079    cc->set_pc = arm_cpu_set_pc;
2080    cc->gdb_read_register = arm_cpu_gdb_read_register;
2081    cc->gdb_write_register = arm_cpu_gdb_write_register;
2082#ifndef CONFIG_USER_ONLY
2083    cc->sysemu_ops = &arm_sysemu_ops;
2084#endif
2085    cc->gdb_num_core_regs = 26;
2086    cc->gdb_core_xml_file = "arm-core.xml";
2087    cc->gdb_arch_name = arm_gdb_arch_name;
2088    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2089    cc->gdb_stop_before_watchpoint = true;
2090    cc->disas_set_info = arm_disas_set_info;
2091
2092#ifdef CONFIG_TCG
2093    cc->tcg_ops = &arm_tcg_ops;
2094#endif /* CONFIG_TCG */
2095}
2096
2097static void arm_cpu_instance_init(Object *obj)
2098{
2099    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2100
2101    acc->info->initfn(obj);
2102    arm_cpu_post_init(obj);
2103}
2104
2105static void cpu_register_class_init(ObjectClass *oc, void *data)
2106{
2107    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2108
2109    acc->info = data;
2110}
2111
2112void arm_cpu_register(const ARMCPUInfo *info)
2113{
2114    TypeInfo type_info = {
2115        .parent = TYPE_ARM_CPU,
2116        .instance_size = sizeof(ARMCPU),
2117        .instance_align = __alignof__(ARMCPU),
2118        .instance_init = arm_cpu_instance_init,
2119        .class_size = sizeof(ARMCPUClass),
2120        .class_init = info->class_init ?: cpu_register_class_init,
2121        .class_data = (void *)info,
2122    };
2123
2124    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2125    type_register(&type_info);
2126    g_free((void *)type_info.name);
2127}
2128
2129static const TypeInfo arm_cpu_type_info = {
2130    .name = TYPE_ARM_CPU,
2131    .parent = TYPE_CPU,
2132    .instance_size = sizeof(ARMCPU),
2133    .instance_align = __alignof__(ARMCPU),
2134    .instance_init = arm_cpu_initfn,
2135    .instance_finalize = arm_cpu_finalizefn,
2136    .abstract = true,
2137    .class_size = sizeof(ARMCPUClass),
2138    .class_init = arm_cpu_class_init,
2139};
2140
2141static void arm_cpu_register_types(void)
2142{
2143    type_register_static(&arm_cpu_type_info);
2144}
2145
2146type_init(arm_cpu_register_types)
2147