qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25#include "cpu-qom.h"
  26#include "exec/cpu-defs.h"
  27#include "qapi/qapi-types-common.h"
  28
  29/* ARM processors have a weak memory model */
  30#define TCG_GUEST_DEFAULT_MO      (0)
  31
  32#ifdef TARGET_AARCH64
  33#define KVM_HAVE_MCE_INJECTION 1
  34#endif
  35
  36#define EXCP_UDEF            1   /* undefined instruction */
  37#define EXCP_SWI             2   /* software interrupt */
  38#define EXCP_PREFETCH_ABORT  3
  39#define EXCP_DATA_ABORT      4
  40#define EXCP_IRQ             5
  41#define EXCP_FIQ             6
  42#define EXCP_BKPT            7
  43#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  44#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  45#define EXCP_HVC            11   /* HyperVisor Call */
  46#define EXCP_HYP_TRAP       12
  47#define EXCP_SMC            13   /* Secure Monitor Call */
  48#define EXCP_VIRQ           14
  49#define EXCP_VFIQ           15
  50#define EXCP_SEMIHOST       16   /* semihosting call */
  51#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  52#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  53#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  54#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  55#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  56#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  57#define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
  58/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  59
  60#define ARMV7M_EXCP_RESET   1
  61#define ARMV7M_EXCP_NMI     2
  62#define ARMV7M_EXCP_HARD    3
  63#define ARMV7M_EXCP_MEM     4
  64#define ARMV7M_EXCP_BUS     5
  65#define ARMV7M_EXCP_USAGE   6
  66#define ARMV7M_EXCP_SECURE  7
  67#define ARMV7M_EXCP_SVC     11
  68#define ARMV7M_EXCP_DEBUG   12
  69#define ARMV7M_EXCP_PENDSV  14
  70#define ARMV7M_EXCP_SYSTICK 15
  71
  72/* For M profile, some registers are banked secure vs non-secure;
  73 * these are represented as a 2-element array where the first element
  74 * is the non-secure copy and the second is the secure copy.
  75 * When the CPU does not have implement the security extension then
  76 * only the first element is used.
  77 * This means that the copy for the current security state can be
  78 * accessed via env->registerfield[env->v7m.secure] (whether the security
  79 * extension is implemented or not).
  80 */
  81enum {
  82    M_REG_NS = 0,
  83    M_REG_S = 1,
  84    M_REG_NUM_BANKS = 2,
  85};
  86
  87/* ARM-specific interrupt pending bits.  */
  88#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  89#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  90#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  91
  92/* The usual mapping for an AArch64 system register to its AArch32
  93 * counterpart is for the 32 bit world to have access to the lower
  94 * half only (with writes leaving the upper half untouched). It's
  95 * therefore useful to be able to pass TCG the offset of the least
  96 * significant half of a uint64_t struct member.
  97 */
  98#ifdef HOST_WORDS_BIGENDIAN
  99#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 100#define offsetofhigh32(S, M) offsetof(S, M)
 101#else
 102#define offsetoflow32(S, M) offsetof(S, M)
 103#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 104#endif
 105
 106/* Meanings of the ARMCPU object's four inbound GPIO lines */
 107#define ARM_CPU_IRQ 0
 108#define ARM_CPU_FIQ 1
 109#define ARM_CPU_VIRQ 2
 110#define ARM_CPU_VFIQ 3
 111
 112/* ARM-specific extra insn start words:
 113 * 1: Conditional execution bits
 114 * 2: Partial exception syndrome for data aborts
 115 */
 116#define TARGET_INSN_START_EXTRA_WORDS 2
 117
 118/* The 2nd extra word holding syndrome info for data aborts does not use
 119 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 120 * help the sleb128 encoder do a better job.
 121 * When restoring the CPU state, we shift it back up.
 122 */
 123#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 124#define ARM_INSN_START_WORD2_SHIFT 14
 125
 126/* We currently assume float and double are IEEE single and double
 127   precision respectively.
 128   Doing runtime conversions is tricky because VFP registers may contain
 129   integer values (eg. as the result of a FTOSI instruction).
 130   s<2n> maps to the least significant half of d<n>
 131   s<2n+1> maps to the most significant half of d<n>
 132 */
 133
 134/**
 135 * DynamicGDBXMLInfo:
 136 * @desc: Contains the XML descriptions.
 137 * @num: Number of the registers in this XML seen by GDB.
 138 * @data: A union with data specific to the set of registers
 139 *    @cpregs_keys: Array that contains the corresponding Key of
 140 *                  a given cpreg with the same order of the cpreg
 141 *                  in the XML description.
 142 */
 143typedef struct DynamicGDBXMLInfo {
 144    char *desc;
 145    int num;
 146    union {
 147        struct {
 148            uint32_t *keys;
 149        } cpregs;
 150    } data;
 151} DynamicGDBXMLInfo;
 152
 153/* CPU state for each instance of a generic timer (in cp15 c14) */
 154typedef struct ARMGenericTimer {
 155    uint64_t cval; /* Timer CompareValue register */
 156    uint64_t ctl; /* Timer Control register */
 157} ARMGenericTimer;
 158
 159#define GTIMER_PHYS     0
 160#define GTIMER_VIRT     1
 161#define GTIMER_HYP      2
 162#define GTIMER_SEC      3
 163#define GTIMER_HYPVIRT  4
 164#define NUM_GTIMERS     5
 165
 166typedef struct {
 167    uint64_t raw_tcr;
 168    uint32_t mask;
 169    uint32_t base_mask;
 170} TCR;
 171
 172#define VTCR_NSW (1u << 29)
 173#define VTCR_NSA (1u << 30)
 174#define VSTCR_SW VTCR_NSW
 175#define VSTCR_SA VTCR_NSA
 176
 177/* Define a maximum sized vector register.
 178 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 179 * For 64-bit, this is a 2048-bit SVE register.
 180 *
 181 * Note that the mapping between S, D, and Q views of the register bank
 182 * differs between AArch64 and AArch32.
 183 * In AArch32:
 184 *  Qn = regs[n].d[1]:regs[n].d[0]
 185 *  Dn = regs[n / 2].d[n & 1]
 186 *  Sn = regs[n / 4].d[n % 4 / 2],
 187 *       bits 31..0 for even n, and bits 63..32 for odd n
 188 *       (and regs[16] to regs[31] are inaccessible)
 189 * In AArch64:
 190 *  Zn = regs[n].d[*]
 191 *  Qn = regs[n].d[1]:regs[n].d[0]
 192 *  Dn = regs[n].d[0]
 193 *  Sn = regs[n].d[0] bits 31..0
 194 *  Hn = regs[n].d[0] bits 15..0
 195 *
 196 * This corresponds to the architecturally defined mapping between
 197 * the two execution states, and means we do not need to explicitly
 198 * map these registers when changing states.
 199 *
 200 * Align the data for use with TCG host vector operations.
 201 */
 202
 203#ifdef TARGET_AARCH64
 204# define ARM_MAX_VQ    16
 205void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
 206void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
 207void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
 208#else
 209# define ARM_MAX_VQ    1
 210static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
 211static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
 212static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
 213#endif
 214
 215typedef struct ARMVectorReg {
 216    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 217} ARMVectorReg;
 218
 219#ifdef TARGET_AARCH64
 220/* In AArch32 mode, predicate registers do not exist at all.  */
 221typedef struct ARMPredicateReg {
 222    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 223} ARMPredicateReg;
 224
 225/* In AArch32 mode, PAC keys do not exist at all.  */
 226typedef struct ARMPACKey {
 227    uint64_t lo, hi;
 228} ARMPACKey;
 229#endif
 230
 231/* See the commentary above the TBFLAG field definitions.  */
 232typedef struct CPUARMTBFlags {
 233    uint32_t flags;
 234    target_ulong flags2;
 235} CPUARMTBFlags;
 236
 237typedef struct CPUArchState {
 238    /* Regs for current mode.  */
 239    uint32_t regs[16];
 240
 241    /* 32/64 switch only happens when taking and returning from
 242     * exceptions so the overlap semantics are taken care of then
 243     * instead of having a complicated union.
 244     */
 245    /* Regs for A64 mode.  */
 246    uint64_t xregs[32];
 247    uint64_t pc;
 248    /* PSTATE isn't an architectural register for ARMv8. However, it is
 249     * convenient for us to assemble the underlying state into a 32 bit format
 250     * identical to the architectural format used for the SPSR. (This is also
 251     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 252     * 'pstate' register are.) Of the PSTATE bits:
 253     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 254     *    semantics as for AArch32, as described in the comments on each field)
 255     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 256     *  DAIF (exception masks) are kept in env->daif
 257     *  BTYPE is kept in env->btype
 258     *  all other bits are stored in their correct places in env->pstate
 259     */
 260    uint32_t pstate;
 261    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 262
 263    /* Cached TBFLAGS state.  See below for which bits are included.  */
 264    CPUARMTBFlags hflags;
 265
 266    /* Frequently accessed CPSR bits are stored separately for efficiency.
 267       This contains all the other bits.  Use cpsr_{read,write} to access
 268       the whole CPSR.  */
 269    uint32_t uncached_cpsr;
 270    uint32_t spsr;
 271
 272    /* Banked registers.  */
 273    uint64_t banked_spsr[8];
 274    uint32_t banked_r13[8];
 275    uint32_t banked_r14[8];
 276
 277    /* These hold r8-r12.  */
 278    uint32_t usr_regs[5];
 279    uint32_t fiq_regs[5];
 280
 281    /* cpsr flag cache for faster execution */
 282    uint32_t CF; /* 0 or 1 */
 283    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 284    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 285    uint32_t ZF; /* Z set if zero.  */
 286    uint32_t QF; /* 0 or 1 */
 287    uint32_t GE; /* cpsr[19:16] */
 288    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 289    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 290    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 291    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 292
 293    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 294    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 295
 296    /* System control coprocessor (cp15) */
 297    struct {
 298        uint32_t c0_cpuid;
 299        union { /* Cache size selection */
 300            struct {
 301                uint64_t _unused_csselr0;
 302                uint64_t csselr_ns;
 303                uint64_t _unused_csselr1;
 304                uint64_t csselr_s;
 305            };
 306            uint64_t csselr_el[4];
 307        };
 308        union { /* System control register. */
 309            struct {
 310                uint64_t _unused_sctlr;
 311                uint64_t sctlr_ns;
 312                uint64_t hsctlr;
 313                uint64_t sctlr_s;
 314            };
 315            uint64_t sctlr_el[4];
 316        };
 317        uint64_t cpacr_el1; /* Architectural feature access control register */
 318        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 319        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 320        uint64_t sder; /* Secure debug enable register. */
 321        uint32_t nsacr; /* Non-secure access control register. */
 322        union { /* MMU translation table base 0. */
 323            struct {
 324                uint64_t _unused_ttbr0_0;
 325                uint64_t ttbr0_ns;
 326                uint64_t _unused_ttbr0_1;
 327                uint64_t ttbr0_s;
 328            };
 329            uint64_t ttbr0_el[4];
 330        };
 331        union { /* MMU translation table base 1. */
 332            struct {
 333                uint64_t _unused_ttbr1_0;
 334                uint64_t ttbr1_ns;
 335                uint64_t _unused_ttbr1_1;
 336                uint64_t ttbr1_s;
 337            };
 338            uint64_t ttbr1_el[4];
 339        };
 340        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 341        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 342        /* MMU translation table base control. */
 343        TCR tcr_el[4];
 344        TCR vtcr_el2; /* Virtualization Translation Control.  */
 345        TCR vstcr_el2; /* Secure Virtualization Translation Control. */
 346        uint32_t c2_data; /* MPU data cacheable bits.  */
 347        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 348        union { /* MMU domain access control register
 349                 * MPU write buffer control.
 350                 */
 351            struct {
 352                uint64_t dacr_ns;
 353                uint64_t dacr_s;
 354            };
 355            struct {
 356                uint64_t dacr32_el2;
 357            };
 358        };
 359        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 360        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 361        uint64_t hcr_el2; /* Hypervisor configuration register */
 362        uint64_t scr_el3; /* Secure configuration register.  */
 363        union { /* Fault status registers.  */
 364            struct {
 365                uint64_t ifsr_ns;
 366                uint64_t ifsr_s;
 367            };
 368            struct {
 369                uint64_t ifsr32_el2;
 370            };
 371        };
 372        union {
 373            struct {
 374                uint64_t _unused_dfsr;
 375                uint64_t dfsr_ns;
 376                uint64_t hsr;
 377                uint64_t dfsr_s;
 378            };
 379            uint64_t esr_el[4];
 380        };
 381        uint32_t c6_region[8]; /* MPU base/size registers.  */
 382        union { /* Fault address registers. */
 383            struct {
 384                uint64_t _unused_far0;
 385#ifdef HOST_WORDS_BIGENDIAN
 386                uint32_t ifar_ns;
 387                uint32_t dfar_ns;
 388                uint32_t ifar_s;
 389                uint32_t dfar_s;
 390#else
 391                uint32_t dfar_ns;
 392                uint32_t ifar_ns;
 393                uint32_t dfar_s;
 394                uint32_t ifar_s;
 395#endif
 396                uint64_t _unused_far3;
 397            };
 398            uint64_t far_el[4];
 399        };
 400        uint64_t hpfar_el2;
 401        uint64_t hstr_el2;
 402        union { /* Translation result. */
 403            struct {
 404                uint64_t _unused_par_0;
 405                uint64_t par_ns;
 406                uint64_t _unused_par_1;
 407                uint64_t par_s;
 408            };
 409            uint64_t par_el[4];
 410        };
 411
 412        uint32_t c9_insn; /* Cache lockdown registers.  */
 413        uint32_t c9_data;
 414        uint64_t c9_pmcr; /* performance monitor control register */
 415        uint64_t c9_pmcnten; /* perf monitor counter enables */
 416        uint64_t c9_pmovsr; /* perf monitor overflow status */
 417        uint64_t c9_pmuserenr; /* perf monitor user enable */
 418        uint64_t c9_pmselr; /* perf monitor counter selection register */
 419        uint64_t c9_pminten; /* perf monitor interrupt enables */
 420        union { /* Memory attribute redirection */
 421            struct {
 422#ifdef HOST_WORDS_BIGENDIAN
 423                uint64_t _unused_mair_0;
 424                uint32_t mair1_ns;
 425                uint32_t mair0_ns;
 426                uint64_t _unused_mair_1;
 427                uint32_t mair1_s;
 428                uint32_t mair0_s;
 429#else
 430                uint64_t _unused_mair_0;
 431                uint32_t mair0_ns;
 432                uint32_t mair1_ns;
 433                uint64_t _unused_mair_1;
 434                uint32_t mair0_s;
 435                uint32_t mair1_s;
 436#endif
 437            };
 438            uint64_t mair_el[4];
 439        };
 440        union { /* vector base address register */
 441            struct {
 442                uint64_t _unused_vbar;
 443                uint64_t vbar_ns;
 444                uint64_t hvbar;
 445                uint64_t vbar_s;
 446            };
 447            uint64_t vbar_el[4];
 448        };
 449        uint32_t mvbar; /* (monitor) vector base address register */
 450        uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
 451        struct { /* FCSE PID. */
 452            uint32_t fcseidr_ns;
 453            uint32_t fcseidr_s;
 454        };
 455        union { /* Context ID. */
 456            struct {
 457                uint64_t _unused_contextidr_0;
 458                uint64_t contextidr_ns;
 459                uint64_t _unused_contextidr_1;
 460                uint64_t contextidr_s;
 461            };
 462            uint64_t contextidr_el[4];
 463        };
 464        union { /* User RW Thread register. */
 465            struct {
 466                uint64_t tpidrurw_ns;
 467                uint64_t tpidrprw_ns;
 468                uint64_t htpidr;
 469                uint64_t _tpidr_el3;
 470            };
 471            uint64_t tpidr_el[4];
 472        };
 473        /* The secure banks of these registers don't map anywhere */
 474        uint64_t tpidrurw_s;
 475        uint64_t tpidrprw_s;
 476        uint64_t tpidruro_s;
 477
 478        union { /* User RO Thread register. */
 479            uint64_t tpidruro_ns;
 480            uint64_t tpidrro_el[1];
 481        };
 482        uint64_t c14_cntfrq; /* Counter Frequency register */
 483        uint64_t c14_cntkctl; /* Timer Control register */
 484        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 485        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 486        ARMGenericTimer c14_timer[NUM_GTIMERS];
 487        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 488        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 489        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 490        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 491        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 492        uint32_t c15_config_base_address; /* SCU base address.  */
 493        uint32_t c15_diagnostic; /* diagnostic register */
 494        uint32_t c15_power_diagnostic;
 495        uint32_t c15_power_control; /* power control */
 496        uint64_t dbgbvr[16]; /* breakpoint value registers */
 497        uint64_t dbgbcr[16]; /* breakpoint control registers */
 498        uint64_t dbgwvr[16]; /* watchpoint value registers */
 499        uint64_t dbgwcr[16]; /* watchpoint control registers */
 500        uint64_t mdscr_el1;
 501        uint64_t oslsr_el1; /* OS Lock Status */
 502        uint64_t mdcr_el2;
 503        uint64_t mdcr_el3;
 504        /* Stores the architectural value of the counter *the last time it was
 505         * updated* by pmccntr_op_start. Accesses should always be surrounded
 506         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 507         * architecturally-correct value is being read/set.
 508         */
 509        uint64_t c15_ccnt;
 510        /* Stores the delta between the architectural value and the underlying
 511         * cycle count during normal operation. It is used to update c15_ccnt
 512         * to be the correct architectural value before accesses. During
 513         * accesses, c15_ccnt_delta contains the underlying count being used
 514         * for the access, after which it reverts to the delta value in
 515         * pmccntr_op_finish.
 516         */
 517        uint64_t c15_ccnt_delta;
 518        uint64_t c14_pmevcntr[31];
 519        uint64_t c14_pmevcntr_delta[31];
 520        uint64_t c14_pmevtyper[31];
 521        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 522        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 523        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 524        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 525        uint64_t gcr_el1;
 526        uint64_t rgsr_el1;
 527    } cp15;
 528
 529    struct {
 530        /* M profile has up to 4 stack pointers:
 531         * a Main Stack Pointer and a Process Stack Pointer for each
 532         * of the Secure and Non-Secure states. (If the CPU doesn't support
 533         * the security extension then it has only two SPs.)
 534         * In QEMU we always store the currently active SP in regs[13],
 535         * and the non-active SP for the current security state in
 536         * v7m.other_sp. The stack pointers for the inactive security state
 537         * are stored in other_ss_msp and other_ss_psp.
 538         * switch_v7m_security_state() is responsible for rearranging them
 539         * when we change security state.
 540         */
 541        uint32_t other_sp;
 542        uint32_t other_ss_msp;
 543        uint32_t other_ss_psp;
 544        uint32_t vecbase[M_REG_NUM_BANKS];
 545        uint32_t basepri[M_REG_NUM_BANKS];
 546        uint32_t control[M_REG_NUM_BANKS];
 547        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 548        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 549        uint32_t hfsr; /* HardFault Status */
 550        uint32_t dfsr; /* Debug Fault Status Register */
 551        uint32_t sfsr; /* Secure Fault Status Register */
 552        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 553        uint32_t bfar; /* BusFault Address */
 554        uint32_t sfar; /* Secure Fault Address Register */
 555        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 556        int exception;
 557        uint32_t primask[M_REG_NUM_BANKS];
 558        uint32_t faultmask[M_REG_NUM_BANKS];
 559        uint32_t aircr; /* only holds r/w state if security extn implemented */
 560        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 561        uint32_t csselr[M_REG_NUM_BANKS];
 562        uint32_t scr[M_REG_NUM_BANKS];
 563        uint32_t msplim[M_REG_NUM_BANKS];
 564        uint32_t psplim[M_REG_NUM_BANKS];
 565        uint32_t fpcar[M_REG_NUM_BANKS];
 566        uint32_t fpccr[M_REG_NUM_BANKS];
 567        uint32_t fpdscr[M_REG_NUM_BANKS];
 568        uint32_t cpacr[M_REG_NUM_BANKS];
 569        uint32_t nsacr;
 570        uint32_t ltpsize;
 571        uint32_t vpr;
 572    } v7m;
 573
 574    /* Information associated with an exception about to be taken:
 575     * code which raises an exception must set cs->exception_index and
 576     * the relevant parts of this structure; the cpu_do_interrupt function
 577     * will then set the guest-visible registers as part of the exception
 578     * entry process.
 579     */
 580    struct {
 581        uint32_t syndrome; /* AArch64 format syndrome register */
 582        uint32_t fsr; /* AArch32 format fault status register info */
 583        uint64_t vaddress; /* virtual addr associated with exception, if any */
 584        uint32_t target_el; /* EL the exception should be targeted for */
 585        /* If we implement EL2 we will also need to store information
 586         * about the intermediate physical address for stage 2 faults.
 587         */
 588    } exception;
 589
 590    /* Information associated with an SError */
 591    struct {
 592        uint8_t pending;
 593        uint8_t has_esr;
 594        uint64_t esr;
 595    } serror;
 596
 597    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 598
 599    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 600    uint32_t irq_line_state;
 601
 602    /* Thumb-2 EE state.  */
 603    uint32_t teecr;
 604    uint32_t teehbr;
 605
 606    /* VFP coprocessor state.  */
 607    struct {
 608        ARMVectorReg zregs[32];
 609
 610#ifdef TARGET_AARCH64
 611        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 612#define FFR_PRED_NUM 16
 613        ARMPredicateReg pregs[17];
 614        /* Scratch space for aa64 sve predicate temporary.  */
 615        ARMPredicateReg preg_tmp;
 616#endif
 617
 618        /* We store these fpcsr fields separately for convenience.  */
 619        uint32_t qc[4] QEMU_ALIGNED(16);
 620        int vec_len;
 621        int vec_stride;
 622
 623        uint32_t xregs[16];
 624
 625        /* Scratch space for aa32 neon expansion.  */
 626        uint32_t scratch[8];
 627
 628        /* There are a number of distinct float control structures:
 629         *
 630         *  fp_status: is the "normal" fp status.
 631         *  fp_status_fp16: used for half-precision calculations
 632         *  standard_fp_status : the ARM "Standard FPSCR Value"
 633         *  standard_fp_status_fp16 : used for half-precision
 634         *       calculations with the ARM "Standard FPSCR Value"
 635         *
 636         * Half-precision operations are governed by a separate
 637         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 638         * status structure to control this.
 639         *
 640         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 641         * round-to-nearest and is used by any operations (generally
 642         * Neon) which the architecture defines as controlled by the
 643         * standard FPSCR value rather than the FPSCR.
 644         *
 645         * The "standard FPSCR but for fp16 ops" is needed because
 646         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 647         * using a fixed value for it.
 648         *
 649         * To avoid having to transfer exception bits around, we simply
 650         * say that the FPSCR cumulative exception flags are the logical
 651         * OR of the flags in the four fp statuses. This relies on the
 652         * only thing which needs to read the exception flags being
 653         * an explicit FPSCR read.
 654         */
 655        float_status fp_status;
 656        float_status fp_status_f16;
 657        float_status standard_fp_status;
 658        float_status standard_fp_status_f16;
 659
 660        /* ZCR_EL[1-3] */
 661        uint64_t zcr_el[4];
 662    } vfp;
 663    uint64_t exclusive_addr;
 664    uint64_t exclusive_val;
 665    uint64_t exclusive_high;
 666
 667    /* iwMMXt coprocessor state.  */
 668    struct {
 669        uint64_t regs[16];
 670        uint64_t val;
 671
 672        uint32_t cregs[16];
 673    } iwmmxt;
 674
 675#ifdef TARGET_AARCH64
 676    struct {
 677        ARMPACKey apia;
 678        ARMPACKey apib;
 679        ARMPACKey apda;
 680        ARMPACKey apdb;
 681        ARMPACKey apga;
 682    } keys;
 683#endif
 684
 685#if defined(CONFIG_USER_ONLY)
 686    /* For usermode syscall translation.  */
 687    int eabi;
 688#endif
 689
 690    struct CPUBreakpoint *cpu_breakpoint[16];
 691    struct CPUWatchpoint *cpu_watchpoint[16];
 692
 693    /* Fields up to this point are cleared by a CPU reset */
 694    struct {} end_reset_fields;
 695
 696    /* Fields after this point are preserved across CPU reset. */
 697
 698    /* Internal CPU feature flags.  */
 699    uint64_t features;
 700
 701    /* PMSAv7 MPU */
 702    struct {
 703        uint32_t *drbar;
 704        uint32_t *drsr;
 705        uint32_t *dracr;
 706        uint32_t rnr[M_REG_NUM_BANKS];
 707    } pmsav7;
 708
 709    /* PMSAv8 MPU */
 710    struct {
 711        /* The PMSAv8 implementation also shares some PMSAv7 config
 712         * and state:
 713         *  pmsav7.rnr (region number register)
 714         *  pmsav7_dregion (number of configured regions)
 715         */
 716        uint32_t *rbar[M_REG_NUM_BANKS];
 717        uint32_t *rlar[M_REG_NUM_BANKS];
 718        uint32_t mair0[M_REG_NUM_BANKS];
 719        uint32_t mair1[M_REG_NUM_BANKS];
 720    } pmsav8;
 721
 722    /* v8M SAU */
 723    struct {
 724        uint32_t *rbar;
 725        uint32_t *rlar;
 726        uint32_t rnr;
 727        uint32_t ctrl;
 728    } sau;
 729
 730    void *nvic;
 731    const struct arm_boot_info *boot_info;
 732    /* Store GICv3CPUState to access from this struct */
 733    void *gicv3state;
 734
 735#ifdef TARGET_TAGGED_ADDRESSES
 736    /* Linux syscall tagged address support */
 737    bool tagged_addr_enable;
 738#endif
 739} CPUARMState;
 740
 741static inline void set_feature(CPUARMState *env, int feature)
 742{
 743    env->features |= 1ULL << feature;
 744}
 745
 746static inline void unset_feature(CPUARMState *env, int feature)
 747{
 748    env->features &= ~(1ULL << feature);
 749}
 750
 751/**
 752 * ARMELChangeHookFn:
 753 * type of a function which can be registered via arm_register_el_change_hook()
 754 * to get callbacks when the CPU changes its exception level or mode.
 755 */
 756typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 757typedef struct ARMELChangeHook ARMELChangeHook;
 758struct ARMELChangeHook {
 759    ARMELChangeHookFn *hook;
 760    void *opaque;
 761    QLIST_ENTRY(ARMELChangeHook) node;
 762};
 763
 764/* These values map onto the return values for
 765 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 766typedef enum ARMPSCIState {
 767    PSCI_ON = 0,
 768    PSCI_OFF = 1,
 769    PSCI_ON_PENDING = 2
 770} ARMPSCIState;
 771
 772typedef struct ARMISARegisters ARMISARegisters;
 773
 774/**
 775 * ARMCPU:
 776 * @env: #CPUARMState
 777 *
 778 * An ARM CPU core.
 779 */
 780struct ArchCPU {
 781    /*< private >*/
 782    CPUState parent_obj;
 783    /*< public >*/
 784
 785    CPUNegativeOffsetState neg;
 786    CPUARMState env;
 787
 788    /* Coprocessor information */
 789    GHashTable *cp_regs;
 790    /* For marshalling (mostly coprocessor) register state between the
 791     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 792     * we use these arrays.
 793     */
 794    /* List of register indexes managed via these arrays; (full KVM style
 795     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 796     */
 797    uint64_t *cpreg_indexes;
 798    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 799    uint64_t *cpreg_values;
 800    /* Length of the indexes, values, reset_values arrays */
 801    int32_t cpreg_array_len;
 802    /* These are used only for migration: incoming data arrives in
 803     * these fields and is sanity checked in post_load before copying
 804     * to the working data structures above.
 805     */
 806    uint64_t *cpreg_vmstate_indexes;
 807    uint64_t *cpreg_vmstate_values;
 808    int32_t cpreg_vmstate_array_len;
 809
 810    DynamicGDBXMLInfo dyn_sysreg_xml;
 811    DynamicGDBXMLInfo dyn_svereg_xml;
 812
 813    /* Timers used by the generic (architected) timer */
 814    QEMUTimer *gt_timer[NUM_GTIMERS];
 815    /*
 816     * Timer used by the PMU. Its state is restored after migration by
 817     * pmu_op_finish() - it does not need other handling during migration
 818     */
 819    QEMUTimer *pmu_timer;
 820    /* GPIO outputs for generic timer */
 821    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 822    /* GPIO output for GICv3 maintenance interrupt signal */
 823    qemu_irq gicv3_maintenance_interrupt;
 824    /* GPIO output for the PMU interrupt */
 825    qemu_irq pmu_interrupt;
 826
 827    /* MemoryRegion to use for secure physical accesses */
 828    MemoryRegion *secure_memory;
 829
 830    /* MemoryRegion to use for allocation tag accesses */
 831    MemoryRegion *tag_memory;
 832    MemoryRegion *secure_tag_memory;
 833
 834    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 835    Object *idau;
 836
 837    /* 'compatible' string for this CPU for Linux device trees */
 838    const char *dtb_compatible;
 839
 840    /* PSCI version for this CPU
 841     * Bits[31:16] = Major Version
 842     * Bits[15:0] = Minor Version
 843     */
 844    uint32_t psci_version;
 845
 846    /* Current power state, access guarded by BQL */
 847    ARMPSCIState power_state;
 848
 849    /* CPU has virtualization extension */
 850    bool has_el2;
 851    /* CPU has security extension */
 852    bool has_el3;
 853    /* CPU has PMU (Performance Monitor Unit) */
 854    bool has_pmu;
 855    /* CPU has VFP */
 856    bool has_vfp;
 857    /* CPU has Neon */
 858    bool has_neon;
 859    /* CPU has M-profile DSP extension */
 860    bool has_dsp;
 861
 862    /* CPU has memory protection unit */
 863    bool has_mpu;
 864    /* PMSAv7 MPU number of supported regions */
 865    uint32_t pmsav7_dregion;
 866    /* v8M SAU number of supported regions */
 867    uint32_t sau_sregion;
 868
 869    /* PSCI conduit used to invoke PSCI methods
 870     * 0 - disabled, 1 - smc, 2 - hvc
 871     */
 872    uint32_t psci_conduit;
 873
 874    /* For v8M, initial value of the Secure VTOR */
 875    uint32_t init_svtor;
 876    /* For v8M, initial value of the Non-secure VTOR */
 877    uint32_t init_nsvtor;
 878
 879    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 880     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 881     */
 882    uint32_t kvm_target;
 883
 884    /* KVM init features for this CPU */
 885    uint32_t kvm_init_features[7];
 886
 887    /* KVM CPU state */
 888
 889    /* KVM virtual time adjustment */
 890    bool kvm_adjvtime;
 891    bool kvm_vtime_dirty;
 892    uint64_t kvm_vtime;
 893
 894    /* KVM steal time */
 895    OnOffAuto kvm_steal_time;
 896
 897    /* Uniprocessor system with MP extensions */
 898    bool mp_is_up;
 899
 900    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 901     * and the probe failed (so we need to report the error in realize)
 902     */
 903    bool host_cpu_probe_failed;
 904
 905    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 906     * register.
 907     */
 908    int32_t core_count;
 909
 910    /* The instance init functions for implementation-specific subclasses
 911     * set these fields to specify the implementation-dependent values of
 912     * various constant registers and reset values of non-constant
 913     * registers.
 914     * Some of these might become QOM properties eventually.
 915     * Field names match the official register names as defined in the
 916     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 917     * is used for reset values of non-constant registers; no reset_
 918     * prefix means a constant register.
 919     * Some of these registers are split out into a substructure that
 920     * is shared with the translators to control the ISA.
 921     *
 922     * Note that if you add an ID register to the ARMISARegisters struct
 923     * you need to also update the 32-bit and 64-bit versions of the
 924     * kvm_arm_get_host_cpu_features() function to correctly populate the
 925     * field by reading the value from the KVM vCPU.
 926     */
 927    struct ARMISARegisters {
 928        uint32_t id_isar0;
 929        uint32_t id_isar1;
 930        uint32_t id_isar2;
 931        uint32_t id_isar3;
 932        uint32_t id_isar4;
 933        uint32_t id_isar5;
 934        uint32_t id_isar6;
 935        uint32_t id_mmfr0;
 936        uint32_t id_mmfr1;
 937        uint32_t id_mmfr2;
 938        uint32_t id_mmfr3;
 939        uint32_t id_mmfr4;
 940        uint32_t id_pfr0;
 941        uint32_t id_pfr1;
 942        uint32_t id_pfr2;
 943        uint32_t mvfr0;
 944        uint32_t mvfr1;
 945        uint32_t mvfr2;
 946        uint32_t id_dfr0;
 947        uint32_t dbgdidr;
 948        uint64_t id_aa64isar0;
 949        uint64_t id_aa64isar1;
 950        uint64_t id_aa64pfr0;
 951        uint64_t id_aa64pfr1;
 952        uint64_t id_aa64mmfr0;
 953        uint64_t id_aa64mmfr1;
 954        uint64_t id_aa64mmfr2;
 955        uint64_t id_aa64dfr0;
 956        uint64_t id_aa64dfr1;
 957        uint64_t id_aa64zfr0;
 958    } isar;
 959    uint64_t midr;
 960    uint32_t revidr;
 961    uint32_t reset_fpsid;
 962    uint64_t ctr;
 963    uint32_t reset_sctlr;
 964    uint64_t pmceid0;
 965    uint64_t pmceid1;
 966    uint32_t id_afr0;
 967    uint64_t id_aa64afr0;
 968    uint64_t id_aa64afr1;
 969    uint64_t clidr;
 970    uint64_t mp_affinity; /* MP ID without feature bits */
 971    /* The elements of this array are the CCSIDR values for each cache,
 972     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 973     */
 974    uint64_t ccsidr[16];
 975    uint64_t reset_cbar;
 976    uint32_t reset_auxcr;
 977    bool reset_hivecs;
 978
 979    /*
 980     * Intermediate values used during property parsing.
 981     * Once finalized, the values should be read from ID_AA64*.
 982     */
 983    bool prop_pauth;
 984    bool prop_pauth_impdef;
 985    bool prop_lpa2;
 986
 987    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 988    uint32_t dcz_blocksize;
 989    uint64_t rvbar_prop; /* Property/input signals.  */
 990
 991    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 992    int gic_num_lrs; /* number of list registers */
 993    int gic_vpribits; /* number of virtual priority bits */
 994    int gic_vprebits; /* number of virtual preemption bits */
 995
 996    /* Whether the cfgend input is high (i.e. this CPU should reset into
 997     * big-endian mode).  This setting isn't used directly: instead it modifies
 998     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 999     * architecture version.
1000     */
1001    bool cfgend;
1002
1003    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1004    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1005
1006    int32_t node_id; /* NUMA node this CPU belongs to */
1007
1008    /* Used to synchronize KVM and QEMU in-kernel device levels */
1009    uint8_t device_irq_level;
1010
1011    /* Used to set the maximum vector length the cpu will support.  */
1012    uint32_t sve_max_vq;
1013
1014#ifdef CONFIG_USER_ONLY
1015    /* Used to set the default vector length at process start. */
1016    uint32_t sve_default_vq;
1017#endif
1018
1019    /*
1020     * In sve_vq_map each set bit is a supported vector length of
1021     * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1022     * length in quadwords.
1023     *
1024     * While processing properties during initialization, corresponding
1025     * sve_vq_init bits are set for bits in sve_vq_map that have been
1026     * set by properties.
1027     *
1028     * Bits set in sve_vq_supported represent valid vector lengths for
1029     * the CPU type.
1030     */
1031    DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1032    DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1033    DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1034
1035    /* Generic timer counter frequency, in Hz */
1036    uint64_t gt_cntfrq_hz;
1037};
1038
1039unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1040
1041void arm_cpu_post_init(Object *obj);
1042
1043uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1044
1045#ifndef CONFIG_USER_ONLY
1046extern const VMStateDescription vmstate_arm_cpu;
1047
1048void arm_cpu_do_interrupt(CPUState *cpu);
1049void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1050#endif /* !CONFIG_USER_ONLY */
1051
1052hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1053                                         MemTxAttrs *attrs);
1054
1055int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1056int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1057
1058/*
1059 * Helpers to dynamically generates XML descriptions of the sysregs
1060 * and SVE registers. Returns the number of registers in each set.
1061 */
1062int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1063int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1064
1065/* Returns the dynamically generated XML for the gdb stub.
1066 * Returns a pointer to the XML contents for the specified XML file or NULL
1067 * if the XML name doesn't match the predefined one.
1068 */
1069const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1070
1071int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1072                             int cpuid, void *opaque);
1073int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1074                             int cpuid, void *opaque);
1075
1076#ifdef TARGET_AARCH64
1077int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1078int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1079void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1080void aarch64_sve_change_el(CPUARMState *env, int old_el,
1081                           int new_el, bool el0_a64);
1082void aarch64_add_sve_properties(Object *obj);
1083void aarch64_add_pauth_properties(Object *obj);
1084
1085/*
1086 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1087 * The byte at offset i from the start of the in-memory representation contains
1088 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1089 * lowest offsets are stored in the lowest memory addresses, then that nearly
1090 * matches QEMU's representation, which is to use an array of host-endian
1091 * uint64_t's, where the lower offsets are at the lower indices. To complete
1092 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1093 */
1094static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1095{
1096#ifdef HOST_WORDS_BIGENDIAN
1097    int i;
1098
1099    for (i = 0; i < nr; ++i) {
1100        dst[i] = bswap64(src[i]);
1101    }
1102
1103    return dst;
1104#else
1105    return src;
1106#endif
1107}
1108
1109#else
1110static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1111static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1112                                         int n, bool a)
1113{ }
1114static inline void aarch64_add_sve_properties(Object *obj) { }
1115#endif
1116
1117void aarch64_sync_32_to_64(CPUARMState *env);
1118void aarch64_sync_64_to_32(CPUARMState *env);
1119
1120int fp_exception_el(CPUARMState *env, int cur_el);
1121int sve_exception_el(CPUARMState *env, int cur_el);
1122uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1123
1124static inline bool is_a64(CPUARMState *env)
1125{
1126    return env->aarch64;
1127}
1128
1129/**
1130 * pmu_op_start/finish
1131 * @env: CPUARMState
1132 *
1133 * Convert all PMU counters between their delta form (the typical mode when
1134 * they are enabled) and the guest-visible values. These two calls must
1135 * surround any action which might affect the counters.
1136 */
1137void pmu_op_start(CPUARMState *env);
1138void pmu_op_finish(CPUARMState *env);
1139
1140/*
1141 * Called when a PMU counter is due to overflow
1142 */
1143void arm_pmu_timer_cb(void *opaque);
1144
1145/**
1146 * Functions to register as EL change hooks for PMU mode filtering
1147 */
1148void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1149void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1150
1151/*
1152 * pmu_init
1153 * @cpu: ARMCPU
1154 *
1155 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1156 * for the current configuration
1157 */
1158void pmu_init(ARMCPU *cpu);
1159
1160/* SCTLR bit meanings. Several bits have been reused in newer
1161 * versions of the architecture; in that case we define constants
1162 * for both old and new bit meanings. Code which tests against those
1163 * bits should probably check or otherwise arrange that the CPU
1164 * is the architectural version it expects.
1165 */
1166#define SCTLR_M       (1U << 0)
1167#define SCTLR_A       (1U << 1)
1168#define SCTLR_C       (1U << 2)
1169#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1170#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1171#define SCTLR_SA      (1U << 3) /* AArch64 only */
1172#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1173#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1174#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1175#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1176#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1177#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1178#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1179#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1180#define SCTLR_ITD     (1U << 7) /* v8 onward */
1181#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1182#define SCTLR_SED     (1U << 8) /* v8 onward */
1183#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1184#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1185#define SCTLR_F       (1U << 10) /* up to v6 */
1186#define SCTLR_SW      (1U << 10) /* v7 */
1187#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1188#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1189#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1190#define SCTLR_I       (1U << 12)
1191#define SCTLR_V       (1U << 13) /* AArch32 only */
1192#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1193#define SCTLR_RR      (1U << 14) /* up to v7 */
1194#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1195#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1196#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1197#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1198#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1199#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1200#define SCTLR_BR      (1U << 17) /* PMSA only */
1201#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1202#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1203#define SCTLR_WXN     (1U << 19)
1204#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1205#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1206#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1207#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1208#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1209#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1210#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1211#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1212#define SCTLR_VE      (1U << 24) /* up to v7 */
1213#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1214#define SCTLR_EE      (1U << 25)
1215#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1216#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1217#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1218#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1219#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1220#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1221#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1222#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1223#define SCTLR_TE      (1U << 30) /* AArch32 only */
1224#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1225#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1226#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1227#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1228#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1229#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1230#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1231#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1232#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1233#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1234#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1235
1236#define CPTR_TCPAC    (1U << 31)
1237#define CPTR_TTA      (1U << 20)
1238#define CPTR_TFP      (1U << 10)
1239#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1240#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1241
1242#define MDCR_EPMAD    (1U << 21)
1243#define MDCR_EDAD     (1U << 20)
1244#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1245#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1246#define MDCR_SDD      (1U << 16)
1247#define MDCR_SPD      (3U << 14)
1248#define MDCR_TDRA     (1U << 11)
1249#define MDCR_TDOSA    (1U << 10)
1250#define MDCR_TDA      (1U << 9)
1251#define MDCR_TDE      (1U << 8)
1252#define MDCR_HPME     (1U << 7)
1253#define MDCR_TPM      (1U << 6)
1254#define MDCR_TPMCR    (1U << 5)
1255#define MDCR_HPMN     (0x1fU)
1256
1257/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1258#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1259
1260#define CPSR_M (0x1fU)
1261#define CPSR_T (1U << 5)
1262#define CPSR_F (1U << 6)
1263#define CPSR_I (1U << 7)
1264#define CPSR_A (1U << 8)
1265#define CPSR_E (1U << 9)
1266#define CPSR_IT_2_7 (0xfc00U)
1267#define CPSR_GE (0xfU << 16)
1268#define CPSR_IL (1U << 20)
1269#define CPSR_DIT (1U << 21)
1270#define CPSR_PAN (1U << 22)
1271#define CPSR_SSBS (1U << 23)
1272#define CPSR_J (1U << 24)
1273#define CPSR_IT_0_1 (3U << 25)
1274#define CPSR_Q (1U << 27)
1275#define CPSR_V (1U << 28)
1276#define CPSR_C (1U << 29)
1277#define CPSR_Z (1U << 30)
1278#define CPSR_N (1U << 31)
1279#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1280#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1281
1282#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1283#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1284    | CPSR_NZCV)
1285/* Bits writable in user mode.  */
1286#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1287/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1288#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1289
1290/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1291#define XPSR_EXCP 0x1ffU
1292#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1293#define XPSR_IT_2_7 CPSR_IT_2_7
1294#define XPSR_GE CPSR_GE
1295#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1296#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1297#define XPSR_IT_0_1 CPSR_IT_0_1
1298#define XPSR_Q CPSR_Q
1299#define XPSR_V CPSR_V
1300#define XPSR_C CPSR_C
1301#define XPSR_Z CPSR_Z
1302#define XPSR_N CPSR_N
1303#define XPSR_NZCV CPSR_NZCV
1304#define XPSR_IT CPSR_IT
1305
1306#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1307#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1308#define TTBCR_PD0    (1U << 4)
1309#define TTBCR_PD1    (1U << 5)
1310#define TTBCR_EPD0   (1U << 7)
1311#define TTBCR_IRGN0  (3U << 8)
1312#define TTBCR_ORGN0  (3U << 10)
1313#define TTBCR_SH0    (3U << 12)
1314#define TTBCR_T1SZ   (3U << 16)
1315#define TTBCR_A1     (1U << 22)
1316#define TTBCR_EPD1   (1U << 23)
1317#define TTBCR_IRGN1  (3U << 24)
1318#define TTBCR_ORGN1  (3U << 26)
1319#define TTBCR_SH1    (1U << 28)
1320#define TTBCR_EAE    (1U << 31)
1321
1322/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1323 * Only these are valid when in AArch64 mode; in
1324 * AArch32 mode SPSRs are basically CPSR-format.
1325 */
1326#define PSTATE_SP (1U)
1327#define PSTATE_M (0xFU)
1328#define PSTATE_nRW (1U << 4)
1329#define PSTATE_F (1U << 6)
1330#define PSTATE_I (1U << 7)
1331#define PSTATE_A (1U << 8)
1332#define PSTATE_D (1U << 9)
1333#define PSTATE_BTYPE (3U << 10)
1334#define PSTATE_SSBS (1U << 12)
1335#define PSTATE_IL (1U << 20)
1336#define PSTATE_SS (1U << 21)
1337#define PSTATE_PAN (1U << 22)
1338#define PSTATE_UAO (1U << 23)
1339#define PSTATE_DIT (1U << 24)
1340#define PSTATE_TCO (1U << 25)
1341#define PSTATE_V (1U << 28)
1342#define PSTATE_C (1U << 29)
1343#define PSTATE_Z (1U << 30)
1344#define PSTATE_N (1U << 31)
1345#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1346#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1347#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1348/* Mode values for AArch64 */
1349#define PSTATE_MODE_EL3h 13
1350#define PSTATE_MODE_EL3t 12
1351#define PSTATE_MODE_EL2h 9
1352#define PSTATE_MODE_EL2t 8
1353#define PSTATE_MODE_EL1h 5
1354#define PSTATE_MODE_EL1t 4
1355#define PSTATE_MODE_EL0t 0
1356
1357/* Write a new value to v7m.exception, thus transitioning into or out
1358 * of Handler mode; this may result in a change of active stack pointer.
1359 */
1360void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1361
1362/* Map EL and handler into a PSTATE_MODE.  */
1363static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1364{
1365    return (el << 2) | handler;
1366}
1367
1368/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1369 * interprocessing, so we don't attempt to sync with the cpsr state used by
1370 * the 32 bit decoder.
1371 */
1372static inline uint32_t pstate_read(CPUARMState *env)
1373{
1374    int ZF;
1375
1376    ZF = (env->ZF == 0);
1377    return (env->NF & 0x80000000) | (ZF << 30)
1378        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1379        | env->pstate | env->daif | (env->btype << 10);
1380}
1381
1382static inline void pstate_write(CPUARMState *env, uint32_t val)
1383{
1384    env->ZF = (~val) & PSTATE_Z;
1385    env->NF = val;
1386    env->CF = (val >> 29) & 1;
1387    env->VF = (val << 3) & 0x80000000;
1388    env->daif = val & PSTATE_DAIF;
1389    env->btype = (val >> 10) & 3;
1390    env->pstate = val & ~CACHED_PSTATE_BITS;
1391}
1392
1393/* Return the current CPSR value.  */
1394uint32_t cpsr_read(CPUARMState *env);
1395
1396typedef enum CPSRWriteType {
1397    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1398    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1399    CPSRWriteRaw = 2,
1400        /* trust values, no reg bank switch, no hflags rebuild */
1401    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1402} CPSRWriteType;
1403
1404/*
1405 * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1406 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1407 * correspond to TB flags bits cached in the hflags, unless @write_type
1408 * is CPSRWriteRaw.
1409 */
1410void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1411                CPSRWriteType write_type);
1412
1413/* Return the current xPSR value.  */
1414static inline uint32_t xpsr_read(CPUARMState *env)
1415{
1416    int ZF;
1417    ZF = (env->ZF == 0);
1418    return (env->NF & 0x80000000) | (ZF << 30)
1419        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1420        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1421        | ((env->condexec_bits & 0xfc) << 8)
1422        | (env->GE << 16)
1423        | env->v7m.exception;
1424}
1425
1426/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1427static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1428{
1429    if (mask & XPSR_NZCV) {
1430        env->ZF = (~val) & XPSR_Z;
1431        env->NF = val;
1432        env->CF = (val >> 29) & 1;
1433        env->VF = (val << 3) & 0x80000000;
1434    }
1435    if (mask & XPSR_Q) {
1436        env->QF = ((val & XPSR_Q) != 0);
1437    }
1438    if (mask & XPSR_GE) {
1439        env->GE = (val & XPSR_GE) >> 16;
1440    }
1441#ifndef CONFIG_USER_ONLY
1442    if (mask & XPSR_T) {
1443        env->thumb = ((val & XPSR_T) != 0);
1444    }
1445    if (mask & XPSR_IT_0_1) {
1446        env->condexec_bits &= ~3;
1447        env->condexec_bits |= (val >> 25) & 3;
1448    }
1449    if (mask & XPSR_IT_2_7) {
1450        env->condexec_bits &= 3;
1451        env->condexec_bits |= (val >> 8) & 0xfc;
1452    }
1453    if (mask & XPSR_EXCP) {
1454        /* Note that this only happens on exception exit */
1455        write_v7m_exception(env, val & XPSR_EXCP);
1456    }
1457#endif
1458}
1459
1460#define HCR_VM        (1ULL << 0)
1461#define HCR_SWIO      (1ULL << 1)
1462#define HCR_PTW       (1ULL << 2)
1463#define HCR_FMO       (1ULL << 3)
1464#define HCR_IMO       (1ULL << 4)
1465#define HCR_AMO       (1ULL << 5)
1466#define HCR_VF        (1ULL << 6)
1467#define HCR_VI        (1ULL << 7)
1468#define HCR_VSE       (1ULL << 8)
1469#define HCR_FB        (1ULL << 9)
1470#define HCR_BSU_MASK  (3ULL << 10)
1471#define HCR_DC        (1ULL << 12)
1472#define HCR_TWI       (1ULL << 13)
1473#define HCR_TWE       (1ULL << 14)
1474#define HCR_TID0      (1ULL << 15)
1475#define HCR_TID1      (1ULL << 16)
1476#define HCR_TID2      (1ULL << 17)
1477#define HCR_TID3      (1ULL << 18)
1478#define HCR_TSC       (1ULL << 19)
1479#define HCR_TIDCP     (1ULL << 20)
1480#define HCR_TACR      (1ULL << 21)
1481#define HCR_TSW       (1ULL << 22)
1482#define HCR_TPCP      (1ULL << 23)
1483#define HCR_TPU       (1ULL << 24)
1484#define HCR_TTLB      (1ULL << 25)
1485#define HCR_TVM       (1ULL << 26)
1486#define HCR_TGE       (1ULL << 27)
1487#define HCR_TDZ       (1ULL << 28)
1488#define HCR_HCD       (1ULL << 29)
1489#define HCR_TRVM      (1ULL << 30)
1490#define HCR_RW        (1ULL << 31)
1491#define HCR_CD        (1ULL << 32)
1492#define HCR_ID        (1ULL << 33)
1493#define HCR_E2H       (1ULL << 34)
1494#define HCR_TLOR      (1ULL << 35)
1495#define HCR_TERR      (1ULL << 36)
1496#define HCR_TEA       (1ULL << 37)
1497#define HCR_MIOCNCE   (1ULL << 38)
1498/* RES0 bit 39 */
1499#define HCR_APK       (1ULL << 40)
1500#define HCR_API       (1ULL << 41)
1501#define HCR_NV        (1ULL << 42)
1502#define HCR_NV1       (1ULL << 43)
1503#define HCR_AT        (1ULL << 44)
1504#define HCR_NV2       (1ULL << 45)
1505#define HCR_FWB       (1ULL << 46)
1506#define HCR_FIEN      (1ULL << 47)
1507/* RES0 bit 48 */
1508#define HCR_TID4      (1ULL << 49)
1509#define HCR_TICAB     (1ULL << 50)
1510#define HCR_AMVOFFEN  (1ULL << 51)
1511#define HCR_TOCU      (1ULL << 52)
1512#define HCR_ENSCXT    (1ULL << 53)
1513#define HCR_TTLBIS    (1ULL << 54)
1514#define HCR_TTLBOS    (1ULL << 55)
1515#define HCR_ATA       (1ULL << 56)
1516#define HCR_DCT       (1ULL << 57)
1517#define HCR_TID5      (1ULL << 58)
1518#define HCR_TWEDEN    (1ULL << 59)
1519#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1520
1521#define HPFAR_NS      (1ULL << 63)
1522
1523#define SCR_NS                (1U << 0)
1524#define SCR_IRQ               (1U << 1)
1525#define SCR_FIQ               (1U << 2)
1526#define SCR_EA                (1U << 3)
1527#define SCR_FW                (1U << 4)
1528#define SCR_AW                (1U << 5)
1529#define SCR_NET               (1U << 6)
1530#define SCR_SMD               (1U << 7)
1531#define SCR_HCE               (1U << 8)
1532#define SCR_SIF               (1U << 9)
1533#define SCR_RW                (1U << 10)
1534#define SCR_ST                (1U << 11)
1535#define SCR_TWI               (1U << 12)
1536#define SCR_TWE               (1U << 13)
1537#define SCR_TLOR              (1U << 14)
1538#define SCR_TERR              (1U << 15)
1539#define SCR_APK               (1U << 16)
1540#define SCR_API               (1U << 17)
1541#define SCR_EEL2              (1U << 18)
1542#define SCR_EASE              (1U << 19)
1543#define SCR_NMEA              (1U << 20)
1544#define SCR_FIEN              (1U << 21)
1545#define SCR_ENSCXT            (1U << 25)
1546#define SCR_ATA               (1U << 26)
1547
1548#define HSTR_TTEE (1 << 16)
1549#define HSTR_TJDBX (1 << 17)
1550
1551/* Return the current FPSCR value.  */
1552uint32_t vfp_get_fpscr(CPUARMState *env);
1553void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1554
1555/* FPCR, Floating Point Control Register
1556 * FPSR, Floating Poiht Status Register
1557 *
1558 * For A64 the FPSCR is split into two logically distinct registers,
1559 * FPCR and FPSR. However since they still use non-overlapping bits
1560 * we store the underlying state in fpscr and just mask on read/write.
1561 */
1562#define FPSR_MASK 0xf800009f
1563#define FPCR_MASK 0x07ff9f00
1564
1565#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1566#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1567#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1568#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1569#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1570#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1571#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1572#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1573#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1574#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1575#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1576#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1577#define FPCR_V      (1 << 28)   /* FP overflow flag */
1578#define FPCR_C      (1 << 29)   /* FP carry flag */
1579#define FPCR_Z      (1 << 30)   /* FP zero flag */
1580#define FPCR_N      (1 << 31)   /* FP negative flag */
1581
1582#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1583#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1584#define FPCR_LTPSIZE_LENGTH 3
1585
1586#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1587#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1588
1589static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1590{
1591    return vfp_get_fpscr(env) & FPSR_MASK;
1592}
1593
1594static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1595{
1596    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1597    vfp_set_fpscr(env, new_fpscr);
1598}
1599
1600static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1601{
1602    return vfp_get_fpscr(env) & FPCR_MASK;
1603}
1604
1605static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1606{
1607    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1608    vfp_set_fpscr(env, new_fpscr);
1609}
1610
1611enum arm_cpu_mode {
1612  ARM_CPU_MODE_USR = 0x10,
1613  ARM_CPU_MODE_FIQ = 0x11,
1614  ARM_CPU_MODE_IRQ = 0x12,
1615  ARM_CPU_MODE_SVC = 0x13,
1616  ARM_CPU_MODE_MON = 0x16,
1617  ARM_CPU_MODE_ABT = 0x17,
1618  ARM_CPU_MODE_HYP = 0x1a,
1619  ARM_CPU_MODE_UND = 0x1b,
1620  ARM_CPU_MODE_SYS = 0x1f
1621};
1622
1623/* VFP system registers.  */
1624#define ARM_VFP_FPSID   0
1625#define ARM_VFP_FPSCR   1
1626#define ARM_VFP_MVFR2   5
1627#define ARM_VFP_MVFR1   6
1628#define ARM_VFP_MVFR0   7
1629#define ARM_VFP_FPEXC   8
1630#define ARM_VFP_FPINST  9
1631#define ARM_VFP_FPINST2 10
1632/* These ones are M-profile only */
1633#define ARM_VFP_FPSCR_NZCVQC 2
1634#define ARM_VFP_VPR 12
1635#define ARM_VFP_P0 13
1636#define ARM_VFP_FPCXT_NS 14
1637#define ARM_VFP_FPCXT_S 15
1638
1639/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1640#define QEMU_VFP_FPSCR_NZCV 0xffff
1641
1642/* iwMMXt coprocessor control registers.  */
1643#define ARM_IWMMXT_wCID  0
1644#define ARM_IWMMXT_wCon  1
1645#define ARM_IWMMXT_wCSSF 2
1646#define ARM_IWMMXT_wCASF 3
1647#define ARM_IWMMXT_wCGR0 8
1648#define ARM_IWMMXT_wCGR1 9
1649#define ARM_IWMMXT_wCGR2 10
1650#define ARM_IWMMXT_wCGR3 11
1651
1652/* V7M CCR bits */
1653FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1654FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1655FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1656FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1657FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1658FIELD(V7M_CCR, STKALIGN, 9, 1)
1659FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1660FIELD(V7M_CCR, DC, 16, 1)
1661FIELD(V7M_CCR, IC, 17, 1)
1662FIELD(V7M_CCR, BP, 18, 1)
1663FIELD(V7M_CCR, LOB, 19, 1)
1664FIELD(V7M_CCR, TRD, 20, 1)
1665
1666/* V7M SCR bits */
1667FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1668FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1669FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1670FIELD(V7M_SCR, SEVONPEND, 4, 1)
1671
1672/* V7M AIRCR bits */
1673FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1674FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1675FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1676FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1677FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1678FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1679FIELD(V7M_AIRCR, PRIS, 14, 1)
1680FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1681FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1682
1683/* V7M CFSR bits for MMFSR */
1684FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1685FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1686FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1687FIELD(V7M_CFSR, MSTKERR, 4, 1)
1688FIELD(V7M_CFSR, MLSPERR, 5, 1)
1689FIELD(V7M_CFSR, MMARVALID, 7, 1)
1690
1691/* V7M CFSR bits for BFSR */
1692FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1693FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1694FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1695FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1696FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1697FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1698FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1699
1700/* V7M CFSR bits for UFSR */
1701FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1702FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1703FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1704FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1705FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1706FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1707FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1708
1709/* V7M CFSR bit masks covering all of the subregister bits */
1710FIELD(V7M_CFSR, MMFSR, 0, 8)
1711FIELD(V7M_CFSR, BFSR, 8, 8)
1712FIELD(V7M_CFSR, UFSR, 16, 16)
1713
1714/* V7M HFSR bits */
1715FIELD(V7M_HFSR, VECTTBL, 1, 1)
1716FIELD(V7M_HFSR, FORCED, 30, 1)
1717FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1718
1719/* V7M DFSR bits */
1720FIELD(V7M_DFSR, HALTED, 0, 1)
1721FIELD(V7M_DFSR, BKPT, 1, 1)
1722FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1723FIELD(V7M_DFSR, VCATCH, 3, 1)
1724FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1725
1726/* V7M SFSR bits */
1727FIELD(V7M_SFSR, INVEP, 0, 1)
1728FIELD(V7M_SFSR, INVIS, 1, 1)
1729FIELD(V7M_SFSR, INVER, 2, 1)
1730FIELD(V7M_SFSR, AUVIOL, 3, 1)
1731FIELD(V7M_SFSR, INVTRAN, 4, 1)
1732FIELD(V7M_SFSR, LSPERR, 5, 1)
1733FIELD(V7M_SFSR, SFARVALID, 6, 1)
1734FIELD(V7M_SFSR, LSERR, 7, 1)
1735
1736/* v7M MPU_CTRL bits */
1737FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1738FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1739FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1740
1741/* v7M CLIDR bits */
1742FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1743FIELD(V7M_CLIDR, LOUIS, 21, 3)
1744FIELD(V7M_CLIDR, LOC, 24, 3)
1745FIELD(V7M_CLIDR, LOUU, 27, 3)
1746FIELD(V7M_CLIDR, ICB, 30, 2)
1747
1748FIELD(V7M_CSSELR, IND, 0, 1)
1749FIELD(V7M_CSSELR, LEVEL, 1, 3)
1750/* We use the combination of InD and Level to index into cpu->ccsidr[];
1751 * define a mask for this and check that it doesn't permit running off
1752 * the end of the array.
1753 */
1754FIELD(V7M_CSSELR, INDEX, 0, 4)
1755
1756/* v7M FPCCR bits */
1757FIELD(V7M_FPCCR, LSPACT, 0, 1)
1758FIELD(V7M_FPCCR, USER, 1, 1)
1759FIELD(V7M_FPCCR, S, 2, 1)
1760FIELD(V7M_FPCCR, THREAD, 3, 1)
1761FIELD(V7M_FPCCR, HFRDY, 4, 1)
1762FIELD(V7M_FPCCR, MMRDY, 5, 1)
1763FIELD(V7M_FPCCR, BFRDY, 6, 1)
1764FIELD(V7M_FPCCR, SFRDY, 7, 1)
1765FIELD(V7M_FPCCR, MONRDY, 8, 1)
1766FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1767FIELD(V7M_FPCCR, UFRDY, 10, 1)
1768FIELD(V7M_FPCCR, RES0, 11, 15)
1769FIELD(V7M_FPCCR, TS, 26, 1)
1770FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1771FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1772FIELD(V7M_FPCCR, LSPENS, 29, 1)
1773FIELD(V7M_FPCCR, LSPEN, 30, 1)
1774FIELD(V7M_FPCCR, ASPEN, 31, 1)
1775/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1776#define R_V7M_FPCCR_BANKED_MASK                 \
1777    (R_V7M_FPCCR_LSPACT_MASK |                  \
1778     R_V7M_FPCCR_USER_MASK |                    \
1779     R_V7M_FPCCR_THREAD_MASK |                  \
1780     R_V7M_FPCCR_MMRDY_MASK |                   \
1781     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1782     R_V7M_FPCCR_UFRDY_MASK |                   \
1783     R_V7M_FPCCR_ASPEN_MASK)
1784
1785/* v7M VPR bits */
1786FIELD(V7M_VPR, P0, 0, 16)
1787FIELD(V7M_VPR, MASK01, 16, 4)
1788FIELD(V7M_VPR, MASK23, 20, 4)
1789
1790/*
1791 * System register ID fields.
1792 */
1793FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1794FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1795FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1796FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1797FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1798FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1799FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1800FIELD(CLIDR_EL1, LOUIS, 21, 3)
1801FIELD(CLIDR_EL1, LOC, 24, 3)
1802FIELD(CLIDR_EL1, LOUU, 27, 3)
1803FIELD(CLIDR_EL1, ICB, 30, 3)
1804
1805/* When FEAT_CCIDX is implemented */
1806FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1807FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1808FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1809
1810/* When FEAT_CCIDX is not implemented */
1811FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1812FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1813FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1814
1815FIELD(CTR_EL0,  IMINLINE, 0, 4)
1816FIELD(CTR_EL0,  L1IP, 14, 2)
1817FIELD(CTR_EL0,  DMINLINE, 16, 4)
1818FIELD(CTR_EL0,  ERG, 20, 4)
1819FIELD(CTR_EL0,  CWG, 24, 4)
1820FIELD(CTR_EL0,  IDC, 28, 1)
1821FIELD(CTR_EL0,  DIC, 29, 1)
1822FIELD(CTR_EL0,  TMINLINE, 32, 6)
1823
1824FIELD(MIDR_EL1, REVISION, 0, 4)
1825FIELD(MIDR_EL1, PARTNUM, 4, 12)
1826FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1827FIELD(MIDR_EL1, VARIANT, 20, 4)
1828FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1829
1830FIELD(ID_ISAR0, SWAP, 0, 4)
1831FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1832FIELD(ID_ISAR0, BITFIELD, 8, 4)
1833FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1834FIELD(ID_ISAR0, COPROC, 16, 4)
1835FIELD(ID_ISAR0, DEBUG, 20, 4)
1836FIELD(ID_ISAR0, DIVIDE, 24, 4)
1837
1838FIELD(ID_ISAR1, ENDIAN, 0, 4)
1839FIELD(ID_ISAR1, EXCEPT, 4, 4)
1840FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1841FIELD(ID_ISAR1, EXTEND, 12, 4)
1842FIELD(ID_ISAR1, IFTHEN, 16, 4)
1843FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1844FIELD(ID_ISAR1, INTERWORK, 24, 4)
1845FIELD(ID_ISAR1, JAZELLE, 28, 4)
1846
1847FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1848FIELD(ID_ISAR2, MEMHINT, 4, 4)
1849FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1850FIELD(ID_ISAR2, MULT, 12, 4)
1851FIELD(ID_ISAR2, MULTS, 16, 4)
1852FIELD(ID_ISAR2, MULTU, 20, 4)
1853FIELD(ID_ISAR2, PSR_AR, 24, 4)
1854FIELD(ID_ISAR2, REVERSAL, 28, 4)
1855
1856FIELD(ID_ISAR3, SATURATE, 0, 4)
1857FIELD(ID_ISAR3, SIMD, 4, 4)
1858FIELD(ID_ISAR3, SVC, 8, 4)
1859FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1860FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1861FIELD(ID_ISAR3, T32COPY, 20, 4)
1862FIELD(ID_ISAR3, TRUENOP, 24, 4)
1863FIELD(ID_ISAR3, T32EE, 28, 4)
1864
1865FIELD(ID_ISAR4, UNPRIV, 0, 4)
1866FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1867FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1868FIELD(ID_ISAR4, SMC, 12, 4)
1869FIELD(ID_ISAR4, BARRIER, 16, 4)
1870FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1871FIELD(ID_ISAR4, PSR_M, 24, 4)
1872FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1873
1874FIELD(ID_ISAR5, SEVL, 0, 4)
1875FIELD(ID_ISAR5, AES, 4, 4)
1876FIELD(ID_ISAR5, SHA1, 8, 4)
1877FIELD(ID_ISAR5, SHA2, 12, 4)
1878FIELD(ID_ISAR5, CRC32, 16, 4)
1879FIELD(ID_ISAR5, RDM, 24, 4)
1880FIELD(ID_ISAR5, VCMA, 28, 4)
1881
1882FIELD(ID_ISAR6, JSCVT, 0, 4)
1883FIELD(ID_ISAR6, DP, 4, 4)
1884FIELD(ID_ISAR6, FHM, 8, 4)
1885FIELD(ID_ISAR6, SB, 12, 4)
1886FIELD(ID_ISAR6, SPECRES, 16, 4)
1887FIELD(ID_ISAR6, BF16, 20, 4)
1888FIELD(ID_ISAR6, I8MM, 24, 4)
1889
1890FIELD(ID_MMFR0, VMSA, 0, 4)
1891FIELD(ID_MMFR0, PMSA, 4, 4)
1892FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1893FIELD(ID_MMFR0, SHARELVL, 12, 4)
1894FIELD(ID_MMFR0, TCM, 16, 4)
1895FIELD(ID_MMFR0, AUXREG, 20, 4)
1896FIELD(ID_MMFR0, FCSE, 24, 4)
1897FIELD(ID_MMFR0, INNERSHR, 28, 4)
1898
1899FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1900FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1901FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1902FIELD(ID_MMFR1, L1UNISW, 12, 4)
1903FIELD(ID_MMFR1, L1HVD, 16, 4)
1904FIELD(ID_MMFR1, L1UNI, 20, 4)
1905FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1906FIELD(ID_MMFR1, BPRED, 28, 4)
1907
1908FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1909FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1910FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1911FIELD(ID_MMFR2, HVDTLB, 12, 4)
1912FIELD(ID_MMFR2, UNITLB, 16, 4)
1913FIELD(ID_MMFR2, MEMBARR, 20, 4)
1914FIELD(ID_MMFR2, WFISTALL, 24, 4)
1915FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1916
1917FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1918FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1919FIELD(ID_MMFR3, BPMAINT, 8, 4)
1920FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1921FIELD(ID_MMFR3, PAN, 16, 4)
1922FIELD(ID_MMFR3, COHWALK, 20, 4)
1923FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1924FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1925
1926FIELD(ID_MMFR4, SPECSEI, 0, 4)
1927FIELD(ID_MMFR4, AC2, 4, 4)
1928FIELD(ID_MMFR4, XNX, 8, 4)
1929FIELD(ID_MMFR4, CNP, 12, 4)
1930FIELD(ID_MMFR4, HPDS, 16, 4)
1931FIELD(ID_MMFR4, LSM, 20, 4)
1932FIELD(ID_MMFR4, CCIDX, 24, 4)
1933FIELD(ID_MMFR4, EVT, 28, 4)
1934
1935FIELD(ID_MMFR5, ETS, 0, 4)
1936
1937FIELD(ID_PFR0, STATE0, 0, 4)
1938FIELD(ID_PFR0, STATE1, 4, 4)
1939FIELD(ID_PFR0, STATE2, 8, 4)
1940FIELD(ID_PFR0, STATE3, 12, 4)
1941FIELD(ID_PFR0, CSV2, 16, 4)
1942FIELD(ID_PFR0, AMU, 20, 4)
1943FIELD(ID_PFR0, DIT, 24, 4)
1944FIELD(ID_PFR0, RAS, 28, 4)
1945
1946FIELD(ID_PFR1, PROGMOD, 0, 4)
1947FIELD(ID_PFR1, SECURITY, 4, 4)
1948FIELD(ID_PFR1, MPROGMOD, 8, 4)
1949FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1950FIELD(ID_PFR1, GENTIMER, 16, 4)
1951FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1952FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1953FIELD(ID_PFR1, GIC, 28, 4)
1954
1955FIELD(ID_PFR2, CSV3, 0, 4)
1956FIELD(ID_PFR2, SSBS, 4, 4)
1957FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1958
1959FIELD(ID_AA64ISAR0, AES, 4, 4)
1960FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1961FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1962FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1963FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1964FIELD(ID_AA64ISAR0, RDM, 28, 4)
1965FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1966FIELD(ID_AA64ISAR0, SM3, 36, 4)
1967FIELD(ID_AA64ISAR0, SM4, 40, 4)
1968FIELD(ID_AA64ISAR0, DP, 44, 4)
1969FIELD(ID_AA64ISAR0, FHM, 48, 4)
1970FIELD(ID_AA64ISAR0, TS, 52, 4)
1971FIELD(ID_AA64ISAR0, TLB, 56, 4)
1972FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1973
1974FIELD(ID_AA64ISAR1, DPB, 0, 4)
1975FIELD(ID_AA64ISAR1, APA, 4, 4)
1976FIELD(ID_AA64ISAR1, API, 8, 4)
1977FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1978FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1979FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1980FIELD(ID_AA64ISAR1, GPA, 24, 4)
1981FIELD(ID_AA64ISAR1, GPI, 28, 4)
1982FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1983FIELD(ID_AA64ISAR1, SB, 36, 4)
1984FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1985FIELD(ID_AA64ISAR1, BF16, 44, 4)
1986FIELD(ID_AA64ISAR1, DGH, 48, 4)
1987FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1988
1989FIELD(ID_AA64PFR0, EL0, 0, 4)
1990FIELD(ID_AA64PFR0, EL1, 4, 4)
1991FIELD(ID_AA64PFR0, EL2, 8, 4)
1992FIELD(ID_AA64PFR0, EL3, 12, 4)
1993FIELD(ID_AA64PFR0, FP, 16, 4)
1994FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1995FIELD(ID_AA64PFR0, GIC, 24, 4)
1996FIELD(ID_AA64PFR0, RAS, 28, 4)
1997FIELD(ID_AA64PFR0, SVE, 32, 4)
1998FIELD(ID_AA64PFR0, SEL2, 36, 4)
1999FIELD(ID_AA64PFR0, MPAM, 40, 4)
2000FIELD(ID_AA64PFR0, AMU, 44, 4)
2001FIELD(ID_AA64PFR0, DIT, 48, 4)
2002FIELD(ID_AA64PFR0, CSV2, 56, 4)
2003FIELD(ID_AA64PFR0, CSV3, 60, 4)
2004
2005FIELD(ID_AA64PFR1, BT, 0, 4)
2006FIELD(ID_AA64PFR1, SSBS, 4, 4)
2007FIELD(ID_AA64PFR1, MTE, 8, 4)
2008FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2009FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2010
2011FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2012FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2013FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2014FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2015FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2016FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2017FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2018FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2019FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2020FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2021FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2022FIELD(ID_AA64MMFR0, EXS, 44, 4)
2023FIELD(ID_AA64MMFR0, FGT, 56, 4)
2024FIELD(ID_AA64MMFR0, ECV, 60, 4)
2025
2026FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2027FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2028FIELD(ID_AA64MMFR1, VH, 8, 4)
2029FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2030FIELD(ID_AA64MMFR1, LO, 16, 4)
2031FIELD(ID_AA64MMFR1, PAN, 20, 4)
2032FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2033FIELD(ID_AA64MMFR1, XNX, 28, 4)
2034FIELD(ID_AA64MMFR1, TWED, 32, 4)
2035FIELD(ID_AA64MMFR1, ETS, 36, 4)
2036
2037FIELD(ID_AA64MMFR2, CNP, 0, 4)
2038FIELD(ID_AA64MMFR2, UAO, 4, 4)
2039FIELD(ID_AA64MMFR2, LSM, 8, 4)
2040FIELD(ID_AA64MMFR2, IESB, 12, 4)
2041FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2042FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2043FIELD(ID_AA64MMFR2, NV, 24, 4)
2044FIELD(ID_AA64MMFR2, ST, 28, 4)
2045FIELD(ID_AA64MMFR2, AT, 32, 4)
2046FIELD(ID_AA64MMFR2, IDS, 36, 4)
2047FIELD(ID_AA64MMFR2, FWB, 40, 4)
2048FIELD(ID_AA64MMFR2, TTL, 48, 4)
2049FIELD(ID_AA64MMFR2, BBM, 52, 4)
2050FIELD(ID_AA64MMFR2, EVT, 56, 4)
2051FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2052
2053FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2054FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2055FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2056FIELD(ID_AA64DFR0, BRPS, 12, 4)
2057FIELD(ID_AA64DFR0, WRPS, 20, 4)
2058FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2059FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2060FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2061FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2062FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2063
2064FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2065FIELD(ID_AA64ZFR0, AES, 4, 4)
2066FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2067FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2068FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2069FIELD(ID_AA64ZFR0, SM4, 40, 4)
2070FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2071FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2072FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2073
2074FIELD(ID_DFR0, COPDBG, 0, 4)
2075FIELD(ID_DFR0, COPSDBG, 4, 4)
2076FIELD(ID_DFR0, MMAPDBG, 8, 4)
2077FIELD(ID_DFR0, COPTRC, 12, 4)
2078FIELD(ID_DFR0, MMAPTRC, 16, 4)
2079FIELD(ID_DFR0, MPROFDBG, 20, 4)
2080FIELD(ID_DFR0, PERFMON, 24, 4)
2081FIELD(ID_DFR0, TRACEFILT, 28, 4)
2082
2083FIELD(ID_DFR1, MTPMU, 0, 4)
2084
2085FIELD(DBGDIDR, SE_IMP, 12, 1)
2086FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2087FIELD(DBGDIDR, VERSION, 16, 4)
2088FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2089FIELD(DBGDIDR, BRPS, 24, 4)
2090FIELD(DBGDIDR, WRPS, 28, 4)
2091
2092FIELD(MVFR0, SIMDREG, 0, 4)
2093FIELD(MVFR0, FPSP, 4, 4)
2094FIELD(MVFR0, FPDP, 8, 4)
2095FIELD(MVFR0, FPTRAP, 12, 4)
2096FIELD(MVFR0, FPDIVIDE, 16, 4)
2097FIELD(MVFR0, FPSQRT, 20, 4)
2098FIELD(MVFR0, FPSHVEC, 24, 4)
2099FIELD(MVFR0, FPROUND, 28, 4)
2100
2101FIELD(MVFR1, FPFTZ, 0, 4)
2102FIELD(MVFR1, FPDNAN, 4, 4)
2103FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2104FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2105FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2106FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2107FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2108FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2109FIELD(MVFR1, FPHP, 24, 4)
2110FIELD(MVFR1, SIMDFMAC, 28, 4)
2111
2112FIELD(MVFR2, SIMDMISC, 0, 4)
2113FIELD(MVFR2, FPMISC, 4, 4)
2114
2115QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2116
2117/* If adding a feature bit which corresponds to a Linux ELF
2118 * HWCAP bit, remember to update the feature-bit-to-hwcap
2119 * mapping in linux-user/elfload.c:get_elf_hwcap().
2120 */
2121enum arm_features {
2122    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2123    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2124    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2125    ARM_FEATURE_V6,
2126    ARM_FEATURE_V6K,
2127    ARM_FEATURE_V7,
2128    ARM_FEATURE_THUMB2,
2129    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2130    ARM_FEATURE_NEON,
2131    ARM_FEATURE_M, /* Microcontroller profile.  */
2132    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2133    ARM_FEATURE_THUMB2EE,
2134    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2135    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2136    ARM_FEATURE_V4T,
2137    ARM_FEATURE_V5,
2138    ARM_FEATURE_STRONGARM,
2139    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2140    ARM_FEATURE_GENERIC_TIMER,
2141    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2142    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2143    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2144    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2145    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2146    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2147    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2148    ARM_FEATURE_V8,
2149    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2150    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2151    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2152    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2153    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2154    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2155    ARM_FEATURE_PMU, /* has PMU support */
2156    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2157    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2158    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2159    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2160};
2161
2162static inline int arm_feature(CPUARMState *env, int feature)
2163{
2164    return (env->features & (1ULL << feature)) != 0;
2165}
2166
2167void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2168
2169#if !defined(CONFIG_USER_ONLY)
2170/* Return true if exception levels below EL3 are in secure state,
2171 * or would be following an exception return to that level.
2172 * Unlike arm_is_secure() (which is always a question about the
2173 * _current_ state of the CPU) this doesn't care about the current
2174 * EL or mode.
2175 */
2176static inline bool arm_is_secure_below_el3(CPUARMState *env)
2177{
2178    if (arm_feature(env, ARM_FEATURE_EL3)) {
2179        return !(env->cp15.scr_el3 & SCR_NS);
2180    } else {
2181        /* If EL3 is not supported then the secure state is implementation
2182         * defined, in which case QEMU defaults to non-secure.
2183         */
2184        return false;
2185    }
2186}
2187
2188/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2189static inline bool arm_is_el3_or_mon(CPUARMState *env)
2190{
2191    if (arm_feature(env, ARM_FEATURE_EL3)) {
2192        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2193            /* CPU currently in AArch64 state and EL3 */
2194            return true;
2195        } else if (!is_a64(env) &&
2196                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2197            /* CPU currently in AArch32 state and monitor mode */
2198            return true;
2199        }
2200    }
2201    return false;
2202}
2203
2204/* Return true if the processor is in secure state */
2205static inline bool arm_is_secure(CPUARMState *env)
2206{
2207    if (arm_is_el3_or_mon(env)) {
2208        return true;
2209    }
2210    return arm_is_secure_below_el3(env);
2211}
2212
2213/*
2214 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2215 * This corresponds to the pseudocode EL2Enabled()
2216 */
2217static inline bool arm_is_el2_enabled(CPUARMState *env)
2218{
2219    if (arm_feature(env, ARM_FEATURE_EL2)) {
2220        if (arm_is_secure_below_el3(env)) {
2221            return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2222        }
2223        return true;
2224    }
2225    return false;
2226}
2227
2228#else
2229static inline bool arm_is_secure_below_el3(CPUARMState *env)
2230{
2231    return false;
2232}
2233
2234static inline bool arm_is_secure(CPUARMState *env)
2235{
2236    return false;
2237}
2238
2239static inline bool arm_is_el2_enabled(CPUARMState *env)
2240{
2241    return false;
2242}
2243#endif
2244
2245/**
2246 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2247 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2248 * "for all purposes other than a direct read or write access of HCR_EL2."
2249 * Not included here is HCR_RW.
2250 */
2251uint64_t arm_hcr_el2_eff(CPUARMState *env);
2252
2253/* Return true if the specified exception level is running in AArch64 state. */
2254static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2255{
2256    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2257     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2258     */
2259    assert(el >= 1 && el <= 3);
2260    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2261
2262    /* The highest exception level is always at the maximum supported
2263     * register width, and then lower levels have a register width controlled
2264     * by bits in the SCR or HCR registers.
2265     */
2266    if (el == 3) {
2267        return aa64;
2268    }
2269
2270    if (arm_feature(env, ARM_FEATURE_EL3) &&
2271        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2272        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2273    }
2274
2275    if (el == 2) {
2276        return aa64;
2277    }
2278
2279    if (arm_is_el2_enabled(env)) {
2280        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2281    }
2282
2283    return aa64;
2284}
2285
2286/* Function for determing whether guest cp register reads and writes should
2287 * access the secure or non-secure bank of a cp register.  When EL3 is
2288 * operating in AArch32 state, the NS-bit determines whether the secure
2289 * instance of a cp register should be used. When EL3 is AArch64 (or if
2290 * it doesn't exist at all) then there is no register banking, and all
2291 * accesses are to the non-secure version.
2292 */
2293static inline bool access_secure_reg(CPUARMState *env)
2294{
2295    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2296                !arm_el_is_aa64(env, 3) &&
2297                !(env->cp15.scr_el3 & SCR_NS));
2298
2299    return ret;
2300}
2301
2302/* Macros for accessing a specified CP register bank */
2303#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2304    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2305
2306#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2307    do {                                                \
2308        if (_secure) {                                   \
2309            (_env)->cp15._regname##_s = (_val);            \
2310        } else {                                        \
2311            (_env)->cp15._regname##_ns = (_val);           \
2312        }                                               \
2313    } while (0)
2314
2315/* Macros for automatically accessing a specific CP register bank depending on
2316 * the current secure state of the system.  These macros are not intended for
2317 * supporting instruction translation reads/writes as these are dependent
2318 * solely on the SCR.NS bit and not the mode.
2319 */
2320#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2321    A32_BANKED_REG_GET((_env), _regname,                \
2322                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2323
2324#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2325    A32_BANKED_REG_SET((_env), _regname,                                    \
2326                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2327                       (_val))
2328
2329void arm_cpu_list(void);
2330uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2331                                 uint32_t cur_el, bool secure);
2332
2333/* Interface between CPU and Interrupt controller.  */
2334#ifndef CONFIG_USER_ONLY
2335bool armv7m_nvic_can_take_pending_exception(void *opaque);
2336#else
2337static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2338{
2339    return true;
2340}
2341#endif
2342/**
2343 * armv7m_nvic_set_pending: mark the specified exception as pending
2344 * @opaque: the NVIC
2345 * @irq: the exception number to mark pending
2346 * @secure: false for non-banked exceptions or for the nonsecure
2347 * version of a banked exception, true for the secure version of a banked
2348 * exception.
2349 *
2350 * Marks the specified exception as pending. Note that we will assert()
2351 * if @secure is true and @irq does not specify one of the fixed set
2352 * of architecturally banked exceptions.
2353 */
2354void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2355/**
2356 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2357 * @opaque: the NVIC
2358 * @irq: the exception number to mark pending
2359 * @secure: false for non-banked exceptions or for the nonsecure
2360 * version of a banked exception, true for the secure version of a banked
2361 * exception.
2362 *
2363 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2364 * exceptions (exceptions generated in the course of trying to take
2365 * a different exception).
2366 */
2367void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2368/**
2369 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2370 * @opaque: the NVIC
2371 * @irq: the exception number to mark pending
2372 * @secure: false for non-banked exceptions or for the nonsecure
2373 * version of a banked exception, true for the secure version of a banked
2374 * exception.
2375 *
2376 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2377 * generated in the course of lazy stacking of FP registers.
2378 */
2379void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2380/**
2381 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2382 *    exception, and whether it targets Secure state
2383 * @opaque: the NVIC
2384 * @pirq: set to pending exception number
2385 * @ptargets_secure: set to whether pending exception targets Secure
2386 *
2387 * This function writes the number of the highest priority pending
2388 * exception (the one which would be made active by
2389 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2390 * to true if the current highest priority pending exception should
2391 * be taken to Secure state, false for NS.
2392 */
2393void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2394                                      bool *ptargets_secure);
2395/**
2396 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2397 * @opaque: the NVIC
2398 *
2399 * Move the current highest priority pending exception from the pending
2400 * state to the active state, and update v7m.exception to indicate that
2401 * it is the exception currently being handled.
2402 */
2403void armv7m_nvic_acknowledge_irq(void *opaque);
2404/**
2405 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2406 * @opaque: the NVIC
2407 * @irq: the exception number to complete
2408 * @secure: true if this exception was secure
2409 *
2410 * Returns: -1 if the irq was not active
2411 *           1 if completing this irq brought us back to base (no active irqs)
2412 *           0 if there is still an irq active after this one was completed
2413 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2414 */
2415int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2416/**
2417 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2418 * @opaque: the NVIC
2419 * @irq: the exception number to mark pending
2420 * @secure: false for non-banked exceptions or for the nonsecure
2421 * version of a banked exception, true for the secure version of a banked
2422 * exception.
2423 *
2424 * Return whether an exception is "ready", i.e. whether the exception is
2425 * enabled and is configured at a priority which would allow it to
2426 * interrupt the current execution priority. This controls whether the
2427 * RDY bit for it in the FPCCR is set.
2428 */
2429bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2430/**
2431 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2432 * @opaque: the NVIC
2433 *
2434 * Returns: the raw execution priority as defined by the v8M architecture.
2435 * This is the execution priority minus the effects of AIRCR.PRIS,
2436 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2437 * (v8M ARM ARM I_PKLD.)
2438 */
2439int armv7m_nvic_raw_execution_priority(void *opaque);
2440/**
2441 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2442 * priority is negative for the specified security state.
2443 * @opaque: the NVIC
2444 * @secure: the security state to test
2445 * This corresponds to the pseudocode IsReqExecPriNeg().
2446 */
2447#ifndef CONFIG_USER_ONLY
2448bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2449#else
2450static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2451{
2452    return false;
2453}
2454#endif
2455
2456/* Interface for defining coprocessor registers.
2457 * Registers are defined in tables of arm_cp_reginfo structs
2458 * which are passed to define_arm_cp_regs().
2459 */
2460
2461/* When looking up a coprocessor register we look for it
2462 * via an integer which encodes all of:
2463 *  coprocessor number
2464 *  Crn, Crm, opc1, opc2 fields
2465 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2466 *    or via MRRC/MCRR?)
2467 *  non-secure/secure bank (AArch32 only)
2468 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2469 * (In this case crn and opc2 should be zero.)
2470 * For AArch64, there is no 32/64 bit size distinction;
2471 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2472 * and 4 bit CRn and CRm. The encoding patterns are chosen
2473 * to be easy to convert to and from the KVM encodings, and also
2474 * so that the hashtable can contain both AArch32 and AArch64
2475 * registers (to allow for interprocessing where we might run
2476 * 32 bit code on a 64 bit core).
2477 */
2478/* This bit is private to our hashtable cpreg; in KVM register
2479 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2480 * in the upper bits of the 64 bit ID.
2481 */
2482#define CP_REG_AA64_SHIFT 28
2483#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2484
2485/* To enable banking of coprocessor registers depending on ns-bit we
2486 * add a bit to distinguish between secure and non-secure cpregs in the
2487 * hashtable.
2488 */
2489#define CP_REG_NS_SHIFT 29
2490#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2491
2492#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2493    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2494     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2495
2496#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2497    (CP_REG_AA64_MASK |                                 \
2498     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2499     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2500     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2501     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2502     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2503     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2504
2505/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2506 * version used as a key for the coprocessor register hashtable
2507 */
2508static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2509{
2510    uint32_t cpregid = kvmid;
2511    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2512        cpregid |= CP_REG_AA64_MASK;
2513    } else {
2514        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2515            cpregid |= (1 << 15);
2516        }
2517
2518        /* KVM is always non-secure so add the NS flag on AArch32 register
2519         * entries.
2520         */
2521         cpregid |= 1 << CP_REG_NS_SHIFT;
2522    }
2523    return cpregid;
2524}
2525
2526/* Convert a truncated 32 bit hashtable key into the full
2527 * 64 bit KVM register ID.
2528 */
2529static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2530{
2531    uint64_t kvmid;
2532
2533    if (cpregid & CP_REG_AA64_MASK) {
2534        kvmid = cpregid & ~CP_REG_AA64_MASK;
2535        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2536    } else {
2537        kvmid = cpregid & ~(1 << 15);
2538        if (cpregid & (1 << 15)) {
2539            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2540        } else {
2541            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2542        }
2543    }
2544    return kvmid;
2545}
2546
2547/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2548 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2549 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2550 * TCG can assume the value to be constant (ie load at translate time)
2551 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2552 * indicates that the TB should not be ended after a write to this register
2553 * (the default is that the TB ends after cp writes). OVERRIDE permits
2554 * a register definition to override a previous definition for the
2555 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2556 * old must have the OVERRIDE bit set.
2557 * ALIAS indicates that this register is an alias view of some underlying
2558 * state which is also visible via another register, and that the other
2559 * register is handling migration and reset; registers marked ALIAS will not be
2560 * migrated but may have their state set by syncing of register state from KVM.
2561 * NO_RAW indicates that this register has no underlying state and does not
2562 * support raw access for state saving/loading; it will not be used for either
2563 * migration or KVM state synchronization. (Typically this is for "registers"
2564 * which are actually used as instructions for cache maintenance and so on.)
2565 * IO indicates that this register does I/O and therefore its accesses
2566 * need to be marked with gen_io_start() and also end the TB. In particular,
2567 * registers which implement clocks or timers require this.
2568 * RAISES_EXC is for when the read or write hook might raise an exception;
2569 * the generated code will synchronize the CPU state before calling the hook
2570 * so that it is safe for the hook to call raise_exception().
2571 * NEWEL is for writes to registers that might change the exception
2572 * level - typically on older ARM chips. For those cases we need to
2573 * re-read the new el when recomputing the translation flags.
2574 */
2575#define ARM_CP_SPECIAL           0x0001
2576#define ARM_CP_CONST             0x0002
2577#define ARM_CP_64BIT             0x0004
2578#define ARM_CP_SUPPRESS_TB_END   0x0008
2579#define ARM_CP_OVERRIDE          0x0010
2580#define ARM_CP_ALIAS             0x0020
2581#define ARM_CP_IO                0x0040
2582#define ARM_CP_NO_RAW            0x0080
2583#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2584#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2585#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2586#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2587#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2588#define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2589#define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2590#define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2591#define ARM_CP_FPU               0x1000
2592#define ARM_CP_SVE               0x2000
2593#define ARM_CP_NO_GDB            0x4000
2594#define ARM_CP_RAISES_EXC        0x8000
2595#define ARM_CP_NEWEL             0x10000
2596/* Used only as a terminator for ARMCPRegInfo lists */
2597#define ARM_CP_SENTINEL          0xfffff
2598/* Mask of only the flag bits in a type field */
2599#define ARM_CP_FLAG_MASK         0x1f0ff
2600
2601/* Valid values for ARMCPRegInfo state field, indicating which of
2602 * the AArch32 and AArch64 execution states this register is visible in.
2603 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2604 * If the reginfo is declared to be visible in both states then a second
2605 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2606 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2607 * Note that we rely on the values of these enums as we iterate through
2608 * the various states in some places.
2609 */
2610enum {
2611    ARM_CP_STATE_AA32 = 0,
2612    ARM_CP_STATE_AA64 = 1,
2613    ARM_CP_STATE_BOTH = 2,
2614};
2615
2616/* ARM CP register secure state flags.  These flags identify security state
2617 * attributes for a given CP register entry.
2618 * The existence of both or neither secure and non-secure flags indicates that
2619 * the register has both a secure and non-secure hash entry.  A single one of
2620 * these flags causes the register to only be hashed for the specified
2621 * security state.
2622 * Although definitions may have any combination of the S/NS bits, each
2623 * registered entry will only have one to identify whether the entry is secure
2624 * or non-secure.
2625 */
2626enum {
2627    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2628    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2629};
2630
2631/* Return true if cptype is a valid type field. This is used to try to
2632 * catch errors where the sentinel has been accidentally left off the end
2633 * of a list of registers.
2634 */
2635static inline bool cptype_valid(int cptype)
2636{
2637    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2638        || ((cptype & ARM_CP_SPECIAL) &&
2639            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2640}
2641
2642/* Access rights:
2643 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2644 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2645 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2646 * (ie any of the privileged modes in Secure state, or Monitor mode).
2647 * If a register is accessible in one privilege level it's always accessible
2648 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2649 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2650 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2651 * terminology a little and call this PL3.
2652 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2653 * with the ELx exception levels.
2654 *
2655 * If access permissions for a register are more complex than can be
2656 * described with these bits, then use a laxer set of restrictions, and
2657 * do the more restrictive/complex check inside a helper function.
2658 */
2659#define PL3_R 0x80
2660#define PL3_W 0x40
2661#define PL2_R (0x20 | PL3_R)
2662#define PL2_W (0x10 | PL3_W)
2663#define PL1_R (0x08 | PL2_R)
2664#define PL1_W (0x04 | PL2_W)
2665#define PL0_R (0x02 | PL1_R)
2666#define PL0_W (0x01 | PL1_W)
2667
2668/*
2669 * For user-mode some registers are accessible to EL0 via a kernel
2670 * trap-and-emulate ABI. In this case we define the read permissions
2671 * as actually being PL0_R. However some bits of any given register
2672 * may still be masked.
2673 */
2674#ifdef CONFIG_USER_ONLY
2675#define PL0U_R PL0_R
2676#else
2677#define PL0U_R PL1_R
2678#endif
2679
2680#define PL3_RW (PL3_R | PL3_W)
2681#define PL2_RW (PL2_R | PL2_W)
2682#define PL1_RW (PL1_R | PL1_W)
2683#define PL0_RW (PL0_R | PL0_W)
2684
2685/* Return the highest implemented Exception Level */
2686static inline int arm_highest_el(CPUARMState *env)
2687{
2688    if (arm_feature(env, ARM_FEATURE_EL3)) {
2689        return 3;
2690    }
2691    if (arm_feature(env, ARM_FEATURE_EL2)) {
2692        return 2;
2693    }
2694    return 1;
2695}
2696
2697/* Return true if a v7M CPU is in Handler mode */
2698static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2699{
2700    return env->v7m.exception != 0;
2701}
2702
2703/* Return the current Exception Level (as per ARMv8; note that this differs
2704 * from the ARMv7 Privilege Level).
2705 */
2706static inline int arm_current_el(CPUARMState *env)
2707{
2708    if (arm_feature(env, ARM_FEATURE_M)) {
2709        return arm_v7m_is_handler_mode(env) ||
2710            !(env->v7m.control[env->v7m.secure] & 1);
2711    }
2712
2713    if (is_a64(env)) {
2714        return extract32(env->pstate, 2, 2);
2715    }
2716
2717    switch (env->uncached_cpsr & 0x1f) {
2718    case ARM_CPU_MODE_USR:
2719        return 0;
2720    case ARM_CPU_MODE_HYP:
2721        return 2;
2722    case ARM_CPU_MODE_MON:
2723        return 3;
2724    default:
2725        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2726            /* If EL3 is 32-bit then all secure privileged modes run in
2727             * EL3
2728             */
2729            return 3;
2730        }
2731
2732        return 1;
2733    }
2734}
2735
2736typedef struct ARMCPRegInfo ARMCPRegInfo;
2737
2738typedef enum CPAccessResult {
2739    /* Access is permitted */
2740    CP_ACCESS_OK = 0,
2741    /* Access fails due to a configurable trap or enable which would
2742     * result in a categorized exception syndrome giving information about
2743     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2744     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2745     * PL1 if in EL0, otherwise to the current EL).
2746     */
2747    CP_ACCESS_TRAP = 1,
2748    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2749     * Note that this is not a catch-all case -- the set of cases which may
2750     * result in this failure is specifically defined by the architecture.
2751     */
2752    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2753    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2754    CP_ACCESS_TRAP_EL2 = 3,
2755    CP_ACCESS_TRAP_EL3 = 4,
2756    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2757    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2758    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2759    /* Access fails and results in an exception syndrome for an FP access,
2760     * trapped directly to EL2 or EL3
2761     */
2762    CP_ACCESS_TRAP_FP_EL2 = 7,
2763    CP_ACCESS_TRAP_FP_EL3 = 8,
2764} CPAccessResult;
2765
2766/* Access functions for coprocessor registers. These cannot fail and
2767 * may not raise exceptions.
2768 */
2769typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2770typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2771                       uint64_t value);
2772/* Access permission check functions for coprocessor registers. */
2773typedef CPAccessResult CPAccessFn(CPUARMState *env,
2774                                  const ARMCPRegInfo *opaque,
2775                                  bool isread);
2776/* Hook function for register reset */
2777typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2778
2779#define CP_ANY 0xff
2780
2781/* Definition of an ARM coprocessor register */
2782struct ARMCPRegInfo {
2783    /* Name of register (useful mainly for debugging, need not be unique) */
2784    const char *name;
2785    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2786     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2787     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2788     * will be decoded to this register. The register read and write
2789     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2790     * used by the program, so it is possible to register a wildcard and
2791     * then behave differently on read/write if necessary.
2792     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2793     * must both be zero.
2794     * For AArch64-visible registers, opc0 is also used.
2795     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2796     * way to distinguish (for KVM's benefit) guest-visible system registers
2797     * from demuxed ones provided to preserve the "no side effects on
2798     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2799     * visible (to match KVM's encoding); cp==0 will be converted to
2800     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2801     */
2802    uint8_t cp;
2803    uint8_t crn;
2804    uint8_t crm;
2805    uint8_t opc0;
2806    uint8_t opc1;
2807    uint8_t opc2;
2808    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2809    int state;
2810    /* Register type: ARM_CP_* bits/values */
2811    int type;
2812    /* Access rights: PL*_[RW] */
2813    int access;
2814    /* Security state: ARM_CP_SECSTATE_* bits/values */
2815    int secure;
2816    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2817     * this register was defined: can be used to hand data through to the
2818     * register read/write functions, since they are passed the ARMCPRegInfo*.
2819     */
2820    void *opaque;
2821    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2822     * fieldoffset is non-zero, the reset value of the register.
2823     */
2824    uint64_t resetvalue;
2825    /* Offset of the field in CPUARMState for this register.
2826     *
2827     * This is not needed if either:
2828     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2829     *  2. both readfn and writefn are specified
2830     */
2831    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2832
2833    /* Offsets of the secure and non-secure fields in CPUARMState for the
2834     * register if it is banked.  These fields are only used during the static
2835     * registration of a register.  During hashing the bank associated
2836     * with a given security state is copied to fieldoffset which is used from
2837     * there on out.
2838     *
2839     * It is expected that register definitions use either fieldoffset or
2840     * bank_fieldoffsets in the definition but not both.  It is also expected
2841     * that both bank offsets are set when defining a banked register.  This
2842     * use indicates that a register is banked.
2843     */
2844    ptrdiff_t bank_fieldoffsets[2];
2845
2846    /* Function for making any access checks for this register in addition to
2847     * those specified by the 'access' permissions bits. If NULL, no extra
2848     * checks required. The access check is performed at runtime, not at
2849     * translate time.
2850     */
2851    CPAccessFn *accessfn;
2852    /* Function for handling reads of this register. If NULL, then reads
2853     * will be done by loading from the offset into CPUARMState specified
2854     * by fieldoffset.
2855     */
2856    CPReadFn *readfn;
2857    /* Function for handling writes of this register. If NULL, then writes
2858     * will be done by writing to the offset into CPUARMState specified
2859     * by fieldoffset.
2860     */
2861    CPWriteFn *writefn;
2862    /* Function for doing a "raw" read; used when we need to copy
2863     * coprocessor state to the kernel for KVM or out for
2864     * migration. This only needs to be provided if there is also a
2865     * readfn and it has side effects (for instance clear-on-read bits).
2866     */
2867    CPReadFn *raw_readfn;
2868    /* Function for doing a "raw" write; used when we need to copy KVM
2869     * kernel coprocessor state into userspace, or for inbound
2870     * migration. This only needs to be provided if there is also a
2871     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2872     * or similar behaviour.
2873     */
2874    CPWriteFn *raw_writefn;
2875    /* Function for resetting the register. If NULL, then reset will be done
2876     * by writing resetvalue to the field specified in fieldoffset. If
2877     * fieldoffset is 0 then no reset will be done.
2878     */
2879    CPResetFn *resetfn;
2880
2881    /*
2882     * "Original" writefn and readfn.
2883     * For ARMv8.1-VHE register aliases, we overwrite the read/write
2884     * accessor functions of various EL1/EL0 to perform the runtime
2885     * check for which sysreg should actually be modified, and then
2886     * forwards the operation.  Before overwriting the accessors,
2887     * the original function is copied here, so that accesses that
2888     * really do go to the EL1/EL0 version proceed normally.
2889     * (The corresponding EL2 register is linked via opaque.)
2890     */
2891    CPReadFn *orig_readfn;
2892    CPWriteFn *orig_writefn;
2893};
2894
2895/* Macros which are lvalues for the field in CPUARMState for the
2896 * ARMCPRegInfo *ri.
2897 */
2898#define CPREG_FIELD32(env, ri) \
2899    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2900#define CPREG_FIELD64(env, ri) \
2901    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2902
2903#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2904
2905void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2906                                    const ARMCPRegInfo *regs, void *opaque);
2907void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2908                                       const ARMCPRegInfo *regs, void *opaque);
2909static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2910{
2911    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2912}
2913static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2914{
2915    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2916}
2917const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2918
2919/*
2920 * Definition of an ARM co-processor register as viewed from
2921 * userspace. This is used for presenting sanitised versions of
2922 * registers to userspace when emulating the Linux AArch64 CPU
2923 * ID/feature ABI (advertised as HWCAP_CPUID).
2924 */
2925typedef struct ARMCPRegUserSpaceInfo {
2926    /* Name of register */
2927    const char *name;
2928
2929    /* Is the name actually a glob pattern */
2930    bool is_glob;
2931
2932    /* Only some bits are exported to user space */
2933    uint64_t exported_bits;
2934
2935    /* Fixed bits are applied after the mask */
2936    uint64_t fixed_bits;
2937} ARMCPRegUserSpaceInfo;
2938
2939#define REGUSERINFO_SENTINEL { .name = NULL }
2940
2941void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2942
2943/* CPWriteFn that can be used to implement writes-ignored behaviour */
2944void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2945                         uint64_t value);
2946/* CPReadFn that can be used for read-as-zero behaviour */
2947uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2948
2949/* CPResetFn that does nothing, for use if no reset is required even
2950 * if fieldoffset is non zero.
2951 */
2952void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2953
2954/* Return true if this reginfo struct's field in the cpu state struct
2955 * is 64 bits wide.
2956 */
2957static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2958{
2959    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2960}
2961
2962static inline bool cp_access_ok(int current_el,
2963                                const ARMCPRegInfo *ri, int isread)
2964{
2965    return (ri->access >> ((current_el * 2) + isread)) & 1;
2966}
2967
2968/* Raw read of a coprocessor register (as needed for migration, etc) */
2969uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2970
2971/**
2972 * write_list_to_cpustate
2973 * @cpu: ARMCPU
2974 *
2975 * For each register listed in the ARMCPU cpreg_indexes list, write
2976 * its value from the cpreg_values list into the ARMCPUState structure.
2977 * This updates TCG's working data structures from KVM data or
2978 * from incoming migration state.
2979 *
2980 * Returns: true if all register values were updated correctly,
2981 * false if some register was unknown or could not be written.
2982 * Note that we do not stop early on failure -- we will attempt
2983 * writing all registers in the list.
2984 */
2985bool write_list_to_cpustate(ARMCPU *cpu);
2986
2987/**
2988 * write_cpustate_to_list:
2989 * @cpu: ARMCPU
2990 * @kvm_sync: true if this is for syncing back to KVM
2991 *
2992 * For each register listed in the ARMCPU cpreg_indexes list, write
2993 * its value from the ARMCPUState structure into the cpreg_values list.
2994 * This is used to copy info from TCG's working data structures into
2995 * KVM or for outbound migration.
2996 *
2997 * @kvm_sync is true if we are doing this in order to sync the
2998 * register state back to KVM. In this case we will only update
2999 * values in the list if the previous list->cpustate sync actually
3000 * successfully wrote the CPU state. Otherwise we will keep the value
3001 * that is in the list.
3002 *
3003 * Returns: true if all register values were read correctly,
3004 * false if some register was unknown or could not be read.
3005 * Note that we do not stop early on failure -- we will attempt
3006 * reading all registers in the list.
3007 */
3008bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
3009
3010#define ARM_CPUID_TI915T      0x54029152
3011#define ARM_CPUID_TI925T      0x54029252
3012
3013#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3014#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3015#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3016
3017#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3018
3019#define cpu_list arm_cpu_list
3020
3021/* ARM has the following "translation regimes" (as the ARM ARM calls them):
3022 *
3023 * If EL3 is 64-bit:
3024 *  + NonSecure EL1 & 0 stage 1
3025 *  + NonSecure EL1 & 0 stage 2
3026 *  + NonSecure EL2
3027 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3028 *  + Secure EL1 & 0
3029 *  + Secure EL3
3030 * If EL3 is 32-bit:
3031 *  + NonSecure PL1 & 0 stage 1
3032 *  + NonSecure PL1 & 0 stage 2
3033 *  + NonSecure PL2
3034 *  + Secure PL0
3035 *  + Secure PL1
3036 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3037 *
3038 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3039 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3040 *     because they may differ in access permissions even if the VA->PA map is
3041 *     the same
3042 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3043 *     translation, which means that we have one mmu_idx that deals with two
3044 *     concatenated translation regimes [this sort of combined s1+2 TLB is
3045 *     architecturally permitted]
3046 *  3. we don't need to allocate an mmu_idx to translations that we won't be
3047 *     handling via the TLB. The only way to do a stage 1 translation without
3048 *     the immediate stage 2 translation is via the ATS or AT system insns,
3049 *     which can be slow-pathed and always do a page table walk.
3050 *     The only use of stage 2 translations is either as part of an s1+2
3051 *     lookup or when loading the descriptors during a stage 1 page table walk,
3052 *     and in both those cases we don't use the TLB.
3053 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3054 *     translation regimes, because they map reasonably well to each other
3055 *     and they can't both be active at the same time.
3056 *  5. we want to be able to use the TLB for accesses done as part of a
3057 *     stage1 page table walk, rather than having to walk the stage2 page
3058 *     table over and over.
3059 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3060 *     Never (PAN) bit within PSTATE.
3061 *
3062 * This gives us the following list of cases:
3063 *
3064 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3065 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3066 * NS EL1 EL1&0 stage 1+2 +PAN
3067 * NS EL0 EL2&0
3068 * NS EL2 EL2&0
3069 * NS EL2 EL2&0 +PAN
3070 * NS EL2 (aka NS PL2)
3071 * S EL0 EL1&0 (aka S PL0)
3072 * S EL1 EL1&0 (not used if EL3 is 32 bit)
3073 * S EL1 EL1&0 +PAN
3074 * S EL3 (aka S PL1)
3075 *
3076 * for a total of 11 different mmu_idx.
3077 *
3078 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3079 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3080 * NS EL2 if we ever model a Cortex-R52).
3081 *
3082 * M profile CPUs are rather different as they do not have a true MMU.
3083 * They have the following different MMU indexes:
3084 *  User
3085 *  Privileged
3086 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3087 *  Privileged, execution priority negative (ditto)
3088 * If the CPU supports the v8M Security Extension then there are also:
3089 *  Secure User
3090 *  Secure Privileged
3091 *  Secure User, execution priority negative
3092 *  Secure Privileged, execution priority negative
3093 *
3094 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3095 * are not quite the same -- different CPU types (most notably M profile
3096 * vs A/R profile) would like to use MMU indexes with different semantics,
3097 * but since we don't ever need to use all of those in a single CPU we
3098 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3099 * modes + total number of M profile MMU modes". The lower bits of
3100 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3101 * the same for any particular CPU.
3102 * Variables of type ARMMUIdx are always full values, and the core
3103 * index values are in variables of type 'int'.
3104 *
3105 * Our enumeration includes at the end some entries which are not "true"
3106 * mmu_idx values in that they don't have corresponding TLBs and are only
3107 * valid for doing slow path page table walks.
3108 *
3109 * The constant names here are patterned after the general style of the names
3110 * of the AT/ATS operations.
3111 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3112 * For M profile we arrange them to have a bit for priv, a bit for negpri
3113 * and a bit for secure.
3114 */
3115#define ARM_MMU_IDX_A     0x10  /* A profile */
3116#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3117#define ARM_MMU_IDX_M     0x40  /* M profile */
3118
3119/* Meanings of the bits for A profile mmu idx values */
3120#define ARM_MMU_IDX_A_NS     0x8
3121
3122/* Meanings of the bits for M profile mmu idx values */
3123#define ARM_MMU_IDX_M_PRIV   0x1
3124#define ARM_MMU_IDX_M_NEGPRI 0x2
3125#define ARM_MMU_IDX_M_S      0x4  /* Secure */
3126
3127#define ARM_MMU_IDX_TYPE_MASK \
3128    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3129#define ARM_MMU_IDX_COREIDX_MASK 0xf
3130
3131typedef enum ARMMMUIdx {
3132    /*
3133     * A-profile.
3134     */
3135    ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3136    ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3137    ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3138    ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3139    ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3140    ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3141    ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3142    ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3143
3144    ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3145    ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3146    ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3147    ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3148    ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3149    ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3150    ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3151
3152    /*
3153     * These are not allocated TLBs and are used only for AT system
3154     * instructions or for the first stage of an S12 page table walk.
3155     */
3156    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3157    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3158    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3159    ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3160    ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3161    ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3162    /*
3163     * Not allocated a TLB: used only for second stage of an S12 page
3164     * table walk, or for descriptor loads during first stage of an S1
3165     * page table walk. Note that if we ever want to have a TLB for this
3166     * then various TLB flush insns which currently are no-ops or flush
3167     * only stage 1 MMU indexes will need to change to flush stage 2.
3168     */
3169    ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3170    ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3171
3172    /*
3173     * M-profile.
3174     */
3175    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3176    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3177    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3178    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3179    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3180    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3181    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3182    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3183} ARMMMUIdx;
3184
3185/*
3186 * Bit macros for the core-mmu-index values for each index,
3187 * for use when calling tlb_flush_by_mmuidx() and friends.
3188 */
3189#define TO_CORE_BIT(NAME) \
3190    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3191
3192typedef enum ARMMMUIdxBit {
3193    TO_CORE_BIT(E10_0),
3194    TO_CORE_BIT(E20_0),
3195    TO_CORE_BIT(E10_1),
3196    TO_CORE_BIT(E10_1_PAN),
3197    TO_CORE_BIT(E2),
3198    TO_CORE_BIT(E20_2),
3199    TO_CORE_BIT(E20_2_PAN),
3200    TO_CORE_BIT(SE10_0),
3201    TO_CORE_BIT(SE20_0),
3202    TO_CORE_BIT(SE10_1),
3203    TO_CORE_BIT(SE20_2),
3204    TO_CORE_BIT(SE10_1_PAN),
3205    TO_CORE_BIT(SE20_2_PAN),
3206    TO_CORE_BIT(SE2),
3207    TO_CORE_BIT(SE3),
3208
3209    TO_CORE_BIT(MUser),
3210    TO_CORE_BIT(MPriv),
3211    TO_CORE_BIT(MUserNegPri),
3212    TO_CORE_BIT(MPrivNegPri),
3213    TO_CORE_BIT(MSUser),
3214    TO_CORE_BIT(MSPriv),
3215    TO_CORE_BIT(MSUserNegPri),
3216    TO_CORE_BIT(MSPrivNegPri),
3217} ARMMMUIdxBit;
3218
3219#undef TO_CORE_BIT
3220
3221#define MMU_USER_IDX 0
3222
3223/* Indexes used when registering address spaces with cpu_address_space_init */
3224typedef enum ARMASIdx {
3225    ARMASIdx_NS = 0,
3226    ARMASIdx_S = 1,
3227    ARMASIdx_TagNS = 2,
3228    ARMASIdx_TagS = 3,
3229} ARMASIdx;
3230
3231/* Return the Exception Level targeted by debug exceptions. */
3232static inline int arm_debug_target_el(CPUARMState *env)
3233{
3234    bool secure = arm_is_secure(env);
3235    bool route_to_el2 = false;
3236
3237    if (arm_is_el2_enabled(env)) {
3238        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3239                       env->cp15.mdcr_el2 & MDCR_TDE;
3240    }
3241
3242    if (route_to_el2) {
3243        return 2;
3244    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3245               !arm_el_is_aa64(env, 3) && secure) {
3246        return 3;
3247    } else {
3248        return 1;
3249    }
3250}
3251
3252static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3253{
3254    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3255     * CSSELR is RAZ/WI.
3256     */
3257    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3258}
3259
3260/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3261static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3262{
3263    int cur_el = arm_current_el(env);
3264    int debug_el;
3265
3266    if (cur_el == 3) {
3267        return false;
3268    }
3269
3270    /* MDCR_EL3.SDD disables debug events from Secure state */
3271    if (arm_is_secure_below_el3(env)
3272        && extract32(env->cp15.mdcr_el3, 16, 1)) {
3273        return false;
3274    }
3275
3276    /*
3277     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3278     * while not masking the (D)ebug bit in DAIF.
3279     */
3280    debug_el = arm_debug_target_el(env);
3281
3282    if (cur_el == debug_el) {
3283        return extract32(env->cp15.mdscr_el1, 13, 1)
3284            && !(env->daif & PSTATE_D);
3285    }
3286
3287    /* Otherwise the debug target needs to be a higher EL */
3288    return debug_el > cur_el;
3289}
3290
3291static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3292{
3293    int el = arm_current_el(env);
3294
3295    if (el == 0 && arm_el_is_aa64(env, 1)) {
3296        return aa64_generate_debug_exceptions(env);
3297    }
3298
3299    if (arm_is_secure(env)) {
3300        int spd;
3301
3302        if (el == 0 && (env->cp15.sder & 1)) {
3303            /* SDER.SUIDEN means debug exceptions from Secure EL0
3304             * are always enabled. Otherwise they are controlled by
3305             * SDCR.SPD like those from other Secure ELs.
3306             */
3307            return true;
3308        }
3309
3310        spd = extract32(env->cp15.mdcr_el3, 14, 2);
3311        switch (spd) {
3312        case 1:
3313            /* SPD == 0b01 is reserved, but behaves as 0b00. */
3314        case 0:
3315            /* For 0b00 we return true if external secure invasive debug
3316             * is enabled. On real hardware this is controlled by external
3317             * signals to the core. QEMU always permits debug, and behaves
3318             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3319             */
3320            return true;
3321        case 2:
3322            return false;
3323        case 3:
3324            return true;
3325        }
3326    }
3327
3328    return el != 2;
3329}
3330
3331/* Return true if debugging exceptions are currently enabled.
3332 * This corresponds to what in ARM ARM pseudocode would be
3333 *    if UsingAArch32() then
3334 *        return AArch32.GenerateDebugExceptions()
3335 *    else
3336 *        return AArch64.GenerateDebugExceptions()
3337 * We choose to push the if() down into this function for clarity,
3338 * since the pseudocode has it at all callsites except for the one in
3339 * CheckSoftwareStep(), where it is elided because both branches would
3340 * always return the same value.
3341 */
3342static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3343{
3344    if (env->aarch64) {
3345        return aa64_generate_debug_exceptions(env);
3346    } else {
3347        return aa32_generate_debug_exceptions(env);
3348    }
3349}
3350
3351/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3352 * implicitly means this always returns false in pre-v8 CPUs.)
3353 */
3354static inline bool arm_singlestep_active(CPUARMState *env)
3355{
3356    return extract32(env->cp15.mdscr_el1, 0, 1)
3357        && arm_el_is_aa64(env, arm_debug_target_el(env))
3358        && arm_generate_debug_exceptions(env);
3359}
3360
3361static inline bool arm_sctlr_b(CPUARMState *env)
3362{
3363    return
3364        /* We need not implement SCTLR.ITD in user-mode emulation, so
3365         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3366         * This lets people run BE32 binaries with "-cpu any".
3367         */
3368#ifndef CONFIG_USER_ONLY
3369        !arm_feature(env, ARM_FEATURE_V7) &&
3370#endif
3371        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3372}
3373
3374uint64_t arm_sctlr(CPUARMState *env, int el);
3375
3376static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3377                                                  bool sctlr_b)
3378{
3379#ifdef CONFIG_USER_ONLY
3380    /*
3381     * In system mode, BE32 is modelled in line with the
3382     * architecture (as word-invariant big-endianness), where loads
3383     * and stores are done little endian but from addresses which
3384     * are adjusted by XORing with the appropriate constant. So the
3385     * endianness to use for the raw data access is not affected by
3386     * SCTLR.B.
3387     * In user mode, however, we model BE32 as byte-invariant
3388     * big-endianness (because user-only code cannot tell the
3389     * difference), and so we need to use a data access endianness
3390     * that depends on SCTLR.B.
3391     */
3392    if (sctlr_b) {
3393        return true;
3394    }
3395#endif
3396    /* In 32bit endianness is determined by looking at CPSR's E bit */
3397    return env->uncached_cpsr & CPSR_E;
3398}
3399
3400static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3401{
3402    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3403}
3404
3405/* Return true if the processor is in big-endian mode. */
3406static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3407{
3408    if (!is_a64(env)) {
3409        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3410    } else {
3411        int cur_el = arm_current_el(env);
3412        uint64_t sctlr = arm_sctlr(env, cur_el);
3413        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3414    }
3415}
3416
3417#include "exec/cpu-all.h"
3418
3419/*
3420 * We have more than 32-bits worth of state per TB, so we split the data
3421 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3422 * We collect these two parts in CPUARMTBFlags where they are named
3423 * flags and flags2 respectively.
3424 *
3425 * The flags that are shared between all execution modes, TBFLAG_ANY,
3426 * are stored in flags.  The flags that are specific to a given mode
3427 * are stores in flags2.  Since cs_base is sized on the configured
3428 * address size, flags2 always has 64-bits for A64, and a minimum of
3429 * 32-bits for A32 and M32.
3430 *
3431 * The bits for 32-bit A-profile and M-profile partially overlap:
3432 *
3433 *  31         23         11 10             0
3434 * +-------------+----------+----------------+
3435 * |             |          |   TBFLAG_A32   |
3436 * | TBFLAG_AM32 |          +-----+----------+
3437 * |             |                |TBFLAG_M32|
3438 * +-------------+----------------+----------+
3439 *  31         23                6 5        0
3440 *
3441 * Unless otherwise noted, these bits are cached in env->hflags.
3442 */
3443FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3444FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3445FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3446FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3447FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3448/* Target EL if we take a floating-point-disabled exception */
3449FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3450/* For A-profile only, target EL for debug exceptions.  */
3451FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3452/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3453FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3454FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3455
3456/*
3457 * Bit usage when in AArch32 state, both A- and M-profile.
3458 */
3459FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3460FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3461
3462/*
3463 * Bit usage when in AArch32 state, for A-profile only.
3464 */
3465FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3466FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3467/*
3468 * We store the bottom two bits of the CPAR as TB flags and handle
3469 * checks on the other bits at runtime. This shares the same bits as
3470 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3471 * Not cached, because VECLEN+VECSTRIDE are not cached.
3472 */
3473FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3474FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3475FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3476FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3477/*
3478 * Indicates whether cp register reads and writes by guest code should access
3479 * the secure or nonsecure bank of banked registers; note that this is not
3480 * the same thing as the current security state of the processor!
3481 */
3482FIELD(TBFLAG_A32, NS, 10, 1)
3483
3484/*
3485 * Bit usage when in AArch32 state, for M-profile only.
3486 */
3487/* Handler (ie not Thread) mode */
3488FIELD(TBFLAG_M32, HANDLER, 0, 1)
3489/* Whether we should generate stack-limit checks */
3490FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3491/* Set if FPCCR.LSPACT is set */
3492FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3493/* Set if we must create a new FP context */
3494FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3495/* Set if FPCCR.S does not match current security state */
3496FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3497/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3498FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3499
3500/*
3501 * Bit usage when in AArch64 state
3502 */
3503FIELD(TBFLAG_A64, TBII, 0, 2)
3504FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3505FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3506FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3507FIELD(TBFLAG_A64, BT, 9, 1)
3508FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3509FIELD(TBFLAG_A64, TBID, 12, 2)
3510FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3511FIELD(TBFLAG_A64, ATA, 15, 1)
3512FIELD(TBFLAG_A64, TCMA, 16, 2)
3513FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3514FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3515
3516/*
3517 * Helpers for using the above.
3518 */
3519#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3520    (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3521#define DP_TBFLAG_A64(DST, WHICH, VAL) \
3522    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3523#define DP_TBFLAG_A32(DST, WHICH, VAL) \
3524    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3525#define DP_TBFLAG_M32(DST, WHICH, VAL) \
3526    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3527#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3528    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3529
3530#define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3531#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3532#define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3533#define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3534#define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3535
3536/**
3537 * cpu_mmu_index:
3538 * @env: The cpu environment
3539 * @ifetch: True for code access, false for data access.
3540 *
3541 * Return the core mmu index for the current translation regime.
3542 * This function is used by generic TCG code paths.
3543 */
3544static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3545{
3546    return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3547}
3548
3549static inline bool bswap_code(bool sctlr_b)
3550{
3551#ifdef CONFIG_USER_ONLY
3552    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3553     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3554     * would also end up as a mixed-endian mode with BE code, LE data.
3555     */
3556    return
3557#ifdef TARGET_WORDS_BIGENDIAN
3558        1 ^
3559#endif
3560        sctlr_b;
3561#else
3562    /* All code access in ARM is little endian, and there are no loaders
3563     * doing swaps that need to be reversed
3564     */
3565    return 0;
3566#endif
3567}
3568
3569#ifdef CONFIG_USER_ONLY
3570static inline bool arm_cpu_bswap_data(CPUARMState *env)
3571{
3572    return
3573#ifdef TARGET_WORDS_BIGENDIAN
3574       1 ^
3575#endif
3576       arm_cpu_data_is_big_endian(env);
3577}
3578#endif
3579
3580void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3581                          target_ulong *cs_base, uint32_t *flags);
3582
3583enum {
3584    QEMU_PSCI_CONDUIT_DISABLED = 0,
3585    QEMU_PSCI_CONDUIT_SMC = 1,
3586    QEMU_PSCI_CONDUIT_HVC = 2,
3587};
3588
3589#ifndef CONFIG_USER_ONLY
3590/* Return the address space index to use for a memory access */
3591static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3592{
3593    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3594}
3595
3596/* Return the AddressSpace to use for a memory access
3597 * (which depends on whether the access is S or NS, and whether
3598 * the board gave us a separate AddressSpace for S accesses).
3599 */
3600static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3601{
3602    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3603}
3604#endif
3605
3606/**
3607 * arm_register_pre_el_change_hook:
3608 * Register a hook function which will be called immediately before this
3609 * CPU changes exception level or mode. The hook function will be
3610 * passed a pointer to the ARMCPU and the opaque data pointer passed
3611 * to this function when the hook was registered.
3612 *
3613 * Note that if a pre-change hook is called, any registered post-change hooks
3614 * are guaranteed to subsequently be called.
3615 */
3616void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3617                                 void *opaque);
3618/**
3619 * arm_register_el_change_hook:
3620 * Register a hook function which will be called immediately after this
3621 * CPU changes exception level or mode. The hook function will be
3622 * passed a pointer to the ARMCPU and the opaque data pointer passed
3623 * to this function when the hook was registered.
3624 *
3625 * Note that any registered hooks registered here are guaranteed to be called
3626 * if pre-change hooks have been.
3627 */
3628void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3629        *opaque);
3630
3631/**
3632 * arm_rebuild_hflags:
3633 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3634 */
3635void arm_rebuild_hflags(CPUARMState *env);
3636
3637/**
3638 * aa32_vfp_dreg:
3639 * Return a pointer to the Dn register within env in 32-bit mode.
3640 */
3641static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3642{
3643    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3644}
3645
3646/**
3647 * aa32_vfp_qreg:
3648 * Return a pointer to the Qn register within env in 32-bit mode.
3649 */
3650static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3651{
3652    return &env->vfp.zregs[regno].d[0];
3653}
3654
3655/**
3656 * aa64_vfp_qreg:
3657 * Return a pointer to the Qn register within env in 64-bit mode.
3658 */
3659static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3660{
3661    return &env->vfp.zregs[regno].d[0];
3662}
3663
3664/* Shared between translate-sve.c and sve_helper.c.  */
3665extern const uint64_t pred_esz_masks[4];
3666
3667/* Helper for the macros below, validating the argument type. */
3668static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3669{
3670    return x;
3671}
3672
3673/*
3674 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3675 * Using these should be a bit more self-documenting than using the
3676 * generic target bits directly.
3677 */
3678#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3679#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3680
3681/*
3682 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3683 */
3684#define PAGE_BTI  PAGE_TARGET_1
3685#define PAGE_MTE  PAGE_TARGET_2
3686
3687#ifdef TARGET_TAGGED_ADDRESSES
3688/**
3689 * cpu_untagged_addr:
3690 * @cs: CPU context
3691 * @x: tagged address
3692 *
3693 * Remove any address tag from @x.  This is explicitly related to the
3694 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3695 *
3696 * There should be a better place to put this, but we need this in
3697 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3698 */
3699static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3700{
3701    ARMCPU *cpu = ARM_CPU(cs);
3702    if (cpu->env.tagged_addr_enable) {
3703        /*
3704         * TBI is enabled for userspace but not kernelspace addresses.
3705         * Only clear the tag if bit 55 is clear.
3706         */
3707        x &= sextract64(x, 0, 56);
3708    }
3709    return x;
3710}
3711#endif
3712
3713/*
3714 * Naming convention for isar_feature functions:
3715 * Functions which test 32-bit ID registers should have _aa32_ in
3716 * their name. Functions which test 64-bit ID registers should have
3717 * _aa64_ in their name. These must only be used in code where we
3718 * know for certain that the CPU has AArch32 or AArch64 respectively
3719 * or where the correct answer for a CPU which doesn't implement that
3720 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3721 * system registers that are specific to that CPU state, for "should
3722 * we let this system register bit be set" tests where the 32-bit
3723 * flavour of the register doesn't have the bit, and so on).
3724 * Functions which simply ask "does this feature exist at all" have
3725 * _any_ in their name, and always return the logical OR of the _aa64_
3726 * and the _aa32_ function.
3727 */
3728
3729/*
3730 * 32-bit feature tests via id registers.
3731 */
3732static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3733{
3734    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3735}
3736
3737static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3738{
3739    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3740}
3741
3742static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3743{
3744    /* (M-profile) low-overhead loops and branch future */
3745    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3746}
3747
3748static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3749{
3750    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3751}
3752
3753static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3754{
3755    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3756}
3757
3758static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3759{
3760    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3761}
3762
3763static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3764{
3765    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3766}
3767
3768static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3769{
3770    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3771}
3772
3773static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3774{
3775    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3776}
3777
3778static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3779{
3780    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3781}
3782
3783static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3784{
3785    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3786}
3787
3788static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3789{
3790    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3791}
3792
3793static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3794{
3795    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3796}
3797
3798static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3799{
3800    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3801}
3802
3803static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3804{
3805    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3806}
3807
3808static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3809{
3810    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3811}
3812
3813static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3814{
3815    return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3816}
3817
3818static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3819{
3820    return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3821}
3822
3823static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3824{
3825    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3826}
3827
3828static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3829{
3830    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3831}
3832
3833static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3834{
3835    /*
3836     * Return true if M-profile state handling insns
3837     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3838     */
3839    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3840}
3841
3842static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3843{
3844    /* Sadly this is encoded differently for A-profile and M-profile */
3845    if (isar_feature_aa32_mprofile(id)) {
3846        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3847    } else {
3848        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3849    }
3850}
3851
3852static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3853{
3854    /*
3855     * Return true if MVE is supported (either integer or floating point).
3856     * We must check for M-profile as the MVFR1 field means something
3857     * else for A-profile.
3858     */
3859    return isar_feature_aa32_mprofile(id) &&
3860        FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3861}
3862
3863static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3864{
3865    /*
3866     * Return true if MVE is supported (either integer or floating point).
3867     * We must check for M-profile as the MVFR1 field means something
3868     * else for A-profile.
3869     */
3870    return isar_feature_aa32_mprofile(id) &&
3871        FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3872}
3873
3874static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3875{
3876    /*
3877     * Return true if either VFP or SIMD is implemented.
3878     * In this case, a minimum of VFP w/ D0-D15.
3879     */
3880    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3881}
3882
3883static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3884{
3885    /* Return true if D16-D31 are implemented */
3886    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3887}
3888
3889static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3890{
3891    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3892}
3893
3894static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3895{
3896    /* Return true if CPU supports single precision floating point, VFPv2 */
3897    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3898}
3899
3900static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3901{
3902    /* Return true if CPU supports single precision floating point, VFPv3 */
3903    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3904}
3905
3906static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3907{
3908    /* Return true if CPU supports double precision floating point, VFPv2 */
3909    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3910}
3911
3912static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3913{
3914    /* Return true if CPU supports double precision floating point, VFPv3 */
3915    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3916}
3917
3918static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3919{
3920    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3921}
3922
3923/*
3924 * We always set the FP and SIMD FP16 fields to indicate identical
3925 * levels of support (assuming SIMD is implemented at all), so
3926 * we only need one set of accessors.
3927 */
3928static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3929{
3930    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3931}
3932
3933static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3934{
3935    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3936}
3937
3938/*
3939 * Note that this ID register field covers both VFP and Neon FMAC,
3940 * so should usually be tested in combination with some other
3941 * check that confirms the presence of whichever of VFP or Neon is
3942 * relevant, to avoid accidentally enabling a Neon feature on
3943 * a VFP-no-Neon core or vice-versa.
3944 */
3945static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3946{
3947    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3948}
3949
3950static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3951{
3952    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3953}
3954
3955static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3956{
3957    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3958}
3959
3960static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3961{
3962    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3963}
3964
3965static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3966{
3967    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3968}
3969
3970static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3971{
3972    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3973}
3974
3975static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3976{
3977    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3978}
3979
3980static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3981{
3982    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3983}
3984
3985static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3986{
3987    /* 0xf means "non-standard IMPDEF PMU" */
3988    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3989        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3990}
3991
3992static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3993{
3994    /* 0xf means "non-standard IMPDEF PMU" */
3995    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3996        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3997}
3998
3999static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
4000{
4001    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
4002}
4003
4004static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4005{
4006    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4007}
4008
4009static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4010{
4011    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4012}
4013
4014static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4015{
4016    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4017}
4018
4019static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4020{
4021    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4022}
4023
4024static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4025{
4026    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4027}
4028
4029/*
4030 * 64-bit feature tests via id registers.
4031 */
4032static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4033{
4034    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4035}
4036
4037static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4038{
4039    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4040}
4041
4042static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4043{
4044    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4045}
4046
4047static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4048{
4049    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4050}
4051
4052static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4053{
4054    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4055}
4056
4057static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4058{
4059    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4060}
4061
4062static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4063{
4064    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4065}
4066
4067static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4068{
4069    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4070}
4071
4072static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4073{
4074    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4075}
4076
4077static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4078{
4079    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4080}
4081
4082static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4083{
4084    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4085}
4086
4087static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4088{
4089    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4090}
4091
4092static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4093{
4094    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4095}
4096
4097static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4098{
4099    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4100}
4101
4102static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4103{
4104    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4105}
4106
4107static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4108{
4109    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4110}
4111
4112static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4113{
4114    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4115}
4116
4117static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4118{
4119    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4120}
4121
4122static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4123{
4124    /*
4125     * Return true if any form of pauth is enabled, as this
4126     * predicate controls migration of the 128-bit keys.
4127     */
4128    return (id->id_aa64isar1 &
4129            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4130             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4131             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4132             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4133}
4134
4135static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4136{
4137    /*
4138     * Return true if pauth is enabled with the architected QARMA algorithm.
4139     * QEMU will always set APA+GPA to the same value.
4140     */
4141    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4142}
4143
4144static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4145{
4146    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4147}
4148
4149static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4150{
4151    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4152}
4153
4154static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4155{
4156    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4157}
4158
4159static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4160{
4161    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4162}
4163
4164static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4165{
4166    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4167}
4168
4169static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4170{
4171    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4172}
4173
4174static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4175{
4176    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4177}
4178
4179static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4180{
4181    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4182}
4183
4184static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4185{
4186    /* We always set the AdvSIMD and FP fields identically.  */
4187    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4188}
4189
4190static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4191{
4192    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4193    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4194}
4195
4196static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4197{
4198    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4199}
4200
4201static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4202{
4203    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4204}
4205
4206static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4207{
4208    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4209}
4210
4211static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4212{
4213    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4214}
4215
4216static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4217{
4218    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4219}
4220
4221static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4222{
4223    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4224}
4225
4226static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4227{
4228    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4229}
4230
4231static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4232{
4233    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4234}
4235
4236static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4237{
4238    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4239}
4240
4241static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4242{
4243    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4244}
4245
4246static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4247{
4248    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4249}
4250
4251static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4252{
4253    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4254}
4255
4256static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4257{
4258    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4259}
4260
4261static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4262{
4263    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4264        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4265}
4266
4267static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4268{
4269    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4270        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4271}
4272
4273static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4274{
4275    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4276}
4277
4278static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4279{
4280    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4281}
4282
4283static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4284{
4285    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4286}
4287
4288static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4289{
4290    return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4291}
4292
4293static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4294{
4295    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4296    return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4297}
4298
4299static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4300{
4301    return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4302}
4303
4304static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4305{
4306    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4307    return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4308}
4309
4310static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4311{
4312    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4313}
4314
4315static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4316{
4317    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4318}
4319
4320static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4321{
4322    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4323}
4324
4325static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4326{
4327    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4328}
4329
4330static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4331{
4332    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4333}
4334
4335static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4336{
4337    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4338}
4339
4340static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4341{
4342    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4343}
4344
4345static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4346{
4347    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4348}
4349
4350static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4351{
4352    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4353}
4354
4355static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4356{
4357    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4358}
4359
4360static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4361{
4362    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4363}
4364
4365static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4366{
4367    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4368}
4369
4370static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4371{
4372    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4373}
4374
4375static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4376{
4377    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4378}
4379
4380static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4381{
4382    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4383}
4384
4385/*
4386 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4387 */
4388static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4389{
4390    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4391}
4392
4393static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4394{
4395    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4396}
4397
4398static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4399{
4400    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4401}
4402
4403static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4404{
4405    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4406}
4407
4408static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4409{
4410    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4411}
4412
4413static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4414{
4415    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4416}
4417
4418/*
4419 * Forward to the above feature tests given an ARMCPU pointer.
4420 */
4421#define cpu_isar_feature(name, cpu) \
4422    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4423
4424#endif
4425