qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include <sys/ioctl.h>
  19#include <sys/utsname.h>
  20#include <sys/syscall.h>
  21
  22#include <linux/kvm.h>
  23#include "standard-headers/asm-x86/kvm_para.h"
  24
  25#include "cpu.h"
  26#include "host-cpu.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/hw_accel.h"
  29#include "sysemu/kvm_int.h"
  30#include "sysemu/runstate.h"
  31#include "kvm_i386.h"
  32#include "sev.h"
  33#include "hyperv.h"
  34#include "hyperv-proto.h"
  35
  36#include "exec/gdbstub.h"
  37#include "qemu/host-utils.h"
  38#include "qemu/main-loop.h"
  39#include "qemu/config-file.h"
  40#include "qemu/error-report.h"
  41#include "qemu/memalign.h"
  42#include "hw/i386/x86.h"
  43#include "hw/i386/apic.h"
  44#include "hw/i386/apic_internal.h"
  45#include "hw/i386/apic-msidef.h"
  46#include "hw/i386/intel_iommu.h"
  47#include "hw/i386/x86-iommu.h"
  48#include "hw/i386/e820_memory_layout.h"
  49
  50#include "hw/pci/pci.h"
  51#include "hw/pci/msi.h"
  52#include "hw/pci/msix.h"
  53#include "migration/blocker.h"
  54#include "exec/memattrs.h"
  55#include "trace.h"
  56
  57//#define DEBUG_KVM
  58
  59#ifdef DEBUG_KVM
  60#define DPRINTF(fmt, ...) \
  61    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  62#else
  63#define DPRINTF(fmt, ...) \
  64    do { } while (0)
  65#endif
  66
  67/* From arch/x86/kvm/lapic.h */
  68#define KVM_APIC_BUS_CYCLE_NS       1
  69#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  70
  71#define MSR_KVM_WALL_CLOCK  0x11
  72#define MSR_KVM_SYSTEM_TIME 0x12
  73
  74/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  75 * 255 kvm_msr_entry structs */
  76#define MSR_BUF_SIZE 4096
  77
  78static void kvm_init_msrs(X86CPU *cpu);
  79
  80const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  81    KVM_CAP_INFO(SET_TSS_ADDR),
  82    KVM_CAP_INFO(EXT_CPUID),
  83    KVM_CAP_INFO(MP_STATE),
  84    KVM_CAP_LAST_INFO
  85};
  86
  87static bool has_msr_star;
  88static bool has_msr_hsave_pa;
  89static bool has_msr_tsc_aux;
  90static bool has_msr_tsc_adjust;
  91static bool has_msr_tsc_deadline;
  92static bool has_msr_feature_control;
  93static bool has_msr_misc_enable;
  94static bool has_msr_smbase;
  95static bool has_msr_bndcfgs;
  96static int lm_capable_kernel;
  97static bool has_msr_hv_hypercall;
  98static bool has_msr_hv_crash;
  99static bool has_msr_hv_reset;
 100static bool has_msr_hv_vpindex;
 101static bool hv_vpindex_settable;
 102static bool has_msr_hv_runtime;
 103static bool has_msr_hv_synic;
 104static bool has_msr_hv_stimer;
 105static bool has_msr_hv_frequencies;
 106static bool has_msr_hv_reenlightenment;
 107static bool has_msr_xss;
 108static bool has_msr_umwait;
 109static bool has_msr_spec_ctrl;
 110static bool has_tsc_scale_msr;
 111static bool has_msr_tsx_ctrl;
 112static bool has_msr_virt_ssbd;
 113static bool has_msr_smi_count;
 114static bool has_msr_arch_capabs;
 115static bool has_msr_core_capabs;
 116static bool has_msr_vmx_vmfunc;
 117static bool has_msr_ucode_rev;
 118static bool has_msr_vmx_procbased_ctls2;
 119static bool has_msr_perf_capabs;
 120static bool has_msr_pkrs;
 121
 122static uint32_t has_architectural_pmu_version;
 123static uint32_t num_architectural_pmu_gp_counters;
 124static uint32_t num_architectural_pmu_fixed_counters;
 125
 126static int has_xsave;
 127static int has_xsave2;
 128static int has_xcrs;
 129static int has_pit_state2;
 130static int has_sregs2;
 131static int has_exception_payload;
 132
 133static bool has_msr_mcg_ext_ctl;
 134
 135static struct kvm_cpuid2 *cpuid_cache;
 136static struct kvm_cpuid2 *hv_cpuid_cache;
 137static struct kvm_msr_list *kvm_feature_msrs;
 138
 139#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
 140static RateLimit bus_lock_ratelimit_ctrl;
 141
 142int kvm_has_pit_state2(void)
 143{
 144    return has_pit_state2;
 145}
 146
 147bool kvm_has_smm(void)
 148{
 149    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 150}
 151
 152bool kvm_has_adjust_clock_stable(void)
 153{
 154    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 155
 156    return (ret == KVM_CLOCK_TSC_STABLE);
 157}
 158
 159bool kvm_has_adjust_clock(void)
 160{
 161    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 162}
 163
 164bool kvm_has_exception_payload(void)
 165{
 166    return has_exception_payload;
 167}
 168
 169static bool kvm_x2apic_api_set_flags(uint64_t flags)
 170{
 171    KVMState *s = KVM_STATE(current_accel());
 172
 173    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 174}
 175
 176#define MEMORIZE(fn, _result) \
 177    ({ \
 178        static bool _memorized; \
 179        \
 180        if (_memorized) { \
 181            return _result; \
 182        } \
 183        _memorized = true; \
 184        _result = fn; \
 185    })
 186
 187static bool has_x2apic_api;
 188
 189bool kvm_has_x2apic_api(void)
 190{
 191    return has_x2apic_api;
 192}
 193
 194bool kvm_enable_x2apic(void)
 195{
 196    return MEMORIZE(
 197             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 198                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 199             has_x2apic_api);
 200}
 201
 202bool kvm_hv_vpindex_settable(void)
 203{
 204    return hv_vpindex_settable;
 205}
 206
 207static int kvm_get_tsc(CPUState *cs)
 208{
 209    X86CPU *cpu = X86_CPU(cs);
 210    CPUX86State *env = &cpu->env;
 211    struct {
 212        struct kvm_msrs info;
 213        struct kvm_msr_entry entries[1];
 214    } msr_data = {};
 215    int ret;
 216
 217    if (env->tsc_valid) {
 218        return 0;
 219    }
 220
 221    memset(&msr_data, 0, sizeof(msr_data));
 222    msr_data.info.nmsrs = 1;
 223    msr_data.entries[0].index = MSR_IA32_TSC;
 224    env->tsc_valid = !runstate_is_running();
 225
 226    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 227    if (ret < 0) {
 228        return ret;
 229    }
 230
 231    assert(ret == 1);
 232    env->tsc = msr_data.entries[0].data;
 233    return 0;
 234}
 235
 236static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 237{
 238    kvm_get_tsc(cpu);
 239}
 240
 241void kvm_synchronize_all_tsc(void)
 242{
 243    CPUState *cpu;
 244
 245    if (kvm_enabled()) {
 246        CPU_FOREACH(cpu) {
 247            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 248        }
 249    }
 250}
 251
 252static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 253{
 254    struct kvm_cpuid2 *cpuid;
 255    int r, size;
 256
 257    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 258    cpuid = g_malloc0(size);
 259    cpuid->nent = max;
 260    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 261    if (r == 0 && cpuid->nent >= max) {
 262        r = -E2BIG;
 263    }
 264    if (r < 0) {
 265        if (r == -E2BIG) {
 266            g_free(cpuid);
 267            return NULL;
 268        } else {
 269            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 270                    strerror(-r));
 271            exit(1);
 272        }
 273    }
 274    return cpuid;
 275}
 276
 277/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 278 * for all entries.
 279 */
 280static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 281{
 282    struct kvm_cpuid2 *cpuid;
 283    int max = 1;
 284
 285    if (cpuid_cache != NULL) {
 286        return cpuid_cache;
 287    }
 288    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 289        max *= 2;
 290    }
 291    cpuid_cache = cpuid;
 292    return cpuid;
 293}
 294
 295static bool host_tsx_broken(void)
 296{
 297    int family, model, stepping;\
 298    char vendor[CPUID_VENDOR_SZ + 1];
 299
 300    host_cpu_vendor_fms(vendor, &family, &model, &stepping);
 301
 302    /* Check if we are running on a Haswell host known to have broken TSX */
 303    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 304           (family == 6) &&
 305           ((model == 63 && stepping < 4) ||
 306            model == 60 || model == 69 || model == 70);
 307}
 308
 309/* Returns the value for a specific register on the cpuid entry
 310 */
 311static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 312{
 313    uint32_t ret = 0;
 314    switch (reg) {
 315    case R_EAX:
 316        ret = entry->eax;
 317        break;
 318    case R_EBX:
 319        ret = entry->ebx;
 320        break;
 321    case R_ECX:
 322        ret = entry->ecx;
 323        break;
 324    case R_EDX:
 325        ret = entry->edx;
 326        break;
 327    }
 328    return ret;
 329}
 330
 331/* Find matching entry for function/index on kvm_cpuid2 struct
 332 */
 333static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 334                                                 uint32_t function,
 335                                                 uint32_t index)
 336{
 337    int i;
 338    for (i = 0; i < cpuid->nent; ++i) {
 339        if (cpuid->entries[i].function == function &&
 340            cpuid->entries[i].index == index) {
 341            return &cpuid->entries[i];
 342        }
 343    }
 344    /* not found: */
 345    return NULL;
 346}
 347
 348uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 349                                      uint32_t index, int reg)
 350{
 351    struct kvm_cpuid2 *cpuid;
 352    uint32_t ret = 0;
 353    uint32_t cpuid_1_edx;
 354    uint64_t bitmask;
 355
 356    cpuid = get_supported_cpuid(s);
 357
 358    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 359    if (entry) {
 360        ret = cpuid_entry_get_reg(entry, reg);
 361    }
 362
 363    /* Fixups for the data returned by KVM, below */
 364
 365    if (function == 1 && reg == R_EDX) {
 366        /* KVM before 2.6.30 misreports the following features */
 367        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 368    } else if (function == 1 && reg == R_ECX) {
 369        /* We can set the hypervisor flag, even if KVM does not return it on
 370         * GET_SUPPORTED_CPUID
 371         */
 372        ret |= CPUID_EXT_HYPERVISOR;
 373        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 374         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 375         * and the irqchip is in the kernel.
 376         */
 377        if (kvm_irqchip_in_kernel() &&
 378                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 379            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 380        }
 381
 382        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 383         * without the in-kernel irqchip
 384         */
 385        if (!kvm_irqchip_in_kernel()) {
 386            ret &= ~CPUID_EXT_X2APIC;
 387        }
 388
 389        if (enable_cpu_pm) {
 390            int disable_exits = kvm_check_extension(s,
 391                                                    KVM_CAP_X86_DISABLE_EXITS);
 392
 393            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 394                ret |= CPUID_EXT_MONITOR;
 395            }
 396        }
 397    } else if (function == 6 && reg == R_EAX) {
 398        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 399    } else if (function == 7 && index == 0 && reg == R_EBX) {
 400        if (host_tsx_broken()) {
 401            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 402        }
 403    } else if (function == 7 && index == 0 && reg == R_EDX) {
 404        /*
 405         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 406         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 407         * returned by KVM_GET_MSR_INDEX_LIST.
 408         */
 409        if (!has_msr_arch_capabs) {
 410            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 411        }
 412    } else if (function == 0xd && index == 0 &&
 413               (reg == R_EAX || reg == R_EDX)) {
 414        /*
 415         * The value returned by KVM_GET_SUPPORTED_CPUID does not include
 416         * features that still have to be enabled with the arch_prctl
 417         * system call.  QEMU needs the full value, which is retrieved
 418         * with KVM_GET_DEVICE_ATTR.
 419         */
 420        struct kvm_device_attr attr = {
 421            .group = 0,
 422            .attr = KVM_X86_XCOMP_GUEST_SUPP,
 423            .addr = (unsigned long) &bitmask
 424        };
 425
 426        bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
 427        if (!sys_attr) {
 428            return ret;
 429        }
 430
 431        int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 432        if (rc < 0) {
 433            if (rc != -ENXIO) {
 434                warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
 435                            "error: %d", rc);
 436            }
 437            return ret;
 438        }
 439        ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
 440    } else if (function == 0x80000001 && reg == R_ECX) {
 441        /*
 442         * It's safe to enable TOPOEXT even if it's not returned by
 443         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 444         * us to keep CPU models including TOPOEXT runnable on older kernels.
 445         */
 446        ret |= CPUID_EXT3_TOPOEXT;
 447    } else if (function == 0x80000001 && reg == R_EDX) {
 448        /* On Intel, kvm returns cpuid according to the Intel spec,
 449         * so add missing bits according to the AMD spec:
 450         */
 451        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 452        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 453    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 454        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 455         * be enabled without the in-kernel irqchip
 456         */
 457        if (!kvm_irqchip_in_kernel()) {
 458            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 459        }
 460        if (kvm_irqchip_is_split()) {
 461            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 462        }
 463    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 464        ret |= 1U << KVM_HINTS_REALTIME;
 465    }
 466
 467    return ret;
 468}
 469
 470uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 471{
 472    struct {
 473        struct kvm_msrs info;
 474        struct kvm_msr_entry entries[1];
 475    } msr_data = {};
 476    uint64_t value;
 477    uint32_t ret, can_be_one, must_be_one;
 478
 479    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 480        return 0;
 481    }
 482
 483    /* Check if requested MSR is supported feature MSR */
 484    int i;
 485    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 486        if (kvm_feature_msrs->indices[i] == index) {
 487            break;
 488        }
 489    if (i == kvm_feature_msrs->nmsrs) {
 490        return 0; /* if the feature MSR is not supported, simply return 0 */
 491    }
 492
 493    msr_data.info.nmsrs = 1;
 494    msr_data.entries[0].index = index;
 495
 496    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 497    if (ret != 1) {
 498        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 499            index, strerror(-ret));
 500        exit(1);
 501    }
 502
 503    value = msr_data.entries[0].data;
 504    switch (index) {
 505    case MSR_IA32_VMX_PROCBASED_CTLS2:
 506        if (!has_msr_vmx_procbased_ctls2) {
 507            /* KVM forgot to add these bits for some time, do this ourselves. */
 508            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 509                CPUID_XSAVE_XSAVES) {
 510                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 511            }
 512            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 513                CPUID_EXT_RDRAND) {
 514                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 515            }
 516            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 517                CPUID_7_0_EBX_INVPCID) {
 518                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 519            }
 520            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 521                CPUID_7_0_EBX_RDSEED) {
 522                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 523            }
 524            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 525                CPUID_EXT2_RDTSCP) {
 526                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 527            }
 528        }
 529        /* fall through */
 530    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 531    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 532    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 533    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 534        /*
 535         * Return true for bits that can be one, but do not have to be one.
 536         * The SDM tells us which bits could have a "must be one" setting,
 537         * so we can do the opposite transformation in make_vmx_msr_value.
 538         */
 539        must_be_one = (uint32_t)value;
 540        can_be_one = (uint32_t)(value >> 32);
 541        return can_be_one & ~must_be_one;
 542
 543    default:
 544        return value;
 545    }
 546}
 547
 548static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 549                                     int *max_banks)
 550{
 551    int r;
 552
 553    r = kvm_check_extension(s, KVM_CAP_MCE);
 554    if (r > 0) {
 555        *max_banks = r;
 556        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 557    }
 558    return -ENOSYS;
 559}
 560
 561static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 562{
 563    CPUState *cs = CPU(cpu);
 564    CPUX86State *env = &cpu->env;
 565    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 566                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 567    uint64_t mcg_status = MCG_STATUS_MCIP;
 568    int flags = 0;
 569
 570    if (code == BUS_MCEERR_AR) {
 571        status |= MCI_STATUS_AR | 0x134;
 572        mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
 573    } else {
 574        status |= 0xc0;
 575        mcg_status |= MCG_STATUS_RIPV;
 576    }
 577
 578    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 579    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 580     * guest kernel back into env->mcg_ext_ctl.
 581     */
 582    cpu_synchronize_state(cs);
 583    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 584        mcg_status |= MCG_STATUS_LMCE;
 585        flags = 0;
 586    }
 587
 588    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 589                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 590}
 591
 592static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 593{
 594    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 595
 596    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 597                                   &mff);
 598}
 599
 600static void hardware_memory_error(void *host_addr)
 601{
 602    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 603    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 604    exit(1);
 605}
 606
 607void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 608{
 609    X86CPU *cpu = X86_CPU(c);
 610    CPUX86State *env = &cpu->env;
 611    ram_addr_t ram_addr;
 612    hwaddr paddr;
 613
 614    /* If we get an action required MCE, it has been injected by KVM
 615     * while the VM was running.  An action optional MCE instead should
 616     * be coming from the main thread, which qemu_init_sigbus identifies
 617     * as the "early kill" thread.
 618     */
 619    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 620
 621    if ((env->mcg_cap & MCG_SER_P) && addr) {
 622        ram_addr = qemu_ram_addr_from_host(addr);
 623        if (ram_addr != RAM_ADDR_INVALID &&
 624            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 625            kvm_hwpoison_page_add(ram_addr);
 626            kvm_mce_inject(cpu, paddr, code);
 627
 628            /*
 629             * Use different logging severity based on error type.
 630             * If there is additional MCE reporting on the hypervisor, QEMU VA
 631             * could be another source to identify the PA and MCE details.
 632             */
 633            if (code == BUS_MCEERR_AR) {
 634                error_report("Guest MCE Memory Error at QEMU addr %p and "
 635                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 636                    addr, paddr, "BUS_MCEERR_AR");
 637            } else {
 638                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 639                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 640                     addr, paddr, "BUS_MCEERR_AO");
 641            }
 642
 643            return;
 644        }
 645
 646        if (code == BUS_MCEERR_AO) {
 647            warn_report("Hardware memory error at addr %p of type %s "
 648                "for memory used by QEMU itself instead of guest system!",
 649                 addr, "BUS_MCEERR_AO");
 650        }
 651    }
 652
 653    if (code == BUS_MCEERR_AR) {
 654        hardware_memory_error(addr);
 655    }
 656
 657    /* Hope we are lucky for AO MCE, just notify a event */
 658    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 659}
 660
 661static void kvm_reset_exception(CPUX86State *env)
 662{
 663    env->exception_nr = -1;
 664    env->exception_pending = 0;
 665    env->exception_injected = 0;
 666    env->exception_has_payload = false;
 667    env->exception_payload = 0;
 668}
 669
 670static void kvm_queue_exception(CPUX86State *env,
 671                                int32_t exception_nr,
 672                                uint8_t exception_has_payload,
 673                                uint64_t exception_payload)
 674{
 675    assert(env->exception_nr == -1);
 676    assert(!env->exception_pending);
 677    assert(!env->exception_injected);
 678    assert(!env->exception_has_payload);
 679
 680    env->exception_nr = exception_nr;
 681
 682    if (has_exception_payload) {
 683        env->exception_pending = 1;
 684
 685        env->exception_has_payload = exception_has_payload;
 686        env->exception_payload = exception_payload;
 687    } else {
 688        env->exception_injected = 1;
 689
 690        if (exception_nr == EXCP01_DB) {
 691            assert(exception_has_payload);
 692            env->dr[6] = exception_payload;
 693        } else if (exception_nr == EXCP0E_PAGE) {
 694            assert(exception_has_payload);
 695            env->cr[2] = exception_payload;
 696        } else {
 697            assert(!exception_has_payload);
 698        }
 699    }
 700}
 701
 702static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 703{
 704    CPUX86State *env = &cpu->env;
 705
 706    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 707        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 708        struct kvm_x86_mce mce;
 709
 710        kvm_reset_exception(env);
 711
 712        /*
 713         * There must be at least one bank in use if an MCE is pending.
 714         * Find it and use its values for the event injection.
 715         */
 716        for (bank = 0; bank < bank_num; bank++) {
 717            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 718                break;
 719            }
 720        }
 721        assert(bank < bank_num);
 722
 723        mce.bank = bank;
 724        mce.status = env->mce_banks[bank * 4 + 1];
 725        mce.mcg_status = env->mcg_status;
 726        mce.addr = env->mce_banks[bank * 4 + 2];
 727        mce.misc = env->mce_banks[bank * 4 + 3];
 728
 729        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 730    }
 731    return 0;
 732}
 733
 734static void cpu_update_state(void *opaque, bool running, RunState state)
 735{
 736    CPUX86State *env = opaque;
 737
 738    if (running) {
 739        env->tsc_valid = false;
 740    }
 741}
 742
 743unsigned long kvm_arch_vcpu_id(CPUState *cs)
 744{
 745    X86CPU *cpu = X86_CPU(cs);
 746    return cpu->apic_id;
 747}
 748
 749#ifndef KVM_CPUID_SIGNATURE_NEXT
 750#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 751#endif
 752
 753static bool hyperv_enabled(X86CPU *cpu)
 754{
 755    return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
 756        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 757         cpu->hyperv_features || cpu->hyperv_passthrough);
 758}
 759
 760/*
 761 * Check whether target_freq is within conservative
 762 * ntp correctable bounds (250ppm) of freq
 763 */
 764static inline bool freq_within_bounds(int freq, int target_freq)
 765{
 766        int max_freq = freq + (freq * 250 / 1000000);
 767        int min_freq = freq - (freq * 250 / 1000000);
 768
 769        if (target_freq >= min_freq && target_freq <= max_freq) {
 770                return true;
 771        }
 772
 773        return false;
 774}
 775
 776static int kvm_arch_set_tsc_khz(CPUState *cs)
 777{
 778    X86CPU *cpu = X86_CPU(cs);
 779    CPUX86State *env = &cpu->env;
 780    int r, cur_freq;
 781    bool set_ioctl = false;
 782
 783    if (!env->tsc_khz) {
 784        return 0;
 785    }
 786
 787    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 788               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 789
 790    /*
 791     * If TSC scaling is supported, attempt to set TSC frequency.
 792     */
 793    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 794        set_ioctl = true;
 795    }
 796
 797    /*
 798     * If desired TSC frequency is within bounds of NTP correction,
 799     * attempt to set TSC frequency.
 800     */
 801    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 802        set_ioctl = true;
 803    }
 804
 805    r = set_ioctl ?
 806        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 807        -ENOTSUP;
 808
 809    if (r < 0) {
 810        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 811         * TSC frequency doesn't match the one we want.
 812         */
 813        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 814                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 815                   -ENOTSUP;
 816        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 817            warn_report("TSC frequency mismatch between "
 818                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 819                        "and TSC scaling unavailable",
 820                        env->tsc_khz, cur_freq);
 821            return r;
 822        }
 823    }
 824
 825    return 0;
 826}
 827
 828static bool tsc_is_stable_and_known(CPUX86State *env)
 829{
 830    if (!env->tsc_khz) {
 831        return false;
 832    }
 833    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 834        || env->user_tsc_khz;
 835}
 836
 837static struct {
 838    const char *desc;
 839    struct {
 840        uint32_t func;
 841        int reg;
 842        uint32_t bits;
 843    } flags[2];
 844    uint64_t dependencies;
 845} kvm_hyperv_properties[] = {
 846    [HYPERV_FEAT_RELAXED] = {
 847        .desc = "relaxed timing (hv-relaxed)",
 848        .flags = {
 849            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 850             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 851        }
 852    },
 853    [HYPERV_FEAT_VAPIC] = {
 854        .desc = "virtual APIC (hv-vapic)",
 855        .flags = {
 856            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 857             .bits = HV_APIC_ACCESS_AVAILABLE}
 858        }
 859    },
 860    [HYPERV_FEAT_TIME] = {
 861        .desc = "clocksources (hv-time)",
 862        .flags = {
 863            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 864             .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
 865        }
 866    },
 867    [HYPERV_FEAT_CRASH] = {
 868        .desc = "crash MSRs (hv-crash)",
 869        .flags = {
 870            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 871             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 872        }
 873    },
 874    [HYPERV_FEAT_RESET] = {
 875        .desc = "reset MSR (hv-reset)",
 876        .flags = {
 877            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 878             .bits = HV_RESET_AVAILABLE}
 879        }
 880    },
 881    [HYPERV_FEAT_VPINDEX] = {
 882        .desc = "VP_INDEX MSR (hv-vpindex)",
 883        .flags = {
 884            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 885             .bits = HV_VP_INDEX_AVAILABLE}
 886        }
 887    },
 888    [HYPERV_FEAT_RUNTIME] = {
 889        .desc = "VP_RUNTIME MSR (hv-runtime)",
 890        .flags = {
 891            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 892             .bits = HV_VP_RUNTIME_AVAILABLE}
 893        }
 894    },
 895    [HYPERV_FEAT_SYNIC] = {
 896        .desc = "synthetic interrupt controller (hv-synic)",
 897        .flags = {
 898            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 899             .bits = HV_SYNIC_AVAILABLE}
 900        }
 901    },
 902    [HYPERV_FEAT_STIMER] = {
 903        .desc = "synthetic timers (hv-stimer)",
 904        .flags = {
 905            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 906             .bits = HV_SYNTIMERS_AVAILABLE}
 907        },
 908        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 909    },
 910    [HYPERV_FEAT_FREQUENCIES] = {
 911        .desc = "frequency MSRs (hv-frequencies)",
 912        .flags = {
 913            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 914             .bits = HV_ACCESS_FREQUENCY_MSRS},
 915            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 916             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 917        }
 918    },
 919    [HYPERV_FEAT_REENLIGHTENMENT] = {
 920        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 921        .flags = {
 922            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 923             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 924        }
 925    },
 926    [HYPERV_FEAT_TLBFLUSH] = {
 927        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 928        .flags = {
 929            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 930             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 931             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 932        },
 933        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 934    },
 935    [HYPERV_FEAT_EVMCS] = {
 936        .desc = "enlightened VMCS (hv-evmcs)",
 937        .flags = {
 938            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 939             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 940        },
 941        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 942    },
 943    [HYPERV_FEAT_IPI] = {
 944        .desc = "paravirtualized IPI (hv-ipi)",
 945        .flags = {
 946            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 947             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 948             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 949        },
 950        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 951    },
 952    [HYPERV_FEAT_STIMER_DIRECT] = {
 953        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 954        .flags = {
 955            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 956             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 957        },
 958        .dependencies = BIT(HYPERV_FEAT_STIMER)
 959    },
 960    [HYPERV_FEAT_AVIC] = {
 961        .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
 962        .flags = {
 963            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 964             .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
 965        }
 966    },
 967};
 968
 969static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
 970                                           bool do_sys_ioctl)
 971{
 972    struct kvm_cpuid2 *cpuid;
 973    int r, size;
 974
 975    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 976    cpuid = g_malloc0(size);
 977    cpuid->nent = max;
 978
 979    if (do_sys_ioctl) {
 980        r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
 981    } else {
 982        r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
 983    }
 984    if (r == 0 && cpuid->nent >= max) {
 985        r = -E2BIG;
 986    }
 987    if (r < 0) {
 988        if (r == -E2BIG) {
 989            g_free(cpuid);
 990            return NULL;
 991        } else {
 992            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
 993                    strerror(-r));
 994            exit(1);
 995        }
 996    }
 997    return cpuid;
 998}
 999
1000/*
1001 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1002 * for all entries.
1003 */
1004static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1005{
1006    struct kvm_cpuid2 *cpuid;
1007    /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000080 leaves */
1008    int max = 10;
1009    int i;
1010    bool do_sys_ioctl;
1011
1012    do_sys_ioctl =
1013        kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1014
1015    /*
1016     * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1017     * unsupported, kvm_hyperv_expand_features() checks for that.
1018     */
1019    assert(do_sys_ioctl || cs->kvm_state);
1020
1021    /*
1022     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1023     * -E2BIG, however, it doesn't report back the right size. Keep increasing
1024     * it and re-trying until we succeed.
1025     */
1026    while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1027        max++;
1028    }
1029
1030    /*
1031     * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1032     * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1033     * information early, just check for the capability and set the bit
1034     * manually.
1035     */
1036    if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1037                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1038        for (i = 0; i < cpuid->nent; i++) {
1039            if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1040                cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1041            }
1042        }
1043    }
1044
1045    return cpuid;
1046}
1047
1048/*
1049 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1050 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1051 */
1052static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1053{
1054    X86CPU *cpu = X86_CPU(cs);
1055    struct kvm_cpuid2 *cpuid;
1056    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1057
1058    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1059    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1060    cpuid->nent = 2;
1061
1062    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1063    entry_feat = &cpuid->entries[0];
1064    entry_feat->function = HV_CPUID_FEATURES;
1065
1066    entry_recomm = &cpuid->entries[1];
1067    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1068    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1069
1070    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1071        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1072        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1073        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1074        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1075        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1076    }
1077
1078    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1079        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1080        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1081    }
1082
1083    if (has_msr_hv_frequencies) {
1084        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1085        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1086    }
1087
1088    if (has_msr_hv_crash) {
1089        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1090    }
1091
1092    if (has_msr_hv_reenlightenment) {
1093        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1094    }
1095
1096    if (has_msr_hv_reset) {
1097        entry_feat->eax |= HV_RESET_AVAILABLE;
1098    }
1099
1100    if (has_msr_hv_vpindex) {
1101        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1102    }
1103
1104    if (has_msr_hv_runtime) {
1105        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1106    }
1107
1108    if (has_msr_hv_synic) {
1109        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1110            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1111
1112        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1113            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1114        }
1115    }
1116
1117    if (has_msr_hv_stimer) {
1118        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1119    }
1120
1121    if (kvm_check_extension(cs->kvm_state,
1122                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1123        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1124        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1125    }
1126
1127    if (kvm_check_extension(cs->kvm_state,
1128                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1129        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1130    }
1131
1132    if (kvm_check_extension(cs->kvm_state,
1133                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1134        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1135        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1136    }
1137
1138    return cpuid;
1139}
1140
1141static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1142{
1143    struct kvm_cpuid_entry2 *entry;
1144    struct kvm_cpuid2 *cpuid;
1145
1146    if (hv_cpuid_cache) {
1147        cpuid = hv_cpuid_cache;
1148    } else {
1149        if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1150            cpuid = get_supported_hv_cpuid(cs);
1151        } else {
1152            /*
1153             * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1154             * before KVM context is created but this is only done when
1155             * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1156             * KVM_CAP_HYPERV_CPUID.
1157             */
1158            assert(cs->kvm_state);
1159
1160            cpuid = get_supported_hv_cpuid_legacy(cs);
1161        }
1162        hv_cpuid_cache = cpuid;
1163    }
1164
1165    if (!cpuid) {
1166        return 0;
1167    }
1168
1169    entry = cpuid_find_entry(cpuid, func, 0);
1170    if (!entry) {
1171        return 0;
1172    }
1173
1174    return cpuid_entry_get_reg(entry, reg);
1175}
1176
1177static bool hyperv_feature_supported(CPUState *cs, int feature)
1178{
1179    uint32_t func, bits;
1180    int i, reg;
1181
1182    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1183
1184        func = kvm_hyperv_properties[feature].flags[i].func;
1185        reg = kvm_hyperv_properties[feature].flags[i].reg;
1186        bits = kvm_hyperv_properties[feature].flags[i].bits;
1187
1188        if (!func) {
1189            continue;
1190        }
1191
1192        if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1193            return false;
1194        }
1195    }
1196
1197    return true;
1198}
1199
1200/* Checks that all feature dependencies are enabled */
1201static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1202{
1203    uint64_t deps;
1204    int dep_feat;
1205
1206    deps = kvm_hyperv_properties[feature].dependencies;
1207    while (deps) {
1208        dep_feat = ctz64(deps);
1209        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1210            error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1211                       kvm_hyperv_properties[feature].desc,
1212                       kvm_hyperv_properties[dep_feat].desc);
1213            return false;
1214        }
1215        deps &= ~(1ull << dep_feat);
1216    }
1217
1218    return true;
1219}
1220
1221static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1222{
1223    X86CPU *cpu = X86_CPU(cs);
1224    uint32_t r = 0;
1225    int i, j;
1226
1227    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1228        if (!hyperv_feat_enabled(cpu, i)) {
1229            continue;
1230        }
1231
1232        for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1233            if (kvm_hyperv_properties[i].flags[j].func != func) {
1234                continue;
1235            }
1236            if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1237                continue;
1238            }
1239
1240            r |= kvm_hyperv_properties[i].flags[j].bits;
1241        }
1242    }
1243
1244    return r;
1245}
1246
1247/*
1248 * Expand Hyper-V CPU features. In partucular, check that all the requested
1249 * features are supported by the host and the sanity of the configuration
1250 * (that all the required dependencies are included). Also, this takes care
1251 * of 'hv_passthrough' mode and fills the environment with all supported
1252 * Hyper-V features.
1253 */
1254bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1255{
1256    CPUState *cs = CPU(cpu);
1257    Error *local_err = NULL;
1258    int feat;
1259
1260    if (!hyperv_enabled(cpu))
1261        return true;
1262
1263    /*
1264     * When kvm_hyperv_expand_features is called at CPU feature expansion
1265     * time per-CPU kvm_state is not available yet so we can only proceed
1266     * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1267     */
1268    if (!cs->kvm_state &&
1269        !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1270        return true;
1271
1272    if (cpu->hyperv_passthrough) {
1273        cpu->hyperv_vendor_id[0] =
1274            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1275        cpu->hyperv_vendor_id[1] =
1276            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1277        cpu->hyperv_vendor_id[2] =
1278            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1279        cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1280                                       sizeof(cpu->hyperv_vendor_id) + 1);
1281        memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1282               sizeof(cpu->hyperv_vendor_id));
1283        cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1284
1285        cpu->hyperv_interface_id[0] =
1286            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1287        cpu->hyperv_interface_id[1] =
1288            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1289        cpu->hyperv_interface_id[2] =
1290            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1291        cpu->hyperv_interface_id[3] =
1292            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1293
1294        cpu->hyperv_ver_id_build =
1295            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1296        cpu->hyperv_ver_id_major =
1297            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1298        cpu->hyperv_ver_id_minor =
1299            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1300        cpu->hyperv_ver_id_sp =
1301            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1302        cpu->hyperv_ver_id_sb =
1303            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1304        cpu->hyperv_ver_id_sn =
1305            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1306
1307        cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1308                                            R_EAX);
1309        cpu->hyperv_limits[0] =
1310            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1311        cpu->hyperv_limits[1] =
1312            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1313        cpu->hyperv_limits[2] =
1314            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1315
1316        cpu->hyperv_spinlock_attempts =
1317            hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1318
1319        /*
1320         * Mark feature as enabled in 'cpu->hyperv_features' as
1321         * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1322         */
1323        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1324            if (hyperv_feature_supported(cs, feat)) {
1325                cpu->hyperv_features |= BIT(feat);
1326            }
1327        }
1328    } else {
1329        /* Check features availability and dependencies */
1330        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1331            /* If the feature was not requested skip it. */
1332            if (!hyperv_feat_enabled(cpu, feat)) {
1333                continue;
1334            }
1335
1336            /* Check if the feature is supported by KVM */
1337            if (!hyperv_feature_supported(cs, feat)) {
1338                error_setg(errp, "Hyper-V %s is not supported by kernel",
1339                           kvm_hyperv_properties[feat].desc);
1340                return false;
1341            }
1342
1343            /* Check dependencies */
1344            if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1345                error_propagate(errp, local_err);
1346                return false;
1347            }
1348        }
1349    }
1350
1351    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1352    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1353        !cpu->hyperv_synic_kvm_only &&
1354        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1355        error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1356                   kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1357                   kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1358        return false;
1359    }
1360
1361    return true;
1362}
1363
1364/*
1365 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1366 */
1367static int hyperv_fill_cpuids(CPUState *cs,
1368                              struct kvm_cpuid_entry2 *cpuid_ent)
1369{
1370    X86CPU *cpu = X86_CPU(cs);
1371    struct kvm_cpuid_entry2 *c;
1372    uint32_t cpuid_i = 0;
1373
1374    c = &cpuid_ent[cpuid_i++];
1375    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1376    c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1377        HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1378    c->ebx = cpu->hyperv_vendor_id[0];
1379    c->ecx = cpu->hyperv_vendor_id[1];
1380    c->edx = cpu->hyperv_vendor_id[2];
1381
1382    c = &cpuid_ent[cpuid_i++];
1383    c->function = HV_CPUID_INTERFACE;
1384    c->eax = cpu->hyperv_interface_id[0];
1385    c->ebx = cpu->hyperv_interface_id[1];
1386    c->ecx = cpu->hyperv_interface_id[2];
1387    c->edx = cpu->hyperv_interface_id[3];
1388
1389    c = &cpuid_ent[cpuid_i++];
1390    c->function = HV_CPUID_VERSION;
1391    c->eax = cpu->hyperv_ver_id_build;
1392    c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1393        cpu->hyperv_ver_id_minor;
1394    c->ecx = cpu->hyperv_ver_id_sp;
1395    c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1396        (cpu->hyperv_ver_id_sn & 0xffffff);
1397
1398    c = &cpuid_ent[cpuid_i++];
1399    c->function = HV_CPUID_FEATURES;
1400    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1401    c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1402    c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1403
1404    /* Unconditionally required with any Hyper-V enlightenment */
1405    c->eax |= HV_HYPERCALL_AVAILABLE;
1406
1407    /* SynIC and Vmbus devices require messages/signals hypercalls */
1408    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1409        !cpu->hyperv_synic_kvm_only) {
1410        c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1411    }
1412
1413
1414    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1415    c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1416
1417    c = &cpuid_ent[cpuid_i++];
1418    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1419    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1420    c->ebx = cpu->hyperv_spinlock_attempts;
1421
1422    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1423        !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1424        c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1425    }
1426
1427    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1428        c->eax |= HV_NO_NONARCH_CORESHARING;
1429    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1430        c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1431            HV_NO_NONARCH_CORESHARING;
1432    }
1433
1434    c = &cpuid_ent[cpuid_i++];
1435    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1436    c->eax = cpu->hv_max_vps;
1437    c->ebx = cpu->hyperv_limits[0];
1438    c->ecx = cpu->hyperv_limits[1];
1439    c->edx = cpu->hyperv_limits[2];
1440
1441    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1442        uint32_t function;
1443
1444        /* Create zeroed 0x40000006..0x40000009 leaves */
1445        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1446             function < HV_CPUID_NESTED_FEATURES; function++) {
1447            c = &cpuid_ent[cpuid_i++];
1448            c->function = function;
1449        }
1450
1451        c = &cpuid_ent[cpuid_i++];
1452        c->function = HV_CPUID_NESTED_FEATURES;
1453        c->eax = cpu->hyperv_nested[0];
1454    }
1455
1456    return cpuid_i;
1457}
1458
1459static Error *hv_passthrough_mig_blocker;
1460static Error *hv_no_nonarch_cs_mig_blocker;
1461
1462/* Checks that the exposed eVMCS version range is supported by KVM */
1463static bool evmcs_version_supported(uint16_t evmcs_version,
1464                                    uint16_t supported_evmcs_version)
1465{
1466    uint8_t min_version = evmcs_version & 0xff;
1467    uint8_t max_version = evmcs_version >> 8;
1468    uint8_t min_supported_version = supported_evmcs_version & 0xff;
1469    uint8_t max_supported_version = supported_evmcs_version >> 8;
1470
1471    return (min_version >= min_supported_version) &&
1472        (max_version <= max_supported_version);
1473}
1474
1475#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
1476
1477static int hyperv_init_vcpu(X86CPU *cpu)
1478{
1479    CPUState *cs = CPU(cpu);
1480    Error *local_err = NULL;
1481    int ret;
1482
1483    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1484        error_setg(&hv_passthrough_mig_blocker,
1485                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1486                   " set of hv-* flags instead");
1487        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1488        if (ret < 0) {
1489            error_report_err(local_err);
1490            return ret;
1491        }
1492    }
1493
1494    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1495        hv_no_nonarch_cs_mig_blocker == NULL) {
1496        error_setg(&hv_no_nonarch_cs_mig_blocker,
1497                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1498                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1499                   " make sure SMT is disabled and/or that vCPUs are properly"
1500                   " pinned)");
1501        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1502        if (ret < 0) {
1503            error_report_err(local_err);
1504            return ret;
1505        }
1506    }
1507
1508    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1509        /*
1510         * the kernel doesn't support setting vp_index; assert that its value
1511         * is in sync
1512         */
1513        struct {
1514            struct kvm_msrs info;
1515            struct kvm_msr_entry entries[1];
1516        } msr_data = {
1517            .info.nmsrs = 1,
1518            .entries[0].index = HV_X64_MSR_VP_INDEX,
1519        };
1520
1521        ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1522        if (ret < 0) {
1523            return ret;
1524        }
1525        assert(ret == 1);
1526
1527        if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1528            error_report("kernel's vp_index != QEMU's vp_index");
1529            return -ENXIO;
1530        }
1531    }
1532
1533    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1534        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1535            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1536        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1537        if (ret < 0) {
1538            error_report("failed to turn on HyperV SynIC in KVM: %s",
1539                         strerror(-ret));
1540            return ret;
1541        }
1542
1543        if (!cpu->hyperv_synic_kvm_only) {
1544            ret = hyperv_x86_synic_add(cpu);
1545            if (ret < 0) {
1546                error_report("failed to create HyperV SynIC: %s",
1547                             strerror(-ret));
1548                return ret;
1549            }
1550        }
1551    }
1552
1553    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1554        uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1555        uint16_t supported_evmcs_version;
1556
1557        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1558                                  (uintptr_t)&supported_evmcs_version);
1559
1560        /*
1561         * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1562         * option sets. Note: we hardcode the maximum supported eVMCS version
1563         * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1564         * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1565         * to be added.
1566         */
1567        if (ret < 0) {
1568            error_report("Hyper-V %s is not supported by kernel",
1569                         kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1570            return ret;
1571        }
1572
1573        if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1574            error_report("eVMCS version range [%d..%d] is not supported by "
1575                         "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1576                         evmcs_version >> 8, supported_evmcs_version & 0xff,
1577                         supported_evmcs_version >> 8);
1578            return -ENOTSUP;
1579        }
1580
1581        cpu->hyperv_nested[0] = evmcs_version;
1582    }
1583
1584    if (cpu->hyperv_enforce_cpuid) {
1585        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1586        if (ret < 0) {
1587            error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1588                         strerror(-ret));
1589            return ret;
1590        }
1591    }
1592
1593    return 0;
1594}
1595
1596static Error *invtsc_mig_blocker;
1597
1598#define KVM_MAX_CPUID_ENTRIES  100
1599
1600static void kvm_init_xsave(CPUX86State *env)
1601{
1602    if (has_xsave2) {
1603        env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1604    } else if (has_xsave) {
1605        env->xsave_buf_len = sizeof(struct kvm_xsave);
1606    } else {
1607        return;
1608    }
1609
1610    env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1611    memset(env->xsave_buf, 0, env->xsave_buf_len);
1612    /*
1613     * The allocated storage must be large enough for all of the
1614     * possible XSAVE state components.
1615     */
1616    assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1617           env->xsave_buf_len);
1618}
1619
1620int kvm_arch_init_vcpu(CPUState *cs)
1621{
1622    struct {
1623        struct kvm_cpuid2 cpuid;
1624        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1625    } cpuid_data;
1626    /*
1627     * The kernel defines these structs with padding fields so there
1628     * should be no extra padding in our cpuid_data struct.
1629     */
1630    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1631                      sizeof(struct kvm_cpuid2) +
1632                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1633
1634    X86CPU *cpu = X86_CPU(cs);
1635    CPUX86State *env = &cpu->env;
1636    uint32_t limit, i, j, cpuid_i;
1637    uint32_t unused;
1638    struct kvm_cpuid_entry2 *c;
1639    uint32_t signature[3];
1640    int kvm_base = KVM_CPUID_SIGNATURE;
1641    int max_nested_state_len;
1642    int r;
1643    Error *local_err = NULL;
1644
1645    memset(&cpuid_data, 0, sizeof(cpuid_data));
1646
1647    cpuid_i = 0;
1648
1649    has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1650
1651    r = kvm_arch_set_tsc_khz(cs);
1652    if (r < 0) {
1653        return r;
1654    }
1655
1656    /* vcpu's TSC frequency is either specified by user, or following
1657     * the value used by KVM if the former is not present. In the
1658     * latter case, we query it from KVM and record in env->tsc_khz,
1659     * so that vcpu's TSC frequency can be migrated later via this field.
1660     */
1661    if (!env->tsc_khz) {
1662        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1663            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1664            -ENOTSUP;
1665        if (r > 0) {
1666            env->tsc_khz = r;
1667        }
1668    }
1669
1670    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1671
1672    /*
1673     * kvm_hyperv_expand_features() is called here for the second time in case
1674     * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1675     * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1676     * check which Hyper-V enlightenments are supported and which are not, we
1677     * can still proceed and check/expand Hyper-V enlightenments here so legacy
1678     * behavior is preserved.
1679     */
1680    if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1681        error_report_err(local_err);
1682        return -ENOSYS;
1683    }
1684
1685    if (hyperv_enabled(cpu)) {
1686        r = hyperv_init_vcpu(cpu);
1687        if (r) {
1688            return r;
1689        }
1690
1691        cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1692        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1693        has_msr_hv_hypercall = true;
1694    }
1695
1696    if (cpu->expose_kvm) {
1697        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1698        c = &cpuid_data.entries[cpuid_i++];
1699        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1700        c->eax = KVM_CPUID_FEATURES | kvm_base;
1701        c->ebx = signature[0];
1702        c->ecx = signature[1];
1703        c->edx = signature[2];
1704
1705        c = &cpuid_data.entries[cpuid_i++];
1706        c->function = KVM_CPUID_FEATURES | kvm_base;
1707        c->eax = env->features[FEAT_KVM];
1708        c->edx = env->features[FEAT_KVM_HINTS];
1709    }
1710
1711    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1712
1713    if (cpu->kvm_pv_enforce_cpuid) {
1714        r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1715        if (r < 0) {
1716            fprintf(stderr,
1717                    "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1718                    strerror(-r));
1719            abort();
1720        }
1721    }
1722
1723    for (i = 0; i <= limit; i++) {
1724        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1725            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1726            abort();
1727        }
1728        c = &cpuid_data.entries[cpuid_i++];
1729
1730        switch (i) {
1731        case 2: {
1732            /* Keep reading function 2 till all the input is received */
1733            int times;
1734
1735            c->function = i;
1736            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1737                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1738            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1739            times = c->eax & 0xff;
1740
1741            for (j = 1; j < times; ++j) {
1742                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1743                    fprintf(stderr, "cpuid_data is full, no space for "
1744                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1745                    abort();
1746                }
1747                c = &cpuid_data.entries[cpuid_i++];
1748                c->function = i;
1749                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1750                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1751            }
1752            break;
1753        }
1754        case 0x1f:
1755            if (env->nr_dies < 2) {
1756                break;
1757            }
1758            /* fallthrough */
1759        case 4:
1760        case 0xb:
1761        case 0xd:
1762            for (j = 0; ; j++) {
1763                if (i == 0xd && j == 64) {
1764                    break;
1765                }
1766
1767                if (i == 0x1f && j == 64) {
1768                    break;
1769                }
1770
1771                c->function = i;
1772                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1773                c->index = j;
1774                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1775
1776                if (i == 4 && c->eax == 0) {
1777                    break;
1778                }
1779                if (i == 0xb && !(c->ecx & 0xff00)) {
1780                    break;
1781                }
1782                if (i == 0x1f && !(c->ecx & 0xff00)) {
1783                    break;
1784                }
1785                if (i == 0xd && c->eax == 0) {
1786                    continue;
1787                }
1788                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1789                    fprintf(stderr, "cpuid_data is full, no space for "
1790                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1791                    abort();
1792                }
1793                c = &cpuid_data.entries[cpuid_i++];
1794            }
1795            break;
1796        case 0x7:
1797        case 0x12:
1798            for (j = 0; ; j++) {
1799                c->function = i;
1800                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1801                c->index = j;
1802                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1803
1804                if (j > 1 && (c->eax & 0xf) != 1) {
1805                    break;
1806                }
1807
1808                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1809                    fprintf(stderr, "cpuid_data is full, no space for "
1810                                "cpuid(eax:0x12,ecx:0x%x)\n", j);
1811                    abort();
1812                }
1813                c = &cpuid_data.entries[cpuid_i++];
1814            }
1815            break;
1816        case 0x14:
1817        case 0x1d:
1818        case 0x1e: {
1819            uint32_t times;
1820
1821            c->function = i;
1822            c->index = 0;
1823            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1824            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1825            times = c->eax;
1826
1827            for (j = 1; j <= times; ++j) {
1828                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1829                    fprintf(stderr, "cpuid_data is full, no space for "
1830                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1831                    abort();
1832                }
1833                c = &cpuid_data.entries[cpuid_i++];
1834                c->function = i;
1835                c->index = j;
1836                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1837                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1838            }
1839            break;
1840        }
1841        default:
1842            c->function = i;
1843            c->flags = 0;
1844            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1845            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1846                /*
1847                 * KVM already returns all zeroes if a CPUID entry is missing,
1848                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1849                 */
1850                cpuid_i--;
1851            }
1852            break;
1853        }
1854    }
1855
1856    if (limit >= 0x0a) {
1857        uint32_t eax, edx;
1858
1859        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1860
1861        has_architectural_pmu_version = eax & 0xff;
1862        if (has_architectural_pmu_version > 0) {
1863            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1864
1865            /* Shouldn't be more than 32, since that's the number of bits
1866             * available in EBX to tell us _which_ counters are available.
1867             * Play it safe.
1868             */
1869            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1870                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1871            }
1872
1873            if (has_architectural_pmu_version > 1) {
1874                num_architectural_pmu_fixed_counters = edx & 0x1f;
1875
1876                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1877                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1878                }
1879            }
1880        }
1881    }
1882
1883    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1884
1885    for (i = 0x80000000; i <= limit; i++) {
1886        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1887            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1888            abort();
1889        }
1890        c = &cpuid_data.entries[cpuid_i++];
1891
1892        switch (i) {
1893        case 0x8000001d:
1894            /* Query for all AMD cache information leaves */
1895            for (j = 0; ; j++) {
1896                c->function = i;
1897                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1898                c->index = j;
1899                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900
1901                if (c->eax == 0) {
1902                    break;
1903                }
1904                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1905                    fprintf(stderr, "cpuid_data is full, no space for "
1906                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1907                    abort();
1908                }
1909                c = &cpuid_data.entries[cpuid_i++];
1910            }
1911            break;
1912        default:
1913            c->function = i;
1914            c->flags = 0;
1915            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1916            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1917                /*
1918                 * KVM already returns all zeroes if a CPUID entry is missing,
1919                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1920                 */
1921                cpuid_i--;
1922            }
1923            break;
1924        }
1925    }
1926
1927    /* Call Centaur's CPUID instructions they are supported. */
1928    if (env->cpuid_xlevel2 > 0) {
1929        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1930
1931        for (i = 0xC0000000; i <= limit; i++) {
1932            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1933                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1934                abort();
1935            }
1936            c = &cpuid_data.entries[cpuid_i++];
1937
1938            c->function = i;
1939            c->flags = 0;
1940            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1941        }
1942    }
1943
1944    cpuid_data.cpuid.nent = cpuid_i;
1945
1946    if (((env->cpuid_version >> 8)&0xF) >= 6
1947        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1948           (CPUID_MCE | CPUID_MCA)
1949        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1950        uint64_t mcg_cap, unsupported_caps;
1951        int banks;
1952        int ret;
1953
1954        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1955        if (ret < 0) {
1956            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1957            return ret;
1958        }
1959
1960        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1961            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1962                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1963            return -ENOTSUP;
1964        }
1965
1966        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1967        if (unsupported_caps) {
1968            if (unsupported_caps & MCG_LMCE_P) {
1969                error_report("kvm: LMCE not supported");
1970                return -ENOTSUP;
1971            }
1972            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1973                        unsupported_caps);
1974        }
1975
1976        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1977        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1978        if (ret < 0) {
1979            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1980            return ret;
1981        }
1982    }
1983
1984    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1985
1986    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1987    if (c) {
1988        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1989                                  !!(c->ecx & CPUID_EXT_SMX);
1990    }
1991
1992    c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
1993    if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
1994        has_msr_feature_control = true;
1995    }
1996
1997    if (env->mcg_cap & MCG_LMCE_P) {
1998        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1999    }
2000
2001    if (!env->user_tsc_khz) {
2002        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2003            invtsc_mig_blocker == NULL) {
2004            error_setg(&invtsc_mig_blocker,
2005                       "State blocked by non-migratable CPU device"
2006                       " (invtsc flag)");
2007            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2008            if (r < 0) {
2009                error_report_err(local_err);
2010                return r;
2011            }
2012        }
2013    }
2014
2015    if (cpu->vmware_cpuid_freq
2016        /* Guests depend on 0x40000000 to detect this feature, so only expose
2017         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2018        && cpu->expose_kvm
2019        && kvm_base == KVM_CPUID_SIGNATURE
2020        /* TSC clock must be stable and known for this feature. */
2021        && tsc_is_stable_and_known(env)) {
2022
2023        c = &cpuid_data.entries[cpuid_i++];
2024        c->function = KVM_CPUID_SIGNATURE | 0x10;
2025        c->eax = env->tsc_khz;
2026        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2027        c->ecx = c->edx = 0;
2028
2029        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2030        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2031    }
2032
2033    cpuid_data.cpuid.nent = cpuid_i;
2034
2035    cpuid_data.cpuid.padding = 0;
2036    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2037    if (r) {
2038        goto fail;
2039    }
2040    kvm_init_xsave(env);
2041
2042    max_nested_state_len = kvm_max_nested_state_length();
2043    if (max_nested_state_len > 0) {
2044        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2045
2046        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2047            struct kvm_vmx_nested_state_hdr *vmx_hdr;
2048
2049            env->nested_state = g_malloc0(max_nested_state_len);
2050            env->nested_state->size = max_nested_state_len;
2051
2052            if (cpu_has_vmx(env)) {
2053                env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2054                vmx_hdr = &env->nested_state->hdr.vmx;
2055                vmx_hdr->vmxon_pa = -1ull;
2056                vmx_hdr->vmcs12_pa = -1ull;
2057            } else {
2058                env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2059            }
2060        }
2061    }
2062
2063    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2064
2065    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2066        has_msr_tsc_aux = false;
2067    }
2068
2069    kvm_init_msrs(cpu);
2070
2071    return 0;
2072
2073 fail:
2074    migrate_del_blocker(invtsc_mig_blocker);
2075
2076    return r;
2077}
2078
2079int kvm_arch_destroy_vcpu(CPUState *cs)
2080{
2081    X86CPU *cpu = X86_CPU(cs);
2082    CPUX86State *env = &cpu->env;
2083
2084    g_free(env->xsave_buf);
2085
2086    if (cpu->kvm_msr_buf) {
2087        g_free(cpu->kvm_msr_buf);
2088        cpu->kvm_msr_buf = NULL;
2089    }
2090
2091    if (env->nested_state) {
2092        g_free(env->nested_state);
2093        env->nested_state = NULL;
2094    }
2095
2096    qemu_del_vm_change_state_handler(cpu->vmsentry);
2097
2098    return 0;
2099}
2100
2101void kvm_arch_reset_vcpu(X86CPU *cpu)
2102{
2103    CPUX86State *env = &cpu->env;
2104
2105    env->xcr0 = 1;
2106    if (kvm_irqchip_in_kernel()) {
2107        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2108                                          KVM_MP_STATE_UNINITIALIZED;
2109    } else {
2110        env->mp_state = KVM_MP_STATE_RUNNABLE;
2111    }
2112
2113    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2114        int i;
2115        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2116            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2117        }
2118
2119        hyperv_x86_synic_reset(cpu);
2120    }
2121    /* enabled by default */
2122    env->poll_control_msr = 1;
2123
2124    sev_es_set_reset_vector(CPU(cpu));
2125}
2126
2127void kvm_arch_do_init_vcpu(X86CPU *cpu)
2128{
2129    CPUX86State *env = &cpu->env;
2130
2131    /* APs get directly into wait-for-SIPI state.  */
2132    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2133        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2134    }
2135}
2136
2137static int kvm_get_supported_feature_msrs(KVMState *s)
2138{
2139    int ret = 0;
2140
2141    if (kvm_feature_msrs != NULL) {
2142        return 0;
2143    }
2144
2145    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2146        return 0;
2147    }
2148
2149    struct kvm_msr_list msr_list;
2150
2151    msr_list.nmsrs = 0;
2152    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2153    if (ret < 0 && ret != -E2BIG) {
2154        error_report("Fetch KVM feature MSR list failed: %s",
2155            strerror(-ret));
2156        return ret;
2157    }
2158
2159    assert(msr_list.nmsrs > 0);
2160    kvm_feature_msrs = (struct kvm_msr_list *) \
2161        g_malloc0(sizeof(msr_list) +
2162                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2163
2164    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2165    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2166
2167    if (ret < 0) {
2168        error_report("Fetch KVM feature MSR list failed: %s",
2169            strerror(-ret));
2170        g_free(kvm_feature_msrs);
2171        kvm_feature_msrs = NULL;
2172        return ret;
2173    }
2174
2175    return 0;
2176}
2177
2178static int kvm_get_supported_msrs(KVMState *s)
2179{
2180    int ret = 0;
2181    struct kvm_msr_list msr_list, *kvm_msr_list;
2182
2183    /*
2184     *  Obtain MSR list from KVM.  These are the MSRs that we must
2185     *  save/restore.
2186     */
2187    msr_list.nmsrs = 0;
2188    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2189    if (ret < 0 && ret != -E2BIG) {
2190        return ret;
2191    }
2192    /*
2193     * Old kernel modules had a bug and could write beyond the provided
2194     * memory. Allocate at least a safe amount of 1K.
2195     */
2196    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2197                                          msr_list.nmsrs *
2198                                          sizeof(msr_list.indices[0])));
2199
2200    kvm_msr_list->nmsrs = msr_list.nmsrs;
2201    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2202    if (ret >= 0) {
2203        int i;
2204
2205        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2206            switch (kvm_msr_list->indices[i]) {
2207            case MSR_STAR:
2208                has_msr_star = true;
2209                break;
2210            case MSR_VM_HSAVE_PA:
2211                has_msr_hsave_pa = true;
2212                break;
2213            case MSR_TSC_AUX:
2214                has_msr_tsc_aux = true;
2215                break;
2216            case MSR_TSC_ADJUST:
2217                has_msr_tsc_adjust = true;
2218                break;
2219            case MSR_IA32_TSCDEADLINE:
2220                has_msr_tsc_deadline = true;
2221                break;
2222            case MSR_IA32_SMBASE:
2223                has_msr_smbase = true;
2224                break;
2225            case MSR_SMI_COUNT:
2226                has_msr_smi_count = true;
2227                break;
2228            case MSR_IA32_MISC_ENABLE:
2229                has_msr_misc_enable = true;
2230                break;
2231            case MSR_IA32_BNDCFGS:
2232                has_msr_bndcfgs = true;
2233                break;
2234            case MSR_IA32_XSS:
2235                has_msr_xss = true;
2236                break;
2237            case MSR_IA32_UMWAIT_CONTROL:
2238                has_msr_umwait = true;
2239                break;
2240            case HV_X64_MSR_CRASH_CTL:
2241                has_msr_hv_crash = true;
2242                break;
2243            case HV_X64_MSR_RESET:
2244                has_msr_hv_reset = true;
2245                break;
2246            case HV_X64_MSR_VP_INDEX:
2247                has_msr_hv_vpindex = true;
2248                break;
2249            case HV_X64_MSR_VP_RUNTIME:
2250                has_msr_hv_runtime = true;
2251                break;
2252            case HV_X64_MSR_SCONTROL:
2253                has_msr_hv_synic = true;
2254                break;
2255            case HV_X64_MSR_STIMER0_CONFIG:
2256                has_msr_hv_stimer = true;
2257                break;
2258            case HV_X64_MSR_TSC_FREQUENCY:
2259                has_msr_hv_frequencies = true;
2260                break;
2261            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2262                has_msr_hv_reenlightenment = true;
2263                break;
2264            case MSR_IA32_SPEC_CTRL:
2265                has_msr_spec_ctrl = true;
2266                break;
2267            case MSR_AMD64_TSC_RATIO:
2268                has_tsc_scale_msr = true;
2269                break;
2270            case MSR_IA32_TSX_CTRL:
2271                has_msr_tsx_ctrl = true;
2272                break;
2273            case MSR_VIRT_SSBD:
2274                has_msr_virt_ssbd = true;
2275                break;
2276            case MSR_IA32_ARCH_CAPABILITIES:
2277                has_msr_arch_capabs = true;
2278                break;
2279            case MSR_IA32_CORE_CAPABILITY:
2280                has_msr_core_capabs = true;
2281                break;
2282            case MSR_IA32_PERF_CAPABILITIES:
2283                has_msr_perf_capabs = true;
2284                break;
2285            case MSR_IA32_VMX_VMFUNC:
2286                has_msr_vmx_vmfunc = true;
2287                break;
2288            case MSR_IA32_UCODE_REV:
2289                has_msr_ucode_rev = true;
2290                break;
2291            case MSR_IA32_VMX_PROCBASED_CTLS2:
2292                has_msr_vmx_procbased_ctls2 = true;
2293                break;
2294            case MSR_IA32_PKRS:
2295                has_msr_pkrs = true;
2296                break;
2297            }
2298        }
2299    }
2300
2301    g_free(kvm_msr_list);
2302
2303    return ret;
2304}
2305
2306static Notifier smram_machine_done;
2307static KVMMemoryListener smram_listener;
2308static AddressSpace smram_address_space;
2309static MemoryRegion smram_as_root;
2310static MemoryRegion smram_as_mem;
2311
2312static void register_smram_listener(Notifier *n, void *unused)
2313{
2314    MemoryRegion *smram =
2315        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2316
2317    /* Outer container... */
2318    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2319    memory_region_set_enabled(&smram_as_root, true);
2320
2321    /* ... with two regions inside: normal system memory with low
2322     * priority, and...
2323     */
2324    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2325                             get_system_memory(), 0, ~0ull);
2326    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2327    memory_region_set_enabled(&smram_as_mem, true);
2328
2329    if (smram) {
2330        /* ... SMRAM with higher priority */
2331        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2332        memory_region_set_enabled(smram, true);
2333    }
2334
2335    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2336    kvm_memory_listener_register(kvm_state, &smram_listener,
2337                                 &smram_address_space, 1, "kvm-smram");
2338}
2339
2340int kvm_arch_init(MachineState *ms, KVMState *s)
2341{
2342    uint64_t identity_base = 0xfffbc000;
2343    uint64_t shadow_mem;
2344    int ret;
2345    struct utsname utsname;
2346    Error *local_err = NULL;
2347
2348    /*
2349     * Initialize SEV context, if required
2350     *
2351     * If no memory encryption is requested (ms->cgs == NULL) this is
2352     * a no-op.
2353     *
2354     * It's also a no-op if a non-SEV confidential guest support
2355     * mechanism is selected.  SEV is the only mechanism available to
2356     * select on x86 at present, so this doesn't arise, but if new
2357     * mechanisms are supported in future (e.g. TDX), they'll need
2358     * their own initialization either here or elsewhere.
2359     */
2360    ret = sev_kvm_init(ms->cgs, &local_err);
2361    if (ret < 0) {
2362        error_report_err(local_err);
2363        return ret;
2364    }
2365
2366    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2367        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2368        return -ENOTSUP;
2369    }
2370
2371    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2372    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2373    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2374    has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2375
2376    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2377
2378    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2379    if (has_exception_payload) {
2380        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2381        if (ret < 0) {
2382            error_report("kvm: Failed to enable exception payload cap: %s",
2383                         strerror(-ret));
2384            return ret;
2385        }
2386    }
2387
2388    ret = kvm_get_supported_msrs(s);
2389    if (ret < 0) {
2390        return ret;
2391    }
2392
2393    kvm_get_supported_feature_msrs(s);
2394
2395    uname(&utsname);
2396    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2397
2398    /*
2399     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2400     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2401     * Since these must be part of guest physical memory, we need to allocate
2402     * them, both by setting their start addresses in the kernel and by
2403     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2404     *
2405     * Older KVM versions may not support setting the identity map base. In
2406     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2407     * size.
2408     */
2409    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2410        /* Allows up to 16M BIOSes. */
2411        identity_base = 0xfeffc000;
2412
2413        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2414        if (ret < 0) {
2415            return ret;
2416        }
2417    }
2418
2419    /* Set TSS base one page after EPT identity map. */
2420    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2421    if (ret < 0) {
2422        return ret;
2423    }
2424
2425    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2426    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2427    if (ret < 0) {
2428        fprintf(stderr, "e820_add_entry() table is full\n");
2429        return ret;
2430    }
2431
2432    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2433    if (shadow_mem != -1) {
2434        shadow_mem /= 4096;
2435        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2436        if (ret < 0) {
2437            return ret;
2438        }
2439    }
2440
2441    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2442        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2443        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2444        smram_machine_done.notify = register_smram_listener;
2445        qemu_add_machine_init_done_notifier(&smram_machine_done);
2446    }
2447
2448    if (enable_cpu_pm) {
2449        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2450        int ret;
2451
2452/* Work around for kernel header with a typo. TODO: fix header and drop. */
2453#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2454#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2455#endif
2456        if (disable_exits) {
2457            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2458                              KVM_X86_DISABLE_EXITS_HLT |
2459                              KVM_X86_DISABLE_EXITS_PAUSE |
2460                              KVM_X86_DISABLE_EXITS_CSTATE);
2461        }
2462
2463        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2464                                disable_exits);
2465        if (ret < 0) {
2466            error_report("kvm: guest stopping CPU not supported: %s",
2467                         strerror(-ret));
2468        }
2469    }
2470
2471    if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2472        X86MachineState *x86ms = X86_MACHINE(ms);
2473
2474        if (x86ms->bus_lock_ratelimit > 0) {
2475            ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2476            if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2477                error_report("kvm: bus lock detection unsupported");
2478                return -ENOTSUP;
2479            }
2480            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2481                                    KVM_BUS_LOCK_DETECTION_EXIT);
2482            if (ret < 0) {
2483                error_report("kvm: Failed to enable bus lock detection cap: %s",
2484                             strerror(-ret));
2485                return ret;
2486            }
2487            ratelimit_init(&bus_lock_ratelimit_ctrl);
2488            ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2489                                x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2490        }
2491    }
2492
2493    return 0;
2494}
2495
2496static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2497{
2498    lhs->selector = rhs->selector;
2499    lhs->base = rhs->base;
2500    lhs->limit = rhs->limit;
2501    lhs->type = 3;
2502    lhs->present = 1;
2503    lhs->dpl = 3;
2504    lhs->db = 0;
2505    lhs->s = 1;
2506    lhs->l = 0;
2507    lhs->g = 0;
2508    lhs->avl = 0;
2509    lhs->unusable = 0;
2510}
2511
2512static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2513{
2514    unsigned flags = rhs->flags;
2515    lhs->selector = rhs->selector;
2516    lhs->base = rhs->base;
2517    lhs->limit = rhs->limit;
2518    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2519    lhs->present = (flags & DESC_P_MASK) != 0;
2520    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2521    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2522    lhs->s = (flags & DESC_S_MASK) != 0;
2523    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2524    lhs->g = (flags & DESC_G_MASK) != 0;
2525    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2526    lhs->unusable = !lhs->present;
2527    lhs->padding = 0;
2528}
2529
2530static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2531{
2532    lhs->selector = rhs->selector;
2533    lhs->base = rhs->base;
2534    lhs->limit = rhs->limit;
2535    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2536                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2537                 (rhs->dpl << DESC_DPL_SHIFT) |
2538                 (rhs->db << DESC_B_SHIFT) |
2539                 (rhs->s * DESC_S_MASK) |
2540                 (rhs->l << DESC_L_SHIFT) |
2541                 (rhs->g * DESC_G_MASK) |
2542                 (rhs->avl * DESC_AVL_MASK);
2543}
2544
2545static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2546{
2547    if (set) {
2548        *kvm_reg = *qemu_reg;
2549    } else {
2550        *qemu_reg = *kvm_reg;
2551    }
2552}
2553
2554static int kvm_getput_regs(X86CPU *cpu, int set)
2555{
2556    CPUX86State *env = &cpu->env;
2557    struct kvm_regs regs;
2558    int ret = 0;
2559
2560    if (!set) {
2561        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2562        if (ret < 0) {
2563            return ret;
2564        }
2565    }
2566
2567    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2568    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2569    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2570    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2571    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2572    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2573    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2574    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2575#ifdef TARGET_X86_64
2576    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2577    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2578    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2579    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2580    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2581    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2582    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2583    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2584#endif
2585
2586    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2587    kvm_getput_reg(&regs.rip, &env->eip, set);
2588
2589    if (set) {
2590        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2591    }
2592
2593    return ret;
2594}
2595
2596static int kvm_put_fpu(X86CPU *cpu)
2597{
2598    CPUX86State *env = &cpu->env;
2599    struct kvm_fpu fpu;
2600    int i;
2601
2602    memset(&fpu, 0, sizeof fpu);
2603    fpu.fsw = env->fpus & ~(7 << 11);
2604    fpu.fsw |= (env->fpstt & 7) << 11;
2605    fpu.fcw = env->fpuc;
2606    fpu.last_opcode = env->fpop;
2607    fpu.last_ip = env->fpip;
2608    fpu.last_dp = env->fpdp;
2609    for (i = 0; i < 8; ++i) {
2610        fpu.ftwx |= (!env->fptags[i]) << i;
2611    }
2612    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2613    for (i = 0; i < CPU_NB_REGS; i++) {
2614        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2615        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2616    }
2617    fpu.mxcsr = env->mxcsr;
2618
2619    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2620}
2621
2622static int kvm_put_xsave(X86CPU *cpu)
2623{
2624    CPUX86State *env = &cpu->env;
2625    void *xsave = env->xsave_buf;
2626
2627    if (!has_xsave) {
2628        return kvm_put_fpu(cpu);
2629    }
2630    x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2631
2632    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2633}
2634
2635static int kvm_put_xcrs(X86CPU *cpu)
2636{
2637    CPUX86State *env = &cpu->env;
2638    struct kvm_xcrs xcrs = {};
2639
2640    if (!has_xcrs) {
2641        return 0;
2642    }
2643
2644    xcrs.nr_xcrs = 1;
2645    xcrs.flags = 0;
2646    xcrs.xcrs[0].xcr = 0;
2647    xcrs.xcrs[0].value = env->xcr0;
2648    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2649}
2650
2651static int kvm_put_sregs(X86CPU *cpu)
2652{
2653    CPUX86State *env = &cpu->env;
2654    struct kvm_sregs sregs;
2655
2656    /*
2657     * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2658     * always followed by KVM_SET_VCPU_EVENTS.
2659     */
2660    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2661
2662    if ((env->eflags & VM_MASK)) {
2663        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2664        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2665        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2666        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2667        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2668        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2669    } else {
2670        set_seg(&sregs.cs, &env->segs[R_CS]);
2671        set_seg(&sregs.ds, &env->segs[R_DS]);
2672        set_seg(&sregs.es, &env->segs[R_ES]);
2673        set_seg(&sregs.fs, &env->segs[R_FS]);
2674        set_seg(&sregs.gs, &env->segs[R_GS]);
2675        set_seg(&sregs.ss, &env->segs[R_SS]);
2676    }
2677
2678    set_seg(&sregs.tr, &env->tr);
2679    set_seg(&sregs.ldt, &env->ldt);
2680
2681    sregs.idt.limit = env->idt.limit;
2682    sregs.idt.base = env->idt.base;
2683    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2684    sregs.gdt.limit = env->gdt.limit;
2685    sregs.gdt.base = env->gdt.base;
2686    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2687
2688    sregs.cr0 = env->cr[0];
2689    sregs.cr2 = env->cr[2];
2690    sregs.cr3 = env->cr[3];
2691    sregs.cr4 = env->cr[4];
2692
2693    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2694    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2695
2696    sregs.efer = env->efer;
2697
2698    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2699}
2700
2701static int kvm_put_sregs2(X86CPU *cpu)
2702{
2703    CPUX86State *env = &cpu->env;
2704    struct kvm_sregs2 sregs;
2705    int i;
2706
2707    sregs.flags = 0;
2708
2709    if ((env->eflags & VM_MASK)) {
2710        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2711        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2712        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2713        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2714        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2715        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2716    } else {
2717        set_seg(&sregs.cs, &env->segs[R_CS]);
2718        set_seg(&sregs.ds, &env->segs[R_DS]);
2719        set_seg(&sregs.es, &env->segs[R_ES]);
2720        set_seg(&sregs.fs, &env->segs[R_FS]);
2721        set_seg(&sregs.gs, &env->segs[R_GS]);
2722        set_seg(&sregs.ss, &env->segs[R_SS]);
2723    }
2724
2725    set_seg(&sregs.tr, &env->tr);
2726    set_seg(&sregs.ldt, &env->ldt);
2727
2728    sregs.idt.limit = env->idt.limit;
2729    sregs.idt.base = env->idt.base;
2730    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2731    sregs.gdt.limit = env->gdt.limit;
2732    sregs.gdt.base = env->gdt.base;
2733    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2734
2735    sregs.cr0 = env->cr[0];
2736    sregs.cr2 = env->cr[2];
2737    sregs.cr3 = env->cr[3];
2738    sregs.cr4 = env->cr[4];
2739
2740    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2741    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2742
2743    sregs.efer = env->efer;
2744
2745    if (env->pdptrs_valid) {
2746        for (i = 0; i < 4; i++) {
2747            sregs.pdptrs[i] = env->pdptrs[i];
2748        }
2749        sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2750    }
2751
2752    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2753}
2754
2755
2756static void kvm_msr_buf_reset(X86CPU *cpu)
2757{
2758    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2759}
2760
2761static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2762{
2763    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2764    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2765    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2766
2767    assert((void *)(entry + 1) <= limit);
2768
2769    entry->index = index;
2770    entry->reserved = 0;
2771    entry->data = value;
2772    msrs->nmsrs++;
2773}
2774
2775static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2776{
2777    kvm_msr_buf_reset(cpu);
2778    kvm_msr_entry_add(cpu, index, value);
2779
2780    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2781}
2782
2783void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2784{
2785    int ret;
2786
2787    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2788    assert(ret == 1);
2789}
2790
2791static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2792{
2793    CPUX86State *env = &cpu->env;
2794    int ret;
2795
2796    if (!has_msr_tsc_deadline) {
2797        return 0;
2798    }
2799
2800    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2801    if (ret < 0) {
2802        return ret;
2803    }
2804
2805    assert(ret == 1);
2806    return 0;
2807}
2808
2809/*
2810 * Provide a separate write service for the feature control MSR in order to
2811 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2812 * before writing any other state because forcibly leaving nested mode
2813 * invalidates the VCPU state.
2814 */
2815static int kvm_put_msr_feature_control(X86CPU *cpu)
2816{
2817    int ret;
2818
2819    if (!has_msr_feature_control) {
2820        return 0;
2821    }
2822
2823    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2824                          cpu->env.msr_ia32_feature_control);
2825    if (ret < 0) {
2826        return ret;
2827    }
2828
2829    assert(ret == 1);
2830    return 0;
2831}
2832
2833static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2834{
2835    uint32_t default1, can_be_one, can_be_zero;
2836    uint32_t must_be_one;
2837
2838    switch (index) {
2839    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2840        default1 = 0x00000016;
2841        break;
2842    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2843        default1 = 0x0401e172;
2844        break;
2845    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2846        default1 = 0x000011ff;
2847        break;
2848    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2849        default1 = 0x00036dff;
2850        break;
2851    case MSR_IA32_VMX_PROCBASED_CTLS2:
2852        default1 = 0;
2853        break;
2854    default:
2855        abort();
2856    }
2857
2858    /* If a feature bit is set, the control can be either set or clear.
2859     * Otherwise the value is limited to either 0 or 1 by default1.
2860     */
2861    can_be_one = features | default1;
2862    can_be_zero = features | ~default1;
2863    must_be_one = ~can_be_zero;
2864
2865    /*
2866     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2867     * Bit 32:63 -> 1 if the control bit can be one.
2868     */
2869    return must_be_one | (((uint64_t)can_be_one) << 32);
2870}
2871
2872static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2873{
2874    uint64_t kvm_vmx_basic =
2875        kvm_arch_get_supported_msr_feature(kvm_state,
2876                                           MSR_IA32_VMX_BASIC);
2877
2878    if (!kvm_vmx_basic) {
2879        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2880         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2881         */
2882        return;
2883    }
2884
2885    uint64_t kvm_vmx_misc =
2886        kvm_arch_get_supported_msr_feature(kvm_state,
2887                                           MSR_IA32_VMX_MISC);
2888    uint64_t kvm_vmx_ept_vpid =
2889        kvm_arch_get_supported_msr_feature(kvm_state,
2890                                           MSR_IA32_VMX_EPT_VPID_CAP);
2891
2892    /*
2893     * If the guest is 64-bit, a value of 1 is allowed for the host address
2894     * space size vmexit control.
2895     */
2896    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2897        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2898
2899    /*
2900     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2901     * not change them for backwards compatibility.
2902     */
2903    uint64_t fixed_vmx_basic = kvm_vmx_basic &
2904        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2905         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2906         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2907
2908    /*
2909     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2910     * change in the future but are always zero for now, clear them to be
2911     * future proof.  Bits 32-63 in theory could change, though KVM does
2912     * not support dual-monitor treatment and probably never will; mask
2913     * them out as well.
2914     */
2915    uint64_t fixed_vmx_misc = kvm_vmx_misc &
2916        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2917         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2918
2919    /*
2920     * EPT memory types should not change either, so we do not bother
2921     * adding features for them.
2922     */
2923    uint64_t fixed_vmx_ept_mask =
2924            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2925             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2926    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2927
2928    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2929                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2930                                         f[FEAT_VMX_PROCBASED_CTLS]));
2931    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2932                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2933                                         f[FEAT_VMX_PINBASED_CTLS]));
2934    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2935                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2936                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2937    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2938                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2939                                         f[FEAT_VMX_ENTRY_CTLS]));
2940    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2941                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2942                                         f[FEAT_VMX_SECONDARY_CTLS]));
2943    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2944                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2945    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2946                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2947    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2948                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
2949    if (has_msr_vmx_vmfunc) {
2950        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2951    }
2952
2953    /*
2954     * Just to be safe, write these with constant values.  The CRn_FIXED1
2955     * MSRs are generated by KVM based on the vCPU's CPUID.
2956     */
2957    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2958                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2959    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2960                      CR4_VMXE_MASK);
2961
2962    if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
2963        /* TSC multiplier (0x2032).  */
2964        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
2965    } else {
2966        /* Preemption timer (0x482E).  */
2967        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
2968    }
2969}
2970
2971static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2972{
2973    uint64_t kvm_perf_cap =
2974        kvm_arch_get_supported_msr_feature(kvm_state,
2975                                           MSR_IA32_PERF_CAPABILITIES);
2976
2977    if (kvm_perf_cap) {
2978        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2979                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2980    }
2981}
2982
2983static int kvm_buf_set_msrs(X86CPU *cpu)
2984{
2985    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2986    if (ret < 0) {
2987        return ret;
2988    }
2989
2990    if (ret < cpu->kvm_msr_buf->nmsrs) {
2991        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2992        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2993                     (uint32_t)e->index, (uint64_t)e->data);
2994    }
2995
2996    assert(ret == cpu->kvm_msr_buf->nmsrs);
2997    return 0;
2998}
2999
3000static void kvm_init_msrs(X86CPU *cpu)
3001{
3002    CPUX86State *env = &cpu->env;
3003
3004    kvm_msr_buf_reset(cpu);
3005    if (has_msr_arch_capabs) {
3006        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3007                          env->features[FEAT_ARCH_CAPABILITIES]);
3008    }
3009
3010    if (has_msr_core_capabs) {
3011        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3012                          env->features[FEAT_CORE_CAPABILITY]);
3013    }
3014
3015    if (has_msr_perf_capabs && cpu->enable_pmu) {
3016        kvm_msr_entry_add_perf(cpu, env->features);
3017    }
3018
3019    if (has_msr_ucode_rev) {
3020        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3021    }
3022
3023    /*
3024     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3025     * all kernels with MSR features should have them.
3026     */
3027    if (kvm_feature_msrs && cpu_has_vmx(env)) {
3028        kvm_msr_entry_add_vmx(cpu, env->features);
3029    }
3030
3031    assert(kvm_buf_set_msrs(cpu) == 0);
3032}
3033
3034static int kvm_put_msrs(X86CPU *cpu, int level)
3035{
3036    CPUX86State *env = &cpu->env;
3037    int i;
3038
3039    kvm_msr_buf_reset(cpu);
3040
3041    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3042    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3043    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3044    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3045    if (has_msr_star) {
3046        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3047    }
3048    if (has_msr_hsave_pa) {
3049        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3050    }
3051    if (has_msr_tsc_aux) {
3052        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3053    }
3054    if (has_msr_tsc_adjust) {
3055        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3056    }
3057    if (has_msr_misc_enable) {
3058        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3059                          env->msr_ia32_misc_enable);
3060    }
3061    if (has_msr_smbase) {
3062        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3063    }
3064    if (has_msr_smi_count) {
3065        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3066    }
3067    if (has_msr_pkrs) {
3068        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3069    }
3070    if (has_msr_bndcfgs) {
3071        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3072    }
3073    if (has_msr_xss) {
3074        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3075    }
3076    if (has_msr_umwait) {
3077        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3078    }
3079    if (has_msr_spec_ctrl) {
3080        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3081    }
3082    if (has_tsc_scale_msr) {
3083        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3084    }
3085
3086    if (has_msr_tsx_ctrl) {
3087        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3088    }
3089    if (has_msr_virt_ssbd) {
3090        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3091    }
3092
3093#ifdef TARGET_X86_64
3094    if (lm_capable_kernel) {
3095        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3096        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3097        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3098        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3099    }
3100#endif
3101
3102    /*
3103     * The following MSRs have side effects on the guest or are too heavy
3104     * for normal writeback. Limit them to reset or full state updates.
3105     */
3106    if (level >= KVM_PUT_RESET_STATE) {
3107        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3108        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3109        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3110        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3111            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3112        }
3113        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3114            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3115        }
3116        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3117            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3118        }
3119        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3120            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3121        }
3122
3123        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3124            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3125        }
3126
3127        if (has_architectural_pmu_version > 0) {
3128            if (has_architectural_pmu_version > 1) {
3129                /* Stop the counter.  */
3130                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3131                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3132            }
3133
3134            /* Set the counter values.  */
3135            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3136                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3137                                  env->msr_fixed_counters[i]);
3138            }
3139            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3140                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3141                                  env->msr_gp_counters[i]);
3142                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3143                                  env->msr_gp_evtsel[i]);
3144            }
3145            if (has_architectural_pmu_version > 1) {
3146                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3147                                  env->msr_global_status);
3148                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3149                                  env->msr_global_ovf_ctrl);
3150
3151                /* Now start the PMU.  */
3152                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3153                                  env->msr_fixed_ctr_ctrl);
3154                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3155                                  env->msr_global_ctrl);
3156            }
3157        }
3158        /*
3159         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3160         * only sync them to KVM on the first cpu
3161         */
3162        if (current_cpu == first_cpu) {
3163            if (has_msr_hv_hypercall) {
3164                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3165                                  env->msr_hv_guest_os_id);
3166                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3167                                  env->msr_hv_hypercall);
3168            }
3169            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3170                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3171                                  env->msr_hv_tsc);
3172            }
3173            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3174                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3175                                  env->msr_hv_reenlightenment_control);
3176                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3177                                  env->msr_hv_tsc_emulation_control);
3178                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3179                                  env->msr_hv_tsc_emulation_status);
3180            }
3181        }
3182        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3183            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3184                              env->msr_hv_vapic);
3185        }
3186        if (has_msr_hv_crash) {
3187            int j;
3188
3189            for (j = 0; j < HV_CRASH_PARAMS; j++)
3190                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3191                                  env->msr_hv_crash_params[j]);
3192
3193            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3194        }
3195        if (has_msr_hv_runtime) {
3196            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3197        }
3198        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3199            && hv_vpindex_settable) {
3200            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3201                              hyperv_vp_index(CPU(cpu)));
3202        }
3203        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3204            int j;
3205
3206            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3207
3208            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3209                              env->msr_hv_synic_control);
3210            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3211                              env->msr_hv_synic_evt_page);
3212            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3213                              env->msr_hv_synic_msg_page);
3214
3215            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3216                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3217                                  env->msr_hv_synic_sint[j]);
3218            }
3219        }
3220        if (has_msr_hv_stimer) {
3221            int j;
3222
3223            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3224                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3225                                env->msr_hv_stimer_config[j]);
3226            }
3227
3228            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3229                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3230                                env->msr_hv_stimer_count[j]);
3231            }
3232        }
3233        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3234            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3235
3236            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3237            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3238            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3239            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3240            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3241            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3242            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3243            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3244            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3245            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3246            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3247            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3248            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3249                /* The CPU GPs if we write to a bit above the physical limit of
3250                 * the host CPU (and KVM emulates that)
3251                 */
3252                uint64_t mask = env->mtrr_var[i].mask;
3253                mask &= phys_mask;
3254
3255                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3256                                  env->mtrr_var[i].base);
3257                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3258            }
3259        }
3260        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3261            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3262                                                    0x14, 1, R_EAX) & 0x7;
3263
3264            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3265                            env->msr_rtit_ctrl);
3266            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3267                            env->msr_rtit_status);
3268            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3269                            env->msr_rtit_output_base);
3270            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3271                            env->msr_rtit_output_mask);
3272            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3273                            env->msr_rtit_cr3_match);
3274            for (i = 0; i < addr_num; i++) {
3275                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3276                            env->msr_rtit_addrs[i]);
3277            }
3278        }
3279
3280        if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3281            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3282                              env->msr_ia32_sgxlepubkeyhash[0]);
3283            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3284                              env->msr_ia32_sgxlepubkeyhash[1]);
3285            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3286                              env->msr_ia32_sgxlepubkeyhash[2]);
3287            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3288                              env->msr_ia32_sgxlepubkeyhash[3]);
3289        }
3290
3291        if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3292            kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3293                              env->msr_xfd);
3294            kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3295                              env->msr_xfd_err);
3296        }
3297
3298        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3299         *       kvm_put_msr_feature_control. */
3300    }
3301
3302    if (env->mcg_cap) {
3303        int i;
3304
3305        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3306        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3307        if (has_msr_mcg_ext_ctl) {
3308            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3309        }
3310        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3311            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3312        }
3313    }
3314
3315    return kvm_buf_set_msrs(cpu);
3316}
3317
3318
3319static int kvm_get_fpu(X86CPU *cpu)
3320{
3321    CPUX86State *env = &cpu->env;
3322    struct kvm_fpu fpu;
3323    int i, ret;
3324
3325    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3326    if (ret < 0) {
3327        return ret;
3328    }
3329
3330    env->fpstt = (fpu.fsw >> 11) & 7;
3331    env->fpus = fpu.fsw;
3332    env->fpuc = fpu.fcw;
3333    env->fpop = fpu.last_opcode;
3334    env->fpip = fpu.last_ip;
3335    env->fpdp = fpu.last_dp;
3336    for (i = 0; i < 8; ++i) {
3337        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3338    }
3339    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3340    for (i = 0; i < CPU_NB_REGS; i++) {
3341        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3342        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3343    }
3344    env->mxcsr = fpu.mxcsr;
3345
3346    return 0;
3347}
3348
3349static int kvm_get_xsave(X86CPU *cpu)
3350{
3351    CPUX86State *env = &cpu->env;
3352    void *xsave = env->xsave_buf;
3353    int type, ret;
3354
3355    if (!has_xsave) {
3356        return kvm_get_fpu(cpu);
3357    }
3358
3359    type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3360    ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3361    if (ret < 0) {
3362        return ret;
3363    }
3364    x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3365
3366    return 0;
3367}
3368
3369static int kvm_get_xcrs(X86CPU *cpu)
3370{
3371    CPUX86State *env = &cpu->env;
3372    int i, ret;
3373    struct kvm_xcrs xcrs;
3374
3375    if (!has_xcrs) {
3376        return 0;
3377    }
3378
3379    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3380    if (ret < 0) {
3381        return ret;
3382    }
3383
3384    for (i = 0; i < xcrs.nr_xcrs; i++) {
3385        /* Only support xcr0 now */
3386        if (xcrs.xcrs[i].xcr == 0) {
3387            env->xcr0 = xcrs.xcrs[i].value;
3388            break;
3389        }
3390    }
3391    return 0;
3392}
3393
3394static int kvm_get_sregs(X86CPU *cpu)
3395{
3396    CPUX86State *env = &cpu->env;
3397    struct kvm_sregs sregs;
3398    int ret;
3399
3400    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3401    if (ret < 0) {
3402        return ret;
3403    }
3404
3405    /*
3406     * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3407     * always preceded by KVM_GET_VCPU_EVENTS.
3408     */
3409
3410    get_seg(&env->segs[R_CS], &sregs.cs);
3411    get_seg(&env->segs[R_DS], &sregs.ds);
3412    get_seg(&env->segs[R_ES], &sregs.es);
3413    get_seg(&env->segs[R_FS], &sregs.fs);
3414    get_seg(&env->segs[R_GS], &sregs.gs);
3415    get_seg(&env->segs[R_SS], &sregs.ss);
3416
3417    get_seg(&env->tr, &sregs.tr);
3418    get_seg(&env->ldt, &sregs.ldt);
3419
3420    env->idt.limit = sregs.idt.limit;
3421    env->idt.base = sregs.idt.base;
3422    env->gdt.limit = sregs.gdt.limit;
3423    env->gdt.base = sregs.gdt.base;
3424
3425    env->cr[0] = sregs.cr0;
3426    env->cr[2] = sregs.cr2;
3427    env->cr[3] = sregs.cr3;
3428    env->cr[4] = sregs.cr4;
3429
3430    env->efer = sregs.efer;
3431
3432    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3433    x86_update_hflags(env);
3434
3435    return 0;
3436}
3437
3438static int kvm_get_sregs2(X86CPU *cpu)
3439{
3440    CPUX86State *env = &cpu->env;
3441    struct kvm_sregs2 sregs;
3442    int i, ret;
3443
3444    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3445    if (ret < 0) {
3446        return ret;
3447    }
3448
3449    get_seg(&env->segs[R_CS], &sregs.cs);
3450    get_seg(&env->segs[R_DS], &sregs.ds);
3451    get_seg(&env->segs[R_ES], &sregs.es);
3452    get_seg(&env->segs[R_FS], &sregs.fs);
3453    get_seg(&env->segs[R_GS], &sregs.gs);
3454    get_seg(&env->segs[R_SS], &sregs.ss);
3455
3456    get_seg(&env->tr, &sregs.tr);
3457    get_seg(&env->ldt, &sregs.ldt);
3458
3459    env->idt.limit = sregs.idt.limit;
3460    env->idt.base = sregs.idt.base;
3461    env->gdt.limit = sregs.gdt.limit;
3462    env->gdt.base = sregs.gdt.base;
3463
3464    env->cr[0] = sregs.cr0;
3465    env->cr[2] = sregs.cr2;
3466    env->cr[3] = sregs.cr3;
3467    env->cr[4] = sregs.cr4;
3468
3469    env->efer = sregs.efer;
3470
3471    env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3472
3473    if (env->pdptrs_valid) {
3474        for (i = 0; i < 4; i++) {
3475            env->pdptrs[i] = sregs.pdptrs[i];
3476        }
3477    }
3478
3479    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3480    x86_update_hflags(env);
3481
3482    return 0;
3483}
3484
3485static int kvm_get_msrs(X86CPU *cpu)
3486{
3487    CPUX86State *env = &cpu->env;
3488    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3489    int ret, i;
3490    uint64_t mtrr_top_bits;
3491
3492    kvm_msr_buf_reset(cpu);
3493
3494    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3495    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3496    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3497    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3498    if (has_msr_star) {
3499        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3500    }
3501    if (has_msr_hsave_pa) {
3502        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3503    }
3504    if (has_msr_tsc_aux) {
3505        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3506    }
3507    if (has_msr_tsc_adjust) {
3508        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3509    }
3510    if (has_msr_tsc_deadline) {
3511        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3512    }
3513    if (has_msr_misc_enable) {
3514        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3515    }
3516    if (has_msr_smbase) {
3517        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3518    }
3519    if (has_msr_smi_count) {
3520        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3521    }
3522    if (has_msr_feature_control) {
3523        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3524    }
3525    if (has_msr_pkrs) {
3526        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3527    }
3528    if (has_msr_bndcfgs) {
3529        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3530    }
3531    if (has_msr_xss) {
3532        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3533    }
3534    if (has_msr_umwait) {
3535        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3536    }
3537    if (has_msr_spec_ctrl) {
3538        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3539    }
3540    if (has_tsc_scale_msr) {
3541        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3542    }
3543
3544    if (has_msr_tsx_ctrl) {
3545        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3546    }
3547    if (has_msr_virt_ssbd) {
3548        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3549    }
3550    if (!env->tsc_valid) {
3551        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3552        env->tsc_valid = !runstate_is_running();
3553    }
3554
3555#ifdef TARGET_X86_64
3556    if (lm_capable_kernel) {
3557        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3558        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3559        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3560        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3561    }
3562#endif
3563    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3564    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3565    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3566        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3567    }
3568    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3569        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3570    }
3571    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3572        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3573    }
3574    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3575        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3576    }
3577    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3578        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3579    }
3580    if (has_architectural_pmu_version > 0) {
3581        if (has_architectural_pmu_version > 1) {
3582            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3583            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3584            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3585            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3586        }
3587        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3588            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3589        }
3590        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3591            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3592            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3593        }
3594    }
3595
3596    if (env->mcg_cap) {
3597        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3598        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3599        if (has_msr_mcg_ext_ctl) {
3600            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3601        }
3602        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3603            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3604        }
3605    }
3606
3607    if (has_msr_hv_hypercall) {
3608        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3609        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3610    }
3611    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3612        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3613    }
3614    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3615        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3616    }
3617    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3618        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3619        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3620        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3621    }
3622    if (has_msr_hv_crash) {
3623        int j;
3624
3625        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3626            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3627        }
3628    }
3629    if (has_msr_hv_runtime) {
3630        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3631    }
3632    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3633        uint32_t msr;
3634
3635        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3636        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3637        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3638        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3639            kvm_msr_entry_add(cpu, msr, 0);
3640        }
3641    }
3642    if (has_msr_hv_stimer) {
3643        uint32_t msr;
3644
3645        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3646             msr++) {
3647            kvm_msr_entry_add(cpu, msr, 0);
3648        }
3649    }
3650    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3651        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3652        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3653        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3654        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3655        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3656        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3657        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3658        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3659        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3660        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3661        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3662        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3663        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3664            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3665            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3666        }
3667    }
3668
3669    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3670        int addr_num =
3671            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3672
3673        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3674        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3675        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3676        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3677        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3678        for (i = 0; i < addr_num; i++) {
3679            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3680        }
3681    }
3682
3683    if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3684        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3685        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3686        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3687        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3688    }
3689
3690    if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3691        kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3692        kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3693    }
3694
3695    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3696    if (ret < 0) {
3697        return ret;
3698    }
3699
3700    if (ret < cpu->kvm_msr_buf->nmsrs) {
3701        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3702        error_report("error: failed to get MSR 0x%" PRIx32,
3703                     (uint32_t)e->index);
3704    }
3705
3706    assert(ret == cpu->kvm_msr_buf->nmsrs);
3707    /*
3708     * MTRR masks: Each mask consists of 5 parts
3709     * a  10..0: must be zero
3710     * b  11   : valid bit
3711     * c n-1.12: actual mask bits
3712     * d  51..n: reserved must be zero
3713     * e  63.52: reserved must be zero
3714     *
3715     * 'n' is the number of physical bits supported by the CPU and is
3716     * apparently always <= 52.   We know our 'n' but don't know what
3717     * the destinations 'n' is; it might be smaller, in which case
3718     * it masks (c) on loading. It might be larger, in which case
3719     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3720     * we're migrating to.
3721     */
3722
3723    if (cpu->fill_mtrr_mask) {
3724        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3725        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3726        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3727    } else {
3728        mtrr_top_bits = 0;
3729    }
3730
3731    for (i = 0; i < ret; i++) {
3732        uint32_t index = msrs[i].index;
3733        switch (index) {
3734        case MSR_IA32_SYSENTER_CS:
3735            env->sysenter_cs = msrs[i].data;
3736            break;
3737        case MSR_IA32_SYSENTER_ESP:
3738            env->sysenter_esp = msrs[i].data;
3739            break;
3740        case MSR_IA32_SYSENTER_EIP:
3741            env->sysenter_eip = msrs[i].data;
3742            break;
3743        case MSR_PAT:
3744            env->pat = msrs[i].data;
3745            break;
3746        case MSR_STAR:
3747            env->star = msrs[i].data;
3748            break;
3749#ifdef TARGET_X86_64
3750        case MSR_CSTAR:
3751            env->cstar = msrs[i].data;
3752            break;
3753        case MSR_KERNELGSBASE:
3754            env->kernelgsbase = msrs[i].data;
3755            break;
3756        case MSR_FMASK:
3757            env->fmask = msrs[i].data;
3758            break;
3759        case MSR_LSTAR:
3760            env->lstar = msrs[i].data;
3761            break;
3762#endif
3763        case MSR_IA32_TSC:
3764            env->tsc = msrs[i].data;
3765            break;
3766        case MSR_TSC_AUX:
3767            env->tsc_aux = msrs[i].data;
3768            break;
3769        case MSR_TSC_ADJUST:
3770            env->tsc_adjust = msrs[i].data;
3771            break;
3772        case MSR_IA32_TSCDEADLINE:
3773            env->tsc_deadline = msrs[i].data;
3774            break;
3775        case MSR_VM_HSAVE_PA:
3776            env->vm_hsave = msrs[i].data;
3777            break;
3778        case MSR_KVM_SYSTEM_TIME:
3779            env->system_time_msr = msrs[i].data;
3780            break;
3781        case MSR_KVM_WALL_CLOCK:
3782            env->wall_clock_msr = msrs[i].data;
3783            break;
3784        case MSR_MCG_STATUS:
3785            env->mcg_status = msrs[i].data;
3786            break;
3787        case MSR_MCG_CTL:
3788            env->mcg_ctl = msrs[i].data;
3789            break;
3790        case MSR_MCG_EXT_CTL:
3791            env->mcg_ext_ctl = msrs[i].data;
3792            break;
3793        case MSR_IA32_MISC_ENABLE:
3794            env->msr_ia32_misc_enable = msrs[i].data;
3795            break;
3796        case MSR_IA32_SMBASE:
3797            env->smbase = msrs[i].data;
3798            break;
3799        case MSR_SMI_COUNT:
3800            env->msr_smi_count = msrs[i].data;
3801            break;
3802        case MSR_IA32_FEATURE_CONTROL:
3803            env->msr_ia32_feature_control = msrs[i].data;
3804            break;
3805        case MSR_IA32_BNDCFGS:
3806            env->msr_bndcfgs = msrs[i].data;
3807            break;
3808        case MSR_IA32_XSS:
3809            env->xss = msrs[i].data;
3810            break;
3811        case MSR_IA32_UMWAIT_CONTROL:
3812            env->umwait = msrs[i].data;
3813            break;
3814        case MSR_IA32_PKRS:
3815            env->pkrs = msrs[i].data;
3816            break;
3817        default:
3818            if (msrs[i].index >= MSR_MC0_CTL &&
3819                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3820                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3821            }
3822            break;
3823        case MSR_KVM_ASYNC_PF_EN:
3824            env->async_pf_en_msr = msrs[i].data;
3825            break;
3826        case MSR_KVM_ASYNC_PF_INT:
3827            env->async_pf_int_msr = msrs[i].data;
3828            break;
3829        case MSR_KVM_PV_EOI_EN:
3830            env->pv_eoi_en_msr = msrs[i].data;
3831            break;
3832        case MSR_KVM_STEAL_TIME:
3833            env->steal_time_msr = msrs[i].data;
3834            break;
3835        case MSR_KVM_POLL_CONTROL: {
3836            env->poll_control_msr = msrs[i].data;
3837            break;
3838        }
3839        case MSR_CORE_PERF_FIXED_CTR_CTRL:
3840            env->msr_fixed_ctr_ctrl = msrs[i].data;
3841            break;
3842        case MSR_CORE_PERF_GLOBAL_CTRL:
3843            env->msr_global_ctrl = msrs[i].data;
3844            break;
3845        case MSR_CORE_PERF_GLOBAL_STATUS:
3846            env->msr_global_status = msrs[i].data;
3847            break;
3848        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3849            env->msr_global_ovf_ctrl = msrs[i].data;
3850            break;
3851        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3852            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3853            break;
3854        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3855            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3856            break;
3857        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3858            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3859            break;
3860        case HV_X64_MSR_HYPERCALL:
3861            env->msr_hv_hypercall = msrs[i].data;
3862            break;
3863        case HV_X64_MSR_GUEST_OS_ID:
3864            env->msr_hv_guest_os_id = msrs[i].data;
3865            break;
3866        case HV_X64_MSR_APIC_ASSIST_PAGE:
3867            env->msr_hv_vapic = msrs[i].data;
3868            break;
3869        case HV_X64_MSR_REFERENCE_TSC:
3870            env->msr_hv_tsc = msrs[i].data;
3871            break;
3872        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3873            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3874            break;
3875        case HV_X64_MSR_VP_RUNTIME:
3876            env->msr_hv_runtime = msrs[i].data;
3877            break;
3878        case HV_X64_MSR_SCONTROL:
3879            env->msr_hv_synic_control = msrs[i].data;
3880            break;
3881        case HV_X64_MSR_SIEFP:
3882            env->msr_hv_synic_evt_page = msrs[i].data;
3883            break;
3884        case HV_X64_MSR_SIMP:
3885            env->msr_hv_synic_msg_page = msrs[i].data;
3886            break;
3887        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3888            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3889            break;
3890        case HV_X64_MSR_STIMER0_CONFIG:
3891        case HV_X64_MSR_STIMER1_CONFIG:
3892        case HV_X64_MSR_STIMER2_CONFIG:
3893        case HV_X64_MSR_STIMER3_CONFIG:
3894            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3895                                msrs[i].data;
3896            break;
3897        case HV_X64_MSR_STIMER0_COUNT:
3898        case HV_X64_MSR_STIMER1_COUNT:
3899        case HV_X64_MSR_STIMER2_COUNT:
3900        case HV_X64_MSR_STIMER3_COUNT:
3901            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3902                                msrs[i].data;
3903            break;
3904        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3905            env->msr_hv_reenlightenment_control = msrs[i].data;
3906            break;
3907        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3908            env->msr_hv_tsc_emulation_control = msrs[i].data;
3909            break;
3910        case HV_X64_MSR_TSC_EMULATION_STATUS:
3911            env->msr_hv_tsc_emulation_status = msrs[i].data;
3912            break;
3913        case MSR_MTRRdefType:
3914            env->mtrr_deftype = msrs[i].data;
3915            break;
3916        case MSR_MTRRfix64K_00000:
3917            env->mtrr_fixed[0] = msrs[i].data;
3918            break;
3919        case MSR_MTRRfix16K_80000:
3920            env->mtrr_fixed[1] = msrs[i].data;
3921            break;
3922        case MSR_MTRRfix16K_A0000:
3923            env->mtrr_fixed[2] = msrs[i].data;
3924            break;
3925        case MSR_MTRRfix4K_C0000:
3926            env->mtrr_fixed[3] = msrs[i].data;
3927            break;
3928        case MSR_MTRRfix4K_C8000:
3929            env->mtrr_fixed[4] = msrs[i].data;
3930            break;
3931        case MSR_MTRRfix4K_D0000:
3932            env->mtrr_fixed[5] = msrs[i].data;
3933            break;
3934        case MSR_MTRRfix4K_D8000:
3935            env->mtrr_fixed[6] = msrs[i].data;
3936            break;
3937        case MSR_MTRRfix4K_E0000:
3938            env->mtrr_fixed[7] = msrs[i].data;
3939            break;
3940        case MSR_MTRRfix4K_E8000:
3941            env->mtrr_fixed[8] = msrs[i].data;
3942            break;
3943        case MSR_MTRRfix4K_F0000:
3944            env->mtrr_fixed[9] = msrs[i].data;
3945            break;
3946        case MSR_MTRRfix4K_F8000:
3947            env->mtrr_fixed[10] = msrs[i].data;
3948            break;
3949        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3950            if (index & 1) {
3951                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3952                                                               mtrr_top_bits;
3953            } else {
3954                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3955            }
3956            break;
3957        case MSR_IA32_SPEC_CTRL:
3958            env->spec_ctrl = msrs[i].data;
3959            break;
3960        case MSR_AMD64_TSC_RATIO:
3961            env->amd_tsc_scale_msr = msrs[i].data;
3962            break;
3963        case MSR_IA32_TSX_CTRL:
3964            env->tsx_ctrl = msrs[i].data;
3965            break;
3966        case MSR_VIRT_SSBD:
3967            env->virt_ssbd = msrs[i].data;
3968            break;
3969        case MSR_IA32_RTIT_CTL:
3970            env->msr_rtit_ctrl = msrs[i].data;
3971            break;
3972        case MSR_IA32_RTIT_STATUS:
3973            env->msr_rtit_status = msrs[i].data;
3974            break;
3975        case MSR_IA32_RTIT_OUTPUT_BASE:
3976            env->msr_rtit_output_base = msrs[i].data;
3977            break;
3978        case MSR_IA32_RTIT_OUTPUT_MASK:
3979            env->msr_rtit_output_mask = msrs[i].data;
3980            break;
3981        case MSR_IA32_RTIT_CR3_MATCH:
3982            env->msr_rtit_cr3_match = msrs[i].data;
3983            break;
3984        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3985            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3986            break;
3987        case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
3988            env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
3989                           msrs[i].data;
3990            break;
3991        case MSR_IA32_XFD:
3992            env->msr_xfd = msrs[i].data;
3993            break;
3994        case MSR_IA32_XFD_ERR:
3995            env->msr_xfd_err = msrs[i].data;
3996            break;
3997        }
3998    }
3999
4000    return 0;
4001}
4002
4003static int kvm_put_mp_state(X86CPU *cpu)
4004{
4005    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4006
4007    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4008}
4009
4010static int kvm_get_mp_state(X86CPU *cpu)
4011{
4012    CPUState *cs = CPU(cpu);
4013    CPUX86State *env = &cpu->env;
4014    struct kvm_mp_state mp_state;
4015    int ret;
4016
4017    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4018    if (ret < 0) {
4019        return ret;
4020    }
4021    env->mp_state = mp_state.mp_state;
4022    if (kvm_irqchip_in_kernel()) {
4023        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4024    }
4025    return 0;
4026}
4027
4028static int kvm_get_apic(X86CPU *cpu)
4029{
4030    DeviceState *apic = cpu->apic_state;
4031    struct kvm_lapic_state kapic;
4032    int ret;
4033
4034    if (apic && kvm_irqchip_in_kernel()) {
4035        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4036        if (ret < 0) {
4037            return ret;
4038        }
4039
4040        kvm_get_apic_state(apic, &kapic);
4041    }
4042    return 0;
4043}
4044
4045static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4046{
4047    CPUState *cs = CPU(cpu);
4048    CPUX86State *env = &cpu->env;
4049    struct kvm_vcpu_events events = {};
4050
4051    if (!kvm_has_vcpu_events()) {
4052        return 0;
4053    }
4054
4055    events.flags = 0;
4056
4057    if (has_exception_payload) {
4058        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4059        events.exception.pending = env->exception_pending;
4060        events.exception_has_payload = env->exception_has_payload;
4061        events.exception_payload = env->exception_payload;
4062    }
4063    events.exception.nr = env->exception_nr;
4064    events.exception.injected = env->exception_injected;
4065    events.exception.has_error_code = env->has_error_code;
4066    events.exception.error_code = env->error_code;
4067
4068    events.interrupt.injected = (env->interrupt_injected >= 0);
4069    events.interrupt.nr = env->interrupt_injected;
4070    events.interrupt.soft = env->soft_interrupt;
4071
4072    events.nmi.injected = env->nmi_injected;
4073    events.nmi.pending = env->nmi_pending;
4074    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4075
4076    events.sipi_vector = env->sipi_vector;
4077
4078    if (has_msr_smbase) {
4079        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4080        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4081        if (kvm_irqchip_in_kernel()) {
4082            /* As soon as these are moved to the kernel, remove them
4083             * from cs->interrupt_request.
4084             */
4085            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4086            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4087            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4088        } else {
4089            /* Keep these in cs->interrupt_request.  */
4090            events.smi.pending = 0;
4091            events.smi.latched_init = 0;
4092        }
4093        /* Stop SMI delivery on old machine types to avoid a reboot
4094         * on an inward migration of an old VM.
4095         */
4096        if (!cpu->kvm_no_smi_migration) {
4097            events.flags |= KVM_VCPUEVENT_VALID_SMM;
4098        }
4099    }
4100
4101    if (level >= KVM_PUT_RESET_STATE) {
4102        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4103        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4104            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4105        }
4106    }
4107
4108    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4109}
4110
4111static int kvm_get_vcpu_events(X86CPU *cpu)
4112{
4113    CPUX86State *env = &cpu->env;
4114    struct kvm_vcpu_events events;
4115    int ret;
4116
4117    if (!kvm_has_vcpu_events()) {
4118        return 0;
4119    }
4120
4121    memset(&events, 0, sizeof(events));
4122    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4123    if (ret < 0) {
4124       return ret;
4125    }
4126
4127    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4128        env->exception_pending = events.exception.pending;
4129        env->exception_has_payload = events.exception_has_payload;
4130        env->exception_payload = events.exception_payload;
4131    } else {
4132        env->exception_pending = 0;
4133        env->exception_has_payload = false;
4134    }
4135    env->exception_injected = events.exception.injected;
4136    env->exception_nr =
4137        (env->exception_pending || env->exception_injected) ?
4138        events.exception.nr : -1;
4139    env->has_error_code = events.exception.has_error_code;
4140    env->error_code = events.exception.error_code;
4141
4142    env->interrupt_injected =
4143        events.interrupt.injected ? events.interrupt.nr : -1;
4144    env->soft_interrupt = events.interrupt.soft;
4145
4146    env->nmi_injected = events.nmi.injected;
4147    env->nmi_pending = events.nmi.pending;
4148    if (events.nmi.masked) {
4149        env->hflags2 |= HF2_NMI_MASK;
4150    } else {
4151        env->hflags2 &= ~HF2_NMI_MASK;
4152    }
4153
4154    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4155        if (events.smi.smm) {
4156            env->hflags |= HF_SMM_MASK;
4157        } else {
4158            env->hflags &= ~HF_SMM_MASK;
4159        }
4160        if (events.smi.pending) {
4161            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4162        } else {
4163            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4164        }
4165        if (events.smi.smm_inside_nmi) {
4166            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4167        } else {
4168            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4169        }
4170        if (events.smi.latched_init) {
4171            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4172        } else {
4173            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4174        }
4175    }
4176
4177    env->sipi_vector = events.sipi_vector;
4178
4179    return 0;
4180}
4181
4182static int kvm_guest_debug_workarounds(X86CPU *cpu)
4183{
4184    CPUState *cs = CPU(cpu);
4185    CPUX86State *env = &cpu->env;
4186    int ret = 0;
4187    unsigned long reinject_trap = 0;
4188
4189    if (!kvm_has_vcpu_events()) {
4190        if (env->exception_nr == EXCP01_DB) {
4191            reinject_trap = KVM_GUESTDBG_INJECT_DB;
4192        } else if (env->exception_injected == EXCP03_INT3) {
4193            reinject_trap = KVM_GUESTDBG_INJECT_BP;
4194        }
4195        kvm_reset_exception(env);
4196    }
4197
4198    /*
4199     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4200     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4201     * by updating the debug state once again if single-stepping is on.
4202     * Another reason to call kvm_update_guest_debug here is a pending debug
4203     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4204     * reinject them via SET_GUEST_DEBUG.
4205     */
4206    if (reinject_trap ||
4207        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4208        ret = kvm_update_guest_debug(cs, reinject_trap);
4209    }
4210    return ret;
4211}
4212
4213static int kvm_put_debugregs(X86CPU *cpu)
4214{
4215    CPUX86State *env = &cpu->env;
4216    struct kvm_debugregs dbgregs;
4217    int i;
4218
4219    if (!kvm_has_debugregs()) {
4220        return 0;
4221    }
4222
4223    memset(&dbgregs, 0, sizeof(dbgregs));
4224    for (i = 0; i < 4; i++) {
4225        dbgregs.db[i] = env->dr[i];
4226    }
4227    dbgregs.dr6 = env->dr[6];
4228    dbgregs.dr7 = env->dr[7];
4229    dbgregs.flags = 0;
4230
4231    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4232}
4233
4234static int kvm_get_debugregs(X86CPU *cpu)
4235{
4236    CPUX86State *env = &cpu->env;
4237    struct kvm_debugregs dbgregs;
4238    int i, ret;
4239
4240    if (!kvm_has_debugregs()) {
4241        return 0;
4242    }
4243
4244    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4245    if (ret < 0) {
4246        return ret;
4247    }
4248    for (i = 0; i < 4; i++) {
4249        env->dr[i] = dbgregs.db[i];
4250    }
4251    env->dr[4] = env->dr[6] = dbgregs.dr6;
4252    env->dr[5] = env->dr[7] = dbgregs.dr7;
4253
4254    return 0;
4255}
4256
4257static int kvm_put_nested_state(X86CPU *cpu)
4258{
4259    CPUX86State *env = &cpu->env;
4260    int max_nested_state_len = kvm_max_nested_state_length();
4261
4262    if (!env->nested_state) {
4263        return 0;
4264    }
4265
4266    /*
4267     * Copy flags that are affected by reset from env->hflags and env->hflags2.
4268     */
4269    if (env->hflags & HF_GUEST_MASK) {
4270        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4271    } else {
4272        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4273    }
4274
4275    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4276    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4277        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4278    } else {
4279        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4280    }
4281
4282    assert(env->nested_state->size <= max_nested_state_len);
4283    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4284}
4285
4286static int kvm_get_nested_state(X86CPU *cpu)
4287{
4288    CPUX86State *env = &cpu->env;
4289    int max_nested_state_len = kvm_max_nested_state_length();
4290    int ret;
4291
4292    if (!env->nested_state) {
4293        return 0;
4294    }
4295
4296    /*
4297     * It is possible that migration restored a smaller size into
4298     * nested_state->hdr.size than what our kernel support.
4299     * We preserve migration origin nested_state->hdr.size for
4300     * call to KVM_SET_NESTED_STATE but wish that our next call
4301     * to KVM_GET_NESTED_STATE will use max size our kernel support.
4302     */
4303    env->nested_state->size = max_nested_state_len;
4304
4305    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4306    if (ret < 0) {
4307        return ret;
4308    }
4309
4310    /*
4311     * Copy flags that are affected by reset to env->hflags and env->hflags2.
4312     */
4313    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4314        env->hflags |= HF_GUEST_MASK;
4315    } else {
4316        env->hflags &= ~HF_GUEST_MASK;
4317    }
4318
4319    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4320    if (cpu_has_svm(env)) {
4321        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4322            env->hflags2 |= HF2_GIF_MASK;
4323        } else {
4324            env->hflags2 &= ~HF2_GIF_MASK;
4325        }
4326    }
4327
4328    return ret;
4329}
4330
4331int kvm_arch_put_registers(CPUState *cpu, int level)
4332{
4333    X86CPU *x86_cpu = X86_CPU(cpu);
4334    int ret;
4335
4336    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4337
4338    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4339    ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4340    if (ret < 0) {
4341        return ret;
4342    }
4343
4344    if (level >= KVM_PUT_RESET_STATE) {
4345        ret = kvm_put_nested_state(x86_cpu);
4346        if (ret < 0) {
4347            return ret;
4348        }
4349
4350        ret = kvm_put_msr_feature_control(x86_cpu);
4351        if (ret < 0) {
4352            return ret;
4353        }
4354    }
4355
4356    if (level == KVM_PUT_FULL_STATE) {
4357        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4358         * because TSC frequency mismatch shouldn't abort migration,
4359         * unless the user explicitly asked for a more strict TSC
4360         * setting (e.g. using an explicit "tsc-freq" option).
4361         */
4362        kvm_arch_set_tsc_khz(cpu);
4363    }
4364
4365    ret = kvm_getput_regs(x86_cpu, 1);
4366    if (ret < 0) {
4367        return ret;
4368    }
4369    ret = kvm_put_xsave(x86_cpu);
4370    if (ret < 0) {
4371        return ret;
4372    }
4373    ret = kvm_put_xcrs(x86_cpu);
4374    if (ret < 0) {
4375        return ret;
4376    }
4377    /* must be before kvm_put_msrs */
4378    ret = kvm_inject_mce_oldstyle(x86_cpu);
4379    if (ret < 0) {
4380        return ret;
4381    }
4382    ret = kvm_put_msrs(x86_cpu, level);
4383    if (ret < 0) {
4384        return ret;
4385    }
4386    ret = kvm_put_vcpu_events(x86_cpu, level);
4387    if (ret < 0) {
4388        return ret;
4389    }
4390    if (level >= KVM_PUT_RESET_STATE) {
4391        ret = kvm_put_mp_state(x86_cpu);
4392        if (ret < 0) {
4393            return ret;
4394        }
4395    }
4396
4397    ret = kvm_put_tscdeadline_msr(x86_cpu);
4398    if (ret < 0) {
4399        return ret;
4400    }
4401    ret = kvm_put_debugregs(x86_cpu);
4402    if (ret < 0) {
4403        return ret;
4404    }
4405    /* must be last */
4406    ret = kvm_guest_debug_workarounds(x86_cpu);
4407    if (ret < 0) {
4408        return ret;
4409    }
4410    return 0;
4411}
4412
4413int kvm_arch_get_registers(CPUState *cs)
4414{
4415    X86CPU *cpu = X86_CPU(cs);
4416    int ret;
4417
4418    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4419
4420    ret = kvm_get_vcpu_events(cpu);
4421    if (ret < 0) {
4422        goto out;
4423    }
4424    /*
4425     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4426     * KVM_GET_REGS and KVM_GET_SREGS.
4427     */
4428    ret = kvm_get_mp_state(cpu);
4429    if (ret < 0) {
4430        goto out;
4431    }
4432    ret = kvm_getput_regs(cpu, 0);
4433    if (ret < 0) {
4434        goto out;
4435    }
4436    ret = kvm_get_xsave(cpu);
4437    if (ret < 0) {
4438        goto out;
4439    }
4440    ret = kvm_get_xcrs(cpu);
4441    if (ret < 0) {
4442        goto out;
4443    }
4444    ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4445    if (ret < 0) {
4446        goto out;
4447    }
4448    ret = kvm_get_msrs(cpu);
4449    if (ret < 0) {
4450        goto out;
4451    }
4452    ret = kvm_get_apic(cpu);
4453    if (ret < 0) {
4454        goto out;
4455    }
4456    ret = kvm_get_debugregs(cpu);
4457    if (ret < 0) {
4458        goto out;
4459    }
4460    ret = kvm_get_nested_state(cpu);
4461    if (ret < 0) {
4462        goto out;
4463    }
4464    ret = 0;
4465 out:
4466    cpu_sync_bndcs_hflags(&cpu->env);
4467    return ret;
4468}
4469
4470void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4471{
4472    X86CPU *x86_cpu = X86_CPU(cpu);
4473    CPUX86State *env = &x86_cpu->env;
4474    int ret;
4475
4476    /* Inject NMI */
4477    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4478        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4479            qemu_mutex_lock_iothread();
4480            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4481            qemu_mutex_unlock_iothread();
4482            DPRINTF("injected NMI\n");
4483            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4484            if (ret < 0) {
4485                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4486                        strerror(-ret));
4487            }
4488        }
4489        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4490            qemu_mutex_lock_iothread();
4491            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4492            qemu_mutex_unlock_iothread();
4493            DPRINTF("injected SMI\n");
4494            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4495            if (ret < 0) {
4496                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4497                        strerror(-ret));
4498            }
4499        }
4500    }
4501
4502    if (!kvm_pic_in_kernel()) {
4503        qemu_mutex_lock_iothread();
4504    }
4505
4506    /* Force the VCPU out of its inner loop to process any INIT requests
4507     * or (for userspace APIC, but it is cheap to combine the checks here)
4508     * pending TPR access reports.
4509     */
4510    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4511        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4512            !(env->hflags & HF_SMM_MASK)) {
4513            cpu->exit_request = 1;
4514        }
4515        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4516            cpu->exit_request = 1;
4517        }
4518    }
4519
4520    if (!kvm_pic_in_kernel()) {
4521        /* Try to inject an interrupt if the guest can accept it */
4522        if (run->ready_for_interrupt_injection &&
4523            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4524            (env->eflags & IF_MASK)) {
4525            int irq;
4526
4527            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4528            irq = cpu_get_pic_interrupt(env);
4529            if (irq >= 0) {
4530                struct kvm_interrupt intr;
4531
4532                intr.irq = irq;
4533                DPRINTF("injected interrupt %d\n", irq);
4534                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4535                if (ret < 0) {
4536                    fprintf(stderr,
4537                            "KVM: injection failed, interrupt lost (%s)\n",
4538                            strerror(-ret));
4539                }
4540            }
4541        }
4542
4543        /* If we have an interrupt but the guest is not ready to receive an
4544         * interrupt, request an interrupt window exit.  This will
4545         * cause a return to userspace as soon as the guest is ready to
4546         * receive interrupts. */
4547        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4548            run->request_interrupt_window = 1;
4549        } else {
4550            run->request_interrupt_window = 0;
4551        }
4552
4553        DPRINTF("setting tpr\n");
4554        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4555
4556        qemu_mutex_unlock_iothread();
4557    }
4558}
4559
4560static void kvm_rate_limit_on_bus_lock(void)
4561{
4562    uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4563
4564    if (delay_ns) {
4565        g_usleep(delay_ns / SCALE_US);
4566    }
4567}
4568
4569MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4570{
4571    X86CPU *x86_cpu = X86_CPU(cpu);
4572    CPUX86State *env = &x86_cpu->env;
4573
4574    if (run->flags & KVM_RUN_X86_SMM) {
4575        env->hflags |= HF_SMM_MASK;
4576    } else {
4577        env->hflags &= ~HF_SMM_MASK;
4578    }
4579    if (run->if_flag) {
4580        env->eflags |= IF_MASK;
4581    } else {
4582        env->eflags &= ~IF_MASK;
4583    }
4584    if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4585        kvm_rate_limit_on_bus_lock();
4586    }
4587
4588    /* We need to protect the apic state against concurrent accesses from
4589     * different threads in case the userspace irqchip is used. */
4590    if (!kvm_irqchip_in_kernel()) {
4591        qemu_mutex_lock_iothread();
4592    }
4593    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4594    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4595    if (!kvm_irqchip_in_kernel()) {
4596        qemu_mutex_unlock_iothread();
4597    }
4598    return cpu_get_mem_attrs(env);
4599}
4600
4601int kvm_arch_process_async_events(CPUState *cs)
4602{
4603    X86CPU *cpu = X86_CPU(cs);
4604    CPUX86State *env = &cpu->env;
4605
4606    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4607        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4608        assert(env->mcg_cap);
4609
4610        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4611
4612        kvm_cpu_synchronize_state(cs);
4613
4614        if (env->exception_nr == EXCP08_DBLE) {
4615            /* this means triple fault */
4616            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4617            cs->exit_request = 1;
4618            return 0;
4619        }
4620        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4621        env->has_error_code = 0;
4622
4623        cs->halted = 0;
4624        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4625            env->mp_state = KVM_MP_STATE_RUNNABLE;
4626        }
4627    }
4628
4629    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4630        !(env->hflags & HF_SMM_MASK)) {
4631        kvm_cpu_synchronize_state(cs);
4632        do_cpu_init(cpu);
4633    }
4634
4635    if (kvm_irqchip_in_kernel()) {
4636        return 0;
4637    }
4638
4639    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4640        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4641        apic_poll_irq(cpu->apic_state);
4642    }
4643    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4644         (env->eflags & IF_MASK)) ||
4645        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4646        cs->halted = 0;
4647    }
4648    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4649        kvm_cpu_synchronize_state(cs);
4650        do_cpu_sipi(cpu);
4651    }
4652    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4653        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4654        kvm_cpu_synchronize_state(cs);
4655        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4656                                      env->tpr_access_type);
4657    }
4658
4659    return cs->halted;
4660}
4661
4662static int kvm_handle_halt(X86CPU *cpu)
4663{
4664    CPUState *cs = CPU(cpu);
4665    CPUX86State *env = &cpu->env;
4666
4667    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4668          (env->eflags & IF_MASK)) &&
4669        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4670        cs->halted = 1;
4671        return EXCP_HLT;
4672    }
4673
4674    return 0;
4675}
4676
4677static int kvm_handle_tpr_access(X86CPU *cpu)
4678{
4679    CPUState *cs = CPU(cpu);
4680    struct kvm_run *run = cs->kvm_run;
4681
4682    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4683                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
4684                                                           : TPR_ACCESS_READ);
4685    return 1;
4686}
4687
4688int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4689{
4690    static const uint8_t int3 = 0xcc;
4691
4692    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4693        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4694        return -EINVAL;
4695    }
4696    return 0;
4697}
4698
4699int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4700{
4701    uint8_t int3;
4702
4703    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4704        return -EINVAL;
4705    }
4706    if (int3 != 0xcc) {
4707        return 0;
4708    }
4709    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4710        return -EINVAL;
4711    }
4712    return 0;
4713}
4714
4715static struct {
4716    target_ulong addr;
4717    int len;
4718    int type;
4719} hw_breakpoint[4];
4720
4721static int nb_hw_breakpoint;
4722
4723static int find_hw_breakpoint(target_ulong addr, int len, int type)
4724{
4725    int n;
4726
4727    for (n = 0; n < nb_hw_breakpoint; n++) {
4728        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4729            (hw_breakpoint[n].len == len || len == -1)) {
4730            return n;
4731        }
4732    }
4733    return -1;
4734}
4735
4736int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4737                                  target_ulong len, int type)
4738{
4739    switch (type) {
4740    case GDB_BREAKPOINT_HW:
4741        len = 1;
4742        break;
4743    case GDB_WATCHPOINT_WRITE:
4744    case GDB_WATCHPOINT_ACCESS:
4745        switch (len) {
4746        case 1:
4747            break;
4748        case 2:
4749        case 4:
4750        case 8:
4751            if (addr & (len - 1)) {
4752                return -EINVAL;
4753            }
4754            break;
4755        default:
4756            return -EINVAL;
4757        }
4758        break;
4759    default:
4760        return -ENOSYS;
4761    }
4762
4763    if (nb_hw_breakpoint == 4) {
4764        return -ENOBUFS;
4765    }
4766    if (find_hw_breakpoint(addr, len, type) >= 0) {
4767        return -EEXIST;
4768    }
4769    hw_breakpoint[nb_hw_breakpoint].addr = addr;
4770    hw_breakpoint[nb_hw_breakpoint].len = len;
4771    hw_breakpoint[nb_hw_breakpoint].type = type;
4772    nb_hw_breakpoint++;
4773
4774    return 0;
4775}
4776
4777int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4778                                  target_ulong len, int type)
4779{
4780    int n;
4781
4782    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4783    if (n < 0) {
4784        return -ENOENT;
4785    }
4786    nb_hw_breakpoint--;
4787    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4788
4789    return 0;
4790}
4791
4792void kvm_arch_remove_all_hw_breakpoints(void)
4793{
4794    nb_hw_breakpoint = 0;
4795}
4796
4797static CPUWatchpoint hw_watchpoint;
4798
4799static int kvm_handle_debug(X86CPU *cpu,
4800                            struct kvm_debug_exit_arch *arch_info)
4801{
4802    CPUState *cs = CPU(cpu);
4803    CPUX86State *env = &cpu->env;
4804    int ret = 0;
4805    int n;
4806
4807    if (arch_info->exception == EXCP01_DB) {
4808        if (arch_info->dr6 & DR6_BS) {
4809            if (cs->singlestep_enabled) {
4810                ret = EXCP_DEBUG;
4811            }
4812        } else {
4813            for (n = 0; n < 4; n++) {
4814                if (arch_info->dr6 & (1 << n)) {
4815                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4816                    case 0x0:
4817                        ret = EXCP_DEBUG;
4818                        break;
4819                    case 0x1:
4820                        ret = EXCP_DEBUG;
4821                        cs->watchpoint_hit = &hw_watchpoint;
4822                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4823                        hw_watchpoint.flags = BP_MEM_WRITE;
4824                        break;
4825                    case 0x3:
4826                        ret = EXCP_DEBUG;
4827                        cs->watchpoint_hit = &hw_watchpoint;
4828                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4829                        hw_watchpoint.flags = BP_MEM_ACCESS;
4830                        break;
4831                    }
4832                }
4833            }
4834        }
4835    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4836        ret = EXCP_DEBUG;
4837    }
4838    if (ret == 0) {
4839        cpu_synchronize_state(cs);
4840        assert(env->exception_nr == -1);
4841
4842        /* pass to guest */
4843        kvm_queue_exception(env, arch_info->exception,
4844                            arch_info->exception == EXCP01_DB,
4845                            arch_info->dr6);
4846        env->has_error_code = 0;
4847    }
4848
4849    return ret;
4850}
4851
4852void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4853{
4854    const uint8_t type_code[] = {
4855        [GDB_BREAKPOINT_HW] = 0x0,
4856        [GDB_WATCHPOINT_WRITE] = 0x1,
4857        [GDB_WATCHPOINT_ACCESS] = 0x3
4858    };
4859    const uint8_t len_code[] = {
4860        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4861    };
4862    int n;
4863
4864    if (kvm_sw_breakpoints_active(cpu)) {
4865        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4866    }
4867    if (nb_hw_breakpoint > 0) {
4868        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4869        dbg->arch.debugreg[7] = 0x0600;
4870        for (n = 0; n < nb_hw_breakpoint; n++) {
4871            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4872            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4873                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4874                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4875        }
4876    }
4877}
4878
4879static bool has_sgx_provisioning;
4880
4881static bool __kvm_enable_sgx_provisioning(KVMState *s)
4882{
4883    int fd, ret;
4884
4885    if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
4886        return false;
4887    }
4888
4889    fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
4890    if (fd < 0) {
4891        return false;
4892    }
4893
4894    ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
4895    if (ret) {
4896        error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
4897        exit(1);
4898    }
4899    close(fd);
4900    return true;
4901}
4902
4903bool kvm_enable_sgx_provisioning(KVMState *s)
4904{
4905    return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
4906}
4907
4908static bool host_supports_vmx(void)
4909{
4910    uint32_t ecx, unused;
4911
4912    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4913    return ecx & CPUID_EXT_VMX;
4914}
4915
4916#define VMX_INVALID_GUEST_STATE 0x80000021
4917
4918int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4919{
4920    X86CPU *cpu = X86_CPU(cs);
4921    uint64_t code;
4922    int ret;
4923
4924    switch (run->exit_reason) {
4925    case KVM_EXIT_HLT:
4926        DPRINTF("handle_hlt\n");
4927        qemu_mutex_lock_iothread();
4928        ret = kvm_handle_halt(cpu);
4929        qemu_mutex_unlock_iothread();
4930        break;
4931    case KVM_EXIT_SET_TPR:
4932        ret = 0;
4933        break;
4934    case KVM_EXIT_TPR_ACCESS:
4935        qemu_mutex_lock_iothread();
4936        ret = kvm_handle_tpr_access(cpu);
4937        qemu_mutex_unlock_iothread();
4938        break;
4939    case KVM_EXIT_FAIL_ENTRY:
4940        code = run->fail_entry.hardware_entry_failure_reason;
4941        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4942                code);
4943        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4944            fprintf(stderr,
4945                    "\nIf you're running a guest on an Intel machine without "
4946                        "unrestricted mode\n"
4947                    "support, the failure can be most likely due to the guest "
4948                        "entering an invalid\n"
4949                    "state for Intel VT. For example, the guest maybe running "
4950                        "in big real mode\n"
4951                    "which is not supported on less recent Intel processors."
4952                        "\n\n");
4953        }
4954        ret = -1;
4955        break;
4956    case KVM_EXIT_EXCEPTION:
4957        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4958                run->ex.exception, run->ex.error_code);
4959        ret = -1;
4960        break;
4961    case KVM_EXIT_DEBUG:
4962        DPRINTF("kvm_exit_debug\n");
4963        qemu_mutex_lock_iothread();
4964        ret = kvm_handle_debug(cpu, &run->debug.arch);
4965        qemu_mutex_unlock_iothread();
4966        break;
4967    case KVM_EXIT_HYPERV:
4968        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4969        break;
4970    case KVM_EXIT_IOAPIC_EOI:
4971        ioapic_eoi_broadcast(run->eoi.vector);
4972        ret = 0;
4973        break;
4974    case KVM_EXIT_X86_BUS_LOCK:
4975        /* already handled in kvm_arch_post_run */
4976        ret = 0;
4977        break;
4978    default:
4979        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4980        ret = -1;
4981        break;
4982    }
4983
4984    return ret;
4985}
4986
4987bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4988{
4989    X86CPU *cpu = X86_CPU(cs);
4990    CPUX86State *env = &cpu->env;
4991
4992    kvm_cpu_synchronize_state(cs);
4993    return !(env->cr[0] & CR0_PE_MASK) ||
4994           ((env->segs[R_CS].selector  & 3) != 3);
4995}
4996
4997void kvm_arch_init_irq_routing(KVMState *s)
4998{
4999    /* We know at this point that we're using the in-kernel
5000     * irqchip, so we can use irqfds, and on x86 we know
5001     * we can use msi via irqfd and GSI routing.
5002     */
5003    kvm_msi_via_irqfd_allowed = true;
5004    kvm_gsi_routing_allowed = true;
5005
5006    if (kvm_irqchip_is_split()) {
5007        KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5008        int i;
5009
5010        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5011           MSI routes for signaling interrupts to the local apics. */
5012        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5013            if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5014                error_report("Could not enable split IRQ mode.");
5015                exit(1);
5016            }
5017        }
5018        kvm_irqchip_commit_route_changes(&c);
5019    }
5020}
5021
5022int kvm_arch_irqchip_create(KVMState *s)
5023{
5024    int ret;
5025    if (kvm_kernel_irqchip_split()) {
5026        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5027        if (ret) {
5028            error_report("Could not enable split irqchip mode: %s",
5029                         strerror(-ret));
5030            exit(1);
5031        } else {
5032            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5033            kvm_split_irqchip = true;
5034            return 1;
5035        }
5036    } else {
5037        return 0;
5038    }
5039}
5040
5041uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5042{
5043    CPUX86State *env;
5044    uint64_t ext_id;
5045
5046    if (!first_cpu) {
5047        return address;
5048    }
5049    env = &X86_CPU(first_cpu)->env;
5050    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5051        return address;
5052    }
5053
5054    /*
5055     * If the remappable format bit is set, or the upper bits are
5056     * already set in address_hi, or the low extended bits aren't
5057     * there anyway, do nothing.
5058     */
5059    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5060    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5061        return address;
5062    }
5063
5064    address &= ~ext_id;
5065    address |= ext_id << 35;
5066    return address;
5067}
5068
5069int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5070                             uint64_t address, uint32_t data, PCIDevice *dev)
5071{
5072    X86IOMMUState *iommu = x86_iommu_get_default();
5073
5074    if (iommu) {
5075        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5076
5077        if (class->int_remap) {
5078            int ret;
5079            MSIMessage src, dst;
5080
5081            src.address = route->u.msi.address_hi;
5082            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5083            src.address |= route->u.msi.address_lo;
5084            src.data = route->u.msi.data;
5085
5086            ret = class->int_remap(iommu, &src, &dst, dev ?     \
5087                                   pci_requester_id(dev) :      \
5088                                   X86_IOMMU_SID_INVALID);
5089            if (ret) {
5090                trace_kvm_x86_fixup_msi_error(route->gsi);
5091                return 1;
5092            }
5093
5094            /*
5095             * Handled untranslated compatibilty format interrupt with
5096             * extended destination ID in the low bits 11-5. */
5097            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5098
5099            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5100            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5101            route->u.msi.data = dst.data;
5102            return 0;
5103        }
5104    }
5105
5106    address = kvm_swizzle_msi_ext_dest_id(address);
5107    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5108    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5109    return 0;
5110}
5111
5112typedef struct MSIRouteEntry MSIRouteEntry;
5113
5114struct MSIRouteEntry {
5115    PCIDevice *dev;             /* Device pointer */
5116    int vector;                 /* MSI/MSIX vector index */
5117    int virq;                   /* Virtual IRQ index */
5118    QLIST_ENTRY(MSIRouteEntry) list;
5119};
5120
5121/* List of used GSI routes */
5122static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5123    QLIST_HEAD_INITIALIZER(msi_route_list);
5124
5125static void kvm_update_msi_routes_all(void *private, bool global,
5126                                      uint32_t index, uint32_t mask)
5127{
5128    int cnt = 0, vector;
5129    MSIRouteEntry *entry;
5130    MSIMessage msg;
5131    PCIDevice *dev;
5132
5133    /* TODO: explicit route update */
5134    QLIST_FOREACH(entry, &msi_route_list, list) {
5135        cnt++;
5136        vector = entry->vector;
5137        dev = entry->dev;
5138        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5139            msg = msix_get_message(dev, vector);
5140        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5141            msg = msi_get_message(dev, vector);
5142        } else {
5143            /*
5144             * Either MSI/MSIX is disabled for the device, or the
5145             * specific message was masked out.  Skip this one.
5146             */
5147            continue;
5148        }
5149        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5150    }
5151    kvm_irqchip_commit_routes(kvm_state);
5152    trace_kvm_x86_update_msi_routes(cnt);
5153}
5154
5155int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5156                                int vector, PCIDevice *dev)
5157{
5158    static bool notify_list_inited = false;
5159    MSIRouteEntry *entry;
5160
5161    if (!dev) {
5162        /* These are (possibly) IOAPIC routes only used for split
5163         * kernel irqchip mode, while what we are housekeeping are
5164         * PCI devices only. */
5165        return 0;
5166    }
5167
5168    entry = g_new0(MSIRouteEntry, 1);
5169    entry->dev = dev;
5170    entry->vector = vector;
5171    entry->virq = route->gsi;
5172    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5173
5174    trace_kvm_x86_add_msi_route(route->gsi);
5175
5176    if (!notify_list_inited) {
5177        /* For the first time we do add route, add ourselves into
5178         * IOMMU's IEC notify list if needed. */
5179        X86IOMMUState *iommu = x86_iommu_get_default();
5180        if (iommu) {
5181            x86_iommu_iec_register_notifier(iommu,
5182                                            kvm_update_msi_routes_all,
5183                                            NULL);
5184        }
5185        notify_list_inited = true;
5186    }
5187    return 0;
5188}
5189
5190int kvm_arch_release_virq_post(int virq)
5191{
5192    MSIRouteEntry *entry, *next;
5193    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5194        if (entry->virq == virq) {
5195            trace_kvm_x86_remove_msi_route(virq);
5196            QLIST_REMOVE(entry, list);
5197            g_free(entry);
5198            break;
5199        }
5200    }
5201    return 0;
5202}
5203
5204int kvm_arch_msi_data_to_gsi(uint32_t data)
5205{
5206    abort();
5207}
5208
5209bool kvm_has_waitpkg(void)
5210{
5211    return has_msr_umwait;
5212}
5213
5214bool kvm_arch_cpu_check_are_resettable(void)
5215{
5216    return !sev_es_enabled();
5217}
5218
5219#define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5220
5221void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5222{
5223    KVMState *s = kvm_state;
5224    uint64_t supported;
5225
5226    mask &= XSTATE_DYNAMIC_MASK;
5227    if (!mask) {
5228        return;
5229    }
5230    /*
5231     * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5232     * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5233     * about them already because they are not supported features.
5234     */
5235    supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5236    supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5237    mask &= supported;
5238
5239    while (mask) {
5240        int bit = ctz64(mask);
5241        int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5242        if (rc) {
5243            /*
5244             * Older kernel version (<5.17) do not support
5245             * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5246             * any dynamic feature from kvm_arch_get_supported_cpuid.
5247             */
5248            warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5249                        "for feature bit %d", bit);
5250        }
5251        mask &= ~BIT_ULL(bit);
5252    }
5253}
5254