qemu/target/i386/tcg/sysemu/seg_helper.c
<<
>>
Prefs
   1/*
   2 *  x86 segmentation related helpers: (sysemu-only code)
   3 *  TSS, interrupts, system calls, jumps and call/task gates, descriptors
   4 *
   5 *  Copyright (c) 2003 Fabrice Bellard
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2.1 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/log.h"
  23#include "cpu.h"
  24#include "exec/helper-proto.h"
  25#include "exec/cpu_ldst.h"
  26#include "tcg/helper-tcg.h"
  27#include "../seg_helper.h"
  28
  29#ifdef TARGET_X86_64
  30void helper_syscall(CPUX86State *env, int next_eip_addend)
  31{
  32    int selector;
  33
  34    if (!(env->efer & MSR_EFER_SCE)) {
  35        raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
  36    }
  37    selector = (env->star >> 32) & 0xffff;
  38    if (env->hflags & HF_LMA_MASK) {
  39        int code64;
  40
  41        env->regs[R_ECX] = env->eip + next_eip_addend;
  42        env->regs[11] = cpu_compute_eflags(env) & ~RF_MASK;
  43
  44        code64 = env->hflags & HF_CS64_MASK;
  45
  46        env->eflags &= ~(env->fmask | RF_MASK);
  47        cpu_load_eflags(env, env->eflags, 0);
  48        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
  49                           0, 0xffffffff,
  50                               DESC_G_MASK | DESC_P_MASK |
  51                               DESC_S_MASK |
  52                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
  53                               DESC_L_MASK);
  54        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
  55                               0, 0xffffffff,
  56                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
  57                               DESC_S_MASK |
  58                               DESC_W_MASK | DESC_A_MASK);
  59        if (code64) {
  60            env->eip = env->lstar;
  61        } else {
  62            env->eip = env->cstar;
  63        }
  64    } else {
  65        env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);
  66
  67        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
  68        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
  69                           0, 0xffffffff,
  70                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
  71                               DESC_S_MASK |
  72                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
  73        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
  74                               0, 0xffffffff,
  75                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
  76                               DESC_S_MASK |
  77                               DESC_W_MASK | DESC_A_MASK);
  78        env->eip = (uint32_t)env->star;
  79    }
  80}
  81#endif /* TARGET_X86_64 */
  82
  83void handle_even_inj(CPUX86State *env, int intno, int is_int,
  84                     int error_code, int is_hw, int rm)
  85{
  86    CPUState *cs = env_cpu(env);
  87    uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
  88                                                          control.event_inj));
  89
  90    if (!(event_inj & SVM_EVTINJ_VALID)) {
  91        int type;
  92
  93        if (is_int) {
  94            type = SVM_EVTINJ_TYPE_SOFT;
  95        } else {
  96            type = SVM_EVTINJ_TYPE_EXEPT;
  97        }
  98        event_inj = intno | type | SVM_EVTINJ_VALID;
  99        if (!rm && exception_has_error_code(intno)) {
 100            event_inj |= SVM_EVTINJ_VALID_ERR;
 101            x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
 102                                             control.event_inj_err),
 103                     error_code);
 104        }
 105        x86_stl_phys(cs,
 106                 env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
 107                 event_inj);
 108    }
 109}
 110
 111void x86_cpu_do_interrupt(CPUState *cs)
 112{
 113    X86CPU *cpu = X86_CPU(cs);
 114    CPUX86State *env = &cpu->env;
 115
 116    if (cs->exception_index == EXCP_VMEXIT) {
 117        assert(env->old_exception == -1);
 118        do_vmexit(env);
 119    } else {
 120        do_interrupt_all(cpu, cs->exception_index,
 121                         env->exception_is_int,
 122                         env->error_code,
 123                         env->exception_next_eip, 0);
 124        /* successfully delivered */
 125        env->old_exception = -1;
 126    }
 127}
 128
 129bool x86_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 130{
 131    X86CPU *cpu = X86_CPU(cs);
 132    CPUX86State *env = &cpu->env;
 133    int intno;
 134
 135    interrupt_request = x86_cpu_pending_interrupt(cs, interrupt_request);
 136    if (!interrupt_request) {
 137        return false;
 138    }
 139
 140    /* Don't process multiple interrupt requests in a single call.
 141     * This is required to make icount-driven execution deterministic.
 142     */
 143    switch (interrupt_request) {
 144    case CPU_INTERRUPT_POLL:
 145        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
 146        apic_poll_irq(cpu->apic_state);
 147        break;
 148    case CPU_INTERRUPT_SIPI:
 149        do_cpu_sipi(cpu);
 150        break;
 151    case CPU_INTERRUPT_SMI:
 152        cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, 0, 0);
 153        cs->interrupt_request &= ~CPU_INTERRUPT_SMI;
 154        do_smm_enter(cpu);
 155        break;
 156    case CPU_INTERRUPT_NMI:
 157        cpu_svm_check_intercept_param(env, SVM_EXIT_NMI, 0, 0);
 158        cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
 159        env->hflags2 |= HF2_NMI_MASK;
 160        do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
 161        break;
 162    case CPU_INTERRUPT_MCE:
 163        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
 164        do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
 165        break;
 166    case CPU_INTERRUPT_HARD:
 167        cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, 0, 0);
 168        cs->interrupt_request &= ~(CPU_INTERRUPT_HARD |
 169                                   CPU_INTERRUPT_VIRQ);
 170        intno = cpu_get_pic_interrupt(env);
 171        qemu_log_mask(CPU_LOG_INT,
 172                      "Servicing hardware INT=0x%02x\n", intno);
 173        do_interrupt_x86_hardirq(env, intno, 1);
 174        break;
 175    case CPU_INTERRUPT_VIRQ:
 176        cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, 0, 0);
 177        intno = x86_ldl_phys(cs, env->vm_vmcb
 178                             + offsetof(struct vmcb, control.int_vector));
 179        qemu_log_mask(CPU_LOG_INT,
 180                      "Servicing virtual hardware INT=0x%02x\n", intno);
 181        do_interrupt_x86_hardirq(env, intno, 1);
 182        cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
 183        env->int_ctl &= ~V_IRQ_MASK;
 184        break;
 185    }
 186
 187    /* Ensure that no TB jump will be modified as the program flow was changed.  */
 188    return true;
 189}
 190
 191/* check if Port I/O is allowed in TSS */
 192void helper_check_io(CPUX86State *env, uint32_t addr, uint32_t size)
 193{
 194    uintptr_t retaddr = GETPC();
 195    uint32_t io_offset, val, mask;
 196
 197    /* TSS must be a valid 32 bit one */
 198    if (!(env->tr.flags & DESC_P_MASK) ||
 199        ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
 200        env->tr.limit < 103) {
 201        goto fail;
 202    }
 203    io_offset = cpu_lduw_kernel_ra(env, env->tr.base + 0x66, retaddr);
 204    io_offset += (addr >> 3);
 205    /* Note: the check needs two bytes */
 206    if ((io_offset + 1) > env->tr.limit) {
 207        goto fail;
 208    }
 209    val = cpu_lduw_kernel_ra(env, env->tr.base + io_offset, retaddr);
 210    val >>= (addr & 7);
 211    mask = (1 << size) - 1;
 212    /* all bits must be zero to allow the I/O */
 213    if ((val & mask) != 0) {
 214    fail:
 215        raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
 216    }
 217}
 218