qemu/target/m68k/op_helper.c
<<
>>
Prefs
   1/*
   2 *  M68K helper routines
   3 *
   4 *  Copyright (c) 2007 CodeSourcery
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qemu/log.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "exec/exec-all.h"
  24#include "exec/cpu_ldst.h"
  25#include "semihosting/semihost.h"
  26
  27#if !defined(CONFIG_USER_ONLY)
  28
  29static void cf_rte(CPUM68KState *env)
  30{
  31    uint32_t sp;
  32    uint32_t fmt;
  33
  34    sp = env->aregs[7];
  35    fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
  36    env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
  37    sp |= (fmt >> 28) & 3;
  38    env->aregs[7] = sp + 8;
  39
  40    cpu_m68k_set_sr(env, fmt);
  41}
  42
  43static void m68k_rte(CPUM68KState *env)
  44{
  45    uint32_t sp;
  46    uint16_t fmt;
  47    uint16_t sr;
  48
  49    sp = env->aregs[7];
  50throwaway:
  51    sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
  52    sp += 2;
  53    env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
  54    sp += 4;
  55    if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
  56        /*  all except 68000 */
  57        fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
  58        sp += 2;
  59        switch (fmt >> 12) {
  60        case 0:
  61            break;
  62        case 1:
  63            env->aregs[7] = sp;
  64            cpu_m68k_set_sr(env, sr);
  65            goto throwaway;
  66        case 2:
  67        case 3:
  68            sp += 4;
  69            break;
  70        case 4:
  71            sp += 8;
  72            break;
  73        case 7:
  74            sp += 52;
  75            break;
  76        }
  77    }
  78    env->aregs[7] = sp;
  79    cpu_m68k_set_sr(env, sr);
  80}
  81
  82static const char *m68k_exception_name(int index)
  83{
  84    switch (index) {
  85    case EXCP_ACCESS:
  86        return "Access Fault";
  87    case EXCP_ADDRESS:
  88        return "Address Error";
  89    case EXCP_ILLEGAL:
  90        return "Illegal Instruction";
  91    case EXCP_DIV0:
  92        return "Divide by Zero";
  93    case EXCP_CHK:
  94        return "CHK/CHK2";
  95    case EXCP_TRAPCC:
  96        return "FTRAPcc, TRAPcc, TRAPV";
  97    case EXCP_PRIVILEGE:
  98        return "Privilege Violation";
  99    case EXCP_TRACE:
 100        return "Trace";
 101    case EXCP_LINEA:
 102        return "A-Line";
 103    case EXCP_LINEF:
 104        return "F-Line";
 105    case EXCP_DEBEGBP: /* 68020/030 only */
 106        return "Copro Protocol Violation";
 107    case EXCP_FORMAT:
 108        return "Format Error";
 109    case EXCP_UNINITIALIZED:
 110        return "Uninitialized Interrupt";
 111    case EXCP_SPURIOUS:
 112        return "Spurious Interrupt";
 113    case EXCP_INT_LEVEL_1:
 114        return "Level 1 Interrupt";
 115    case EXCP_INT_LEVEL_1 + 1:
 116        return "Level 2 Interrupt";
 117    case EXCP_INT_LEVEL_1 + 2:
 118        return "Level 3 Interrupt";
 119    case EXCP_INT_LEVEL_1 + 3:
 120        return "Level 4 Interrupt";
 121    case EXCP_INT_LEVEL_1 + 4:
 122        return "Level 5 Interrupt";
 123    case EXCP_INT_LEVEL_1 + 5:
 124        return "Level 6 Interrupt";
 125    case EXCP_INT_LEVEL_1 + 6:
 126        return "Level 7 Interrupt";
 127    case EXCP_TRAP0:
 128        return "TRAP #0";
 129    case EXCP_TRAP0 + 1:
 130        return "TRAP #1";
 131    case EXCP_TRAP0 + 2:
 132        return "TRAP #2";
 133    case EXCP_TRAP0 + 3:
 134        return "TRAP #3";
 135    case EXCP_TRAP0 + 4:
 136        return "TRAP #4";
 137    case EXCP_TRAP0 + 5:
 138        return "TRAP #5";
 139    case EXCP_TRAP0 + 6:
 140        return "TRAP #6";
 141    case EXCP_TRAP0 + 7:
 142        return "TRAP #7";
 143    case EXCP_TRAP0 + 8:
 144        return "TRAP #8";
 145    case EXCP_TRAP0 + 9:
 146        return "TRAP #9";
 147    case EXCP_TRAP0 + 10:
 148        return "TRAP #10";
 149    case EXCP_TRAP0 + 11:
 150        return "TRAP #11";
 151    case EXCP_TRAP0 + 12:
 152        return "TRAP #12";
 153    case EXCP_TRAP0 + 13:
 154        return "TRAP #13";
 155    case EXCP_TRAP0 + 14:
 156        return "TRAP #14";
 157    case EXCP_TRAP0 + 15:
 158        return "TRAP #15";
 159    case EXCP_FP_BSUN:
 160        return "FP Branch/Set on unordered condition";
 161    case EXCP_FP_INEX:
 162        return "FP Inexact Result";
 163    case EXCP_FP_DZ:
 164        return "FP Divide by Zero";
 165    case EXCP_FP_UNFL:
 166        return "FP Underflow";
 167    case EXCP_FP_OPERR:
 168        return "FP Operand Error";
 169    case EXCP_FP_OVFL:
 170        return "FP Overflow";
 171    case EXCP_FP_SNAN:
 172        return "FP Signaling NAN";
 173    case EXCP_FP_UNIMP:
 174        return "FP Unimplemented Data Type";
 175    case EXCP_MMU_CONF: /* 68030/68851 only */
 176        return "MMU Configuration Error";
 177    case EXCP_MMU_ILLEGAL: /* 68851 only */
 178        return "MMU Illegal Operation";
 179    case EXCP_MMU_ACCESS: /* 68851 only */
 180        return "MMU Access Level Violation";
 181    case 64 ... 255:
 182        return "User Defined Vector";
 183    }
 184    return "Unassigned";
 185}
 186
 187static void cf_interrupt_all(CPUM68KState *env, int is_hw)
 188{
 189    CPUState *cs = env_cpu(env);
 190    uint32_t sp;
 191    uint32_t sr;
 192    uint32_t fmt;
 193    uint32_t retaddr;
 194    uint32_t vector;
 195
 196    fmt = 0;
 197    retaddr = env->pc;
 198
 199    if (!is_hw) {
 200        switch (cs->exception_index) {
 201        case EXCP_RTE:
 202            /* Return from an exception.  */
 203            cf_rte(env);
 204            return;
 205        case EXCP_HALT_INSN:
 206            if (semihosting_enabled()
 207                    && (env->sr & SR_S) != 0
 208                    && (env->pc & 3) == 0
 209                    && cpu_lduw_code(env, env->pc - 4) == 0x4e71
 210                    && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
 211                env->pc += 4;
 212                do_m68k_semihosting(env, env->dregs[0]);
 213                return;
 214            }
 215            cs->halted = 1;
 216            cs->exception_index = EXCP_HLT;
 217            cpu_loop_exit(cs);
 218            return;
 219        }
 220        if (cs->exception_index >= EXCP_TRAP0
 221            && cs->exception_index <= EXCP_TRAP15) {
 222            /* Move the PC after the trap instruction.  */
 223            retaddr += 2;
 224        }
 225    }
 226
 227    vector = cs->exception_index << 2;
 228
 229    sr = env->sr | cpu_m68k_get_ccr(env);
 230    if (qemu_loglevel_mask(CPU_LOG_INT)) {
 231        static int count;
 232        qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
 233                 ++count, m68k_exception_name(cs->exception_index),
 234                 vector, env->pc, env->aregs[7], sr);
 235    }
 236
 237    fmt |= 0x40000000;
 238    fmt |= vector << 16;
 239    fmt |= sr;
 240
 241    env->sr |= SR_S;
 242    if (is_hw) {
 243        env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
 244        env->sr &= ~SR_M;
 245    }
 246    m68k_switch_sp(env);
 247    sp = env->aregs[7];
 248    fmt |= (sp & 3) << 28;
 249
 250    /* ??? This could cause MMU faults.  */
 251    sp &= ~3;
 252    sp -= 4;
 253    cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
 254    sp -= 4;
 255    cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
 256    env->aregs[7] = sp;
 257    /* Jump to vector.  */
 258    env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
 259}
 260
 261static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
 262                                  uint16_t format, uint16_t sr,
 263                                  uint32_t addr, uint32_t retaddr)
 264{
 265    if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
 266        /*  all except 68000 */
 267        CPUState *cs = env_cpu(env);
 268        switch (format) {
 269        case 4:
 270            *sp -= 4;
 271            cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
 272            *sp -= 4;
 273            cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
 274            break;
 275        case 3:
 276        case 2:
 277            *sp -= 4;
 278            cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
 279            break;
 280        }
 281        *sp -= 2;
 282        cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
 283                          MMU_KERNEL_IDX, 0);
 284    }
 285    *sp -= 4;
 286    cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
 287    *sp -= 2;
 288    cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
 289}
 290
 291static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
 292{
 293    CPUState *cs = env_cpu(env);
 294    uint32_t sp;
 295    uint32_t retaddr;
 296    uint32_t vector;
 297    uint16_t sr, oldsr;
 298
 299    retaddr = env->pc;
 300
 301    if (!is_hw) {
 302        switch (cs->exception_index) {
 303        case EXCP_RTE:
 304            /* Return from an exception.  */
 305            m68k_rte(env);
 306            return;
 307        case EXCP_TRAP0 ...  EXCP_TRAP15:
 308            /* Move the PC after the trap instruction.  */
 309            retaddr += 2;
 310            break;
 311        }
 312    }
 313
 314    vector = cs->exception_index << 2;
 315
 316    sr = env->sr | cpu_m68k_get_ccr(env);
 317    if (qemu_loglevel_mask(CPU_LOG_INT)) {
 318        static int count;
 319        qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
 320                 ++count, m68k_exception_name(cs->exception_index),
 321                 vector, env->pc, env->aregs[7], sr);
 322    }
 323
 324    /*
 325     * MC68040UM/AD,  chapter 9.3.10
 326     */
 327
 328    /* "the processor first make an internal copy" */
 329    oldsr = sr;
 330    /* "set the mode to supervisor" */
 331    sr |= SR_S;
 332    /* "suppress tracing" */
 333    sr &= ~SR_T;
 334    /* "sets the processor interrupt mask" */
 335    if (is_hw) {
 336        sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
 337    }
 338    cpu_m68k_set_sr(env, sr);
 339    sp = env->aregs[7];
 340
 341    if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
 342        sp &= ~1;
 343    }
 344
 345    if (cs->exception_index == EXCP_ACCESS) {
 346        if (env->mmu.fault) {
 347            cpu_abort(cs, "DOUBLE MMU FAULT\n");
 348        }
 349        env->mmu.fault = true;
 350        /* push data 3 */
 351        sp -= 4;
 352        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 353        /* push data 2 */
 354        sp -= 4;
 355        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 356        /* push data 1 */
 357        sp -= 4;
 358        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 359        /* write back 1 / push data 0 */
 360        sp -= 4;
 361        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 362        /* write back 1 address */
 363        sp -= 4;
 364        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 365        /* write back 2 data */
 366        sp -= 4;
 367        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 368        /* write back 2 address */
 369        sp -= 4;
 370        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 371        /* write back 3 data */
 372        sp -= 4;
 373        cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 374        /* write back 3 address */
 375        sp -= 4;
 376        cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
 377        /* fault address */
 378        sp -= 4;
 379        cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
 380        /* write back 1 status */
 381        sp -= 2;
 382        cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 383        /* write back 2 status */
 384        sp -= 2;
 385        cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 386        /* write back 3 status */
 387        sp -= 2;
 388        cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
 389        /* special status word */
 390        sp -= 2;
 391        cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
 392        /* effective address */
 393        sp -= 4;
 394        cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
 395
 396        do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
 397        env->mmu.fault = false;
 398        if (qemu_loglevel_mask(CPU_LOG_INT)) {
 399            qemu_log("            "
 400                     "ssw:  %08x ea:   %08x sfc:  %d    dfc: %d\n",
 401                     env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
 402        }
 403    } else if (cs->exception_index == EXCP_ADDRESS) {
 404        do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
 405    } else if (cs->exception_index == EXCP_ILLEGAL ||
 406               cs->exception_index == EXCP_DIV0 ||
 407               cs->exception_index == EXCP_CHK ||
 408               cs->exception_index == EXCP_TRAPCC ||
 409               cs->exception_index == EXCP_TRACE) {
 410        /* FIXME: addr is not only env->pc */
 411        do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
 412    } else if (is_hw && oldsr & SR_M &&
 413               cs->exception_index >= EXCP_SPURIOUS &&
 414               cs->exception_index <= EXCP_INT_LEVEL_7) {
 415        do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
 416        oldsr = sr;
 417        env->aregs[7] = sp;
 418        cpu_m68k_set_sr(env, sr &= ~SR_M);
 419        sp = env->aregs[7];
 420        if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
 421            sp &= ~1;
 422        }
 423        do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
 424    } else {
 425        do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
 426    }
 427
 428    env->aregs[7] = sp;
 429    /* Jump to vector.  */
 430    env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
 431}
 432
 433static void do_interrupt_all(CPUM68KState *env, int is_hw)
 434{
 435    if (m68k_feature(env, M68K_FEATURE_M68000)) {
 436        m68k_interrupt_all(env, is_hw);
 437        return;
 438    }
 439    cf_interrupt_all(env, is_hw);
 440}
 441
 442void m68k_cpu_do_interrupt(CPUState *cs)
 443{
 444    M68kCPU *cpu = M68K_CPU(cs);
 445    CPUM68KState *env = &cpu->env;
 446
 447    do_interrupt_all(env, 0);
 448}
 449
 450static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
 451{
 452    do_interrupt_all(env, 1);
 453}
 454
 455void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
 456                                 unsigned size, MMUAccessType access_type,
 457                                 int mmu_idx, MemTxAttrs attrs,
 458                                 MemTxResult response, uintptr_t retaddr)
 459{
 460    M68kCPU *cpu = M68K_CPU(cs);
 461    CPUM68KState *env = &cpu->env;
 462
 463    cpu_restore_state(cs, retaddr, true);
 464
 465    if (m68k_feature(env, M68K_FEATURE_M68040)) {
 466        env->mmu.mmusr = 0;
 467
 468        /*
 469         * According to the MC68040 users manual the ATC bit of the SSW is
 470         * used to distinguish between ATC faults and physical bus errors.
 471         * In the case of a bus error e.g. during nubus read from an empty
 472         * slot this bit should not be set
 473         */
 474        if (response != MEMTX_DECODE_ERROR) {
 475            env->mmu.ssw |= M68K_ATC_040;
 476        }
 477
 478        /* FIXME: manage MMU table access error */
 479        env->mmu.ssw &= ~M68K_TM_040;
 480        if (env->sr & SR_S) { /* SUPERVISOR */
 481            env->mmu.ssw |= M68K_TM_040_SUPER;
 482        }
 483        if (access_type == MMU_INST_FETCH) { /* instruction or data */
 484            env->mmu.ssw |= M68K_TM_040_CODE;
 485        } else {
 486            env->mmu.ssw |= M68K_TM_040_DATA;
 487        }
 488        env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
 489        switch (size) {
 490        case 1:
 491            env->mmu.ssw |= M68K_BA_SIZE_BYTE;
 492            break;
 493        case 2:
 494            env->mmu.ssw |= M68K_BA_SIZE_WORD;
 495            break;
 496        case 4:
 497            env->mmu.ssw |= M68K_BA_SIZE_LONG;
 498            break;
 499        }
 500
 501        if (access_type != MMU_DATA_STORE) {
 502            env->mmu.ssw |= M68K_RW_040;
 503        }
 504
 505        env->mmu.ar = addr;
 506
 507        cs->exception_index = EXCP_ACCESS;
 508        cpu_loop_exit(cs);
 509    }
 510}
 511
 512bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 513{
 514    M68kCPU *cpu = M68K_CPU(cs);
 515    CPUM68KState *env = &cpu->env;
 516
 517    if (interrupt_request & CPU_INTERRUPT_HARD
 518        && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
 519        /*
 520         * Real hardware gets the interrupt vector via an IACK cycle
 521         * at this point.  Current emulated hardware doesn't rely on
 522         * this, so we provide/save the vector when the interrupt is
 523         * first signalled.
 524         */
 525        cs->exception_index = env->pending_vector;
 526        do_interrupt_m68k_hardirq(env);
 527        return true;
 528    }
 529    return false;
 530}
 531
 532#endif /* !CONFIG_USER_ONLY */
 533
 534static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
 535{
 536    CPUState *cs = env_cpu(env);
 537
 538    cs->exception_index = tt;
 539    cpu_loop_exit_restore(cs, raddr);
 540}
 541
 542static void raise_exception(CPUM68KState *env, int tt)
 543{
 544    raise_exception_ra(env, tt, 0);
 545}
 546
 547void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
 548{
 549    raise_exception(env, tt);
 550}
 551
 552void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
 553{
 554    uint32_t num = env->dregs[destr];
 555    uint32_t quot, rem;
 556
 557    if (den == 0) {
 558        raise_exception_ra(env, EXCP_DIV0, GETPC());
 559    }
 560    quot = num / den;
 561    rem = num % den;
 562
 563    env->cc_c = 0; /* always cleared, even if overflow */
 564    if (quot > 0xffff) {
 565        env->cc_v = -1;
 566        /*
 567         * real 68040 keeps N and unset Z on overflow,
 568         * whereas documentation says "undefined"
 569         */
 570        env->cc_z = 1;
 571        return;
 572    }
 573    env->dregs[destr] = deposit32(quot, 16, 16, rem);
 574    env->cc_z = (int16_t)quot;
 575    env->cc_n = (int16_t)quot;
 576    env->cc_v = 0;
 577}
 578
 579void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
 580{
 581    int32_t num = env->dregs[destr];
 582    uint32_t quot, rem;
 583
 584    if (den == 0) {
 585        raise_exception_ra(env, EXCP_DIV0, GETPC());
 586    }
 587    quot = num / den;
 588    rem = num % den;
 589
 590    env->cc_c = 0; /* always cleared, even if overflow */
 591    if (quot != (int16_t)quot) {
 592        env->cc_v = -1;
 593        /* nothing else is modified */
 594        /*
 595         * real 68040 keeps N and unset Z on overflow,
 596         * whereas documentation says "undefined"
 597         */
 598        env->cc_z = 1;
 599        return;
 600    }
 601    env->dregs[destr] = deposit32(quot, 16, 16, rem);
 602    env->cc_z = (int16_t)quot;
 603    env->cc_n = (int16_t)quot;
 604    env->cc_v = 0;
 605}
 606
 607void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
 608{
 609    uint32_t num = env->dregs[numr];
 610    uint32_t quot, rem;
 611
 612    if (den == 0) {
 613        raise_exception_ra(env, EXCP_DIV0, GETPC());
 614    }
 615    quot = num / den;
 616    rem = num % den;
 617
 618    env->cc_c = 0;
 619    env->cc_z = quot;
 620    env->cc_n = quot;
 621    env->cc_v = 0;
 622
 623    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
 624        if (numr == regr) {
 625            env->dregs[numr] = quot;
 626        } else {
 627            env->dregs[regr] = rem;
 628        }
 629    } else {
 630        env->dregs[regr] = rem;
 631        env->dregs[numr] = quot;
 632    }
 633}
 634
 635void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
 636{
 637    int32_t num = env->dregs[numr];
 638    int32_t quot, rem;
 639
 640    if (den == 0) {
 641        raise_exception_ra(env, EXCP_DIV0, GETPC());
 642    }
 643    quot = num / den;
 644    rem = num % den;
 645
 646    env->cc_c = 0;
 647    env->cc_z = quot;
 648    env->cc_n = quot;
 649    env->cc_v = 0;
 650
 651    if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
 652        if (numr == regr) {
 653            env->dregs[numr] = quot;
 654        } else {
 655            env->dregs[regr] = rem;
 656        }
 657    } else {
 658        env->dregs[regr] = rem;
 659        env->dregs[numr] = quot;
 660    }
 661}
 662
 663void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
 664{
 665    uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
 666    uint64_t quot;
 667    uint32_t rem;
 668
 669    if (den == 0) {
 670        raise_exception_ra(env, EXCP_DIV0, GETPC());
 671    }
 672    quot = num / den;
 673    rem = num % den;
 674
 675    env->cc_c = 0; /* always cleared, even if overflow */
 676    if (quot > 0xffffffffULL) {
 677        env->cc_v = -1;
 678        /*
 679         * real 68040 keeps N and unset Z on overflow,
 680         * whereas documentation says "undefined"
 681         */
 682        env->cc_z = 1;
 683        return;
 684    }
 685    env->cc_z = quot;
 686    env->cc_n = quot;
 687    env->cc_v = 0;
 688
 689    /*
 690     * If Dq and Dr are the same, the quotient is returned.
 691     * therefore we set Dq last.
 692     */
 693
 694    env->dregs[regr] = rem;
 695    env->dregs[numr] = quot;
 696}
 697
 698void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
 699{
 700    int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
 701    int64_t quot;
 702    int32_t rem;
 703
 704    if (den == 0) {
 705        raise_exception_ra(env, EXCP_DIV0, GETPC());
 706    }
 707    quot = num / den;
 708    rem = num % den;
 709
 710    env->cc_c = 0; /* always cleared, even if overflow */
 711    if (quot != (int32_t)quot) {
 712        env->cc_v = -1;
 713        /*
 714         * real 68040 keeps N and unset Z on overflow,
 715         * whereas documentation says "undefined"
 716         */
 717        env->cc_z = 1;
 718        return;
 719    }
 720    env->cc_z = quot;
 721    env->cc_n = quot;
 722    env->cc_v = 0;
 723
 724    /*
 725     * If Dq and Dr are the same, the quotient is returned.
 726     * therefore we set Dq last.
 727     */
 728
 729    env->dregs[regr] = rem;
 730    env->dregs[numr] = quot;
 731}
 732
 733/* We're executing in a serial context -- no need to be atomic.  */
 734void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
 735{
 736    uint32_t Dc1 = extract32(regs, 9, 3);
 737    uint32_t Dc2 = extract32(regs, 6, 3);
 738    uint32_t Du1 = extract32(regs, 3, 3);
 739    uint32_t Du2 = extract32(regs, 0, 3);
 740    int16_t c1 = env->dregs[Dc1];
 741    int16_t c2 = env->dregs[Dc2];
 742    int16_t u1 = env->dregs[Du1];
 743    int16_t u2 = env->dregs[Du2];
 744    int16_t l1, l2;
 745    uintptr_t ra = GETPC();
 746
 747    l1 = cpu_lduw_data_ra(env, a1, ra);
 748    l2 = cpu_lduw_data_ra(env, a2, ra);
 749    if (l1 == c1 && l2 == c2) {
 750        cpu_stw_data_ra(env, a1, u1, ra);
 751        cpu_stw_data_ra(env, a2, u2, ra);
 752    }
 753
 754    if (c1 != l1) {
 755        env->cc_n = l1;
 756        env->cc_v = c1;
 757    } else {
 758        env->cc_n = l2;
 759        env->cc_v = c2;
 760    }
 761    env->cc_op = CC_OP_CMPW;
 762    env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
 763    env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
 764}
 765
 766static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
 767                     bool parallel)
 768{
 769    uint32_t Dc1 = extract32(regs, 9, 3);
 770    uint32_t Dc2 = extract32(regs, 6, 3);
 771    uint32_t Du1 = extract32(regs, 3, 3);
 772    uint32_t Du2 = extract32(regs, 0, 3);
 773    uint32_t c1 = env->dregs[Dc1];
 774    uint32_t c2 = env->dregs[Dc2];
 775    uint32_t u1 = env->dregs[Du1];
 776    uint32_t u2 = env->dregs[Du2];
 777    uint32_t l1, l2;
 778    uintptr_t ra = GETPC();
 779#if defined(CONFIG_ATOMIC64)
 780    int mmu_idx = cpu_mmu_index(env, 0);
 781    MemOpIdx oi = make_memop_idx(MO_BEUQ, mmu_idx);
 782#endif
 783
 784    if (parallel) {
 785        /* We're executing in a parallel context -- must be atomic.  */
 786#ifdef CONFIG_ATOMIC64
 787        uint64_t c, u, l;
 788        if ((a1 & 7) == 0 && a2 == a1 + 4) {
 789            c = deposit64(c2, 32, 32, c1);
 790            u = deposit64(u2, 32, 32, u1);
 791            l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
 792            l1 = l >> 32;
 793            l2 = l;
 794        } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
 795            c = deposit64(c1, 32, 32, c2);
 796            u = deposit64(u1, 32, 32, u2);
 797            l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
 798            l2 = l >> 32;
 799            l1 = l;
 800        } else
 801#endif
 802        {
 803            /* Tell the main loop we need to serialize this insn.  */
 804            cpu_loop_exit_atomic(env_cpu(env), ra);
 805        }
 806    } else {
 807        /* We're executing in a serial context -- no need to be atomic.  */
 808        l1 = cpu_ldl_data_ra(env, a1, ra);
 809        l2 = cpu_ldl_data_ra(env, a2, ra);
 810        if (l1 == c1 && l2 == c2) {
 811            cpu_stl_data_ra(env, a1, u1, ra);
 812            cpu_stl_data_ra(env, a2, u2, ra);
 813        }
 814    }
 815
 816    if (c1 != l1) {
 817        env->cc_n = l1;
 818        env->cc_v = c1;
 819    } else {
 820        env->cc_n = l2;
 821        env->cc_v = c2;
 822    }
 823    env->cc_op = CC_OP_CMPL;
 824    env->dregs[Dc1] = l1;
 825    env->dregs[Dc2] = l2;
 826}
 827
 828void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
 829{
 830    do_cas2l(env, regs, a1, a2, false);
 831}
 832
 833void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
 834                            uint32_t a2)
 835{
 836    do_cas2l(env, regs, a1, a2, true);
 837}
 838
 839struct bf_data {
 840    uint32_t addr;
 841    uint32_t bofs;
 842    uint32_t blen;
 843    uint32_t len;
 844};
 845
 846static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
 847{
 848    int bofs, blen;
 849
 850    /* Bound length; map 0 to 32.  */
 851    len = ((len - 1) & 31) + 1;
 852
 853    /* Note that ofs is signed.  */
 854    addr += ofs / 8;
 855    bofs = ofs % 8;
 856    if (bofs < 0) {
 857        bofs += 8;
 858        addr -= 1;
 859    }
 860
 861    /*
 862     * Compute the number of bytes required (minus one) to
 863     * satisfy the bitfield.
 864     */
 865    blen = (bofs + len - 1) / 8;
 866
 867    /*
 868     * Canonicalize the bit offset for data loaded into a 64-bit big-endian
 869     * word.  For the cases where BLEN is not a power of 2, adjust ADDR so
 870     * that we can use the next power of two sized load without crossing a
 871     * page boundary, unless the field itself crosses the boundary.
 872     */
 873    switch (blen) {
 874    case 0:
 875        bofs += 56;
 876        break;
 877    case 1:
 878        bofs += 48;
 879        break;
 880    case 2:
 881        if (addr & 1) {
 882            bofs += 8;
 883            addr -= 1;
 884        }
 885        /* fallthru */
 886    case 3:
 887        bofs += 32;
 888        break;
 889    case 4:
 890        if (addr & 3) {
 891            bofs += 8 * (addr & 3);
 892            addr &= -4;
 893        }
 894        break;
 895    default:
 896        g_assert_not_reached();
 897    }
 898
 899    return (struct bf_data){
 900        .addr = addr,
 901        .bofs = bofs,
 902        .blen = blen,
 903        .len = len,
 904    };
 905}
 906
 907static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
 908                        uintptr_t ra)
 909{
 910    switch (blen) {
 911    case 0:
 912        return cpu_ldub_data_ra(env, addr, ra);
 913    case 1:
 914        return cpu_lduw_data_ra(env, addr, ra);
 915    case 2:
 916    case 3:
 917        return cpu_ldl_data_ra(env, addr, ra);
 918    case 4:
 919        return cpu_ldq_data_ra(env, addr, ra);
 920    default:
 921        g_assert_not_reached();
 922    }
 923}
 924
 925static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
 926                     uint64_t data, uintptr_t ra)
 927{
 928    switch (blen) {
 929    case 0:
 930        cpu_stb_data_ra(env, addr, data, ra);
 931        break;
 932    case 1:
 933        cpu_stw_data_ra(env, addr, data, ra);
 934        break;
 935    case 2:
 936    case 3:
 937        cpu_stl_data_ra(env, addr, data, ra);
 938        break;
 939    case 4:
 940        cpu_stq_data_ra(env, addr, data, ra);
 941        break;
 942    default:
 943        g_assert_not_reached();
 944    }
 945}
 946
 947uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
 948                            int32_t ofs, uint32_t len)
 949{
 950    uintptr_t ra = GETPC();
 951    struct bf_data d = bf_prep(addr, ofs, len);
 952    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 953
 954    return (int64_t)(data << d.bofs) >> (64 - d.len);
 955}
 956
 957uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
 958                            int32_t ofs, uint32_t len)
 959{
 960    uintptr_t ra = GETPC();
 961    struct bf_data d = bf_prep(addr, ofs, len);
 962    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 963
 964    /*
 965     * Put CC_N at the top of the high word; put the zero-extended value
 966     * at the bottom of the low word.
 967     */
 968    data <<= d.bofs;
 969    data >>= 64 - d.len;
 970    data |= data << (64 - d.len);
 971
 972    return data;
 973}
 974
 975uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
 976                           int32_t ofs, uint32_t len)
 977{
 978    uintptr_t ra = GETPC();
 979    struct bf_data d = bf_prep(addr, ofs, len);
 980    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 981    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 982
 983    data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
 984
 985    bf_store(env, d.addr, d.blen, data, ra);
 986
 987    /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
 988    return val << (32 - d.len);
 989}
 990
 991uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
 992                           int32_t ofs, uint32_t len)
 993{
 994    uintptr_t ra = GETPC();
 995    struct bf_data d = bf_prep(addr, ofs, len);
 996    uint64_t data = bf_load(env, d.addr, d.blen, ra);
 997    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
 998
 999    bf_store(env, d.addr, d.blen, data ^ mask, ra);
1000
1001    return ((data & mask) << d.bofs) >> 32;
1002}
1003
1004uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1005                           int32_t ofs, uint32_t len)
1006{
1007    uintptr_t ra = GETPC();
1008    struct bf_data d = bf_prep(addr, ofs, len);
1009    uint64_t data = bf_load(env, d.addr, d.blen, ra);
1010    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1011
1012    bf_store(env, d.addr, d.blen, data & ~mask, ra);
1013
1014    return ((data & mask) << d.bofs) >> 32;
1015}
1016
1017uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1018                           int32_t ofs, uint32_t len)
1019{
1020    uintptr_t ra = GETPC();
1021    struct bf_data d = bf_prep(addr, ofs, len);
1022    uint64_t data = bf_load(env, d.addr, d.blen, ra);
1023    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1024
1025    bf_store(env, d.addr, d.blen, data | mask, ra);
1026
1027    return ((data & mask) << d.bofs) >> 32;
1028}
1029
1030uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1031{
1032    return (n ? clz32(n) : len) + ofs;
1033}
1034
1035uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1036                           int32_t ofs, uint32_t len)
1037{
1038    uintptr_t ra = GETPC();
1039    struct bf_data d = bf_prep(addr, ofs, len);
1040    uint64_t data = bf_load(env, d.addr, d.blen, ra);
1041    uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1042    uint64_t n = (data & mask) << d.bofs;
1043    uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1044
1045    /*
1046     * Return FFO in the low word and N in the high word.
1047     * Note that because of MASK and the shift, the low word
1048     * is already zero.
1049     */
1050    return n | ffo;
1051}
1052
1053void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1054{
1055    /*
1056     * From the specs:
1057     *   X: Not affected, C,V,Z: Undefined,
1058     *   N: Set if val < 0; cleared if val > ub, undefined otherwise
1059     * We implement here values found from a real MC68040:
1060     *   X,V,Z: Not affected
1061     *   N: Set if val < 0; cleared if val >= 0
1062     *   C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1063     *      if 0 > ub: set if val > ub and val < 0, cleared otherwise
1064     */
1065    env->cc_n = val;
1066    env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1067
1068    if (val < 0 || val > ub) {
1069        CPUState *cs = env_cpu(env);
1070
1071        /* Recover PC and CC_OP for the beginning of the insn.  */
1072        cpu_restore_state(cs, GETPC(), true);
1073
1074        /* flags have been modified by gen_flush_flags() */
1075        env->cc_op = CC_OP_FLAGS;
1076        /* Adjust PC to end of the insn.  */
1077        env->pc += 2;
1078
1079        cs->exception_index = EXCP_CHK;
1080        cpu_loop_exit(cs);
1081    }
1082}
1083
1084void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1085{
1086    /*
1087     * From the specs:
1088     *   X: Not affected, N,V: Undefined,
1089     *   Z: Set if val is equal to lb or ub
1090     *   C: Set if val < lb or val > ub, cleared otherwise
1091     * We implement here values found from a real MC68040:
1092     *   X,N,V: Not affected
1093     *   Z: Set if val is equal to lb or ub
1094     *   C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1095     *      if lb > ub: set if val > ub and val < lb, cleared otherwise
1096     */
1097    env->cc_z = val != lb && val != ub;
1098    env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1099
1100    if (env->cc_c) {
1101        CPUState *cs = env_cpu(env);
1102
1103        /* Recover PC and CC_OP for the beginning of the insn.  */
1104        cpu_restore_state(cs, GETPC(), true);
1105
1106        /* flags have been modified by gen_flush_flags() */
1107        env->cc_op = CC_OP_FLAGS;
1108        /* Adjust PC to end of the insn.  */
1109        env->pc += 4;
1110
1111        cs->exception_index = EXCP_CHK;
1112        cpu_loop_exit(cs);
1113    }
1114}
1115