qemu/target/sparc/ldst_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for loads and stores
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "tcg/tcg.h"
  24#include "exec/helper-proto.h"
  25#include "exec/exec-all.h"
  26#include "exec/cpu_ldst.h"
  27#include "asi.h"
  28
  29//#define DEBUG_MMU
  30//#define DEBUG_MXCC
  31//#define DEBUG_UNASSIGNED
  32//#define DEBUG_ASI
  33//#define DEBUG_CACHE_CONTROL
  34
  35#ifdef DEBUG_MMU
  36#define DPRINTF_MMU(fmt, ...)                                   \
  37    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
  38#else
  39#define DPRINTF_MMU(fmt, ...) do {} while (0)
  40#endif
  41
  42#ifdef DEBUG_MXCC
  43#define DPRINTF_MXCC(fmt, ...)                                  \
  44    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
  45#else
  46#define DPRINTF_MXCC(fmt, ...) do {} while (0)
  47#endif
  48
  49#ifdef DEBUG_ASI
  50#define DPRINTF_ASI(fmt, ...)                                   \
  51    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
  52#endif
  53
  54#ifdef DEBUG_CACHE_CONTROL
  55#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
  56    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
  57#else
  58#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
  59#endif
  60
  61#ifdef TARGET_SPARC64
  62#ifndef TARGET_ABI32
  63#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
  64#else
  65#define AM_CHECK(env1) (1)
  66#endif
  67#endif
  68
  69#define QT0 (env->qt0)
  70#define QT1 (env->qt1)
  71
  72#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
  73/* Calculates TSB pointer value for fault page size
  74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
  75 * UA2005 holds the page size configuration in mmu_ctx registers */
  76static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
  77                                       const SparcV9MMU *mmu, const int idx)
  78{
  79    uint64_t tsb_register;
  80    int page_size;
  81    if (cpu_has_hypervisor(env)) {
  82        int tsb_index = 0;
  83        int ctx = mmu->tag_access & 0x1fffULL;
  84        uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
  85        tsb_index = idx;
  86        tsb_index |= ctx ? 2 : 0;
  87        page_size = idx ? ctx_register >> 8 : ctx_register;
  88        page_size &= 7;
  89        tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
  90    } else {
  91        page_size = idx;
  92        tsb_register = mmu->tsb;
  93    }
  94    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
  95    int tsb_size  = tsb_register & 0xf;
  96
  97    uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
  98
  99    /* move va bits to correct position,
 100     * the context bits will be masked out later */
 101    uint64_t va = mmu->tag_access >> (3 * page_size + 9);
 102
 103    /* calculate tsb_base mask and adjust va if split is in use */
 104    if (tsb_split) {
 105        if (idx == 0) {
 106            va &= ~(1ULL << (13 + tsb_size));
 107        } else {
 108            va |= (1ULL << (13 + tsb_size));
 109        }
 110        tsb_base_mask <<= 1;
 111    }
 112
 113    return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
 114}
 115
 116/* Calculates tag target register value by reordering bits
 117   in tag access register */
 118static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
 119{
 120    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
 121}
 122
 123static void replace_tlb_entry(SparcTLBEntry *tlb,
 124                              uint64_t tlb_tag, uint64_t tlb_tte,
 125                              CPUSPARCState *env)
 126{
 127    target_ulong mask, size, va, offset;
 128
 129    /* flush page range if translation is valid */
 130    if (TTE_IS_VALID(tlb->tte)) {
 131        CPUState *cs = env_cpu(env);
 132
 133        size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
 134        mask = 1ULL + ~size;
 135
 136        va = tlb->tag & mask;
 137
 138        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
 139            tlb_flush_page(cs, va + offset);
 140        }
 141    }
 142
 143    tlb->tag = tlb_tag;
 144    tlb->tte = tlb_tte;
 145}
 146
 147static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
 148                      const char *strmmu, CPUSPARCState *env1)
 149{
 150    unsigned int i;
 151    target_ulong mask;
 152    uint64_t context;
 153
 154    int is_demap_context = (demap_addr >> 6) & 1;
 155
 156    /* demap context */
 157    switch ((demap_addr >> 4) & 3) {
 158    case 0: /* primary */
 159        context = env1->dmmu.mmu_primary_context;
 160        break;
 161    case 1: /* secondary */
 162        context = env1->dmmu.mmu_secondary_context;
 163        break;
 164    case 2: /* nucleus */
 165        context = 0;
 166        break;
 167    case 3: /* reserved */
 168    default:
 169        return;
 170    }
 171
 172    for (i = 0; i < 64; i++) {
 173        if (TTE_IS_VALID(tlb[i].tte)) {
 174
 175            if (is_demap_context) {
 176                /* will remove non-global entries matching context value */
 177                if (TTE_IS_GLOBAL(tlb[i].tte) ||
 178                    !tlb_compare_context(&tlb[i], context)) {
 179                    continue;
 180                }
 181            } else {
 182                /* demap page
 183                   will remove any entry matching VA */
 184                mask = 0xffffffffffffe000ULL;
 185                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
 186
 187                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
 188                    continue;
 189                }
 190
 191                /* entry should be global or matching context value */
 192                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
 193                    !tlb_compare_context(&tlb[i], context)) {
 194                    continue;
 195                }
 196            }
 197
 198            replace_tlb_entry(&tlb[i], 0, 0, env1);
 199#ifdef DEBUG_MMU
 200            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
 201            dump_mmu(env1);
 202#endif
 203        }
 204    }
 205}
 206
 207static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
 208                                   uint64_t sun4v_tte)
 209{
 210    uint64_t sun4u_tte;
 211    if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
 212        /* is already in the sun4u format */
 213        return sun4v_tte;
 214    }
 215    sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
 216    sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
 217    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
 218    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
 219    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
 220    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
 221                             TTE_SIDEEFFECT_BIT);
 222    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
 223    sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
 224    return sun4u_tte;
 225}
 226
 227static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
 228                                 uint64_t tlb_tag, uint64_t tlb_tte,
 229                                 const char *strmmu, CPUSPARCState *env1,
 230                                 uint64_t addr)
 231{
 232    unsigned int i, replace_used;
 233
 234    tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
 235    if (cpu_has_hypervisor(env1)) {
 236        uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
 237        uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
 238        uint32_t new_ctx = tlb_tag & 0x1fffU;
 239        for (i = 0; i < 64; i++) {
 240            uint32_t ctx = tlb[i].tag & 0x1fffU;
 241            /* check if new mapping overlaps an existing one */
 242            if (new_ctx == ctx) {
 243                uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
 244                uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
 245                if (new_vaddr == vaddr
 246                    || (new_vaddr < vaddr + size
 247                        && vaddr < new_vaddr + new_size)) {
 248                    DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
 249                                new_vaddr);
 250                    replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 251                    return;
 252                }
 253            }
 254
 255        }
 256    }
 257    /* Try replacing invalid entry */
 258    for (i = 0; i < 64; i++) {
 259        if (!TTE_IS_VALID(tlb[i].tte)) {
 260            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 261#ifdef DEBUG_MMU
 262            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
 263            dump_mmu(env1);
 264#endif
 265            return;
 266        }
 267    }
 268
 269    /* All entries are valid, try replacing unlocked entry */
 270
 271    for (replace_used = 0; replace_used < 2; ++replace_used) {
 272
 273        /* Used entries are not replaced on first pass */
 274
 275        for (i = 0; i < 64; i++) {
 276            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
 277
 278                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
 279#ifdef DEBUG_MMU
 280                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
 281                            strmmu, (replace_used ? "used" : "unused"), i);
 282                dump_mmu(env1);
 283#endif
 284                return;
 285            }
 286        }
 287
 288        /* Now reset used bit and search for unused entries again */
 289
 290        for (i = 0; i < 64; i++) {
 291            TTE_SET_UNUSED(tlb[i].tte);
 292        }
 293    }
 294
 295#ifdef DEBUG_MMU
 296    DPRINTF_MMU("%s lru replacement: no free entries available, "
 297                "replacing the last one\n", strmmu);
 298#endif
 299    /* corner case: the last entry is replaced anyway */
 300    replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
 301}
 302
 303#endif
 304
 305#ifdef TARGET_SPARC64
 306/* returns true if access using this ASI is to have address translated by MMU
 307   otherwise access is to raw physical address */
 308/* TODO: check sparc32 bits */
 309static inline int is_translating_asi(int asi)
 310{
 311    /* Ultrasparc IIi translating asi
 312       - note this list is defined by cpu implementation
 313    */
 314    switch (asi) {
 315    case 0x04 ... 0x11:
 316    case 0x16 ... 0x19:
 317    case 0x1E ... 0x1F:
 318    case 0x24 ... 0x2C:
 319    case 0x70 ... 0x73:
 320    case 0x78 ... 0x79:
 321    case 0x80 ... 0xFF:
 322        return 1;
 323
 324    default:
 325        return 0;
 326    }
 327}
 328
 329static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
 330{
 331    if (AM_CHECK(env1)) {
 332        addr &= 0xffffffffULL;
 333    }
 334    return addr;
 335}
 336
 337static inline target_ulong asi_address_mask(CPUSPARCState *env,
 338                                            int asi, target_ulong addr)
 339{
 340    if (is_translating_asi(asi)) {
 341        addr = address_mask(env, addr);
 342    }
 343    return addr;
 344}
 345
 346#ifndef CONFIG_USER_ONLY
 347static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
 348{
 349    /* ASIs >= 0x80 are user mode.
 350     * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
 351     * ASIs <= 0x2f are super mode.
 352     */
 353    if (asi < 0x80
 354        && !cpu_hypervisor_mode(env)
 355        && (!cpu_supervisor_mode(env)
 356            || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
 357        cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
 358    }
 359}
 360#endif /* !CONFIG_USER_ONLY */
 361#endif
 362
 363static void do_check_align(CPUSPARCState *env, target_ulong addr,
 364                           uint32_t align, uintptr_t ra)
 365{
 366    if (addr & align) {
 367        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
 368    }
 369}
 370
 371void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
 372{
 373    do_check_align(env, addr, align, GETPC());
 374}
 375
 376#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
 377    defined(DEBUG_MXCC)
 378static void dump_mxcc(CPUSPARCState *env)
 379{
 380    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 381           "\n",
 382           env->mxccdata[0], env->mxccdata[1],
 383           env->mxccdata[2], env->mxccdata[3]);
 384    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 385           "\n"
 386           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
 387           "\n",
 388           env->mxccregs[0], env->mxccregs[1],
 389           env->mxccregs[2], env->mxccregs[3],
 390           env->mxccregs[4], env->mxccregs[5],
 391           env->mxccregs[6], env->mxccregs[7]);
 392}
 393#endif
 394
 395#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
 396    && defined(DEBUG_ASI)
 397static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
 398                     uint64_t r1)
 399{
 400    switch (size) {
 401    case 1:
 402        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
 403                    addr, asi, r1 & 0xff);
 404        break;
 405    case 2:
 406        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
 407                    addr, asi, r1 & 0xffff);
 408        break;
 409    case 4:
 410        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
 411                    addr, asi, r1 & 0xffffffff);
 412        break;
 413    case 8:
 414        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
 415                    addr, asi, r1);
 416        break;
 417    }
 418}
 419#endif
 420
 421#ifndef CONFIG_USER_ONLY
 422#ifndef TARGET_SPARC64
 423static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 424                                  bool is_write, bool is_exec, int is_asi,
 425                                  unsigned size, uintptr_t retaddr)
 426{
 427    SPARCCPU *cpu = SPARC_CPU(cs);
 428    CPUSPARCState *env = &cpu->env;
 429    int fault_type;
 430
 431#ifdef DEBUG_UNASSIGNED
 432    if (is_asi) {
 433        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 434               " asi 0x%02x from " TARGET_FMT_lx "\n",
 435               is_exec ? "exec" : is_write ? "write" : "read", size,
 436               size == 1 ? "" : "s", addr, is_asi, env->pc);
 437    } else {
 438        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
 439               " from " TARGET_FMT_lx "\n",
 440               is_exec ? "exec" : is_write ? "write" : "read", size,
 441               size == 1 ? "" : "s", addr, env->pc);
 442    }
 443#endif
 444    /* Don't overwrite translation and access faults */
 445    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
 446    if ((fault_type > 4) || (fault_type == 0)) {
 447        env->mmuregs[3] = 0; /* Fault status register */
 448        if (is_asi) {
 449            env->mmuregs[3] |= 1 << 16;
 450        }
 451        if (env->psrs) {
 452            env->mmuregs[3] |= 1 << 5;
 453        }
 454        if (is_exec) {
 455            env->mmuregs[3] |= 1 << 6;
 456        }
 457        if (is_write) {
 458            env->mmuregs[3] |= 1 << 7;
 459        }
 460        env->mmuregs[3] |= (5 << 2) | 2;
 461        /* SuperSPARC will never place instruction fault addresses in the FAR */
 462        if (!is_exec) {
 463            env->mmuregs[4] = addr; /* Fault address register */
 464        }
 465    }
 466    /* overflow (same type fault was not read before another fault) */
 467    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
 468        env->mmuregs[3] |= 1;
 469    }
 470
 471    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 472        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
 473        cpu_raise_exception_ra(env, tt, retaddr);
 474    }
 475
 476    /*
 477     * flush neverland mappings created during no-fault mode,
 478     * so the sequential MMU faults report proper fault types
 479     */
 480    if (env->mmuregs[0] & MMU_NF) {
 481        tlb_flush(cs);
 482    }
 483}
 484#else
 485static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
 486                                  bool is_write, bool is_exec, int is_asi,
 487                                  unsigned size, uintptr_t retaddr)
 488{
 489    SPARCCPU *cpu = SPARC_CPU(cs);
 490    CPUSPARCState *env = &cpu->env;
 491
 492#ifdef DEBUG_UNASSIGNED
 493    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
 494           "\n", addr, env->pc);
 495#endif
 496
 497    if (is_exec) { /* XXX has_hypervisor */
 498        if (env->lsu & (IMMU_E)) {
 499            cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
 500        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 501            cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
 502        }
 503    } else {
 504        if (env->lsu & (DMMU_E)) {
 505            cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
 506        } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
 507            cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
 508        }
 509    }
 510}
 511#endif
 512#endif
 513
 514#ifndef TARGET_SPARC64
 515#ifndef CONFIG_USER_ONLY
 516
 517
 518/* Leon3 cache control */
 519
 520static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
 521                                   uint64_t val, int size)
 522{
 523    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
 524                          addr, val, size);
 525
 526    if (size != 4) {
 527        DPRINTF_CACHE_CONTROL("32bits only\n");
 528        return;
 529    }
 530
 531    switch (addr) {
 532    case 0x00:              /* Cache control */
 533
 534        /* These values must always be read as zeros */
 535        val &= ~CACHE_CTRL_FD;
 536        val &= ~CACHE_CTRL_FI;
 537        val &= ~CACHE_CTRL_IB;
 538        val &= ~CACHE_CTRL_IP;
 539        val &= ~CACHE_CTRL_DP;
 540
 541        env->cache_control = val;
 542        break;
 543    case 0x04:              /* Instruction cache configuration */
 544    case 0x08:              /* Data cache configuration */
 545        /* Read Only */
 546        break;
 547    default:
 548        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
 549        break;
 550    };
 551}
 552
 553static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
 554                                       int size)
 555{
 556    uint64_t ret = 0;
 557
 558    if (size != 4) {
 559        DPRINTF_CACHE_CONTROL("32bits only\n");
 560        return 0;
 561    }
 562
 563    switch (addr) {
 564    case 0x00:              /* Cache control */
 565        ret = env->cache_control;
 566        break;
 567
 568        /* Configuration registers are read and only always keep those
 569           predefined values */
 570
 571    case 0x04:              /* Instruction cache configuration */
 572        ret = 0x10220000;
 573        break;
 574    case 0x08:              /* Data cache configuration */
 575        ret = 0x18220000;
 576        break;
 577    default:
 578        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
 579        break;
 580    };
 581    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
 582                          addr, ret, size);
 583    return ret;
 584}
 585
 586uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
 587                       int asi, uint32_t memop)
 588{
 589    int size = 1 << (memop & MO_SIZE);
 590    int sign = memop & MO_SIGN;
 591    CPUState *cs = env_cpu(env);
 592    uint64_t ret = 0;
 593#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
 594    uint32_t last_addr = addr;
 595#endif
 596
 597    do_check_align(env, addr, size - 1, GETPC());
 598    switch (asi) {
 599    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 600    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 601        switch (addr) {
 602        case 0x00:          /* Leon3 Cache Control */
 603        case 0x08:          /* Leon3 Instruction Cache config */
 604        case 0x0C:          /* Leon3 Date Cache config */
 605            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 606                ret = leon3_cache_control_ld(env, addr, size);
 607            }
 608            break;
 609        case 0x01c00a00: /* MXCC control register */
 610            if (size == 8) {
 611                ret = env->mxccregs[3];
 612            } else {
 613                qemu_log_mask(LOG_UNIMP,
 614                              "%08x: unimplemented access size: %d\n", addr,
 615                              size);
 616            }
 617            break;
 618        case 0x01c00a04: /* MXCC control register */
 619            if (size == 4) {
 620                ret = env->mxccregs[3];
 621            } else {
 622                qemu_log_mask(LOG_UNIMP,
 623                              "%08x: unimplemented access size: %d\n", addr,
 624                              size);
 625            }
 626            break;
 627        case 0x01c00c00: /* Module reset register */
 628            if (size == 8) {
 629                ret = env->mxccregs[5];
 630                /* should we do something here? */
 631            } else {
 632                qemu_log_mask(LOG_UNIMP,
 633                              "%08x: unimplemented access size: %d\n", addr,
 634                              size);
 635            }
 636            break;
 637        case 0x01c00f00: /* MBus port address register */
 638            if (size == 8) {
 639                ret = env->mxccregs[7];
 640            } else {
 641                qemu_log_mask(LOG_UNIMP,
 642                              "%08x: unimplemented access size: %d\n", addr,
 643                              size);
 644            }
 645            break;
 646        default:
 647            qemu_log_mask(LOG_UNIMP,
 648                          "%08x: unimplemented address, size: %d\n", addr,
 649                          size);
 650            break;
 651        }
 652        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
 653                     "addr = %08x -> ret = %" PRIx64 ","
 654                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
 655#ifdef DEBUG_MXCC
 656        dump_mxcc(env);
 657#endif
 658        break;
 659    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
 660    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
 661        {
 662            int mmulev;
 663
 664            mmulev = (addr >> 8) & 15;
 665            if (mmulev > 4) {
 666                ret = 0;
 667            } else {
 668                ret = mmu_probe(env, addr, mmulev);
 669            }
 670            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
 671                        addr, mmulev, ret);
 672        }
 673        break;
 674    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
 675    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
 676        {
 677            int reg = (addr >> 8) & 0x1f;
 678
 679            ret = env->mmuregs[reg];
 680            if (reg == 3) { /* Fault status cleared on read */
 681                env->mmuregs[3] = 0;
 682            } else if (reg == 0x13) { /* Fault status read */
 683                ret = env->mmuregs[3];
 684            } else if (reg == 0x14) { /* Fault address read */
 685                ret = env->mmuregs[4];
 686            }
 687            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
 688        }
 689        break;
 690    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
 691    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
 692    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
 693        break;
 694    case ASI_KERNELTXT: /* Supervisor code access */
 695        switch (size) {
 696        case 1:
 697            ret = cpu_ldub_code(env, addr);
 698            break;
 699        case 2:
 700            ret = cpu_lduw_code(env, addr);
 701            break;
 702        default:
 703        case 4:
 704            ret = cpu_ldl_code(env, addr);
 705            break;
 706        case 8:
 707            ret = cpu_ldq_code(env, addr);
 708            break;
 709        }
 710        break;
 711    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
 712    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
 713    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
 714    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
 715        break;
 716    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
 717    {
 718        MemTxResult result;
 719        hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
 720
 721        switch (size) {
 722        case 1:
 723            ret = address_space_ldub(cs->as, access_addr,
 724                                     MEMTXATTRS_UNSPECIFIED, &result);
 725            break;
 726        case 2:
 727            ret = address_space_lduw(cs->as, access_addr,
 728                                     MEMTXATTRS_UNSPECIFIED, &result);
 729            break;
 730        default:
 731        case 4:
 732            ret = address_space_ldl(cs->as, access_addr,
 733                                    MEMTXATTRS_UNSPECIFIED, &result);
 734            break;
 735        case 8:
 736            ret = address_space_ldq(cs->as, access_addr,
 737                                    MEMTXATTRS_UNSPECIFIED, &result);
 738            break;
 739        }
 740
 741        if (result != MEMTX_OK) {
 742            sparc_raise_mmu_fault(cs, access_addr, false, false, false,
 743                                  size, GETPC());
 744        }
 745        break;
 746    }
 747    case 0x30: /* Turbosparc secondary cache diagnostic */
 748    case 0x31: /* Turbosparc RAM snoop */
 749    case 0x32: /* Turbosparc page table descriptor diagnostic */
 750    case 0x39: /* data cache diagnostic register */
 751        ret = 0;
 752        break;
 753    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
 754        {
 755            int reg = (addr >> 8) & 3;
 756
 757            switch (reg) {
 758            case 0: /* Breakpoint Value (Addr) */
 759                ret = env->mmubpregs[reg];
 760                break;
 761            case 1: /* Breakpoint Mask */
 762                ret = env->mmubpregs[reg];
 763                break;
 764            case 2: /* Breakpoint Control */
 765                ret = env->mmubpregs[reg];
 766                break;
 767            case 3: /* Breakpoint Status */
 768                ret = env->mmubpregs[reg];
 769                env->mmubpregs[reg] = 0ULL;
 770                break;
 771            }
 772            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
 773                        ret);
 774        }
 775        break;
 776    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
 777        ret = env->mmubpctrv;
 778        break;
 779    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
 780        ret = env->mmubpctrc;
 781        break;
 782    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
 783        ret = env->mmubpctrs;
 784        break;
 785    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
 786        ret = env->mmubpaction;
 787        break;
 788    case ASI_USERTXT: /* User code access, XXX */
 789    default:
 790        sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
 791        ret = 0;
 792        break;
 793
 794    case ASI_USERDATA: /* User data access */
 795    case ASI_KERNELDATA: /* Supervisor data access */
 796    case ASI_P: /* Implicit primary context data access (v9 only?) */
 797    case ASI_M_BYPASS:    /* MMU passthrough */
 798    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
 799        /* These are always handled inline.  */
 800        g_assert_not_reached();
 801    }
 802    if (sign) {
 803        switch (size) {
 804        case 1:
 805            ret = (int8_t) ret;
 806            break;
 807        case 2:
 808            ret = (int16_t) ret;
 809            break;
 810        case 4:
 811            ret = (int32_t) ret;
 812            break;
 813        default:
 814            break;
 815        }
 816    }
 817#ifdef DEBUG_ASI
 818    dump_asi("read ", last_addr, asi, size, ret);
 819#endif
 820    return ret;
 821}
 822
 823void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
 824                   int asi, uint32_t memop)
 825{
 826    int size = 1 << (memop & MO_SIZE);
 827    CPUState *cs = env_cpu(env);
 828
 829    do_check_align(env, addr, size - 1, GETPC());
 830    switch (asi) {
 831    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
 832    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
 833        switch (addr) {
 834        case 0x00:          /* Leon3 Cache Control */
 835        case 0x08:          /* Leon3 Instruction Cache config */
 836        case 0x0C:          /* Leon3 Date Cache config */
 837            if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
 838                leon3_cache_control_st(env, addr, val, size);
 839            }
 840            break;
 841
 842        case 0x01c00000: /* MXCC stream data register 0 */
 843            if (size == 8) {
 844                env->mxccdata[0] = val;
 845            } else {
 846                qemu_log_mask(LOG_UNIMP,
 847                              "%08x: unimplemented access size: %d\n", addr,
 848                              size);
 849            }
 850            break;
 851        case 0x01c00008: /* MXCC stream data register 1 */
 852            if (size == 8) {
 853                env->mxccdata[1] = val;
 854            } else {
 855                qemu_log_mask(LOG_UNIMP,
 856                              "%08x: unimplemented access size: %d\n", addr,
 857                              size);
 858            }
 859            break;
 860        case 0x01c00010: /* MXCC stream data register 2 */
 861            if (size == 8) {
 862                env->mxccdata[2] = val;
 863            } else {
 864                qemu_log_mask(LOG_UNIMP,
 865                              "%08x: unimplemented access size: %d\n", addr,
 866                              size);
 867            }
 868            break;
 869        case 0x01c00018: /* MXCC stream data register 3 */
 870            if (size == 8) {
 871                env->mxccdata[3] = val;
 872            } else {
 873                qemu_log_mask(LOG_UNIMP,
 874                              "%08x: unimplemented access size: %d\n", addr,
 875                              size);
 876            }
 877            break;
 878        case 0x01c00100: /* MXCC stream source */
 879        {
 880            int i;
 881
 882            if (size == 8) {
 883                env->mxccregs[0] = val;
 884            } else {
 885                qemu_log_mask(LOG_UNIMP,
 886                              "%08x: unimplemented access size: %d\n", addr,
 887                              size);
 888            }
 889
 890            for (i = 0; i < 4; i++) {
 891                MemTxResult result;
 892                hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
 893
 894                env->mxccdata[i] = address_space_ldq(cs->as,
 895                                                     access_addr,
 896                                                     MEMTXATTRS_UNSPECIFIED,
 897                                                     &result);
 898                if (result != MEMTX_OK) {
 899                    /* TODO: investigate whether this is the right behaviour */
 900                    sparc_raise_mmu_fault(cs, access_addr, false, false,
 901                                          false, size, GETPC());
 902                }
 903            }
 904            break;
 905        }
 906        case 0x01c00200: /* MXCC stream destination */
 907        {
 908            int i;
 909
 910            if (size == 8) {
 911                env->mxccregs[1] = val;
 912            } else {
 913                qemu_log_mask(LOG_UNIMP,
 914                              "%08x: unimplemented access size: %d\n", addr,
 915                              size);
 916            }
 917
 918            for (i = 0; i < 4; i++) {
 919                MemTxResult result;
 920                hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
 921
 922                address_space_stq(cs->as, access_addr, env->mxccdata[i],
 923                                  MEMTXATTRS_UNSPECIFIED, &result);
 924
 925                if (result != MEMTX_OK) {
 926                    /* TODO: investigate whether this is the right behaviour */
 927                    sparc_raise_mmu_fault(cs, access_addr, true, false,
 928                                          false, size, GETPC());
 929                }
 930            }
 931            break;
 932        }
 933        case 0x01c00a00: /* MXCC control register */
 934            if (size == 8) {
 935                env->mxccregs[3] = val;
 936            } else {
 937                qemu_log_mask(LOG_UNIMP,
 938                              "%08x: unimplemented access size: %d\n", addr,
 939                              size);
 940            }
 941            break;
 942        case 0x01c00a04: /* MXCC control register */
 943            if (size == 4) {
 944                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
 945                    | val;
 946            } else {
 947                qemu_log_mask(LOG_UNIMP,
 948                              "%08x: unimplemented access size: %d\n", addr,
 949                              size);
 950            }
 951            break;
 952        case 0x01c00e00: /* MXCC error register  */
 953            /* writing a 1 bit clears the error */
 954            if (size == 8) {
 955                env->mxccregs[6] &= ~val;
 956            } else {
 957                qemu_log_mask(LOG_UNIMP,
 958                              "%08x: unimplemented access size: %d\n", addr,
 959                              size);
 960            }
 961            break;
 962        case 0x01c00f00: /* MBus port address register */
 963            if (size == 8) {
 964                env->mxccregs[7] = val;
 965            } else {
 966                qemu_log_mask(LOG_UNIMP,
 967                              "%08x: unimplemented access size: %d\n", addr,
 968                              size);
 969            }
 970            break;
 971        default:
 972            qemu_log_mask(LOG_UNIMP,
 973                          "%08x: unimplemented address, size: %d\n", addr,
 974                          size);
 975            break;
 976        }
 977        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
 978                     asi, size, addr, val);
 979#ifdef DEBUG_MXCC
 980        dump_mxcc(env);
 981#endif
 982        break;
 983    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
 984    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
 985        {
 986            int mmulev;
 987
 988            mmulev = (addr >> 8) & 15;
 989            DPRINTF_MMU("mmu flush level %d\n", mmulev);
 990            switch (mmulev) {
 991            case 0: /* flush page */
 992                tlb_flush_page(cs, addr & 0xfffff000);
 993                break;
 994            case 1: /* flush segment (256k) */
 995            case 2: /* flush region (16M) */
 996            case 3: /* flush context (4G) */
 997            case 4: /* flush entire */
 998                tlb_flush(cs);
 999                break;
1000            default:
1001                break;
1002            }
1003#ifdef DEBUG_MMU
1004            dump_mmu(env);
1005#endif
1006        }
1007        break;
1008    case ASI_M_MMUREGS: /* write MMU regs */
1009    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1010        {
1011            int reg = (addr >> 8) & 0x1f;
1012            uint32_t oldreg;
1013
1014            oldreg = env->mmuregs[reg];
1015            switch (reg) {
1016            case 0: /* Control Register */
1017                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1018                    (val & 0x00ffffff);
1019                /* Mappings generated during no-fault mode
1020                   are invalid in normal mode.  */
1021                if ((oldreg ^ env->mmuregs[reg])
1022                    & (MMU_NF | env->def.mmu_bm)) {
1023                    tlb_flush(cs);
1024                }
1025                break;
1026            case 1: /* Context Table Pointer Register */
1027                env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1028                break;
1029            case 2: /* Context Register */
1030                env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1031                if (oldreg != env->mmuregs[reg]) {
1032                    /* we flush when the MMU context changes because
1033                       QEMU has no MMU context support */
1034                    tlb_flush(cs);
1035                }
1036                break;
1037            case 3: /* Synchronous Fault Status Register with Clear */
1038            case 4: /* Synchronous Fault Address Register */
1039                break;
1040            case 0x10: /* TLB Replacement Control Register */
1041                env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1042                break;
1043            case 0x13: /* Synchronous Fault Status Register with Read
1044                          and Clear */
1045                env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1046                break;
1047            case 0x14: /* Synchronous Fault Address Register */
1048                env->mmuregs[4] = val;
1049                break;
1050            default:
1051                env->mmuregs[reg] = val;
1052                break;
1053            }
1054            if (oldreg != env->mmuregs[reg]) {
1055                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1056                            reg, oldreg, env->mmuregs[reg]);
1057            }
1058#ifdef DEBUG_MMU
1059            dump_mmu(env);
1060#endif
1061        }
1062        break;
1063    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1064    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1065    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1066        break;
1067    case ASI_M_TXTC_TAG:   /* I-cache tag */
1068    case ASI_M_TXTC_DATA:  /* I-cache data */
1069    case ASI_M_DATAC_TAG:  /* D-cache tag */
1070    case ASI_M_DATAC_DATA: /* D-cache data */
1071    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1072    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1073    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1074    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1075    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1076        break;
1077    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1078        {
1079            MemTxResult result;
1080            hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1081
1082            switch (size) {
1083            case 1:
1084                address_space_stb(cs->as, access_addr, val,
1085                                  MEMTXATTRS_UNSPECIFIED, &result);
1086                break;
1087            case 2:
1088                address_space_stw(cs->as, access_addr, val,
1089                                  MEMTXATTRS_UNSPECIFIED, &result);
1090                break;
1091            case 4:
1092            default:
1093                address_space_stl(cs->as, access_addr, val,
1094                                  MEMTXATTRS_UNSPECIFIED, &result);
1095                break;
1096            case 8:
1097                address_space_stq(cs->as, access_addr, val,
1098                                  MEMTXATTRS_UNSPECIFIED, &result);
1099                break;
1100            }
1101            if (result != MEMTX_OK) {
1102                sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1103                                      size, GETPC());
1104            }
1105        }
1106        break;
1107    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1108    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1109                  Turbosparc snoop RAM */
1110    case 0x32: /* store buffer control or Turbosparc page table
1111                  descriptor diagnostic */
1112    case 0x36: /* I-cache flash clear */
1113    case 0x37: /* D-cache flash clear */
1114        break;
1115    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1116        {
1117            int reg = (addr >> 8) & 3;
1118
1119            switch (reg) {
1120            case 0: /* Breakpoint Value (Addr) */
1121                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1122                break;
1123            case 1: /* Breakpoint Mask */
1124                env->mmubpregs[reg] = (val & 0xfffffffffULL);
1125                break;
1126            case 2: /* Breakpoint Control */
1127                env->mmubpregs[reg] = (val & 0x7fULL);
1128                break;
1129            case 3: /* Breakpoint Status */
1130                env->mmubpregs[reg] = (val & 0xfULL);
1131                break;
1132            }
1133            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1134                        env->mmuregs[reg]);
1135        }
1136        break;
1137    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1138        env->mmubpctrv = val & 0xffffffff;
1139        break;
1140    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1141        env->mmubpctrc = val & 0x3;
1142        break;
1143    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1144        env->mmubpctrs = val & 0x3;
1145        break;
1146    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1147        env->mmubpaction = val & 0x1fff;
1148        break;
1149    case ASI_USERTXT: /* User code access, XXX */
1150    case ASI_KERNELTXT: /* Supervisor code access, XXX */
1151    default:
1152        sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1153        break;
1154
1155    case ASI_USERDATA: /* User data access */
1156    case ASI_KERNELDATA: /* Supervisor data access */
1157    case ASI_P:
1158    case ASI_M_BYPASS:    /* MMU passthrough */
1159    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1160    case ASI_M_BCOPY: /* Block copy, sta access */
1161    case ASI_M_BFILL: /* Block fill, stda access */
1162        /* These are always handled inline.  */
1163        g_assert_not_reached();
1164    }
1165#ifdef DEBUG_ASI
1166    dump_asi("write", addr, asi, size, val);
1167#endif
1168}
1169
1170#endif /* CONFIG_USER_ONLY */
1171#else /* TARGET_SPARC64 */
1172
1173#ifdef CONFIG_USER_ONLY
1174uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1175                       int asi, uint32_t memop)
1176{
1177    int size = 1 << (memop & MO_SIZE);
1178    int sign = memop & MO_SIGN;
1179    uint64_t ret = 0;
1180
1181    if (asi < 0x80) {
1182        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1183    }
1184    do_check_align(env, addr, size - 1, GETPC());
1185    addr = asi_address_mask(env, asi, addr);
1186
1187    switch (asi) {
1188    case ASI_PNF:  /* Primary no-fault */
1189    case ASI_PNFL: /* Primary no-fault LE */
1190    case ASI_SNF:  /* Secondary no-fault */
1191    case ASI_SNFL: /* Secondary no-fault LE */
1192        if (page_check_range(addr, size, PAGE_READ) == -1) {
1193            ret = 0;
1194            break;
1195        }
1196        switch (size) {
1197        case 1:
1198            ret = cpu_ldub_data(env, addr);
1199            break;
1200        case 2:
1201            ret = cpu_lduw_data(env, addr);
1202            break;
1203        case 4:
1204            ret = cpu_ldl_data(env, addr);
1205            break;
1206        case 8:
1207            ret = cpu_ldq_data(env, addr);
1208            break;
1209        default:
1210            g_assert_not_reached();
1211        }
1212        break;
1213        break;
1214
1215    case ASI_P: /* Primary */
1216    case ASI_PL: /* Primary LE */
1217    case ASI_S:  /* Secondary */
1218    case ASI_SL: /* Secondary LE */
1219        /* These are always handled inline.  */
1220        g_assert_not_reached();
1221
1222    default:
1223        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1224    }
1225
1226    /* Convert from little endian */
1227    switch (asi) {
1228    case ASI_PNFL: /* Primary no-fault LE */
1229    case ASI_SNFL: /* Secondary no-fault LE */
1230        switch (size) {
1231        case 2:
1232            ret = bswap16(ret);
1233            break;
1234        case 4:
1235            ret = bswap32(ret);
1236            break;
1237        case 8:
1238            ret = bswap64(ret);
1239            break;
1240        }
1241    }
1242
1243    /* Convert to signed number */
1244    if (sign) {
1245        switch (size) {
1246        case 1:
1247            ret = (int8_t) ret;
1248            break;
1249        case 2:
1250            ret = (int16_t) ret;
1251            break;
1252        case 4:
1253            ret = (int32_t) ret;
1254            break;
1255        }
1256    }
1257#ifdef DEBUG_ASI
1258    dump_asi("read", addr, asi, size, ret);
1259#endif
1260    return ret;
1261}
1262
1263void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1264                   int asi, uint32_t memop)
1265{
1266    int size = 1 << (memop & MO_SIZE);
1267#ifdef DEBUG_ASI
1268    dump_asi("write", addr, asi, size, val);
1269#endif
1270    if (asi < 0x80) {
1271        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1272    }
1273    do_check_align(env, addr, size - 1, GETPC());
1274
1275    switch (asi) {
1276    case ASI_P:  /* Primary */
1277    case ASI_PL: /* Primary LE */
1278    case ASI_S:  /* Secondary */
1279    case ASI_SL: /* Secondary LE */
1280        /* These are always handled inline.  */
1281        g_assert_not_reached();
1282
1283    case ASI_PNF:  /* Primary no-fault, RO */
1284    case ASI_SNF:  /* Secondary no-fault, RO */
1285    case ASI_PNFL: /* Primary no-fault LE, RO */
1286    case ASI_SNFL: /* Secondary no-fault LE, RO */
1287    default:
1288        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1289    }
1290}
1291
1292#else /* CONFIG_USER_ONLY */
1293
1294uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1295                       int asi, uint32_t memop)
1296{
1297    int size = 1 << (memop & MO_SIZE);
1298    int sign = memop & MO_SIGN;
1299    CPUState *cs = env_cpu(env);
1300    uint64_t ret = 0;
1301#if defined(DEBUG_ASI)
1302    target_ulong last_addr = addr;
1303#endif
1304
1305    asi &= 0xff;
1306
1307    do_check_asi(env, asi, GETPC());
1308    do_check_align(env, addr, size - 1, GETPC());
1309    addr = asi_address_mask(env, asi, addr);
1310
1311    switch (asi) {
1312    case ASI_PNF:
1313    case ASI_PNFL:
1314    case ASI_SNF:
1315    case ASI_SNFL:
1316        {
1317            MemOpIdx oi;
1318            int idx = (env->pstate & PS_PRIV
1319                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1320                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1321
1322            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1323#ifdef DEBUG_ASI
1324                dump_asi("read ", last_addr, asi, size, ret);
1325#endif
1326                /* exception_index is set in get_physical_address_data. */
1327                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1328            }
1329            oi = make_memop_idx(memop, idx);
1330            switch (size) {
1331            case 1:
1332                ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1333                break;
1334            case 2:
1335                if (asi & 8) {
1336                    ret = cpu_ldw_le_mmu(env, addr, oi, GETPC());
1337                } else {
1338                    ret = cpu_ldw_be_mmu(env, addr, oi, GETPC());
1339                }
1340                break;
1341            case 4:
1342                if (asi & 8) {
1343                    ret = cpu_ldl_le_mmu(env, addr, oi, GETPC());
1344                } else {
1345                    ret = cpu_ldl_be_mmu(env, addr, oi, GETPC());
1346                }
1347                break;
1348            case 8:
1349                if (asi & 8) {
1350                    ret = cpu_ldq_le_mmu(env, addr, oi, GETPC());
1351                } else {
1352                    ret = cpu_ldq_be_mmu(env, addr, oi, GETPC());
1353                }
1354                break;
1355            default:
1356                g_assert_not_reached();
1357            }
1358        }
1359        break;
1360
1361    case ASI_AIUP:  /* As if user primary */
1362    case ASI_AIUS:  /* As if user secondary */
1363    case ASI_AIUPL: /* As if user primary LE */
1364    case ASI_AIUSL: /* As if user secondary LE */
1365    case ASI_P:  /* Primary */
1366    case ASI_S:  /* Secondary */
1367    case ASI_PL: /* Primary LE */
1368    case ASI_SL: /* Secondary LE */
1369    case ASI_REAL:      /* Bypass */
1370    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1371    case ASI_REAL_L:    /* Bypass LE */
1372    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1373    case ASI_N:  /* Nucleus */
1374    case ASI_NL: /* Nucleus Little Endian (LE) */
1375    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1376    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1377    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1378    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1379    case ASI_TWINX_REAL:   /* Real address, twinx */
1380    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1381    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1382    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1383    case ASI_TWINX_N:  /* Nucleus, twinx */
1384    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1385    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1386    case ASI_TWINX_P:  /* Primary, twinx */
1387    case ASI_TWINX_PL: /* Primary, twinx, LE */
1388    case ASI_TWINX_S:  /* Secondary, twinx */
1389    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1390        /* These are always handled inline.  */
1391        g_assert_not_reached();
1392
1393    case ASI_UPA_CONFIG: /* UPA config */
1394        /* XXX */
1395        break;
1396    case ASI_LSU_CONTROL: /* LSU */
1397        ret = env->lsu;
1398        break;
1399    case ASI_IMMU: /* I-MMU regs */
1400        {
1401            int reg = (addr >> 3) & 0xf;
1402            switch (reg) {
1403            case 0:
1404                /* 0x00 I-TSB Tag Target register */
1405                ret = ultrasparc_tag_target(env->immu.tag_access);
1406                break;
1407            case 3: /* SFSR */
1408                ret = env->immu.sfsr;
1409                break;
1410            case 5: /* TSB access */
1411                ret = env->immu.tsb;
1412                break;
1413            case 6:
1414                /* 0x30 I-TSB Tag Access register */
1415                ret = env->immu.tag_access;
1416                break;
1417            default:
1418                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1419                ret = 0;
1420            }
1421            break;
1422        }
1423    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1424        {
1425            /* env->immuregs[5] holds I-MMU TSB register value
1426               env->immuregs[6] holds I-MMU Tag Access register value */
1427            ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1428            break;
1429        }
1430    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1431        {
1432            /* env->immuregs[5] holds I-MMU TSB register value
1433               env->immuregs[6] holds I-MMU Tag Access register value */
1434            ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1435            break;
1436        }
1437    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1438        {
1439            int reg = (addr >> 3) & 0x3f;
1440
1441            ret = env->itlb[reg].tte;
1442            break;
1443        }
1444    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1445        {
1446            int reg = (addr >> 3) & 0x3f;
1447
1448            ret = env->itlb[reg].tag;
1449            break;
1450        }
1451    case ASI_DMMU: /* D-MMU regs */
1452        {
1453            int reg = (addr >> 3) & 0xf;
1454            switch (reg) {
1455            case 0:
1456                /* 0x00 D-TSB Tag Target register */
1457                ret = ultrasparc_tag_target(env->dmmu.tag_access);
1458                break;
1459            case 1: /* 0x08 Primary Context */
1460                ret = env->dmmu.mmu_primary_context;
1461                break;
1462            case 2: /* 0x10 Secondary Context */
1463                ret = env->dmmu.mmu_secondary_context;
1464                break;
1465            case 3: /* SFSR */
1466                ret = env->dmmu.sfsr;
1467                break;
1468            case 4: /* 0x20 SFAR */
1469                ret = env->dmmu.sfar;
1470                break;
1471            case 5: /* 0x28 TSB access */
1472                ret = env->dmmu.tsb;
1473                break;
1474            case 6: /* 0x30 D-TSB Tag Access register */
1475                ret = env->dmmu.tag_access;
1476                break;
1477            case 7:
1478                ret = env->dmmu.virtual_watchpoint;
1479                break;
1480            case 8:
1481                ret = env->dmmu.physical_watchpoint;
1482                break;
1483            default:
1484                sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1485                ret = 0;
1486            }
1487            break;
1488        }
1489    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1490        {
1491            /* env->dmmuregs[5] holds D-MMU TSB register value
1492               env->dmmuregs[6] holds D-MMU Tag Access register value */
1493            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1494            break;
1495        }
1496    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1497        {
1498            /* env->dmmuregs[5] holds D-MMU TSB register value
1499               env->dmmuregs[6] holds D-MMU Tag Access register value */
1500            ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1501            break;
1502        }
1503    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1504        {
1505            int reg = (addr >> 3) & 0x3f;
1506
1507            ret = env->dtlb[reg].tte;
1508            break;
1509        }
1510    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1511        {
1512            int reg = (addr >> 3) & 0x3f;
1513
1514            ret = env->dtlb[reg].tag;
1515            break;
1516        }
1517    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1518        break;
1519    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1520        ret = env->ivec_status;
1521        break;
1522    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1523        {
1524            int reg = (addr >> 4) & 0x3;
1525            if (reg < 3) {
1526                ret = env->ivec_data[reg];
1527            }
1528            break;
1529        }
1530    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1531        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1532            /* Hyperprivileged access only */
1533            sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1534        }
1535        /* fall through */
1536    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1537        {
1538            unsigned int i = (addr >> 3) & 0x7;
1539            ret = env->scratch[i];
1540            break;
1541        }
1542    case ASI_MMU: /* UA2005 Context ID registers */
1543        switch ((addr >> 3) & 0x3) {
1544        case 1:
1545            ret = env->dmmu.mmu_primary_context;
1546            break;
1547        case 2:
1548            ret = env->dmmu.mmu_secondary_context;
1549            break;
1550        default:
1551          sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1552        }
1553        break;
1554    case ASI_DCACHE_DATA:     /* D-cache data */
1555    case ASI_DCACHE_TAG:      /* D-cache tag access */
1556    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1557    case ASI_AFSR:            /* E-cache asynchronous fault status */
1558    case ASI_AFAR:            /* E-cache asynchronous fault address */
1559    case ASI_EC_TAG_DATA:     /* E-cache tag data */
1560    case ASI_IC_INSTR:        /* I-cache instruction access */
1561    case ASI_IC_TAG:          /* I-cache tag access */
1562    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1563    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1564    case ASI_EC_W:            /* E-cache tag */
1565    case ASI_EC_R:            /* E-cache tag */
1566        break;
1567    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1568    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1569    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1570    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1571    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1572    case ASI_INTR_W:              /* Interrupt vector, WO */
1573    default:
1574        sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1575        ret = 0;
1576        break;
1577    }
1578
1579    /* Convert to signed number */
1580    if (sign) {
1581        switch (size) {
1582        case 1:
1583            ret = (int8_t) ret;
1584            break;
1585        case 2:
1586            ret = (int16_t) ret;
1587            break;
1588        case 4:
1589            ret = (int32_t) ret;
1590            break;
1591        default:
1592            break;
1593        }
1594    }
1595#ifdef DEBUG_ASI
1596    dump_asi("read ", last_addr, asi, size, ret);
1597#endif
1598    return ret;
1599}
1600
1601void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1602                   int asi, uint32_t memop)
1603{
1604    int size = 1 << (memop & MO_SIZE);
1605    CPUState *cs = env_cpu(env);
1606
1607#ifdef DEBUG_ASI
1608    dump_asi("write", addr, asi, size, val);
1609#endif
1610
1611    asi &= 0xff;
1612
1613    do_check_asi(env, asi, GETPC());
1614    do_check_align(env, addr, size - 1, GETPC());
1615    addr = asi_address_mask(env, asi, addr);
1616
1617    switch (asi) {
1618    case ASI_AIUP:  /* As if user primary */
1619    case ASI_AIUS:  /* As if user secondary */
1620    case ASI_AIUPL: /* As if user primary LE */
1621    case ASI_AIUSL: /* As if user secondary LE */
1622    case ASI_P:  /* Primary */
1623    case ASI_S:  /* Secondary */
1624    case ASI_PL: /* Primary LE */
1625    case ASI_SL: /* Secondary LE */
1626    case ASI_REAL:      /* Bypass */
1627    case ASI_REAL_IO:   /* Bypass, non-cacheable */
1628    case ASI_REAL_L:    /* Bypass LE */
1629    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1630    case ASI_N:  /* Nucleus */
1631    case ASI_NL: /* Nucleus Little Endian (LE) */
1632    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1633    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1634    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1635    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1636    case ASI_TWINX_REAL:   /* Real address, twinx */
1637    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1638    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1639    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1640    case ASI_TWINX_N:  /* Nucleus, twinx */
1641    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1642    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1643    case ASI_TWINX_P:  /* Primary, twinx */
1644    case ASI_TWINX_PL: /* Primary, twinx, LE */
1645    case ASI_TWINX_S:  /* Secondary, twinx */
1646    case ASI_TWINX_SL: /* Secondary, twinx, LE */
1647        /* These are always handled inline.  */
1648        g_assert_not_reached();
1649    /* these ASIs have different functions on UltraSPARC-IIIi
1650     * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1651     */
1652    case 0x31:
1653    case 0x32:
1654    case 0x39:
1655    case 0x3a:
1656        if (cpu_has_hypervisor(env)) {
1657            /* UA2005
1658             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1659             * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1660             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1661             * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1662             */
1663            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1664            env->dmmu.sun4v_tsb_pointers[idx] = val;
1665        } else {
1666            helper_raise_exception(env, TT_ILL_INSN);
1667        }
1668        break;
1669    case 0x33:
1670    case 0x3b:
1671        if (cpu_has_hypervisor(env)) {
1672            /* UA2005
1673             * ASI_DMMU_CTX_ZERO_CONFIG
1674             * ASI_DMMU_CTX_NONZERO_CONFIG
1675             */
1676            env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1677        } else {
1678            helper_raise_exception(env, TT_ILL_INSN);
1679        }
1680        break;
1681    case 0x35:
1682    case 0x36:
1683    case 0x3d:
1684    case 0x3e:
1685        if (cpu_has_hypervisor(env)) {
1686            /* UA2005
1687             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1688             * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1689             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1690             * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1691             */
1692            int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1693            env->immu.sun4v_tsb_pointers[idx] = val;
1694        } else {
1695            helper_raise_exception(env, TT_ILL_INSN);
1696        }
1697      break;
1698    case 0x37:
1699    case 0x3f:
1700        if (cpu_has_hypervisor(env)) {
1701            /* UA2005
1702             * ASI_IMMU_CTX_ZERO_CONFIG
1703             * ASI_IMMU_CTX_NONZERO_CONFIG
1704             */
1705            env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1706        } else {
1707          helper_raise_exception(env, TT_ILL_INSN);
1708        }
1709        break;
1710    case ASI_UPA_CONFIG: /* UPA config */
1711        /* XXX */
1712        return;
1713    case ASI_LSU_CONTROL: /* LSU */
1714        env->lsu = val & (DMMU_E | IMMU_E);
1715        return;
1716    case ASI_IMMU: /* I-MMU regs */
1717        {
1718            int reg = (addr >> 3) & 0xf;
1719            uint64_t oldreg;
1720
1721            oldreg = env->immu.mmuregs[reg];
1722            switch (reg) {
1723            case 0: /* RO */
1724                return;
1725            case 1: /* Not in I-MMU */
1726            case 2:
1727                return;
1728            case 3: /* SFSR */
1729                if ((val & 1) == 0) {
1730                    val = 0; /* Clear SFSR */
1731                }
1732                env->immu.sfsr = val;
1733                break;
1734            case 4: /* RO */
1735                return;
1736            case 5: /* TSB access */
1737                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1738                            PRIx64 "\n", env->immu.tsb, val);
1739                env->immu.tsb = val;
1740                break;
1741            case 6: /* Tag access */
1742                env->immu.tag_access = val;
1743                break;
1744            case 7:
1745            case 8:
1746                return;
1747            default:
1748                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1749                break;
1750            }
1751
1752            if (oldreg != env->immu.mmuregs[reg]) {
1753                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1754                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1755            }
1756#ifdef DEBUG_MMU
1757            dump_mmu(env);
1758#endif
1759            return;
1760        }
1761    case ASI_ITLB_DATA_IN: /* I-MMU data in */
1762        /* ignore real translation entries */
1763        if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1764            replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1765                                 val, "immu", env, addr);
1766        }
1767        return;
1768    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1769        {
1770            /* TODO: auto demap */
1771
1772            unsigned int i = (addr >> 3) & 0x3f;
1773
1774            /* ignore real translation entries */
1775            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1776                replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1777                                  sun4v_tte_to_sun4u(env, addr, val), env);
1778            }
1779#ifdef DEBUG_MMU
1780            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1781            dump_mmu(env);
1782#endif
1783            return;
1784        }
1785    case ASI_IMMU_DEMAP: /* I-MMU demap */
1786        demap_tlb(env->itlb, addr, "immu", env);
1787        return;
1788    case ASI_DMMU: /* D-MMU regs */
1789        {
1790            int reg = (addr >> 3) & 0xf;
1791            uint64_t oldreg;
1792
1793            oldreg = env->dmmu.mmuregs[reg];
1794            switch (reg) {
1795            case 0: /* RO */
1796            case 4:
1797                return;
1798            case 3: /* SFSR */
1799                if ((val & 1) == 0) {
1800                    val = 0; /* Clear SFSR, Fault address */
1801                    env->dmmu.sfar = 0;
1802                }
1803                env->dmmu.sfsr = val;
1804                break;
1805            case 1: /* Primary context */
1806                env->dmmu.mmu_primary_context = val;
1807                /* can be optimized to only flush MMU_USER_IDX
1808                   and MMU_KERNEL_IDX entries */
1809                tlb_flush(cs);
1810                break;
1811            case 2: /* Secondary context */
1812                env->dmmu.mmu_secondary_context = val;
1813                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1814                   and MMU_KERNEL_SECONDARY_IDX entries */
1815                tlb_flush(cs);
1816                break;
1817            case 5: /* TSB access */
1818                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1819                            PRIx64 "\n", env->dmmu.tsb, val);
1820                env->dmmu.tsb = val;
1821                break;
1822            case 6: /* Tag access */
1823                env->dmmu.tag_access = val;
1824                break;
1825            case 7: /* Virtual Watchpoint */
1826                env->dmmu.virtual_watchpoint = val;
1827                break;
1828            case 8: /* Physical Watchpoint */
1829                env->dmmu.physical_watchpoint = val;
1830                break;
1831            default:
1832                sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1833                break;
1834            }
1835
1836            if (oldreg != env->dmmu.mmuregs[reg]) {
1837                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1838                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1839            }
1840#ifdef DEBUG_MMU
1841            dump_mmu(env);
1842#endif
1843            return;
1844        }
1845    case ASI_DTLB_DATA_IN: /* D-MMU data in */
1846      /* ignore real translation entries */
1847      if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1848          replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1849                               val, "dmmu", env, addr);
1850      }
1851      return;
1852    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1853        {
1854            unsigned int i = (addr >> 3) & 0x3f;
1855
1856            /* ignore real translation entries */
1857            if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1858                replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1859                                  sun4v_tte_to_sun4u(env, addr, val), env);
1860            }
1861#ifdef DEBUG_MMU
1862            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1863            dump_mmu(env);
1864#endif
1865            return;
1866        }
1867    case ASI_DMMU_DEMAP: /* D-MMU demap */
1868        demap_tlb(env->dtlb, addr, "dmmu", env);
1869        return;
1870    case ASI_INTR_RECEIVE: /* Interrupt data receive */
1871        env->ivec_status = val & 0x20;
1872        return;
1873    case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1874        if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1875            /* Hyperprivileged access only */
1876            sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1877        }
1878        /* fall through */
1879    case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1880        {
1881            unsigned int i = (addr >> 3) & 0x7;
1882            env->scratch[i] = val;
1883            return;
1884        }
1885    case ASI_MMU: /* UA2005 Context ID registers */
1886        {
1887          switch ((addr >> 3) & 0x3) {
1888          case 1:
1889              env->dmmu.mmu_primary_context = val;
1890              env->immu.mmu_primary_context = val;
1891              tlb_flush_by_mmuidx(cs,
1892                                  (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1893              break;
1894          case 2:
1895              env->dmmu.mmu_secondary_context = val;
1896              env->immu.mmu_secondary_context = val;
1897              tlb_flush_by_mmuidx(cs,
1898                                  (1 << MMU_USER_SECONDARY_IDX) |
1899                                  (1 << MMU_KERNEL_SECONDARY_IDX));
1900              break;
1901          default:
1902              sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1903          }
1904        }
1905        return;
1906    case ASI_QUEUE: /* UA2005 CPU mondo queue */
1907    case ASI_DCACHE_DATA: /* D-cache data */
1908    case ASI_DCACHE_TAG: /* D-cache tag access */
1909    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1910    case ASI_AFSR: /* E-cache asynchronous fault status */
1911    case ASI_AFAR: /* E-cache asynchronous fault address */
1912    case ASI_EC_TAG_DATA: /* E-cache tag data */
1913    case ASI_IC_INSTR: /* I-cache instruction access */
1914    case ASI_IC_TAG: /* I-cache tag access */
1915    case ASI_IC_PRE_DECODE: /* I-cache predecode */
1916    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1917    case ASI_EC_W: /* E-cache tag */
1918    case ASI_EC_R: /* E-cache tag */
1919        return;
1920    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1921    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1922    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1923    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1924    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1925    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1926    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1927    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1928    case ASI_INTR_R: /* Incoming interrupt vector, RO */
1929    case ASI_PNF: /* Primary no-fault, RO */
1930    case ASI_SNF: /* Secondary no-fault, RO */
1931    case ASI_PNFL: /* Primary no-fault LE, RO */
1932    case ASI_SNFL: /* Secondary no-fault LE, RO */
1933    default:
1934        sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1935        return;
1936    }
1937}
1938#endif /* CONFIG_USER_ONLY */
1939#endif /* TARGET_SPARC64 */
1940
1941#if !defined(CONFIG_USER_ONLY)
1942
1943void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1944                                     vaddr addr, unsigned size,
1945                                     MMUAccessType access_type,
1946                                     int mmu_idx, MemTxAttrs attrs,
1947                                     MemTxResult response, uintptr_t retaddr)
1948{
1949    bool is_write = access_type == MMU_DATA_STORE;
1950    bool is_exec = access_type == MMU_INST_FETCH;
1951    bool is_asi = false;
1952
1953    sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1954                          is_asi, size, retaddr);
1955}
1956#endif
1957