qemu/target/sparc/mmu_helper.c
<<
>>
Prefs
   1/*
   2 *  Sparc MMU helpers
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "qemu/qemu-print.h"
  25#include "trace.h"
  26
  27/* Sparc MMU emulation */
  28
  29#ifndef TARGET_SPARC64
  30/*
  31 * Sparc V8 Reference MMU (SRMMU)
  32 */
  33static const int access_table[8][8] = {
  34    { 0, 0, 0, 0, 8, 0, 12, 12 },
  35    { 0, 0, 0, 0, 8, 0, 0, 0 },
  36    { 8, 8, 0, 0, 0, 8, 12, 12 },
  37    { 8, 8, 0, 0, 0, 8, 0, 0 },
  38    { 8, 0, 8, 0, 8, 8, 12, 12 },
  39    { 8, 0, 8, 0, 8, 0, 8, 0 },
  40    { 8, 8, 8, 0, 8, 8, 12, 12 },
  41    { 8, 8, 8, 0, 8, 8, 8, 0 }
  42};
  43
  44static const int perm_table[2][8] = {
  45    {
  46        PAGE_READ,
  47        PAGE_READ | PAGE_WRITE,
  48        PAGE_READ | PAGE_EXEC,
  49        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
  50        PAGE_EXEC,
  51        PAGE_READ | PAGE_WRITE,
  52        PAGE_READ | PAGE_EXEC,
  53        PAGE_READ | PAGE_WRITE | PAGE_EXEC
  54    },
  55    {
  56        PAGE_READ,
  57        PAGE_READ | PAGE_WRITE,
  58        PAGE_READ | PAGE_EXEC,
  59        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
  60        PAGE_EXEC,
  61        PAGE_READ,
  62        0,
  63        0,
  64    }
  65};
  66
  67static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
  68                                int *prot, int *access_index, MemTxAttrs *attrs,
  69                                target_ulong address, int rw, int mmu_idx,
  70                                target_ulong *page_size)
  71{
  72    int access_perms = 0;
  73    hwaddr pde_ptr;
  74    uint32_t pde;
  75    int error_code = 0, is_dirty, is_user;
  76    unsigned long page_offset;
  77    CPUState *cs = env_cpu(env);
  78    MemTxResult result;
  79
  80    is_user = mmu_idx == MMU_USER_IDX;
  81
  82    if (mmu_idx == MMU_PHYS_IDX) {
  83        *page_size = TARGET_PAGE_SIZE;
  84        /* Boot mode: instruction fetches are taken from PROM */
  85        if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
  86            *physical = env->prom_addr | (address & 0x7ffffULL);
  87            *prot = PAGE_READ | PAGE_EXEC;
  88            return 0;
  89        }
  90        *physical = address;
  91        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
  92        return 0;
  93    }
  94
  95    *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
  96    *physical = 0xffffffffffff0000ULL;
  97
  98    /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
  99    /* Context base + context number */
 100    pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
 101    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
 102    if (result != MEMTX_OK) {
 103        return 4 << 2; /* Translation fault, L = 0 */
 104    }
 105
 106    /* Ctx pde */
 107    switch (pde & PTE_ENTRYTYPE_MASK) {
 108    default:
 109    case 0: /* Invalid */
 110        return 1 << 2;
 111    case 2: /* L0 PTE, maybe should not happen? */
 112    case 3: /* Reserved */
 113        return 4 << 2;
 114    case 1: /* L0 PDE */
 115        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
 116        pde = address_space_ldl(cs->as, pde_ptr,
 117                                MEMTXATTRS_UNSPECIFIED, &result);
 118        if (result != MEMTX_OK) {
 119            return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
 120        }
 121
 122        switch (pde & PTE_ENTRYTYPE_MASK) {
 123        default:
 124        case 0: /* Invalid */
 125            return (1 << 8) | (1 << 2);
 126        case 3: /* Reserved */
 127            return (1 << 8) | (4 << 2);
 128        case 1: /* L1 PDE */
 129            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
 130            pde = address_space_ldl(cs->as, pde_ptr,
 131                                    MEMTXATTRS_UNSPECIFIED, &result);
 132            if (result != MEMTX_OK) {
 133                return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
 134            }
 135
 136            switch (pde & PTE_ENTRYTYPE_MASK) {
 137            default:
 138            case 0: /* Invalid */
 139                return (2 << 8) | (1 << 2);
 140            case 3: /* Reserved */
 141                return (2 << 8) | (4 << 2);
 142            case 1: /* L2 PDE */
 143                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
 144                pde = address_space_ldl(cs->as, pde_ptr,
 145                                        MEMTXATTRS_UNSPECIFIED, &result);
 146                if (result != MEMTX_OK) {
 147                    return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
 148                }
 149
 150                switch (pde & PTE_ENTRYTYPE_MASK) {
 151                default:
 152                case 0: /* Invalid */
 153                    return (3 << 8) | (1 << 2);
 154                case 1: /* PDE, should not happen */
 155                case 3: /* Reserved */
 156                    return (3 << 8) | (4 << 2);
 157                case 2: /* L3 PTE */
 158                    page_offset = 0;
 159                }
 160                *page_size = TARGET_PAGE_SIZE;
 161                break;
 162            case 2: /* L2 PTE */
 163                page_offset = address & 0x3f000;
 164                *page_size = 0x40000;
 165            }
 166            break;
 167        case 2: /* L1 PTE */
 168            page_offset = address & 0xfff000;
 169            *page_size = 0x1000000;
 170        }
 171    }
 172
 173    /* check access */
 174    access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
 175    error_code = access_table[*access_index][access_perms];
 176    if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
 177        return error_code;
 178    }
 179
 180    /* update page modified and dirty bits */
 181    is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
 182    if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
 183        pde |= PG_ACCESSED_MASK;
 184        if (is_dirty) {
 185            pde |= PG_MODIFIED_MASK;
 186        }
 187        stl_phys_notdirty(cs->as, pde_ptr, pde);
 188    }
 189
 190    /* the page can be put in the TLB */
 191    *prot = perm_table[is_user][access_perms];
 192    if (!(pde & PG_MODIFIED_MASK)) {
 193        /* only set write access if already dirty... otherwise wait
 194           for dirty access */
 195        *prot &= ~PAGE_WRITE;
 196    }
 197
 198    /* Even if large ptes, we map only one 4KB page in the cache to
 199       avoid filling it too fast */
 200    *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
 201    return error_code;
 202}
 203
 204/* Perform address translation */
 205bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 206                        MMUAccessType access_type, int mmu_idx,
 207                        bool probe, uintptr_t retaddr)
 208{
 209    SPARCCPU *cpu = SPARC_CPU(cs);
 210    CPUSPARCState *env = &cpu->env;
 211    hwaddr paddr;
 212    target_ulong vaddr;
 213    target_ulong page_size;
 214    int error_code = 0, prot, access_index;
 215    MemTxAttrs attrs = {};
 216
 217    /*
 218     * TODO: If we ever need tlb_vaddr_to_host for this target,
 219     * then we must figure out how to manipulate FSR and FAR
 220     * when both MMU_NF and probe are set.  In the meantime,
 221     * do not support this use case.
 222     */
 223    assert(!probe);
 224
 225    address &= TARGET_PAGE_MASK;
 226    error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
 227                                      address, access_type,
 228                                      mmu_idx, &page_size);
 229    vaddr = address;
 230    if (likely(error_code == 0)) {
 231        qemu_log_mask(CPU_LOG_MMU,
 232                      "Translate at %" VADDR_PRIx " -> "
 233                      TARGET_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
 234                      address, paddr, vaddr);
 235        tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
 236        return true;
 237    }
 238
 239    if (env->mmuregs[3]) { /* Fault status register */
 240        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
 241    }
 242    env->mmuregs[3] |= (access_index << 5) | error_code | 2;
 243    env->mmuregs[4] = address; /* Fault address register */
 244
 245    if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
 246        /* No fault mode: if a mapping is available, just override
 247           permissions. If no mapping is available, redirect accesses to
 248           neverland. Fake/overridden mappings will be flushed when
 249           switching to normal mode. */
 250        prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 251        tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
 252        return true;
 253    } else {
 254        if (access_type == MMU_INST_FETCH) {
 255            cs->exception_index = TT_TFAULT;
 256        } else {
 257            cs->exception_index = TT_DFAULT;
 258        }
 259        cpu_loop_exit_restore(cs, retaddr);
 260    }
 261}
 262
 263target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
 264{
 265    CPUState *cs = env_cpu(env);
 266    hwaddr pde_ptr;
 267    uint32_t pde;
 268    MemTxResult result;
 269
 270    /*
 271     * TODO: MMU probe operations are supposed to set the fault
 272     * status registers, but we don't do this.
 273     */
 274
 275    /* Context base + context number */
 276    pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
 277        (env->mmuregs[2] << 2);
 278    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
 279    if (result != MEMTX_OK) {
 280        return 0;
 281    }
 282
 283    switch (pde & PTE_ENTRYTYPE_MASK) {
 284    default:
 285    case 0: /* Invalid */
 286    case 2: /* PTE, maybe should not happen? */
 287    case 3: /* Reserved */
 288        return 0;
 289    case 1: /* L1 PDE */
 290        if (mmulev == 3) {
 291            return pde;
 292        }
 293        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
 294        pde = address_space_ldl(cs->as, pde_ptr,
 295                                MEMTXATTRS_UNSPECIFIED, &result);
 296        if (result != MEMTX_OK) {
 297            return 0;
 298        }
 299
 300        switch (pde & PTE_ENTRYTYPE_MASK) {
 301        default:
 302        case 0: /* Invalid */
 303        case 3: /* Reserved */
 304            return 0;
 305        case 2: /* L1 PTE */
 306            return pde;
 307        case 1: /* L2 PDE */
 308            if (mmulev == 2) {
 309                return pde;
 310            }
 311            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
 312            pde = address_space_ldl(cs->as, pde_ptr,
 313                                    MEMTXATTRS_UNSPECIFIED, &result);
 314            if (result != MEMTX_OK) {
 315                return 0;
 316            }
 317
 318            switch (pde & PTE_ENTRYTYPE_MASK) {
 319            default:
 320            case 0: /* Invalid */
 321            case 3: /* Reserved */
 322                return 0;
 323            case 2: /* L2 PTE */
 324                return pde;
 325            case 1: /* L3 PDE */
 326                if (mmulev == 1) {
 327                    return pde;
 328                }
 329                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
 330                pde = address_space_ldl(cs->as, pde_ptr,
 331                                        MEMTXATTRS_UNSPECIFIED, &result);
 332                if (result != MEMTX_OK) {
 333                    return 0;
 334                }
 335
 336                switch (pde & PTE_ENTRYTYPE_MASK) {
 337                default:
 338                case 0: /* Invalid */
 339                case 1: /* PDE, should not happen */
 340                case 3: /* Reserved */
 341                    return 0;
 342                case 2: /* L3 PTE */
 343                    return pde;
 344                }
 345            }
 346        }
 347    }
 348    return 0;
 349}
 350
 351void dump_mmu(CPUSPARCState *env)
 352{
 353    CPUState *cs = env_cpu(env);
 354    target_ulong va, va1, va2;
 355    unsigned int n, m, o;
 356    hwaddr pa;
 357    uint32_t pde;
 358
 359    qemu_printf("Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
 360                (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
 361    for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
 362        pde = mmu_probe(env, va, 2);
 363        if (pde) {
 364            pa = cpu_get_phys_page_debug(cs, va);
 365            qemu_printf("VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
 366                        " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
 367            for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
 368                pde = mmu_probe(env, va1, 1);
 369                if (pde) {
 370                    pa = cpu_get_phys_page_debug(cs, va1);
 371                    qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
 372                                TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
 373                                va1, pa, pde);
 374                    for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
 375                        pde = mmu_probe(env, va2, 0);
 376                        if (pde) {
 377                            pa = cpu_get_phys_page_debug(cs, va2);
 378                            qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
 379                                        TARGET_FMT_plx " PTE: "
 380                                        TARGET_FMT_lx "\n",
 381                                        va2, pa, pde);
 382                        }
 383                    }
 384                }
 385            }
 386        }
 387    }
 388}
 389
 390/* Gdb expects all registers windows to be flushed in ram. This function handles
 391 * reads (and only reads) in stack frames as if windows were flushed. We assume
 392 * that the sparc ABI is followed.
 393 */
 394int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
 395                              uint8_t *buf, int len, bool is_write)
 396{
 397    SPARCCPU *cpu = SPARC_CPU(cs);
 398    CPUSPARCState *env = &cpu->env;
 399    target_ulong addr = address;
 400    int i;
 401    int len1;
 402    int cwp = env->cwp;
 403
 404    if (!is_write) {
 405        for (i = 0; i < env->nwindows; i++) {
 406            int off;
 407            target_ulong fp = env->regbase[cwp * 16 + 22];
 408
 409            /* Assume fp == 0 means end of frame.  */
 410            if (fp == 0) {
 411                break;
 412            }
 413
 414            cwp = cpu_cwp_inc(env, cwp + 1);
 415
 416            /* Invalid window ? */
 417            if (env->wim & (1 << cwp)) {
 418                break;
 419            }
 420
 421            /* According to the ABI, the stack is growing downward.  */
 422            if (addr + len < fp) {
 423                break;
 424            }
 425
 426            /* Not in this frame.  */
 427            if (addr > fp + 64) {
 428                continue;
 429            }
 430
 431            /* Handle access before this window.  */
 432            if (addr < fp) {
 433                len1 = fp - addr;
 434                if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
 435                    return -1;
 436                }
 437                addr += len1;
 438                len -= len1;
 439                buf += len1;
 440            }
 441
 442            /* Access byte per byte to registers. Not very efficient but speed
 443             * is not critical.
 444             */
 445            off = addr - fp;
 446            len1 = 64 - off;
 447
 448            if (len1 > len) {
 449                len1 = len;
 450            }
 451
 452            for (; len1; len1--) {
 453                int reg = cwp * 16 + 8 + (off >> 2);
 454                union {
 455                    uint32_t v;
 456                    uint8_t c[4];
 457                } u;
 458                u.v = cpu_to_be32(env->regbase[reg]);
 459                *buf++ = u.c[off & 3];
 460                addr++;
 461                len--;
 462                off++;
 463            }
 464
 465            if (len == 0) {
 466                return 0;
 467            }
 468        }
 469    }
 470    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
 471}
 472
 473#else /* !TARGET_SPARC64 */
 474
 475/* 41 bit physical address space */
 476static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
 477{
 478    return x & 0x1ffffffffffULL;
 479}
 480
 481/*
 482 * UltraSparc IIi I/DMMUs
 483 */
 484
 485/* Returns true if TTE tag is valid and matches virtual address value
 486   in context requires virtual address mask value calculated from TTE
 487   entry size */
 488static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
 489                                       uint64_t address, uint64_t context,
 490                                       hwaddr *physical)
 491{
 492    uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
 493
 494    /* valid, context match, virtual address match? */
 495    if (TTE_IS_VALID(tlb->tte) &&
 496        (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
 497        && compare_masked(address, tlb->tag, mask)) {
 498        /* decode physical address */
 499        *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
 500        return 1;
 501    }
 502
 503    return 0;
 504}
 505
 506static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
 507{
 508    uint64_t sfsr = SFSR_VALID_BIT;
 509
 510    switch (mmu_idx) {
 511    case MMU_PHYS_IDX:
 512        sfsr |= SFSR_CT_NOTRANS;
 513        break;
 514    case MMU_USER_IDX:
 515    case MMU_KERNEL_IDX:
 516        sfsr |= SFSR_CT_PRIMARY;
 517        break;
 518    case MMU_USER_SECONDARY_IDX:
 519    case MMU_KERNEL_SECONDARY_IDX:
 520        sfsr |= SFSR_CT_SECONDARY;
 521        break;
 522    case MMU_NUCLEUS_IDX:
 523        sfsr |= SFSR_CT_NUCLEUS;
 524        break;
 525    default:
 526        g_assert_not_reached();
 527    }
 528
 529    if (rw == 1) {
 530        sfsr |= SFSR_WRITE_BIT;
 531    } else if (rw == 4) {
 532        sfsr |= SFSR_NF_BIT;
 533    }
 534
 535    if (env->pstate & PS_PRIV) {
 536        sfsr |= SFSR_PR_BIT;
 537    }
 538
 539    if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
 540        sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
 541    }
 542
 543    /* FIXME: ASI field in SFSR must be set */
 544
 545    return sfsr;
 546}
 547
 548static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
 549                                     int *prot, MemTxAttrs *attrs,
 550                                     target_ulong address, int rw, int mmu_idx)
 551{
 552    CPUState *cs = env_cpu(env);
 553    unsigned int i;
 554    uint64_t sfsr;
 555    uint64_t context;
 556    bool is_user = false;
 557
 558    sfsr = build_sfsr(env, mmu_idx, rw);
 559
 560    switch (mmu_idx) {
 561    case MMU_PHYS_IDX:
 562        g_assert_not_reached();
 563    case MMU_USER_IDX:
 564        is_user = true;
 565        /* fallthru */
 566    case MMU_KERNEL_IDX:
 567        context = env->dmmu.mmu_primary_context & 0x1fff;
 568        break;
 569    case MMU_USER_SECONDARY_IDX:
 570        is_user = true;
 571        /* fallthru */
 572    case MMU_KERNEL_SECONDARY_IDX:
 573        context = env->dmmu.mmu_secondary_context & 0x1fff;
 574        break;
 575    default:
 576        context = 0;
 577        break;
 578    }
 579
 580    for (i = 0; i < 64; i++) {
 581        /* ctx match, vaddr match, valid? */
 582        if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
 583            int do_fault = 0;
 584
 585            if (TTE_IS_IE(env->dtlb[i].tte)) {
 586                attrs->byte_swap = true;
 587            }
 588
 589            /* access ok? */
 590            /* multiple bits in SFSR.FT may be set on TT_DFAULT */
 591            if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
 592                do_fault = 1;
 593                sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
 594                trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
 595            }
 596            if (rw == 4) {
 597                if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
 598                    do_fault = 1;
 599                    sfsr |= SFSR_FT_NF_E_BIT;
 600                }
 601            } else {
 602                if (TTE_IS_NFO(env->dtlb[i].tte)) {
 603                    do_fault = 1;
 604                    sfsr |= SFSR_FT_NFO_BIT;
 605                }
 606            }
 607
 608            if (do_fault) {
 609                /* faults above are reported with TT_DFAULT. */
 610                cs->exception_index = TT_DFAULT;
 611            } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
 612                do_fault = 1;
 613                cs->exception_index = TT_DPROT;
 614
 615                trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
 616            }
 617
 618            if (!do_fault) {
 619                *prot = PAGE_READ;
 620                if (TTE_IS_W_OK(env->dtlb[i].tte)) {
 621                    *prot |= PAGE_WRITE;
 622                }
 623
 624                TTE_SET_USED(env->dtlb[i].tte);
 625
 626                return 0;
 627            }
 628
 629            env->dmmu.sfsr = sfsr;
 630            env->dmmu.sfar = address; /* Fault address register */
 631            env->dmmu.tag_access = (address & ~0x1fffULL) | context;
 632            return 1;
 633        }
 634    }
 635
 636    trace_mmu_helper_dmiss(address, context);
 637
 638    /*
 639     * On MMU misses:
 640     * - UltraSPARC IIi: SFSR and SFAR unmodified
 641     * - JPS1: SFAR updated and some fields of SFSR updated
 642     */
 643    env->dmmu.tag_access = (address & ~0x1fffULL) | context;
 644    cs->exception_index = TT_DMISS;
 645    return 1;
 646}
 647
 648static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
 649                                     int *prot, MemTxAttrs *attrs,
 650                                     target_ulong address, int mmu_idx)
 651{
 652    CPUState *cs = env_cpu(env);
 653    unsigned int i;
 654    uint64_t context;
 655    bool is_user = false;
 656
 657    switch (mmu_idx) {
 658    case MMU_PHYS_IDX:
 659    case MMU_USER_SECONDARY_IDX:
 660    case MMU_KERNEL_SECONDARY_IDX:
 661        g_assert_not_reached();
 662    case MMU_USER_IDX:
 663        is_user = true;
 664        /* fallthru */
 665    case MMU_KERNEL_IDX:
 666        context = env->dmmu.mmu_primary_context & 0x1fff;
 667        break;
 668    default:
 669        context = 0;
 670        break;
 671    }
 672
 673    if (env->tl == 0) {
 674        /* PRIMARY context */
 675        context = env->dmmu.mmu_primary_context & 0x1fff;
 676    } else {
 677        /* NUCLEUS context */
 678        context = 0;
 679    }
 680
 681    for (i = 0; i < 64; i++) {
 682        /* ctx match, vaddr match, valid? */
 683        if (ultrasparc_tag_match(&env->itlb[i],
 684                                 address, context, physical)) {
 685            /* access ok? */
 686            if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
 687                /* Fault status register */
 688                if (env->immu.sfsr & SFSR_VALID_BIT) {
 689                    env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
 690                                                     another fault) */
 691                } else {
 692                    env->immu.sfsr = 0;
 693                }
 694                if (env->pstate & PS_PRIV) {
 695                    env->immu.sfsr |= SFSR_PR_BIT;
 696                }
 697                if (env->tl > 0) {
 698                    env->immu.sfsr |= SFSR_CT_NUCLEUS;
 699                }
 700
 701                /* FIXME: ASI field in SFSR must be set */
 702                env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
 703                cs->exception_index = TT_TFAULT;
 704
 705                env->immu.tag_access = (address & ~0x1fffULL) | context;
 706
 707                trace_mmu_helper_tfault(address, context);
 708
 709                return 1;
 710            }
 711            *prot = PAGE_EXEC;
 712            TTE_SET_USED(env->itlb[i].tte);
 713            return 0;
 714        }
 715    }
 716
 717    trace_mmu_helper_tmiss(address, context);
 718
 719    /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
 720    env->immu.tag_access = (address & ~0x1fffULL) | context;
 721    cs->exception_index = TT_TMISS;
 722    return 1;
 723}
 724
 725static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
 726                                int *prot, int *access_index, MemTxAttrs *attrs,
 727                                target_ulong address, int rw, int mmu_idx,
 728                                target_ulong *page_size)
 729{
 730    /* ??? We treat everything as a small page, then explicitly flush
 731       everything when an entry is evicted.  */
 732    *page_size = TARGET_PAGE_SIZE;
 733
 734    /* safety net to catch wrong softmmu index use from dynamic code */
 735    if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
 736        if (rw == 2) {
 737            trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
 738                                                env->dmmu.mmu_primary_context,
 739                                                env->dmmu.mmu_secondary_context,
 740                                                address);
 741        } else {
 742            trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
 743                                                env->dmmu.mmu_primary_context,
 744                                                env->dmmu.mmu_secondary_context,
 745                                                address);
 746        }
 747    }
 748
 749    if (mmu_idx == MMU_PHYS_IDX) {
 750        *physical = ultrasparc_truncate_physical(address);
 751        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 752        return 0;
 753    }
 754
 755    if (rw == 2) {
 756        return get_physical_address_code(env, physical, prot, attrs, address,
 757                                         mmu_idx);
 758    } else {
 759        return get_physical_address_data(env, physical, prot, attrs, address,
 760                                         rw, mmu_idx);
 761    }
 762}
 763
 764/* Perform address translation */
 765bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 766                        MMUAccessType access_type, int mmu_idx,
 767                        bool probe, uintptr_t retaddr)
 768{
 769    SPARCCPU *cpu = SPARC_CPU(cs);
 770    CPUSPARCState *env = &cpu->env;
 771    target_ulong vaddr;
 772    hwaddr paddr;
 773    target_ulong page_size;
 774    MemTxAttrs attrs = {};
 775    int error_code = 0, prot, access_index;
 776
 777    address &= TARGET_PAGE_MASK;
 778    error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
 779                                      address, access_type,
 780                                      mmu_idx, &page_size);
 781    if (likely(error_code == 0)) {
 782        vaddr = address;
 783
 784        trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
 785                                   env->dmmu.mmu_primary_context,
 786                                   env->dmmu.mmu_secondary_context);
 787
 788        tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
 789                                page_size);
 790        return true;
 791    }
 792    if (probe) {
 793        return false;
 794    }
 795    cpu_loop_exit_restore(cs, retaddr);
 796}
 797
 798void dump_mmu(CPUSPARCState *env)
 799{
 800    unsigned int i;
 801    const char *mask;
 802
 803    qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
 804                PRId64 "\n",
 805                env->dmmu.mmu_primary_context,
 806                env->dmmu.mmu_secondary_context);
 807    qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
 808                "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
 809    if ((env->lsu & DMMU_E) == 0) {
 810        qemu_printf("DMMU disabled\n");
 811    } else {
 812        qemu_printf("DMMU dump\n");
 813        for (i = 0; i < 64; i++) {
 814            switch (TTE_PGSIZE(env->dtlb[i].tte)) {
 815            default:
 816            case 0x0:
 817                mask = "  8k";
 818                break;
 819            case 0x1:
 820                mask = " 64k";
 821                break;
 822            case 0x2:
 823                mask = "512k";
 824                break;
 825            case 0x3:
 826                mask = "  4M";
 827                break;
 828            }
 829            if (TTE_IS_VALID(env->dtlb[i].tte)) {
 830                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
 831                            ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
 832                            i,
 833                            env->dtlb[i].tag & (uint64_t)~0x1fffULL,
 834                            TTE_PA(env->dtlb[i].tte),
 835                            mask,
 836                            TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
 837                            TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
 838                            TTE_IS_LOCKED(env->dtlb[i].tte) ?
 839                            "locked" : "unlocked",
 840                            TTE_IS_IE(env->dtlb[i].tte) ?
 841                            "yes" : "no",
 842                            env->dtlb[i].tag & (uint64_t)0x1fffULL,
 843                            TTE_IS_GLOBAL(env->dtlb[i].tte) ?
 844                            "global" : "local");
 845            }
 846        }
 847    }
 848    if ((env->lsu & IMMU_E) == 0) {
 849        qemu_printf("IMMU disabled\n");
 850    } else {
 851        qemu_printf("IMMU dump\n");
 852        for (i = 0; i < 64; i++) {
 853            switch (TTE_PGSIZE(env->itlb[i].tte)) {
 854            default:
 855            case 0x0:
 856                mask = "  8k";
 857                break;
 858            case 0x1:
 859                mask = " 64k";
 860                break;
 861            case 0x2:
 862                mask = "512k";
 863                break;
 864            case 0x3:
 865                mask = "  4M";
 866                break;
 867            }
 868            if (TTE_IS_VALID(env->itlb[i].tte)) {
 869                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
 870                            ", %s, %s, %s, ctx %" PRId64 " %s\n",
 871                            i,
 872                            env->itlb[i].tag & (uint64_t)~0x1fffULL,
 873                            TTE_PA(env->itlb[i].tte),
 874                            mask,
 875                            TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
 876                            TTE_IS_LOCKED(env->itlb[i].tte) ?
 877                            "locked" : "unlocked",
 878                            env->itlb[i].tag & (uint64_t)0x1fffULL,
 879                            TTE_IS_GLOBAL(env->itlb[i].tte) ?
 880                            "global" : "local");
 881            }
 882        }
 883    }
 884}
 885
 886#endif /* TARGET_SPARC64 */
 887
 888static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
 889                                   target_ulong addr, int rw, int mmu_idx)
 890{
 891    target_ulong page_size;
 892    int prot, access_index;
 893    MemTxAttrs attrs = {};
 894
 895    return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
 896                                rw, mmu_idx, &page_size);
 897}
 898
 899#if defined(TARGET_SPARC64)
 900hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
 901                                           int mmu_idx)
 902{
 903    hwaddr phys_addr;
 904
 905    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
 906        return -1;
 907    }
 908    return phys_addr;
 909}
 910#endif
 911
 912hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 913{
 914    SPARCCPU *cpu = SPARC_CPU(cs);
 915    CPUSPARCState *env = &cpu->env;
 916    hwaddr phys_addr;
 917    int mmu_idx = cpu_mmu_index(env, false);
 918
 919    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
 920        if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
 921            return -1;
 922        }
 923    }
 924    return phys_addr;
 925}
 926
 927#ifndef CONFIG_USER_ONLY
 928void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 929                                                 MMUAccessType access_type,
 930                                                 int mmu_idx,
 931                                                 uintptr_t retaddr)
 932{
 933    SPARCCPU *cpu = SPARC_CPU(cs);
 934    CPUSPARCState *env = &cpu->env;
 935
 936#ifdef TARGET_SPARC64
 937    env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
 938    env->dmmu.sfar = addr;
 939#else
 940    env->mmuregs[4] = addr;
 941#endif
 942
 943    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
 944}
 945#endif /* !CONFIG_USER_ONLY */
 946