qemu/accel/tcg/user-exec.c
<<
>>
Prefs
   1/*
   2 *  User emulator execution
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "hw/core/tcg-cpu-ops.h"
  21#include "disas/disas.h"
  22#include "exec/exec-all.h"
  23#include "tcg/tcg.h"
  24#include "qemu/bitops.h"
  25#include "exec/cpu_ldst.h"
  26#include "exec/translate-all.h"
  27#include "exec/helper-proto.h"
  28#include "qemu/atomic128.h"
  29#include "trace/trace-root.h"
  30#include "tcg/tcg-ldst.h"
  31#include "internal.h"
  32
  33__thread uintptr_t helper_retaddr;
  34
  35//#define DEBUG_SIGNAL
  36
  37/*
  38 * Adjust the pc to pass to cpu_restore_state; return the memop type.
  39 */
  40MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
  41{
  42    switch (helper_retaddr) {
  43    default:
  44        /*
  45         * Fault during host memory operation within a helper function.
  46         * The helper's host return address, saved here, gives us a
  47         * pointer into the generated code that will unwind to the
  48         * correct guest pc.
  49         */
  50        *pc = helper_retaddr;
  51        break;
  52
  53    case 0:
  54        /*
  55         * Fault during host memory operation within generated code.
  56         * (Or, a unrelated bug within qemu, but we can't tell from here).
  57         *
  58         * We take the host pc from the signal frame.  However, we cannot
  59         * use that value directly.  Within cpu_restore_state_from_tb, we
  60         * assume PC comes from GETPC(), as used by the helper functions,
  61         * so we adjust the address by -GETPC_ADJ to form an address that
  62         * is within the call insn, so that the address does not accidentally
  63         * match the beginning of the next guest insn.  However, when the
  64         * pc comes from the signal frame it points to the actual faulting
  65         * host memory insn and not the return from a call insn.
  66         *
  67         * Therefore, adjust to compensate for what will be done later
  68         * by cpu_restore_state_from_tb.
  69         */
  70        *pc += GETPC_ADJ;
  71        break;
  72
  73    case 1:
  74        /*
  75         * Fault during host read for translation, or loosely, "execution".
  76         *
  77         * The guest pc is already pointing to the start of the TB for which
  78         * code is being generated.  If the guest translator manages the
  79         * page crossings correctly, this is exactly the correct address
  80         * (and if the translator doesn't handle page boundaries correctly
  81         * there's little we can do about that here).  Therefore, do not
  82         * trigger the unwinder.
  83         *
  84         * Like tb_gen_code, release the memory lock before cpu_loop_exit.
  85         */
  86        mmap_unlock();
  87        *pc = 0;
  88        return MMU_INST_FETCH;
  89    }
  90
  91    return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
  92}
  93
  94/**
  95 * handle_sigsegv_accerr_write:
  96 * @cpu: the cpu context
  97 * @old_set: the sigset_t from the signal ucontext_t
  98 * @host_pc: the host pc, adjusted for the signal
  99 * @guest_addr: the guest address of the fault
 100 *
 101 * Return true if the write fault has been handled, and should be re-tried.
 102 *
 103 * Note that it is important that we don't call page_unprotect() unless
 104 * this is really a "write to nonwritable page" fault, because
 105 * page_unprotect() assumes that if it is called for an access to
 106 * a page that's writable this means we had two threads racing and
 107 * another thread got there first and already made the page writable;
 108 * so we will retry the access. If we were to call page_unprotect()
 109 * for some other kind of fault that should really be passed to the
 110 * guest, we'd end up in an infinite loop of retrying the faulting access.
 111 */
 112bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
 113                                 uintptr_t host_pc, abi_ptr guest_addr)
 114{
 115    switch (page_unprotect(guest_addr, host_pc)) {
 116    case 0:
 117        /*
 118         * Fault not caused by a page marked unwritable to protect
 119         * cached translations, must be the guest binary's problem.
 120         */
 121        return false;
 122    case 1:
 123        /*
 124         * Fault caused by protection of cached translation; TBs
 125         * invalidated, so resume execution.
 126         */
 127        return true;
 128    case 2:
 129        /*
 130         * Fault caused by protection of cached translation, and the
 131         * currently executing TB was modified and must be exited immediately.
 132         */
 133        sigprocmask(SIG_SETMASK, old_set, NULL);
 134        cpu_loop_exit_noexc(cpu);
 135        /* NORETURN */
 136    default:
 137        g_assert_not_reached();
 138    }
 139}
 140
 141static int probe_access_internal(CPUArchState *env, target_ulong addr,
 142                                 int fault_size, MMUAccessType access_type,
 143                                 bool nonfault, uintptr_t ra)
 144{
 145    int acc_flag;
 146    bool maperr;
 147
 148    switch (access_type) {
 149    case MMU_DATA_STORE:
 150        acc_flag = PAGE_WRITE_ORG;
 151        break;
 152    case MMU_DATA_LOAD:
 153        acc_flag = PAGE_READ;
 154        break;
 155    case MMU_INST_FETCH:
 156        acc_flag = PAGE_EXEC;
 157        break;
 158    default:
 159        g_assert_not_reached();
 160    }
 161
 162    if (guest_addr_valid_untagged(addr)) {
 163        int page_flags = page_get_flags(addr);
 164        if (page_flags & acc_flag) {
 165            return 0; /* success */
 166        }
 167        maperr = !(page_flags & PAGE_VALID);
 168    } else {
 169        maperr = true;
 170    }
 171
 172    if (nonfault) {
 173        return TLB_INVALID_MASK;
 174    }
 175
 176    cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
 177}
 178
 179int probe_access_flags(CPUArchState *env, target_ulong addr,
 180                       MMUAccessType access_type, int mmu_idx,
 181                       bool nonfault, void **phost, uintptr_t ra)
 182{
 183    int flags;
 184
 185    flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
 186    *phost = flags ? NULL : g2h(env_cpu(env), addr);
 187    return flags;
 188}
 189
 190void *probe_access(CPUArchState *env, target_ulong addr, int size,
 191                   MMUAccessType access_type, int mmu_idx, uintptr_t ra)
 192{
 193    int flags;
 194
 195    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 196    flags = probe_access_internal(env, addr, size, access_type, false, ra);
 197    g_assert(flags == 0);
 198
 199    return size ? g2h(env_cpu(env), addr) : NULL;
 200}
 201
 202/* The softmmu versions of these helpers are in cputlb.c.  */
 203
 204/*
 205 * Verify that we have passed the correct MemOp to the correct function.
 206 *
 207 * We could present one function to target code, and dispatch based on
 208 * the MemOp, but so far we have worked hard to avoid an indirect function
 209 * call along the memory path.
 210 */
 211static void validate_memop(MemOpIdx oi, MemOp expected)
 212{
 213#ifdef CONFIG_DEBUG_TCG
 214    MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
 215    assert(have == expected);
 216#endif
 217}
 218
 219void helper_unaligned_ld(CPUArchState *env, target_ulong addr)
 220{
 221    cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC());
 222}
 223
 224void helper_unaligned_st(CPUArchState *env, target_ulong addr)
 225{
 226    cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC());
 227}
 228
 229static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr,
 230                            MemOpIdx oi, uintptr_t ra, MMUAccessType type)
 231{
 232    MemOp mop = get_memop(oi);
 233    int a_bits = get_alignment_bits(mop);
 234    void *ret;
 235
 236    /* Enforce guest required alignment.  */
 237    if (unlikely(addr & ((1 << a_bits) - 1))) {
 238        cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
 239    }
 240
 241    ret = g2h(env_cpu(env), addr);
 242    set_helper_retaddr(ra);
 243    return ret;
 244}
 245
 246uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
 247                    MemOpIdx oi, uintptr_t ra)
 248{
 249    void *haddr;
 250    uint8_t ret;
 251
 252    validate_memop(oi, MO_UB);
 253    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 254    ret = ldub_p(haddr);
 255    clear_helper_retaddr();
 256    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 257    return ret;
 258}
 259
 260uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
 261                        MemOpIdx oi, uintptr_t ra)
 262{
 263    void *haddr;
 264    uint16_t ret;
 265
 266    validate_memop(oi, MO_BEUW);
 267    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 268    ret = lduw_be_p(haddr);
 269    clear_helper_retaddr();
 270    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 271    return ret;
 272}
 273
 274uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
 275                        MemOpIdx oi, uintptr_t ra)
 276{
 277    void *haddr;
 278    uint32_t ret;
 279
 280    validate_memop(oi, MO_BEUL);
 281    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 282    ret = ldl_be_p(haddr);
 283    clear_helper_retaddr();
 284    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 285    return ret;
 286}
 287
 288uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
 289                        MemOpIdx oi, uintptr_t ra)
 290{
 291    void *haddr;
 292    uint64_t ret;
 293
 294    validate_memop(oi, MO_BEUQ);
 295    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 296    ret = ldq_be_p(haddr);
 297    clear_helper_retaddr();
 298    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 299    return ret;
 300}
 301
 302uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
 303                        MemOpIdx oi, uintptr_t ra)
 304{
 305    void *haddr;
 306    uint16_t ret;
 307
 308    validate_memop(oi, MO_LEUW);
 309    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 310    ret = lduw_le_p(haddr);
 311    clear_helper_retaddr();
 312    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 313    return ret;
 314}
 315
 316uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
 317                        MemOpIdx oi, uintptr_t ra)
 318{
 319    void *haddr;
 320    uint32_t ret;
 321
 322    validate_memop(oi, MO_LEUL);
 323    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 324    ret = ldl_le_p(haddr);
 325    clear_helper_retaddr();
 326    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 327    return ret;
 328}
 329
 330uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
 331                        MemOpIdx oi, uintptr_t ra)
 332{
 333    void *haddr;
 334    uint64_t ret;
 335
 336    validate_memop(oi, MO_LEUQ);
 337    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 338    ret = ldq_le_p(haddr);
 339    clear_helper_retaddr();
 340    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 341    return ret;
 342}
 343
 344void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
 345                 MemOpIdx oi, uintptr_t ra)
 346{
 347    void *haddr;
 348
 349    validate_memop(oi, MO_UB);
 350    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 351    stb_p(haddr, val);
 352    clear_helper_retaddr();
 353    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 354}
 355
 356void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
 357                    MemOpIdx oi, uintptr_t ra)
 358{
 359    void *haddr;
 360
 361    validate_memop(oi, MO_BEUW);
 362    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 363    stw_be_p(haddr, val);
 364    clear_helper_retaddr();
 365    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 366}
 367
 368void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
 369                    MemOpIdx oi, uintptr_t ra)
 370{
 371    void *haddr;
 372
 373    validate_memop(oi, MO_BEUL);
 374    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 375    stl_be_p(haddr, val);
 376    clear_helper_retaddr();
 377    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 378}
 379
 380void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
 381                    MemOpIdx oi, uintptr_t ra)
 382{
 383    void *haddr;
 384
 385    validate_memop(oi, MO_BEUQ);
 386    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 387    stq_be_p(haddr, val);
 388    clear_helper_retaddr();
 389    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 390}
 391
 392void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
 393                    MemOpIdx oi, uintptr_t ra)
 394{
 395    void *haddr;
 396
 397    validate_memop(oi, MO_LEUW);
 398    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 399    stw_le_p(haddr, val);
 400    clear_helper_retaddr();
 401    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 402}
 403
 404void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
 405                    MemOpIdx oi, uintptr_t ra)
 406{
 407    void *haddr;
 408
 409    validate_memop(oi, MO_LEUL);
 410    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 411    stl_le_p(haddr, val);
 412    clear_helper_retaddr();
 413    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 414}
 415
 416void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
 417                    MemOpIdx oi, uintptr_t ra)
 418{
 419    void *haddr;
 420
 421    validate_memop(oi, MO_LEUQ);
 422    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE);
 423    stq_le_p(haddr, val);
 424    clear_helper_retaddr();
 425    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 426}
 427
 428uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
 429{
 430    uint32_t ret;
 431
 432    set_helper_retaddr(1);
 433    ret = ldub_p(g2h_untagged(ptr));
 434    clear_helper_retaddr();
 435    return ret;
 436}
 437
 438uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
 439{
 440    uint32_t ret;
 441
 442    set_helper_retaddr(1);
 443    ret = lduw_p(g2h_untagged(ptr));
 444    clear_helper_retaddr();
 445    return ret;
 446}
 447
 448uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
 449{
 450    uint32_t ret;
 451
 452    set_helper_retaddr(1);
 453    ret = ldl_p(g2h_untagged(ptr));
 454    clear_helper_retaddr();
 455    return ret;
 456}
 457
 458uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
 459{
 460    uint64_t ret;
 461
 462    set_helper_retaddr(1);
 463    ret = ldq_p(g2h_untagged(ptr));
 464    clear_helper_retaddr();
 465    return ret;
 466}
 467
 468#include "ldst_common.c.inc"
 469
 470/*
 471 * Do not allow unaligned operations to proceed.  Return the host address.
 472 *
 473 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
 474 */
 475static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
 476                               MemOpIdx oi, int size, int prot,
 477                               uintptr_t retaddr)
 478{
 479    MemOp mop = get_memop(oi);
 480    int a_bits = get_alignment_bits(mop);
 481    void *ret;
 482
 483    /* Enforce guest required alignment.  */
 484    if (unlikely(addr & ((1 << a_bits) - 1))) {
 485        MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
 486        cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
 487    }
 488
 489    /* Enforce qemu required alignment.  */
 490    if (unlikely(addr & (size - 1))) {
 491        cpu_loop_exit_atomic(env_cpu(env), retaddr);
 492    }
 493
 494    ret = g2h(env_cpu(env), addr);
 495    set_helper_retaddr(retaddr);
 496    return ret;
 497}
 498
 499#include "atomic_common.c.inc"
 500
 501/*
 502 * First set of functions passes in OI and RETADDR.
 503 * This makes them callable from other helpers.
 504 */
 505
 506#define ATOMIC_NAME(X) \
 507    glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
 508#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
 509
 510#define DATA_SIZE 1
 511#include "atomic_template.h"
 512
 513#define DATA_SIZE 2
 514#include "atomic_template.h"
 515
 516#define DATA_SIZE 4
 517#include "atomic_template.h"
 518
 519#ifdef CONFIG_ATOMIC64
 520#define DATA_SIZE 8
 521#include "atomic_template.h"
 522#endif
 523
 524#if HAVE_ATOMIC128 || HAVE_CMPXCHG128
 525#define DATA_SIZE 16
 526#include "atomic_template.h"
 527#endif
 528