qemu/block/io.c
<<
>>
Prefs
   1/*
   2 * Block layer I/O functions
   3 *
   4 * Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "trace.h"
  27#include "sysemu/block-backend.h"
  28#include "block/aio-wait.h"
  29#include "block/blockjob.h"
  30#include "block/blockjob_int.h"
  31#include "block/block_int.h"
  32#include "block/coroutines.h"
  33#include "block/write-threshold.h"
  34#include "qemu/cutils.h"
  35#include "qemu/memalign.h"
  36#include "qapi/error.h"
  37#include "qemu/error-report.h"
  38#include "qemu/main-loop.h"
  39#include "sysemu/replay.h"
  40
  41/* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
  42#define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
  43
  44static void bdrv_parent_cb_resize(BlockDriverState *bs);
  45static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
  46    int64_t offset, int64_t bytes, BdrvRequestFlags flags);
  47
  48static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
  49                                      bool ignore_bds_parents)
  50{
  51    BdrvChild *c, *next;
  52
  53    QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
  54        if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
  55            continue;
  56        }
  57        bdrv_parent_drained_begin_single(c, false);
  58    }
  59}
  60
  61static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
  62                                                   int *drained_end_counter)
  63{
  64    assert(c->parent_quiesce_counter > 0);
  65    c->parent_quiesce_counter--;
  66    if (c->klass->drained_end) {
  67        c->klass->drained_end(c, drained_end_counter);
  68    }
  69}
  70
  71void bdrv_parent_drained_end_single(BdrvChild *c)
  72{
  73    int drained_end_counter = 0;
  74    IO_OR_GS_CODE();
  75    bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
  76    BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
  77}
  78
  79static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
  80                                    bool ignore_bds_parents,
  81                                    int *drained_end_counter)
  82{
  83    BdrvChild *c;
  84
  85    QLIST_FOREACH(c, &bs->parents, next_parent) {
  86        if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
  87            continue;
  88        }
  89        bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
  90    }
  91}
  92
  93static bool bdrv_parent_drained_poll_single(BdrvChild *c)
  94{
  95    if (c->klass->drained_poll) {
  96        return c->klass->drained_poll(c);
  97    }
  98    return false;
  99}
 100
 101static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
 102                                     bool ignore_bds_parents)
 103{
 104    BdrvChild *c, *next;
 105    bool busy = false;
 106
 107    QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
 108        if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
 109            continue;
 110        }
 111        busy |= bdrv_parent_drained_poll_single(c);
 112    }
 113
 114    return busy;
 115}
 116
 117void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
 118{
 119    IO_OR_GS_CODE();
 120    c->parent_quiesce_counter++;
 121    if (c->klass->drained_begin) {
 122        c->klass->drained_begin(c);
 123    }
 124    if (poll) {
 125        BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
 126    }
 127}
 128
 129static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
 130{
 131    dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
 132                                  src->pdiscard_alignment);
 133    dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
 134    dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
 135    dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
 136                                        src->max_hw_transfer);
 137    dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
 138                                 src->opt_mem_alignment);
 139    dst->min_mem_alignment = MAX(dst->min_mem_alignment,
 140                                 src->min_mem_alignment);
 141    dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
 142    dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
 143}
 144
 145typedef struct BdrvRefreshLimitsState {
 146    BlockDriverState *bs;
 147    BlockLimits old_bl;
 148} BdrvRefreshLimitsState;
 149
 150static void bdrv_refresh_limits_abort(void *opaque)
 151{
 152    BdrvRefreshLimitsState *s = opaque;
 153
 154    s->bs->bl = s->old_bl;
 155}
 156
 157static TransactionActionDrv bdrv_refresh_limits_drv = {
 158    .abort = bdrv_refresh_limits_abort,
 159    .clean = g_free,
 160};
 161
 162/* @tran is allowed to be NULL, in this case no rollback is possible. */
 163void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
 164{
 165    ERRP_GUARD();
 166    BlockDriver *drv = bs->drv;
 167    BdrvChild *c;
 168    bool have_limits;
 169
 170    GLOBAL_STATE_CODE();
 171
 172    if (tran) {
 173        BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
 174        *s = (BdrvRefreshLimitsState) {
 175            .bs = bs,
 176            .old_bl = bs->bl,
 177        };
 178        tran_add(tran, &bdrv_refresh_limits_drv, s);
 179    }
 180
 181    memset(&bs->bl, 0, sizeof(bs->bl));
 182
 183    if (!drv) {
 184        return;
 185    }
 186
 187    /* Default alignment based on whether driver has byte interface */
 188    bs->bl.request_alignment = (drv->bdrv_co_preadv ||
 189                                drv->bdrv_aio_preadv ||
 190                                drv->bdrv_co_preadv_part) ? 1 : 512;
 191
 192    /* Take some limits from the children as a default */
 193    have_limits = false;
 194    QLIST_FOREACH(c, &bs->children, next) {
 195        if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
 196        {
 197            bdrv_merge_limits(&bs->bl, &c->bs->bl);
 198            have_limits = true;
 199        }
 200    }
 201
 202    if (!have_limits) {
 203        bs->bl.min_mem_alignment = 512;
 204        bs->bl.opt_mem_alignment = qemu_real_host_page_size();
 205
 206        /* Safe default since most protocols use readv()/writev()/etc */
 207        bs->bl.max_iov = IOV_MAX;
 208    }
 209
 210    /* Then let the driver override it */
 211    if (drv->bdrv_refresh_limits) {
 212        drv->bdrv_refresh_limits(bs, errp);
 213        if (*errp) {
 214            return;
 215        }
 216    }
 217
 218    if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
 219        error_setg(errp, "Driver requires too large request alignment");
 220    }
 221}
 222
 223/**
 224 * The copy-on-read flag is actually a reference count so multiple users may
 225 * use the feature without worrying about clobbering its previous state.
 226 * Copy-on-read stays enabled until all users have called to disable it.
 227 */
 228void bdrv_enable_copy_on_read(BlockDriverState *bs)
 229{
 230    IO_CODE();
 231    qatomic_inc(&bs->copy_on_read);
 232}
 233
 234void bdrv_disable_copy_on_read(BlockDriverState *bs)
 235{
 236    int old = qatomic_fetch_dec(&bs->copy_on_read);
 237    IO_CODE();
 238    assert(old >= 1);
 239}
 240
 241typedef struct {
 242    Coroutine *co;
 243    BlockDriverState *bs;
 244    bool done;
 245    bool begin;
 246    bool recursive;
 247    bool poll;
 248    BdrvChild *parent;
 249    bool ignore_bds_parents;
 250    int *drained_end_counter;
 251} BdrvCoDrainData;
 252
 253static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
 254{
 255    BdrvCoDrainData *data = opaque;
 256    BlockDriverState *bs = data->bs;
 257
 258    if (data->begin) {
 259        bs->drv->bdrv_co_drain_begin(bs);
 260    } else {
 261        bs->drv->bdrv_co_drain_end(bs);
 262    }
 263
 264    /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
 265    qatomic_mb_set(&data->done, true);
 266    if (!data->begin) {
 267        qatomic_dec(data->drained_end_counter);
 268    }
 269    bdrv_dec_in_flight(bs);
 270
 271    g_free(data);
 272}
 273
 274/* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
 275static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
 276                              int *drained_end_counter)
 277{
 278    BdrvCoDrainData *data;
 279
 280    if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
 281            (!begin && !bs->drv->bdrv_co_drain_end)) {
 282        return;
 283    }
 284
 285    data = g_new(BdrvCoDrainData, 1);
 286    *data = (BdrvCoDrainData) {
 287        .bs = bs,
 288        .done = false,
 289        .begin = begin,
 290        .drained_end_counter = drained_end_counter,
 291    };
 292
 293    if (!begin) {
 294        qatomic_inc(drained_end_counter);
 295    }
 296
 297    /* Make sure the driver callback completes during the polling phase for
 298     * drain_begin. */
 299    bdrv_inc_in_flight(bs);
 300    data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
 301    aio_co_schedule(bdrv_get_aio_context(bs), data->co);
 302}
 303
 304/* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
 305bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
 306                     BdrvChild *ignore_parent, bool ignore_bds_parents)
 307{
 308    BdrvChild *child, *next;
 309    IO_OR_GS_CODE();
 310
 311    if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
 312        return true;
 313    }
 314
 315    if (qatomic_read(&bs->in_flight)) {
 316        return true;
 317    }
 318
 319    if (recursive) {
 320        assert(!ignore_bds_parents);
 321        QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
 322            if (bdrv_drain_poll(child->bs, recursive, child, false)) {
 323                return true;
 324            }
 325        }
 326    }
 327
 328    return false;
 329}
 330
 331static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
 332                                      BdrvChild *ignore_parent)
 333{
 334    return bdrv_drain_poll(bs, recursive, ignore_parent, false);
 335}
 336
 337static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
 338                                  BdrvChild *parent, bool ignore_bds_parents,
 339                                  bool poll);
 340static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
 341                                BdrvChild *parent, bool ignore_bds_parents,
 342                                int *drained_end_counter);
 343
 344static void bdrv_co_drain_bh_cb(void *opaque)
 345{
 346    BdrvCoDrainData *data = opaque;
 347    Coroutine *co = data->co;
 348    BlockDriverState *bs = data->bs;
 349
 350    if (bs) {
 351        AioContext *ctx = bdrv_get_aio_context(bs);
 352        aio_context_acquire(ctx);
 353        bdrv_dec_in_flight(bs);
 354        if (data->begin) {
 355            assert(!data->drained_end_counter);
 356            bdrv_do_drained_begin(bs, data->recursive, data->parent,
 357                                  data->ignore_bds_parents, data->poll);
 358        } else {
 359            assert(!data->poll);
 360            bdrv_do_drained_end(bs, data->recursive, data->parent,
 361                                data->ignore_bds_parents,
 362                                data->drained_end_counter);
 363        }
 364        aio_context_release(ctx);
 365    } else {
 366        assert(data->begin);
 367        bdrv_drain_all_begin();
 368    }
 369
 370    data->done = true;
 371    aio_co_wake(co);
 372}
 373
 374static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
 375                                                bool begin, bool recursive,
 376                                                BdrvChild *parent,
 377                                                bool ignore_bds_parents,
 378                                                bool poll,
 379                                                int *drained_end_counter)
 380{
 381    BdrvCoDrainData data;
 382    Coroutine *self = qemu_coroutine_self();
 383    AioContext *ctx = bdrv_get_aio_context(bs);
 384    AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
 385
 386    /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
 387     * other coroutines run if they were queued by aio_co_enter(). */
 388
 389    assert(qemu_in_coroutine());
 390    data = (BdrvCoDrainData) {
 391        .co = self,
 392        .bs = bs,
 393        .done = false,
 394        .begin = begin,
 395        .recursive = recursive,
 396        .parent = parent,
 397        .ignore_bds_parents = ignore_bds_parents,
 398        .poll = poll,
 399        .drained_end_counter = drained_end_counter,
 400    };
 401
 402    if (bs) {
 403        bdrv_inc_in_flight(bs);
 404    }
 405
 406    /*
 407     * Temporarily drop the lock across yield or we would get deadlocks.
 408     * bdrv_co_drain_bh_cb() reaquires the lock as needed.
 409     *
 410     * When we yield below, the lock for the current context will be
 411     * released, so if this is actually the lock that protects bs, don't drop
 412     * it a second time.
 413     */
 414    if (ctx != co_ctx) {
 415        aio_context_release(ctx);
 416    }
 417    replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
 418
 419    qemu_coroutine_yield();
 420    /* If we are resumed from some other event (such as an aio completion or a
 421     * timer callback), it is a bug in the caller that should be fixed. */
 422    assert(data.done);
 423
 424    /* Reaquire the AioContext of bs if we dropped it */
 425    if (ctx != co_ctx) {
 426        aio_context_acquire(ctx);
 427    }
 428}
 429
 430void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
 431                                   BdrvChild *parent, bool ignore_bds_parents)
 432{
 433    IO_OR_GS_CODE();
 434    assert(!qemu_in_coroutine());
 435
 436    /* Stop things in parent-to-child order */
 437    if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
 438        aio_disable_external(bdrv_get_aio_context(bs));
 439    }
 440
 441    bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
 442    bdrv_drain_invoke(bs, true, NULL);
 443}
 444
 445static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
 446                                  BdrvChild *parent, bool ignore_bds_parents,
 447                                  bool poll)
 448{
 449    BdrvChild *child, *next;
 450
 451    if (qemu_in_coroutine()) {
 452        bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
 453                               poll, NULL);
 454        return;
 455    }
 456
 457    bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
 458
 459    if (recursive) {
 460        assert(!ignore_bds_parents);
 461        bs->recursive_quiesce_counter++;
 462        QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
 463            bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
 464                                  false);
 465        }
 466    }
 467
 468    /*
 469     * Wait for drained requests to finish.
 470     *
 471     * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
 472     * call is needed so things in this AioContext can make progress even
 473     * though we don't return to the main AioContext loop - this automatically
 474     * includes other nodes in the same AioContext and therefore all child
 475     * nodes.
 476     */
 477    if (poll) {
 478        assert(!ignore_bds_parents);
 479        BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
 480    }
 481}
 482
 483void bdrv_drained_begin(BlockDriverState *bs)
 484{
 485    IO_OR_GS_CODE();
 486    bdrv_do_drained_begin(bs, false, NULL, false, true);
 487}
 488
 489void bdrv_subtree_drained_begin(BlockDriverState *bs)
 490{
 491    IO_OR_GS_CODE();
 492    bdrv_do_drained_begin(bs, true, NULL, false, true);
 493}
 494
 495/**
 496 * This function does not poll, nor must any of its recursively called
 497 * functions.  The *drained_end_counter pointee will be incremented
 498 * once for every background operation scheduled, and decremented once
 499 * the operation settles.  Therefore, the pointer must remain valid
 500 * until the pointee reaches 0.  That implies that whoever sets up the
 501 * pointee has to poll until it is 0.
 502 *
 503 * We use atomic operations to access *drained_end_counter, because
 504 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
 505 *     @bs may contain nodes in different AioContexts,
 506 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
 507 *     regardless of which AioContext they are in.
 508 */
 509static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
 510                                BdrvChild *parent, bool ignore_bds_parents,
 511                                int *drained_end_counter)
 512{
 513    BdrvChild *child;
 514    int old_quiesce_counter;
 515
 516    assert(drained_end_counter != NULL);
 517
 518    if (qemu_in_coroutine()) {
 519        bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
 520                               false, drained_end_counter);
 521        return;
 522    }
 523    assert(bs->quiesce_counter > 0);
 524
 525    /* Re-enable things in child-to-parent order */
 526    bdrv_drain_invoke(bs, false, drained_end_counter);
 527    bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
 528                            drained_end_counter);
 529
 530    old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
 531    if (old_quiesce_counter == 1) {
 532        aio_enable_external(bdrv_get_aio_context(bs));
 533    }
 534
 535    if (recursive) {
 536        assert(!ignore_bds_parents);
 537        bs->recursive_quiesce_counter--;
 538        QLIST_FOREACH(child, &bs->children, next) {
 539            bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
 540                                drained_end_counter);
 541        }
 542    }
 543}
 544
 545void bdrv_drained_end(BlockDriverState *bs)
 546{
 547    int drained_end_counter = 0;
 548    IO_OR_GS_CODE();
 549    bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
 550    BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
 551}
 552
 553void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
 554{
 555    IO_CODE();
 556    bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
 557}
 558
 559void bdrv_subtree_drained_end(BlockDriverState *bs)
 560{
 561    int drained_end_counter = 0;
 562    IO_OR_GS_CODE();
 563    bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
 564    BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
 565}
 566
 567void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
 568{
 569    int i;
 570    IO_OR_GS_CODE();
 571
 572    for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
 573        bdrv_do_drained_begin(child->bs, true, child, false, true);
 574    }
 575}
 576
 577void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
 578{
 579    int drained_end_counter = 0;
 580    int i;
 581    IO_OR_GS_CODE();
 582
 583    for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
 584        bdrv_do_drained_end(child->bs, true, child, false,
 585                            &drained_end_counter);
 586    }
 587
 588    BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
 589}
 590
 591void bdrv_drain(BlockDriverState *bs)
 592{
 593    IO_OR_GS_CODE();
 594    bdrv_drained_begin(bs);
 595    bdrv_drained_end(bs);
 596}
 597
 598static void bdrv_drain_assert_idle(BlockDriverState *bs)
 599{
 600    BdrvChild *child, *next;
 601
 602    assert(qatomic_read(&bs->in_flight) == 0);
 603    QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
 604        bdrv_drain_assert_idle(child->bs);
 605    }
 606}
 607
 608unsigned int bdrv_drain_all_count = 0;
 609
 610static bool bdrv_drain_all_poll(void)
 611{
 612    BlockDriverState *bs = NULL;
 613    bool result = false;
 614    GLOBAL_STATE_CODE();
 615
 616    /* bdrv_drain_poll() can't make changes to the graph and we are holding the
 617     * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
 618    while ((bs = bdrv_next_all_states(bs))) {
 619        AioContext *aio_context = bdrv_get_aio_context(bs);
 620        aio_context_acquire(aio_context);
 621        result |= bdrv_drain_poll(bs, false, NULL, true);
 622        aio_context_release(aio_context);
 623    }
 624
 625    return result;
 626}
 627
 628/*
 629 * Wait for pending requests to complete across all BlockDriverStates
 630 *
 631 * This function does not flush data to disk, use bdrv_flush_all() for that
 632 * after calling this function.
 633 *
 634 * This pauses all block jobs and disables external clients. It must
 635 * be paired with bdrv_drain_all_end().
 636 *
 637 * NOTE: no new block jobs or BlockDriverStates can be created between
 638 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
 639 */
 640void bdrv_drain_all_begin(void)
 641{
 642    BlockDriverState *bs = NULL;
 643    GLOBAL_STATE_CODE();
 644
 645    if (qemu_in_coroutine()) {
 646        bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
 647        return;
 648    }
 649
 650    /*
 651     * bdrv queue is managed by record/replay,
 652     * waiting for finishing the I/O requests may
 653     * be infinite
 654     */
 655    if (replay_events_enabled()) {
 656        return;
 657    }
 658
 659    /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
 660     * loop AioContext, so make sure we're in the main context. */
 661    assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 662    assert(bdrv_drain_all_count < INT_MAX);
 663    bdrv_drain_all_count++;
 664
 665    /* Quiesce all nodes, without polling in-flight requests yet. The graph
 666     * cannot change during this loop. */
 667    while ((bs = bdrv_next_all_states(bs))) {
 668        AioContext *aio_context = bdrv_get_aio_context(bs);
 669
 670        aio_context_acquire(aio_context);
 671        bdrv_do_drained_begin(bs, false, NULL, true, false);
 672        aio_context_release(aio_context);
 673    }
 674
 675    /* Now poll the in-flight requests */
 676    AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
 677
 678    while ((bs = bdrv_next_all_states(bs))) {
 679        bdrv_drain_assert_idle(bs);
 680    }
 681}
 682
 683void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
 684{
 685    int drained_end_counter = 0;
 686    GLOBAL_STATE_CODE();
 687
 688    g_assert(bs->quiesce_counter > 0);
 689    g_assert(!bs->refcnt);
 690
 691    while (bs->quiesce_counter) {
 692        bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
 693    }
 694    BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
 695}
 696
 697void bdrv_drain_all_end(void)
 698{
 699    BlockDriverState *bs = NULL;
 700    int drained_end_counter = 0;
 701    GLOBAL_STATE_CODE();
 702
 703    /*
 704     * bdrv queue is managed by record/replay,
 705     * waiting for finishing the I/O requests may
 706     * be endless
 707     */
 708    if (replay_events_enabled()) {
 709        return;
 710    }
 711
 712    while ((bs = bdrv_next_all_states(bs))) {
 713        AioContext *aio_context = bdrv_get_aio_context(bs);
 714
 715        aio_context_acquire(aio_context);
 716        bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
 717        aio_context_release(aio_context);
 718    }
 719
 720    assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 721    AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
 722
 723    assert(bdrv_drain_all_count > 0);
 724    bdrv_drain_all_count--;
 725}
 726
 727void bdrv_drain_all(void)
 728{
 729    GLOBAL_STATE_CODE();
 730    bdrv_drain_all_begin();
 731    bdrv_drain_all_end();
 732}
 733
 734/**
 735 * Remove an active request from the tracked requests list
 736 *
 737 * This function should be called when a tracked request is completing.
 738 */
 739static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
 740{
 741    if (req->serialising) {
 742        qatomic_dec(&req->bs->serialising_in_flight);
 743    }
 744
 745    qemu_co_mutex_lock(&req->bs->reqs_lock);
 746    QLIST_REMOVE(req, list);
 747    qemu_co_queue_restart_all(&req->wait_queue);
 748    qemu_co_mutex_unlock(&req->bs->reqs_lock);
 749}
 750
 751/**
 752 * Add an active request to the tracked requests list
 753 */
 754static void tracked_request_begin(BdrvTrackedRequest *req,
 755                                  BlockDriverState *bs,
 756                                  int64_t offset,
 757                                  int64_t bytes,
 758                                  enum BdrvTrackedRequestType type)
 759{
 760    bdrv_check_request(offset, bytes, &error_abort);
 761
 762    *req = (BdrvTrackedRequest){
 763        .bs = bs,
 764        .offset         = offset,
 765        .bytes          = bytes,
 766        .type           = type,
 767        .co             = qemu_coroutine_self(),
 768        .serialising    = false,
 769        .overlap_offset = offset,
 770        .overlap_bytes  = bytes,
 771    };
 772
 773    qemu_co_queue_init(&req->wait_queue);
 774
 775    qemu_co_mutex_lock(&bs->reqs_lock);
 776    QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
 777    qemu_co_mutex_unlock(&bs->reqs_lock);
 778}
 779
 780static bool tracked_request_overlaps(BdrvTrackedRequest *req,
 781                                     int64_t offset, int64_t bytes)
 782{
 783    bdrv_check_request(offset, bytes, &error_abort);
 784
 785    /*        aaaa   bbbb */
 786    if (offset >= req->overlap_offset + req->overlap_bytes) {
 787        return false;
 788    }
 789    /* bbbb   aaaa        */
 790    if (req->overlap_offset >= offset + bytes) {
 791        return false;
 792    }
 793    return true;
 794}
 795
 796/* Called with self->bs->reqs_lock held */
 797static BdrvTrackedRequest *
 798bdrv_find_conflicting_request(BdrvTrackedRequest *self)
 799{
 800    BdrvTrackedRequest *req;
 801
 802    QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
 803        if (req == self || (!req->serialising && !self->serialising)) {
 804            continue;
 805        }
 806        if (tracked_request_overlaps(req, self->overlap_offset,
 807                                     self->overlap_bytes))
 808        {
 809            /*
 810             * Hitting this means there was a reentrant request, for
 811             * example, a block driver issuing nested requests.  This must
 812             * never happen since it means deadlock.
 813             */
 814            assert(qemu_coroutine_self() != req->co);
 815
 816            /*
 817             * If the request is already (indirectly) waiting for us, or
 818             * will wait for us as soon as it wakes up, then just go on
 819             * (instead of producing a deadlock in the former case).
 820             */
 821            if (!req->waiting_for) {
 822                return req;
 823            }
 824        }
 825    }
 826
 827    return NULL;
 828}
 829
 830/* Called with self->bs->reqs_lock held */
 831static bool coroutine_fn
 832bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
 833{
 834    BdrvTrackedRequest *req;
 835    bool waited = false;
 836
 837    while ((req = bdrv_find_conflicting_request(self))) {
 838        self->waiting_for = req;
 839        qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
 840        self->waiting_for = NULL;
 841        waited = true;
 842    }
 843
 844    return waited;
 845}
 846
 847/* Called with req->bs->reqs_lock held */
 848static void tracked_request_set_serialising(BdrvTrackedRequest *req,
 849                                            uint64_t align)
 850{
 851    int64_t overlap_offset = req->offset & ~(align - 1);
 852    int64_t overlap_bytes =
 853        ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
 854
 855    bdrv_check_request(req->offset, req->bytes, &error_abort);
 856
 857    if (!req->serialising) {
 858        qatomic_inc(&req->bs->serialising_in_flight);
 859        req->serialising = true;
 860    }
 861
 862    req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
 863    req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
 864}
 865
 866/**
 867 * Return the tracked request on @bs for the current coroutine, or
 868 * NULL if there is none.
 869 */
 870BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
 871{
 872    BdrvTrackedRequest *req;
 873    Coroutine *self = qemu_coroutine_self();
 874    IO_CODE();
 875
 876    QLIST_FOREACH(req, &bs->tracked_requests, list) {
 877        if (req->co == self) {
 878            return req;
 879        }
 880    }
 881
 882    return NULL;
 883}
 884
 885/**
 886 * Round a region to cluster boundaries
 887 */
 888void bdrv_round_to_clusters(BlockDriverState *bs,
 889                            int64_t offset, int64_t bytes,
 890                            int64_t *cluster_offset,
 891                            int64_t *cluster_bytes)
 892{
 893    BlockDriverInfo bdi;
 894    IO_CODE();
 895    if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
 896        *cluster_offset = offset;
 897        *cluster_bytes = bytes;
 898    } else {
 899        int64_t c = bdi.cluster_size;
 900        *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
 901        *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
 902    }
 903}
 904
 905static int bdrv_get_cluster_size(BlockDriverState *bs)
 906{
 907    BlockDriverInfo bdi;
 908    int ret;
 909
 910    ret = bdrv_get_info(bs, &bdi);
 911    if (ret < 0 || bdi.cluster_size == 0) {
 912        return bs->bl.request_alignment;
 913    } else {
 914        return bdi.cluster_size;
 915    }
 916}
 917
 918void bdrv_inc_in_flight(BlockDriverState *bs)
 919{
 920    IO_CODE();
 921    qatomic_inc(&bs->in_flight);
 922}
 923
 924void bdrv_wakeup(BlockDriverState *bs)
 925{
 926    IO_CODE();
 927    aio_wait_kick();
 928}
 929
 930void bdrv_dec_in_flight(BlockDriverState *bs)
 931{
 932    IO_CODE();
 933    qatomic_dec(&bs->in_flight);
 934    bdrv_wakeup(bs);
 935}
 936
 937static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
 938{
 939    BlockDriverState *bs = self->bs;
 940    bool waited = false;
 941
 942    if (!qatomic_read(&bs->serialising_in_flight)) {
 943        return false;
 944    }
 945
 946    qemu_co_mutex_lock(&bs->reqs_lock);
 947    waited = bdrv_wait_serialising_requests_locked(self);
 948    qemu_co_mutex_unlock(&bs->reqs_lock);
 949
 950    return waited;
 951}
 952
 953bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
 954                                                uint64_t align)
 955{
 956    bool waited;
 957    IO_CODE();
 958
 959    qemu_co_mutex_lock(&req->bs->reqs_lock);
 960
 961    tracked_request_set_serialising(req, align);
 962    waited = bdrv_wait_serialising_requests_locked(req);
 963
 964    qemu_co_mutex_unlock(&req->bs->reqs_lock);
 965
 966    return waited;
 967}
 968
 969int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
 970                            QEMUIOVector *qiov, size_t qiov_offset,
 971                            Error **errp)
 972{
 973    /*
 974     * Check generic offset/bytes correctness
 975     */
 976
 977    if (offset < 0) {
 978        error_setg(errp, "offset is negative: %" PRIi64, offset);
 979        return -EIO;
 980    }
 981
 982    if (bytes < 0) {
 983        error_setg(errp, "bytes is negative: %" PRIi64, bytes);
 984        return -EIO;
 985    }
 986
 987    if (bytes > BDRV_MAX_LENGTH) {
 988        error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
 989                   bytes, BDRV_MAX_LENGTH);
 990        return -EIO;
 991    }
 992
 993    if (offset > BDRV_MAX_LENGTH) {
 994        error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
 995                   offset, BDRV_MAX_LENGTH);
 996        return -EIO;
 997    }
 998
 999    if (offset > BDRV_MAX_LENGTH - bytes) {
1000        error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
1001                   "exceeds maximum(%" PRIi64 ")", offset, bytes,
1002                   BDRV_MAX_LENGTH);
1003        return -EIO;
1004    }
1005
1006    if (!qiov) {
1007        return 0;
1008    }
1009
1010    /*
1011     * Check qiov and qiov_offset
1012     */
1013
1014    if (qiov_offset > qiov->size) {
1015        error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
1016                   qiov_offset, qiov->size);
1017        return -EIO;
1018    }
1019
1020    if (bytes > qiov->size - qiov_offset) {
1021        error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
1022                   "vector size(%zu)", bytes, qiov_offset, qiov->size);
1023        return -EIO;
1024    }
1025
1026    return 0;
1027}
1028
1029int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
1030{
1031    return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
1032}
1033
1034static int bdrv_check_request32(int64_t offset, int64_t bytes,
1035                                QEMUIOVector *qiov, size_t qiov_offset)
1036{
1037    int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
1038    if (ret < 0) {
1039        return ret;
1040    }
1041
1042    if (bytes > BDRV_REQUEST_MAX_BYTES) {
1043        return -EIO;
1044    }
1045
1046    return 0;
1047}
1048
1049/*
1050 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
1051 * The operation is sped up by checking the block status and only writing
1052 * zeroes to the device if they currently do not return zeroes. Optional
1053 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
1054 * BDRV_REQ_FUA).
1055 *
1056 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
1057 */
1058int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
1059{
1060    int ret;
1061    int64_t target_size, bytes, offset = 0;
1062    BlockDriverState *bs = child->bs;
1063    IO_CODE();
1064
1065    target_size = bdrv_getlength(bs);
1066    if (target_size < 0) {
1067        return target_size;
1068    }
1069
1070    for (;;) {
1071        bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1072        if (bytes <= 0) {
1073            return 0;
1074        }
1075        ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1076        if (ret < 0) {
1077            return ret;
1078        }
1079        if (ret & BDRV_BLOCK_ZERO) {
1080            offset += bytes;
1081            continue;
1082        }
1083        ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1084        if (ret < 0) {
1085            return ret;
1086        }
1087        offset += bytes;
1088    }
1089}
1090
1091/*
1092 * Writes to the file and ensures that no writes are reordered across this
1093 * request (acts as a barrier)
1094 *
1095 * Returns 0 on success, -errno in error cases.
1096 */
1097int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
1098                                     int64_t bytes, const void *buf,
1099                                     BdrvRequestFlags flags)
1100{
1101    int ret;
1102    IO_CODE();
1103
1104    ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
1105    if (ret < 0) {
1106        return ret;
1107    }
1108
1109    ret = bdrv_co_flush(child->bs);
1110    if (ret < 0) {
1111        return ret;
1112    }
1113
1114    return 0;
1115}
1116
1117typedef struct CoroutineIOCompletion {
1118    Coroutine *coroutine;
1119    int ret;
1120} CoroutineIOCompletion;
1121
1122static void bdrv_co_io_em_complete(void *opaque, int ret)
1123{
1124    CoroutineIOCompletion *co = opaque;
1125
1126    co->ret = ret;
1127    aio_co_wake(co->coroutine);
1128}
1129
1130static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1131                                           int64_t offset, int64_t bytes,
1132                                           QEMUIOVector *qiov,
1133                                           size_t qiov_offset, int flags)
1134{
1135    BlockDriver *drv = bs->drv;
1136    int64_t sector_num;
1137    unsigned int nb_sectors;
1138    QEMUIOVector local_qiov;
1139    int ret;
1140
1141    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1142    assert(!(flags & ~BDRV_REQ_MASK));
1143    assert(!(flags & BDRV_REQ_NO_FALLBACK));
1144
1145    if (!drv) {
1146        return -ENOMEDIUM;
1147    }
1148
1149    if (drv->bdrv_co_preadv_part) {
1150        return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1151                                        flags);
1152    }
1153
1154    if (qiov_offset > 0 || bytes != qiov->size) {
1155        qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1156        qiov = &local_qiov;
1157    }
1158
1159    if (drv->bdrv_co_preadv) {
1160        ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1161        goto out;
1162    }
1163
1164    if (drv->bdrv_aio_preadv) {
1165        BlockAIOCB *acb;
1166        CoroutineIOCompletion co = {
1167            .coroutine = qemu_coroutine_self(),
1168        };
1169
1170        acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1171                                   bdrv_co_io_em_complete, &co);
1172        if (acb == NULL) {
1173            ret = -EIO;
1174            goto out;
1175        } else {
1176            qemu_coroutine_yield();
1177            ret = co.ret;
1178            goto out;
1179        }
1180    }
1181
1182    sector_num = offset >> BDRV_SECTOR_BITS;
1183    nb_sectors = bytes >> BDRV_SECTOR_BITS;
1184
1185    assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1186    assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1187    assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1188    assert(drv->bdrv_co_readv);
1189
1190    ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1191
1192out:
1193    if (qiov == &local_qiov) {
1194        qemu_iovec_destroy(&local_qiov);
1195    }
1196
1197    return ret;
1198}
1199
1200static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1201                                            int64_t offset, int64_t bytes,
1202                                            QEMUIOVector *qiov,
1203                                            size_t qiov_offset,
1204                                            BdrvRequestFlags flags)
1205{
1206    BlockDriver *drv = bs->drv;
1207    int64_t sector_num;
1208    unsigned int nb_sectors;
1209    QEMUIOVector local_qiov;
1210    int ret;
1211
1212    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1213    assert(!(flags & ~BDRV_REQ_MASK));
1214    assert(!(flags & BDRV_REQ_NO_FALLBACK));
1215
1216    if (!drv) {
1217        return -ENOMEDIUM;
1218    }
1219
1220    if (drv->bdrv_co_pwritev_part) {
1221        ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1222                                        flags & bs->supported_write_flags);
1223        flags &= ~bs->supported_write_flags;
1224        goto emulate_flags;
1225    }
1226
1227    if (qiov_offset > 0 || bytes != qiov->size) {
1228        qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1229        qiov = &local_qiov;
1230    }
1231
1232    if (drv->bdrv_co_pwritev) {
1233        ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1234                                   flags & bs->supported_write_flags);
1235        flags &= ~bs->supported_write_flags;
1236        goto emulate_flags;
1237    }
1238
1239    if (drv->bdrv_aio_pwritev) {
1240        BlockAIOCB *acb;
1241        CoroutineIOCompletion co = {
1242            .coroutine = qemu_coroutine_self(),
1243        };
1244
1245        acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1246                                    flags & bs->supported_write_flags,
1247                                    bdrv_co_io_em_complete, &co);
1248        flags &= ~bs->supported_write_flags;
1249        if (acb == NULL) {
1250            ret = -EIO;
1251        } else {
1252            qemu_coroutine_yield();
1253            ret = co.ret;
1254        }
1255        goto emulate_flags;
1256    }
1257
1258    sector_num = offset >> BDRV_SECTOR_BITS;
1259    nb_sectors = bytes >> BDRV_SECTOR_BITS;
1260
1261    assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1262    assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1263    assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1264
1265    assert(drv->bdrv_co_writev);
1266    ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1267                              flags & bs->supported_write_flags);
1268    flags &= ~bs->supported_write_flags;
1269
1270emulate_flags:
1271    if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1272        ret = bdrv_co_flush(bs);
1273    }
1274
1275    if (qiov == &local_qiov) {
1276        qemu_iovec_destroy(&local_qiov);
1277    }
1278
1279    return ret;
1280}
1281
1282static int coroutine_fn
1283bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1284                               int64_t bytes, QEMUIOVector *qiov,
1285                               size_t qiov_offset)
1286{
1287    BlockDriver *drv = bs->drv;
1288    QEMUIOVector local_qiov;
1289    int ret;
1290
1291    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1292
1293    if (!drv) {
1294        return -ENOMEDIUM;
1295    }
1296
1297    if (!block_driver_can_compress(drv)) {
1298        return -ENOTSUP;
1299    }
1300
1301    if (drv->bdrv_co_pwritev_compressed_part) {
1302        return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1303                                                    qiov, qiov_offset);
1304    }
1305
1306    if (qiov_offset == 0) {
1307        return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1308    }
1309
1310    qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1311    ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1312    qemu_iovec_destroy(&local_qiov);
1313
1314    return ret;
1315}
1316
1317static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1318        int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1319        size_t qiov_offset, int flags)
1320{
1321    BlockDriverState *bs = child->bs;
1322
1323    /* Perform I/O through a temporary buffer so that users who scribble over
1324     * their read buffer while the operation is in progress do not end up
1325     * modifying the image file.  This is critical for zero-copy guest I/O
1326     * where anything might happen inside guest memory.
1327     */
1328    void *bounce_buffer = NULL;
1329
1330    BlockDriver *drv = bs->drv;
1331    int64_t cluster_offset;
1332    int64_t cluster_bytes;
1333    int64_t skip_bytes;
1334    int ret;
1335    int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1336                                    BDRV_REQUEST_MAX_BYTES);
1337    int64_t progress = 0;
1338    bool skip_write;
1339
1340    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1341
1342    if (!drv) {
1343        return -ENOMEDIUM;
1344    }
1345
1346    /*
1347     * Do not write anything when the BDS is inactive.  That is not
1348     * allowed, and it would not help.
1349     */
1350    skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1351
1352    /* FIXME We cannot require callers to have write permissions when all they
1353     * are doing is a read request. If we did things right, write permissions
1354     * would be obtained anyway, but internally by the copy-on-read code. As
1355     * long as it is implemented here rather than in a separate filter driver,
1356     * the copy-on-read code doesn't have its own BdrvChild, however, for which
1357     * it could request permissions. Therefore we have to bypass the permission
1358     * system for the moment. */
1359    // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1360
1361    /* Cover entire cluster so no additional backing file I/O is required when
1362     * allocating cluster in the image file.  Note that this value may exceed
1363     * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1364     * is one reason we loop rather than doing it all at once.
1365     */
1366    bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1367    skip_bytes = offset - cluster_offset;
1368
1369    trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1370                                   cluster_offset, cluster_bytes);
1371
1372    while (cluster_bytes) {
1373        int64_t pnum;
1374
1375        if (skip_write) {
1376            ret = 1; /* "already allocated", so nothing will be copied */
1377            pnum = MIN(cluster_bytes, max_transfer);
1378        } else {
1379            ret = bdrv_is_allocated(bs, cluster_offset,
1380                                    MIN(cluster_bytes, max_transfer), &pnum);
1381            if (ret < 0) {
1382                /*
1383                 * Safe to treat errors in querying allocation as if
1384                 * unallocated; we'll probably fail again soon on the
1385                 * read, but at least that will set a decent errno.
1386                 */
1387                pnum = MIN(cluster_bytes, max_transfer);
1388            }
1389
1390            /* Stop at EOF if the image ends in the middle of the cluster */
1391            if (ret == 0 && pnum == 0) {
1392                assert(progress >= bytes);
1393                break;
1394            }
1395
1396            assert(skip_bytes < pnum);
1397        }
1398
1399        if (ret <= 0) {
1400            QEMUIOVector local_qiov;
1401
1402            /* Must copy-on-read; use the bounce buffer */
1403            pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1404            if (!bounce_buffer) {
1405                int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1406                int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1407                int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1408
1409                bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1410                if (!bounce_buffer) {
1411                    ret = -ENOMEM;
1412                    goto err;
1413                }
1414            }
1415            qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1416
1417            ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1418                                     &local_qiov, 0, 0);
1419            if (ret < 0) {
1420                goto err;
1421            }
1422
1423            bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1424            if (drv->bdrv_co_pwrite_zeroes &&
1425                buffer_is_zero(bounce_buffer, pnum)) {
1426                /* FIXME: Should we (perhaps conditionally) be setting
1427                 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1428                 * that still correctly reads as zero? */
1429                ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1430                                               BDRV_REQ_WRITE_UNCHANGED);
1431            } else {
1432                /* This does not change the data on the disk, it is not
1433                 * necessary to flush even in cache=writethrough mode.
1434                 */
1435                ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1436                                          &local_qiov, 0,
1437                                          BDRV_REQ_WRITE_UNCHANGED);
1438            }
1439
1440            if (ret < 0) {
1441                /* It might be okay to ignore write errors for guest
1442                 * requests.  If this is a deliberate copy-on-read
1443                 * then we don't want to ignore the error.  Simply
1444                 * report it in all cases.
1445                 */
1446                goto err;
1447            }
1448
1449            if (!(flags & BDRV_REQ_PREFETCH)) {
1450                qemu_iovec_from_buf(qiov, qiov_offset + progress,
1451                                    bounce_buffer + skip_bytes,
1452                                    MIN(pnum - skip_bytes, bytes - progress));
1453            }
1454        } else if (!(flags & BDRV_REQ_PREFETCH)) {
1455            /* Read directly into the destination */
1456            ret = bdrv_driver_preadv(bs, offset + progress,
1457                                     MIN(pnum - skip_bytes, bytes - progress),
1458                                     qiov, qiov_offset + progress, 0);
1459            if (ret < 0) {
1460                goto err;
1461            }
1462        }
1463
1464        cluster_offset += pnum;
1465        cluster_bytes -= pnum;
1466        progress += pnum - skip_bytes;
1467        skip_bytes = 0;
1468    }
1469    ret = 0;
1470
1471err:
1472    qemu_vfree(bounce_buffer);
1473    return ret;
1474}
1475
1476/*
1477 * Forwards an already correctly aligned request to the BlockDriver. This
1478 * handles copy on read, zeroing after EOF, and fragmentation of large
1479 * reads; any other features must be implemented by the caller.
1480 */
1481static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1482    BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
1483    int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1484{
1485    BlockDriverState *bs = child->bs;
1486    int64_t total_bytes, max_bytes;
1487    int ret = 0;
1488    int64_t bytes_remaining = bytes;
1489    int max_transfer;
1490
1491    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1492    assert(is_power_of_2(align));
1493    assert((offset & (align - 1)) == 0);
1494    assert((bytes & (align - 1)) == 0);
1495    assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1496    max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1497                                   align);
1498
1499    /* TODO: We would need a per-BDS .supported_read_flags and
1500     * potential fallback support, if we ever implement any read flags
1501     * to pass through to drivers.  For now, there aren't any
1502     * passthrough flags.  */
1503    assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1504
1505    /* Handle Copy on Read and associated serialisation */
1506    if (flags & BDRV_REQ_COPY_ON_READ) {
1507        /* If we touch the same cluster it counts as an overlap.  This
1508         * guarantees that allocating writes will be serialized and not race
1509         * with each other for the same cluster.  For example, in copy-on-read
1510         * it ensures that the CoR read and write operations are atomic and
1511         * guest writes cannot interleave between them. */
1512        bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1513    } else {
1514        bdrv_wait_serialising_requests(req);
1515    }
1516
1517    if (flags & BDRV_REQ_COPY_ON_READ) {
1518        int64_t pnum;
1519
1520        /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1521        flags &= ~BDRV_REQ_COPY_ON_READ;
1522
1523        ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1524        if (ret < 0) {
1525            goto out;
1526        }
1527
1528        if (!ret || pnum != bytes) {
1529            ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1530                                           qiov, qiov_offset, flags);
1531            goto out;
1532        } else if (flags & BDRV_REQ_PREFETCH) {
1533            goto out;
1534        }
1535    }
1536
1537    /* Forward the request to the BlockDriver, possibly fragmenting it */
1538    total_bytes = bdrv_getlength(bs);
1539    if (total_bytes < 0) {
1540        ret = total_bytes;
1541        goto out;
1542    }
1543
1544    assert(!(flags & ~bs->supported_read_flags));
1545
1546    max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1547    if (bytes <= max_bytes && bytes <= max_transfer) {
1548        ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1549        goto out;
1550    }
1551
1552    while (bytes_remaining) {
1553        int64_t num;
1554
1555        if (max_bytes) {
1556            num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1557            assert(num);
1558
1559            ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1560                                     num, qiov,
1561                                     qiov_offset + bytes - bytes_remaining,
1562                                     flags);
1563            max_bytes -= num;
1564        } else {
1565            num = bytes_remaining;
1566            ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1567                                    0, bytes_remaining);
1568        }
1569        if (ret < 0) {
1570            goto out;
1571        }
1572        bytes_remaining -= num;
1573    }
1574
1575out:
1576    return ret < 0 ? ret : 0;
1577}
1578
1579/*
1580 * Request padding
1581 *
1582 *  |<---- align ----->|                     |<----- align ---->|
1583 *  |<- head ->|<------------- bytes ------------->|<-- tail -->|
1584 *  |          |       |                     |     |            |
1585 * -*----------$-------*-------- ... --------*-----$------------*---
1586 *  |          |       |                     |     |            |
1587 *  |          offset  |                     |     end          |
1588 *  ALIGN_DOWN(offset) ALIGN_UP(offset)      ALIGN_DOWN(end)   ALIGN_UP(end)
1589 *  [buf   ... )                             [tail_buf          )
1590 *
1591 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1592 * is placed at the beginning of @buf and @tail at the @end.
1593 *
1594 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1595 * around tail, if tail exists.
1596 *
1597 * @merge_reads is true for small requests,
1598 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1599 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1600 */
1601typedef struct BdrvRequestPadding {
1602    uint8_t *buf;
1603    size_t buf_len;
1604    uint8_t *tail_buf;
1605    size_t head;
1606    size_t tail;
1607    bool merge_reads;
1608    QEMUIOVector local_qiov;
1609} BdrvRequestPadding;
1610
1611static bool bdrv_init_padding(BlockDriverState *bs,
1612                              int64_t offset, int64_t bytes,
1613                              BdrvRequestPadding *pad)
1614{
1615    int64_t align = bs->bl.request_alignment;
1616    int64_t sum;
1617
1618    bdrv_check_request(offset, bytes, &error_abort);
1619    assert(align <= INT_MAX); /* documented in block/block_int.h */
1620    assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1621
1622    memset(pad, 0, sizeof(*pad));
1623
1624    pad->head = offset & (align - 1);
1625    pad->tail = ((offset + bytes) & (align - 1));
1626    if (pad->tail) {
1627        pad->tail = align - pad->tail;
1628    }
1629
1630    if (!pad->head && !pad->tail) {
1631        return false;
1632    }
1633
1634    assert(bytes); /* Nothing good in aligning zero-length requests */
1635
1636    sum = pad->head + bytes + pad->tail;
1637    pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1638    pad->buf = qemu_blockalign(bs, pad->buf_len);
1639    pad->merge_reads = sum == pad->buf_len;
1640    if (pad->tail) {
1641        pad->tail_buf = pad->buf + pad->buf_len - align;
1642    }
1643
1644    return true;
1645}
1646
1647static int bdrv_padding_rmw_read(BdrvChild *child,
1648                                 BdrvTrackedRequest *req,
1649                                 BdrvRequestPadding *pad,
1650                                 bool zero_middle)
1651{
1652    QEMUIOVector local_qiov;
1653    BlockDriverState *bs = child->bs;
1654    uint64_t align = bs->bl.request_alignment;
1655    int ret;
1656
1657    assert(req->serialising && pad->buf);
1658
1659    if (pad->head || pad->merge_reads) {
1660        int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1661
1662        qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1663
1664        if (pad->head) {
1665            bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1666        }
1667        if (pad->merge_reads && pad->tail) {
1668            bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1669        }
1670        ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1671                                  align, &local_qiov, 0, 0);
1672        if (ret < 0) {
1673            return ret;
1674        }
1675        if (pad->head) {
1676            bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1677        }
1678        if (pad->merge_reads && pad->tail) {
1679            bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1680        }
1681
1682        if (pad->merge_reads) {
1683            goto zero_mem;
1684        }
1685    }
1686
1687    if (pad->tail) {
1688        qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1689
1690        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1691        ret = bdrv_aligned_preadv(
1692                child, req,
1693                req->overlap_offset + req->overlap_bytes - align,
1694                align, align, &local_qiov, 0, 0);
1695        if (ret < 0) {
1696            return ret;
1697        }
1698        bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1699    }
1700
1701zero_mem:
1702    if (zero_middle) {
1703        memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1704    }
1705
1706    return 0;
1707}
1708
1709static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1710{
1711    if (pad->buf) {
1712        qemu_vfree(pad->buf);
1713        qemu_iovec_destroy(&pad->local_qiov);
1714    }
1715    memset(pad, 0, sizeof(*pad));
1716}
1717
1718/*
1719 * bdrv_pad_request
1720 *
1721 * Exchange request parameters with padded request if needed. Don't include RMW
1722 * read of padding, bdrv_padding_rmw_read() should be called separately if
1723 * needed.
1724 *
1725 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1726 *  - on function start they represent original request
1727 *  - on failure or when padding is not needed they are unchanged
1728 *  - on success when padding is needed they represent padded request
1729 */
1730static int bdrv_pad_request(BlockDriverState *bs,
1731                            QEMUIOVector **qiov, size_t *qiov_offset,
1732                            int64_t *offset, int64_t *bytes,
1733                            BdrvRequestPadding *pad, bool *padded)
1734{
1735    int ret;
1736
1737    bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
1738
1739    if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1740        if (padded) {
1741            *padded = false;
1742        }
1743        return 0;
1744    }
1745
1746    ret = qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1747                                   *qiov, *qiov_offset, *bytes,
1748                                   pad->buf + pad->buf_len - pad->tail,
1749                                   pad->tail);
1750    if (ret < 0) {
1751        bdrv_padding_destroy(pad);
1752        return ret;
1753    }
1754    *bytes += pad->head + pad->tail;
1755    *offset -= pad->head;
1756    *qiov = &pad->local_qiov;
1757    *qiov_offset = 0;
1758    if (padded) {
1759        *padded = true;
1760    }
1761
1762    return 0;
1763}
1764
1765int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1766    int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1767    BdrvRequestFlags flags)
1768{
1769    IO_CODE();
1770    return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1771}
1772
1773int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1774    int64_t offset, int64_t bytes,
1775    QEMUIOVector *qiov, size_t qiov_offset,
1776    BdrvRequestFlags flags)
1777{
1778    BlockDriverState *bs = child->bs;
1779    BdrvTrackedRequest req;
1780    BdrvRequestPadding pad;
1781    int ret;
1782    IO_CODE();
1783
1784    trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1785
1786    if (!bdrv_is_inserted(bs)) {
1787        return -ENOMEDIUM;
1788    }
1789
1790    ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1791    if (ret < 0) {
1792        return ret;
1793    }
1794
1795    if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1796        /*
1797         * Aligning zero request is nonsense. Even if driver has special meaning
1798         * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1799         * it to driver due to request_alignment.
1800         *
1801         * Still, no reason to return an error if someone do unaligned
1802         * zero-length read occasionally.
1803         */
1804        return 0;
1805    }
1806
1807    bdrv_inc_in_flight(bs);
1808
1809    /* Don't do copy-on-read if we read data before write operation */
1810    if (qatomic_read(&bs->copy_on_read)) {
1811        flags |= BDRV_REQ_COPY_ON_READ;
1812    }
1813
1814    ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
1815                           NULL);
1816    if (ret < 0) {
1817        goto fail;
1818    }
1819
1820    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1821    ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1822                              bs->bl.request_alignment,
1823                              qiov, qiov_offset, flags);
1824    tracked_request_end(&req);
1825    bdrv_padding_destroy(&pad);
1826
1827fail:
1828    bdrv_dec_in_flight(bs);
1829
1830    return ret;
1831}
1832
1833static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1834    int64_t offset, int64_t bytes, BdrvRequestFlags flags)
1835{
1836    BlockDriver *drv = bs->drv;
1837    QEMUIOVector qiov;
1838    void *buf = NULL;
1839    int ret = 0;
1840    bool need_flush = false;
1841    int head = 0;
1842    int tail = 0;
1843
1844    int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1845                                            INT64_MAX);
1846    int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1847                        bs->bl.request_alignment);
1848    int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1849
1850    bdrv_check_request(offset, bytes, &error_abort);
1851
1852    if (!drv) {
1853        return -ENOMEDIUM;
1854    }
1855
1856    if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1857        return -ENOTSUP;
1858    }
1859
1860    /* Invalidate the cached block-status data range if this write overlaps */
1861    bdrv_bsc_invalidate_range(bs, offset, bytes);
1862
1863    assert(alignment % bs->bl.request_alignment == 0);
1864    head = offset % alignment;
1865    tail = (offset + bytes) % alignment;
1866    max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1867    assert(max_write_zeroes >= bs->bl.request_alignment);
1868
1869    while (bytes > 0 && !ret) {
1870        int64_t num = bytes;
1871
1872        /* Align request.  Block drivers can expect the "bulk" of the request
1873         * to be aligned, and that unaligned requests do not cross cluster
1874         * boundaries.
1875         */
1876        if (head) {
1877            /* Make a small request up to the first aligned sector. For
1878             * convenience, limit this request to max_transfer even if
1879             * we don't need to fall back to writes.  */
1880            num = MIN(MIN(bytes, max_transfer), alignment - head);
1881            head = (head + num) % alignment;
1882            assert(num < max_write_zeroes);
1883        } else if (tail && num > alignment) {
1884            /* Shorten the request to the last aligned sector.  */
1885            num -= tail;
1886        }
1887
1888        /* limit request size */
1889        if (num > max_write_zeroes) {
1890            num = max_write_zeroes;
1891        }
1892
1893        ret = -ENOTSUP;
1894        /* First try the efficient write zeroes operation */
1895        if (drv->bdrv_co_pwrite_zeroes) {
1896            ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1897                                             flags & bs->supported_zero_flags);
1898            if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1899                !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1900                need_flush = true;
1901            }
1902        } else {
1903            assert(!bs->supported_zero_flags);
1904        }
1905
1906        if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1907            /* Fall back to bounce buffer if write zeroes is unsupported */
1908            BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1909
1910            if ((flags & BDRV_REQ_FUA) &&
1911                !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1912                /* No need for bdrv_driver_pwrite() to do a fallback
1913                 * flush on each chunk; use just one at the end */
1914                write_flags &= ~BDRV_REQ_FUA;
1915                need_flush = true;
1916            }
1917            num = MIN(num, max_transfer);
1918            if (buf == NULL) {
1919                buf = qemu_try_blockalign0(bs, num);
1920                if (buf == NULL) {
1921                    ret = -ENOMEM;
1922                    goto fail;
1923                }
1924            }
1925            qemu_iovec_init_buf(&qiov, buf, num);
1926
1927            ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1928
1929            /* Keep bounce buffer around if it is big enough for all
1930             * all future requests.
1931             */
1932            if (num < max_transfer) {
1933                qemu_vfree(buf);
1934                buf = NULL;
1935            }
1936        }
1937
1938        offset += num;
1939        bytes -= num;
1940    }
1941
1942fail:
1943    if (ret == 0 && need_flush) {
1944        ret = bdrv_co_flush(bs);
1945    }
1946    qemu_vfree(buf);
1947    return ret;
1948}
1949
1950static inline int coroutine_fn
1951bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1952                          BdrvTrackedRequest *req, int flags)
1953{
1954    BlockDriverState *bs = child->bs;
1955
1956    bdrv_check_request(offset, bytes, &error_abort);
1957
1958    if (bdrv_is_read_only(bs)) {
1959        return -EPERM;
1960    }
1961
1962    assert(!(bs->open_flags & BDRV_O_INACTIVE));
1963    assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1964    assert(!(flags & ~BDRV_REQ_MASK));
1965    assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1966
1967    if (flags & BDRV_REQ_SERIALISING) {
1968        QEMU_LOCK_GUARD(&bs->reqs_lock);
1969
1970        tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1971
1972        if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1973            return -EBUSY;
1974        }
1975
1976        bdrv_wait_serialising_requests_locked(req);
1977    } else {
1978        bdrv_wait_serialising_requests(req);
1979    }
1980
1981    assert(req->overlap_offset <= offset);
1982    assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1983    assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1984           child->perm & BLK_PERM_RESIZE);
1985
1986    switch (req->type) {
1987    case BDRV_TRACKED_WRITE:
1988    case BDRV_TRACKED_DISCARD:
1989        if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1990            assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1991        } else {
1992            assert(child->perm & BLK_PERM_WRITE);
1993        }
1994        bdrv_write_threshold_check_write(bs, offset, bytes);
1995        return 0;
1996    case BDRV_TRACKED_TRUNCATE:
1997        assert(child->perm & BLK_PERM_RESIZE);
1998        return 0;
1999    default:
2000        abort();
2001    }
2002}
2003
2004static inline void coroutine_fn
2005bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2006                         BdrvTrackedRequest *req, int ret)
2007{
2008    int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2009    BlockDriverState *bs = child->bs;
2010
2011    bdrv_check_request(offset, bytes, &error_abort);
2012
2013    qatomic_inc(&bs->write_gen);
2014
2015    /*
2016     * Discard cannot extend the image, but in error handling cases, such as
2017     * when reverting a qcow2 cluster allocation, the discarded range can pass
2018     * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2019     * here. Instead, just skip it, since semantically a discard request
2020     * beyond EOF cannot expand the image anyway.
2021     */
2022    if (ret == 0 &&
2023        (req->type == BDRV_TRACKED_TRUNCATE ||
2024         end_sector > bs->total_sectors) &&
2025        req->type != BDRV_TRACKED_DISCARD) {
2026        bs->total_sectors = end_sector;
2027        bdrv_parent_cb_resize(bs);
2028        bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2029    }
2030    if (req->bytes) {
2031        switch (req->type) {
2032        case BDRV_TRACKED_WRITE:
2033            stat64_max(&bs->wr_highest_offset, offset + bytes);
2034            /* fall through, to set dirty bits */
2035        case BDRV_TRACKED_DISCARD:
2036            bdrv_set_dirty(bs, offset, bytes);
2037            break;
2038        default:
2039            break;
2040        }
2041    }
2042}
2043
2044/*
2045 * Forwards an already correctly aligned write request to the BlockDriver,
2046 * after possibly fragmenting it.
2047 */
2048static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
2049    BdrvTrackedRequest *req, int64_t offset, int64_t bytes,
2050    int64_t align, QEMUIOVector *qiov, size_t qiov_offset,
2051    BdrvRequestFlags flags)
2052{
2053    BlockDriverState *bs = child->bs;
2054    BlockDriver *drv = bs->drv;
2055    int ret;
2056
2057    int64_t bytes_remaining = bytes;
2058    int max_transfer;
2059
2060    bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2061
2062    if (!drv) {
2063        return -ENOMEDIUM;
2064    }
2065
2066    if (bdrv_has_readonly_bitmaps(bs)) {
2067        return -EPERM;
2068    }
2069
2070    assert(is_power_of_2(align));
2071    assert((offset & (align - 1)) == 0);
2072    assert((bytes & (align - 1)) == 0);
2073    max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2074                                   align);
2075
2076    ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2077
2078    if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2079        !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2080        qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2081        flags |= BDRV_REQ_ZERO_WRITE;
2082        if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2083            flags |= BDRV_REQ_MAY_UNMAP;
2084        }
2085    }
2086
2087    if (ret < 0) {
2088        /* Do nothing, write notifier decided to fail this request */
2089    } else if (flags & BDRV_REQ_ZERO_WRITE) {
2090        bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2091        ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2092    } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2093        ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2094                                             qiov, qiov_offset);
2095    } else if (bytes <= max_transfer) {
2096        bdrv_debug_event(bs, BLKDBG_PWRITEV);
2097        ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2098    } else {
2099        bdrv_debug_event(bs, BLKDBG_PWRITEV);
2100        while (bytes_remaining) {
2101            int num = MIN(bytes_remaining, max_transfer);
2102            int local_flags = flags;
2103
2104            assert(num);
2105            if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2106                !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2107                /* If FUA is going to be emulated by flush, we only
2108                 * need to flush on the last iteration */
2109                local_flags &= ~BDRV_REQ_FUA;
2110            }
2111
2112            ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2113                                      num, qiov,
2114                                      qiov_offset + bytes - bytes_remaining,
2115                                      local_flags);
2116            if (ret < 0) {
2117                break;
2118            }
2119            bytes_remaining -= num;
2120        }
2121    }
2122    bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2123
2124    if (ret >= 0) {
2125        ret = 0;
2126    }
2127    bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2128
2129    return ret;
2130}
2131
2132static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2133                                                int64_t offset,
2134                                                int64_t bytes,
2135                                                BdrvRequestFlags flags,
2136                                                BdrvTrackedRequest *req)
2137{
2138    BlockDriverState *bs = child->bs;
2139    QEMUIOVector local_qiov;
2140    uint64_t align = bs->bl.request_alignment;
2141    int ret = 0;
2142    bool padding;
2143    BdrvRequestPadding pad;
2144
2145    padding = bdrv_init_padding(bs, offset, bytes, &pad);
2146    if (padding) {
2147        assert(!(flags & BDRV_REQ_NO_WAIT));
2148        bdrv_make_request_serialising(req, align);
2149
2150        bdrv_padding_rmw_read(child, req, &pad, true);
2151
2152        if (pad.head || pad.merge_reads) {
2153            int64_t aligned_offset = offset & ~(align - 1);
2154            int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2155
2156            qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2157            ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2158                                       align, &local_qiov, 0,
2159                                       flags & ~BDRV_REQ_ZERO_WRITE);
2160            if (ret < 0 || pad.merge_reads) {
2161                /* Error or all work is done */
2162                goto out;
2163            }
2164            offset += write_bytes - pad.head;
2165            bytes -= write_bytes - pad.head;
2166        }
2167    }
2168
2169    assert(!bytes || (offset & (align - 1)) == 0);
2170    if (bytes >= align) {
2171        /* Write the aligned part in the middle. */
2172        int64_t aligned_bytes = bytes & ~(align - 1);
2173        ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2174                                   NULL, 0, flags);
2175        if (ret < 0) {
2176            goto out;
2177        }
2178        bytes -= aligned_bytes;
2179        offset += aligned_bytes;
2180    }
2181
2182    assert(!bytes || (offset & (align - 1)) == 0);
2183    if (bytes) {
2184        assert(align == pad.tail + bytes);
2185
2186        qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2187        ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2188                                   &local_qiov, 0,
2189                                   flags & ~BDRV_REQ_ZERO_WRITE);
2190    }
2191
2192out:
2193    bdrv_padding_destroy(&pad);
2194
2195    return ret;
2196}
2197
2198/*
2199 * Handle a write request in coroutine context
2200 */
2201int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2202    int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2203    BdrvRequestFlags flags)
2204{
2205    IO_CODE();
2206    return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2207}
2208
2209int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2210    int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2211    BdrvRequestFlags flags)
2212{
2213    BlockDriverState *bs = child->bs;
2214    BdrvTrackedRequest req;
2215    uint64_t align = bs->bl.request_alignment;
2216    BdrvRequestPadding pad;
2217    int ret;
2218    bool padded = false;
2219    IO_CODE();
2220
2221    trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2222
2223    if (!bdrv_is_inserted(bs)) {
2224        return -ENOMEDIUM;
2225    }
2226
2227    if (flags & BDRV_REQ_ZERO_WRITE) {
2228        ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2229    } else {
2230        ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2231    }
2232    if (ret < 0) {
2233        return ret;
2234    }
2235
2236    /* If the request is misaligned then we can't make it efficient */
2237    if ((flags & BDRV_REQ_NO_FALLBACK) &&
2238        !QEMU_IS_ALIGNED(offset | bytes, align))
2239    {
2240        return -ENOTSUP;
2241    }
2242
2243    if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2244        /*
2245         * Aligning zero request is nonsense. Even if driver has special meaning
2246         * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2247         * it to driver due to request_alignment.
2248         *
2249         * Still, no reason to return an error if someone do unaligned
2250         * zero-length write occasionally.
2251         */
2252        return 0;
2253    }
2254
2255    if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2256        /*
2257         * Pad request for following read-modify-write cycle.
2258         * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2259         * alignment only if there is no ZERO flag.
2260         */
2261        ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad,
2262                               &padded);
2263        if (ret < 0) {
2264            return ret;
2265        }
2266    }
2267
2268    bdrv_inc_in_flight(bs);
2269    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2270
2271    if (flags & BDRV_REQ_ZERO_WRITE) {
2272        assert(!padded);
2273        ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2274        goto out;
2275    }
2276
2277    if (padded) {
2278        /*
2279         * Request was unaligned to request_alignment and therefore
2280         * padded.  We are going to do read-modify-write, and must
2281         * serialize the request to prevent interactions of the
2282         * widened region with other transactions.
2283         */
2284        assert(!(flags & BDRV_REQ_NO_WAIT));
2285        bdrv_make_request_serialising(&req, align);
2286        bdrv_padding_rmw_read(child, &req, &pad, false);
2287    }
2288
2289    ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2290                               qiov, qiov_offset, flags);
2291
2292    bdrv_padding_destroy(&pad);
2293
2294out:
2295    tracked_request_end(&req);
2296    bdrv_dec_in_flight(bs);
2297
2298    return ret;
2299}
2300
2301int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2302                                       int64_t bytes, BdrvRequestFlags flags)
2303{
2304    IO_CODE();
2305    trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2306
2307    if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2308        flags &= ~BDRV_REQ_MAY_UNMAP;
2309    }
2310
2311    return bdrv_co_pwritev(child, offset, bytes, NULL,
2312                           BDRV_REQ_ZERO_WRITE | flags);
2313}
2314
2315/*
2316 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2317 */
2318int bdrv_flush_all(void)
2319{
2320    BdrvNextIterator it;
2321    BlockDriverState *bs = NULL;
2322    int result = 0;
2323
2324    GLOBAL_STATE_CODE();
2325
2326    /*
2327     * bdrv queue is managed by record/replay,
2328     * creating new flush request for stopping
2329     * the VM may break the determinism
2330     */
2331    if (replay_events_enabled()) {
2332        return result;
2333    }
2334
2335    for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2336        AioContext *aio_context = bdrv_get_aio_context(bs);
2337        int ret;
2338
2339        aio_context_acquire(aio_context);
2340        ret = bdrv_flush(bs);
2341        if (ret < 0 && !result) {
2342            result = ret;
2343        }
2344        aio_context_release(aio_context);
2345    }
2346
2347    return result;
2348}
2349
2350/*
2351 * Returns the allocation status of the specified sectors.
2352 * Drivers not implementing the functionality are assumed to not support
2353 * backing files, hence all their sectors are reported as allocated.
2354 *
2355 * If 'want_zero' is true, the caller is querying for mapping
2356 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2357 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2358 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2359 *
2360 * If 'offset' is beyond the end of the disk image the return value is
2361 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2362 *
2363 * 'bytes' is the max value 'pnum' should be set to.  If bytes goes
2364 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2365 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2366 *
2367 * 'pnum' is set to the number of bytes (including and immediately
2368 * following the specified offset) that are easily known to be in the
2369 * same allocated/unallocated state.  Note that a second call starting
2370 * at the original offset plus returned pnum may have the same status.
2371 * The returned value is non-zero on success except at end-of-file.
2372 *
2373 * Returns negative errno on failure.  Otherwise, if the
2374 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2375 * set to the host mapping and BDS corresponding to the guest offset.
2376 */
2377static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2378                                             bool want_zero,
2379                                             int64_t offset, int64_t bytes,
2380                                             int64_t *pnum, int64_t *map,
2381                                             BlockDriverState **file)
2382{
2383    int64_t total_size;
2384    int64_t n; /* bytes */
2385    int ret;
2386    int64_t local_map = 0;
2387    BlockDriverState *local_file = NULL;
2388    int64_t aligned_offset, aligned_bytes;
2389    uint32_t align;
2390    bool has_filtered_child;
2391
2392    assert(pnum);
2393    *pnum = 0;
2394    total_size = bdrv_getlength(bs);
2395    if (total_size < 0) {
2396        ret = total_size;
2397        goto early_out;
2398    }
2399
2400    if (offset >= total_size) {
2401        ret = BDRV_BLOCK_EOF;
2402        goto early_out;
2403    }
2404    if (!bytes) {
2405        ret = 0;
2406        goto early_out;
2407    }
2408
2409    n = total_size - offset;
2410    if (n < bytes) {
2411        bytes = n;
2412    }
2413
2414    /* Must be non-NULL or bdrv_getlength() would have failed */
2415    assert(bs->drv);
2416    has_filtered_child = bdrv_filter_child(bs);
2417    if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2418        *pnum = bytes;
2419        ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2420        if (offset + bytes == total_size) {
2421            ret |= BDRV_BLOCK_EOF;
2422        }
2423        if (bs->drv->protocol_name) {
2424            ret |= BDRV_BLOCK_OFFSET_VALID;
2425            local_map = offset;
2426            local_file = bs;
2427        }
2428        goto early_out;
2429    }
2430
2431    bdrv_inc_in_flight(bs);
2432
2433    /* Round out to request_alignment boundaries */
2434    align = bs->bl.request_alignment;
2435    aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2436    aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2437
2438    if (bs->drv->bdrv_co_block_status) {
2439        /*
2440         * Use the block-status cache only for protocol nodes: Format
2441         * drivers are generally quick to inquire the status, but protocol
2442         * drivers often need to get information from outside of qemu, so
2443         * we do not have control over the actual implementation.  There
2444         * have been cases where inquiring the status took an unreasonably
2445         * long time, and we can do nothing in qemu to fix it.
2446         * This is especially problematic for images with large data areas,
2447         * because finding the few holes in them and giving them special
2448         * treatment does not gain much performance.  Therefore, we try to
2449         * cache the last-identified data region.
2450         *
2451         * Second, limiting ourselves to protocol nodes allows us to assume
2452         * the block status for data regions to be DATA | OFFSET_VALID, and
2453         * that the host offset is the same as the guest offset.
2454         *
2455         * Note that it is possible that external writers zero parts of
2456         * the cached regions without the cache being invalidated, and so
2457         * we may report zeroes as data.  This is not catastrophic,
2458         * however, because reporting zeroes as data is fine.
2459         */
2460        if (QLIST_EMPTY(&bs->children) &&
2461            bdrv_bsc_is_data(bs, aligned_offset, pnum))
2462        {
2463            ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2464            local_file = bs;
2465            local_map = aligned_offset;
2466        } else {
2467            ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2468                                                aligned_bytes, pnum, &local_map,
2469                                                &local_file);
2470
2471            /*
2472             * Note that checking QLIST_EMPTY(&bs->children) is also done when
2473             * the cache is queried above.  Technically, we do not need to check
2474             * it here; the worst that can happen is that we fill the cache for
2475             * non-protocol nodes, and then it is never used.  However, filling
2476             * the cache requires an RCU update, so double check here to avoid
2477             * such an update if possible.
2478             *
2479             * Check want_zero, because we only want to update the cache when we
2480             * have accurate information about what is zero and what is data.
2481             */
2482            if (want_zero &&
2483                ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2484                QLIST_EMPTY(&bs->children))
2485            {
2486                /*
2487                 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2488                 * returned local_map value must be the same as the offset we
2489                 * have passed (aligned_offset), and local_bs must be the node
2490                 * itself.
2491                 * Assert this, because we follow this rule when reading from
2492                 * the cache (see the `local_file = bs` and
2493                 * `local_map = aligned_offset` assignments above), and the
2494                 * result the cache delivers must be the same as the driver
2495                 * would deliver.
2496                 */
2497                assert(local_file == bs);
2498                assert(local_map == aligned_offset);
2499                bdrv_bsc_fill(bs, aligned_offset, *pnum);
2500            }
2501        }
2502    } else {
2503        /* Default code for filters */
2504
2505        local_file = bdrv_filter_bs(bs);
2506        assert(local_file);
2507
2508        *pnum = aligned_bytes;
2509        local_map = aligned_offset;
2510        ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2511    }
2512    if (ret < 0) {
2513        *pnum = 0;
2514        goto out;
2515    }
2516
2517    /*
2518     * The driver's result must be a non-zero multiple of request_alignment.
2519     * Clamp pnum and adjust map to original request.
2520     */
2521    assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2522           align > offset - aligned_offset);
2523    if (ret & BDRV_BLOCK_RECURSE) {
2524        assert(ret & BDRV_BLOCK_DATA);
2525        assert(ret & BDRV_BLOCK_OFFSET_VALID);
2526        assert(!(ret & BDRV_BLOCK_ZERO));
2527    }
2528
2529    *pnum -= offset - aligned_offset;
2530    if (*pnum > bytes) {
2531        *pnum = bytes;
2532    }
2533    if (ret & BDRV_BLOCK_OFFSET_VALID) {
2534        local_map += offset - aligned_offset;
2535    }
2536
2537    if (ret & BDRV_BLOCK_RAW) {
2538        assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2539        ret = bdrv_co_block_status(local_file, want_zero, local_map,
2540                                   *pnum, pnum, &local_map, &local_file);
2541        goto out;
2542    }
2543
2544    if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2545        ret |= BDRV_BLOCK_ALLOCATED;
2546    } else if (bs->drv->supports_backing) {
2547        BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2548
2549        if (!cow_bs) {
2550            ret |= BDRV_BLOCK_ZERO;
2551        } else if (want_zero) {
2552            int64_t size2 = bdrv_getlength(cow_bs);
2553
2554            if (size2 >= 0 && offset >= size2) {
2555                ret |= BDRV_BLOCK_ZERO;
2556            }
2557        }
2558    }
2559
2560    if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2561        local_file && local_file != bs &&
2562        (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2563        (ret & BDRV_BLOCK_OFFSET_VALID)) {
2564        int64_t file_pnum;
2565        int ret2;
2566
2567        ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2568                                    *pnum, &file_pnum, NULL, NULL);
2569        if (ret2 >= 0) {
2570            /* Ignore errors.  This is just providing extra information, it
2571             * is useful but not necessary.
2572             */
2573            if (ret2 & BDRV_BLOCK_EOF &&
2574                (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2575                /*
2576                 * It is valid for the format block driver to read
2577                 * beyond the end of the underlying file's current
2578                 * size; such areas read as zero.
2579                 */
2580                ret |= BDRV_BLOCK_ZERO;
2581            } else {
2582                /* Limit request to the range reported by the protocol driver */
2583                *pnum = file_pnum;
2584                ret |= (ret2 & BDRV_BLOCK_ZERO);
2585            }
2586        }
2587    }
2588
2589out:
2590    bdrv_dec_in_flight(bs);
2591    if (ret >= 0 && offset + *pnum == total_size) {
2592        ret |= BDRV_BLOCK_EOF;
2593    }
2594early_out:
2595    if (file) {
2596        *file = local_file;
2597    }
2598    if (map) {
2599        *map = local_map;
2600    }
2601    return ret;
2602}
2603
2604int coroutine_fn
2605bdrv_co_common_block_status_above(BlockDriverState *bs,
2606                                  BlockDriverState *base,
2607                                  bool include_base,
2608                                  bool want_zero,
2609                                  int64_t offset,
2610                                  int64_t bytes,
2611                                  int64_t *pnum,
2612                                  int64_t *map,
2613                                  BlockDriverState **file,
2614                                  int *depth)
2615{
2616    int ret;
2617    BlockDriverState *p;
2618    int64_t eof = 0;
2619    int dummy;
2620    IO_CODE();
2621
2622    assert(!include_base || base); /* Can't include NULL base */
2623
2624    if (!depth) {
2625        depth = &dummy;
2626    }
2627    *depth = 0;
2628
2629    if (!include_base && bs == base) {
2630        *pnum = bytes;
2631        return 0;
2632    }
2633
2634    ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2635    ++*depth;
2636    if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2637        return ret;
2638    }
2639
2640    if (ret & BDRV_BLOCK_EOF) {
2641        eof = offset + *pnum;
2642    }
2643
2644    assert(*pnum <= bytes);
2645    bytes = *pnum;
2646
2647    for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2648         p = bdrv_filter_or_cow_bs(p))
2649    {
2650        ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2651                                   file);
2652        ++*depth;
2653        if (ret < 0) {
2654            return ret;
2655        }
2656        if (*pnum == 0) {
2657            /*
2658             * The top layer deferred to this layer, and because this layer is
2659             * short, any zeroes that we synthesize beyond EOF behave as if they
2660             * were allocated at this layer.
2661             *
2662             * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2663             * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2664             * below.
2665             */
2666            assert(ret & BDRV_BLOCK_EOF);
2667            *pnum = bytes;
2668            if (file) {
2669                *file = p;
2670            }
2671            ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2672            break;
2673        }
2674        if (ret & BDRV_BLOCK_ALLOCATED) {
2675            /*
2676             * We've found the node and the status, we must break.
2677             *
2678             * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2679             * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2680             * below.
2681             */
2682            ret &= ~BDRV_BLOCK_EOF;
2683            break;
2684        }
2685
2686        if (p == base) {
2687            assert(include_base);
2688            break;
2689        }
2690
2691        /*
2692         * OK, [offset, offset + *pnum) region is unallocated on this layer,
2693         * let's continue the diving.
2694         */
2695        assert(*pnum <= bytes);
2696        bytes = *pnum;
2697    }
2698
2699    if (offset + *pnum == eof) {
2700        ret |= BDRV_BLOCK_EOF;
2701    }
2702
2703    return ret;
2704}
2705
2706int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2707                            int64_t offset, int64_t bytes, int64_t *pnum,
2708                            int64_t *map, BlockDriverState **file)
2709{
2710    IO_CODE();
2711    return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2712                                          pnum, map, file, NULL);
2713}
2714
2715int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2716                      int64_t *pnum, int64_t *map, BlockDriverState **file)
2717{
2718    IO_CODE();
2719    return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2720                                   offset, bytes, pnum, map, file);
2721}
2722
2723/*
2724 * Check @bs (and its backing chain) to see if the range defined
2725 * by @offset and @bytes is known to read as zeroes.
2726 * Return 1 if that is the case, 0 otherwise and -errno on error.
2727 * This test is meant to be fast rather than accurate so returning 0
2728 * does not guarantee non-zero data.
2729 */
2730int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2731                                      int64_t bytes)
2732{
2733    int ret;
2734    int64_t pnum = bytes;
2735    IO_CODE();
2736
2737    if (!bytes) {
2738        return 1;
2739    }
2740
2741    ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2742                                         bytes, &pnum, NULL, NULL, NULL);
2743
2744    if (ret < 0) {
2745        return ret;
2746    }
2747
2748    return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2749}
2750
2751int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2752                                   int64_t bytes, int64_t *pnum)
2753{
2754    int ret;
2755    int64_t dummy;
2756    IO_CODE();
2757
2758    ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2759                                         bytes, pnum ? pnum : &dummy, NULL,
2760                                         NULL, NULL);
2761    if (ret < 0) {
2762        return ret;
2763    }
2764    return !!(ret & BDRV_BLOCK_ALLOCATED);
2765}
2766
2767/*
2768 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2769 *
2770 * Return a positive depth if (a prefix of) the given range is allocated
2771 * in any image between BASE and TOP (BASE is only included if include_base
2772 * is set).  Depth 1 is TOP, 2 is the first backing layer, and so forth.
2773 * BASE can be NULL to check if the given offset is allocated in any
2774 * image of the chain.  Return 0 otherwise, or negative errno on
2775 * failure.
2776 *
2777 * 'pnum' is set to the number of bytes (including and immediately
2778 * following the specified offset) that are known to be in the same
2779 * allocated/unallocated state.  Note that a subsequent call starting
2780 * at 'offset + *pnum' may return the same allocation status (in other
2781 * words, the result is not necessarily the maximum possible range);
2782 * but 'pnum' will only be 0 when end of file is reached.
2783 */
2784int bdrv_is_allocated_above(BlockDriverState *top,
2785                            BlockDriverState *base,
2786                            bool include_base, int64_t offset,
2787                            int64_t bytes, int64_t *pnum)
2788{
2789    int depth;
2790    int ret = bdrv_common_block_status_above(top, base, include_base, false,
2791                                             offset, bytes, pnum, NULL, NULL,
2792                                             &depth);
2793    IO_CODE();
2794    if (ret < 0) {
2795        return ret;
2796    }
2797
2798    if (ret & BDRV_BLOCK_ALLOCATED) {
2799        return depth;
2800    }
2801    return 0;
2802}
2803
2804int coroutine_fn
2805bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2806{
2807    BlockDriver *drv = bs->drv;
2808    BlockDriverState *child_bs = bdrv_primary_bs(bs);
2809    int ret;
2810    IO_CODE();
2811
2812    ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2813    if (ret < 0) {
2814        return ret;
2815    }
2816
2817    if (!drv) {
2818        return -ENOMEDIUM;
2819    }
2820
2821    bdrv_inc_in_flight(bs);
2822
2823    if (drv->bdrv_load_vmstate) {
2824        ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2825    } else if (child_bs) {
2826        ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2827    } else {
2828        ret = -ENOTSUP;
2829    }
2830
2831    bdrv_dec_in_flight(bs);
2832
2833    return ret;
2834}
2835
2836int coroutine_fn
2837bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2838{
2839    BlockDriver *drv = bs->drv;
2840    BlockDriverState *child_bs = bdrv_primary_bs(bs);
2841    int ret;
2842    IO_CODE();
2843
2844    ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2845    if (ret < 0) {
2846        return ret;
2847    }
2848
2849    if (!drv) {
2850        return -ENOMEDIUM;
2851    }
2852
2853    bdrv_inc_in_flight(bs);
2854
2855    if (drv->bdrv_save_vmstate) {
2856        ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2857    } else if (child_bs) {
2858        ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2859    } else {
2860        ret = -ENOTSUP;
2861    }
2862
2863    bdrv_dec_in_flight(bs);
2864
2865    return ret;
2866}
2867
2868int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2869                      int64_t pos, int size)
2870{
2871    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2872    int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2873    IO_CODE();
2874
2875    return ret < 0 ? ret : size;
2876}
2877
2878int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2879                      int64_t pos, int size)
2880{
2881    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2882    int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2883    IO_CODE();
2884
2885    return ret < 0 ? ret : size;
2886}
2887
2888/**************************************************************/
2889/* async I/Os */
2890
2891void bdrv_aio_cancel(BlockAIOCB *acb)
2892{
2893    IO_CODE();
2894    qemu_aio_ref(acb);
2895    bdrv_aio_cancel_async(acb);
2896    while (acb->refcnt > 1) {
2897        if (acb->aiocb_info->get_aio_context) {
2898            aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2899        } else if (acb->bs) {
2900            /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2901             * assert that we're not using an I/O thread.  Thread-safe
2902             * code should use bdrv_aio_cancel_async exclusively.
2903             */
2904            assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2905            aio_poll(bdrv_get_aio_context(acb->bs), true);
2906        } else {
2907            abort();
2908        }
2909    }
2910    qemu_aio_unref(acb);
2911}
2912
2913/* Async version of aio cancel. The caller is not blocked if the acb implements
2914 * cancel_async, otherwise we do nothing and let the request normally complete.
2915 * In either case the completion callback must be called. */
2916void bdrv_aio_cancel_async(BlockAIOCB *acb)
2917{
2918    IO_CODE();
2919    if (acb->aiocb_info->cancel_async) {
2920        acb->aiocb_info->cancel_async(acb);
2921    }
2922}
2923
2924/**************************************************************/
2925/* Coroutine block device emulation */
2926
2927int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2928{
2929    BdrvChild *primary_child = bdrv_primary_child(bs);
2930    BdrvChild *child;
2931    int current_gen;
2932    int ret = 0;
2933    IO_CODE();
2934
2935    bdrv_inc_in_flight(bs);
2936
2937    if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2938        bdrv_is_sg(bs)) {
2939        goto early_exit;
2940    }
2941
2942    qemu_co_mutex_lock(&bs->reqs_lock);
2943    current_gen = qatomic_read(&bs->write_gen);
2944
2945    /* Wait until any previous flushes are completed */
2946    while (bs->active_flush_req) {
2947        qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2948    }
2949
2950    /* Flushes reach this point in nondecreasing current_gen order.  */
2951    bs->active_flush_req = true;
2952    qemu_co_mutex_unlock(&bs->reqs_lock);
2953
2954    /* Write back all layers by calling one driver function */
2955    if (bs->drv->bdrv_co_flush) {
2956        ret = bs->drv->bdrv_co_flush(bs);
2957        goto out;
2958    }
2959
2960    /* Write back cached data to the OS even with cache=unsafe */
2961    BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2962    if (bs->drv->bdrv_co_flush_to_os) {
2963        ret = bs->drv->bdrv_co_flush_to_os(bs);
2964        if (ret < 0) {
2965            goto out;
2966        }
2967    }
2968
2969    /* But don't actually force it to the disk with cache=unsafe */
2970    if (bs->open_flags & BDRV_O_NO_FLUSH) {
2971        goto flush_children;
2972    }
2973
2974    /* Check if we really need to flush anything */
2975    if (bs->flushed_gen == current_gen) {
2976        goto flush_children;
2977    }
2978
2979    BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2980    if (!bs->drv) {
2981        /* bs->drv->bdrv_co_flush() might have ejected the BDS
2982         * (even in case of apparent success) */
2983        ret = -ENOMEDIUM;
2984        goto out;
2985    }
2986    if (bs->drv->bdrv_co_flush_to_disk) {
2987        ret = bs->drv->bdrv_co_flush_to_disk(bs);
2988    } else if (bs->drv->bdrv_aio_flush) {
2989        BlockAIOCB *acb;
2990        CoroutineIOCompletion co = {
2991            .coroutine = qemu_coroutine_self(),
2992        };
2993
2994        acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2995        if (acb == NULL) {
2996            ret = -EIO;
2997        } else {
2998            qemu_coroutine_yield();
2999            ret = co.ret;
3000        }
3001    } else {
3002        /*
3003         * Some block drivers always operate in either writethrough or unsafe
3004         * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3005         * know how the server works (because the behaviour is hardcoded or
3006         * depends on server-side configuration), so we can't ensure that
3007         * everything is safe on disk. Returning an error doesn't work because
3008         * that would break guests even if the server operates in writethrough
3009         * mode.
3010         *
3011         * Let's hope the user knows what he's doing.
3012         */
3013        ret = 0;
3014    }
3015
3016    if (ret < 0) {
3017        goto out;
3018    }
3019
3020    /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
3021     * in the case of cache=unsafe, so there are no useless flushes.
3022     */
3023flush_children:
3024    ret = 0;
3025    QLIST_FOREACH(child, &bs->children, next) {
3026        if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3027            int this_child_ret = bdrv_co_flush(child->bs);
3028            if (!ret) {
3029                ret = this_child_ret;
3030            }
3031        }
3032    }
3033
3034out:
3035    /* Notify any pending flushes that we have completed */
3036    if (ret == 0) {
3037        bs->flushed_gen = current_gen;
3038    }
3039
3040    qemu_co_mutex_lock(&bs->reqs_lock);
3041    bs->active_flush_req = false;
3042    /* Return value is ignored - it's ok if wait queue is empty */
3043    qemu_co_queue_next(&bs->flush_queue);
3044    qemu_co_mutex_unlock(&bs->reqs_lock);
3045
3046early_exit:
3047    bdrv_dec_in_flight(bs);
3048    return ret;
3049}
3050
3051int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3052                                  int64_t bytes)
3053{
3054    BdrvTrackedRequest req;
3055    int ret;
3056    int64_t max_pdiscard;
3057    int head, tail, align;
3058    BlockDriverState *bs = child->bs;
3059    IO_CODE();
3060
3061    if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
3062        return -ENOMEDIUM;
3063    }
3064
3065    if (bdrv_has_readonly_bitmaps(bs)) {
3066        return -EPERM;
3067    }
3068
3069    ret = bdrv_check_request(offset, bytes, NULL);
3070    if (ret < 0) {
3071        return ret;
3072    }
3073
3074    /* Do nothing if disabled.  */
3075    if (!(bs->open_flags & BDRV_O_UNMAP)) {
3076        return 0;
3077    }
3078
3079    if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3080        return 0;
3081    }
3082
3083    /* Invalidate the cached block-status data range if this discard overlaps */
3084    bdrv_bsc_invalidate_range(bs, offset, bytes);
3085
3086    /* Discard is advisory, but some devices track and coalesce
3087     * unaligned requests, so we must pass everything down rather than
3088     * round here.  Still, most devices will just silently ignore
3089     * unaligned requests (by returning -ENOTSUP), so we must fragment
3090     * the request accordingly.  */
3091    align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3092    assert(align % bs->bl.request_alignment == 0);
3093    head = offset % align;
3094    tail = (offset + bytes) % align;
3095
3096    bdrv_inc_in_flight(bs);
3097    tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3098
3099    ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3100    if (ret < 0) {
3101        goto out;
3102    }
3103
3104    max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3105                                   align);
3106    assert(max_pdiscard >= bs->bl.request_alignment);
3107
3108    while (bytes > 0) {
3109        int64_t num = bytes;
3110
3111        if (head) {
3112            /* Make small requests to get to alignment boundaries. */
3113            num = MIN(bytes, align - head);
3114            if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3115                num %= bs->bl.request_alignment;
3116            }
3117            head = (head + num) % align;
3118            assert(num < max_pdiscard);
3119        } else if (tail) {
3120            if (num > align) {
3121                /* Shorten the request to the last aligned cluster.  */
3122                num -= tail;
3123            } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3124                       tail > bs->bl.request_alignment) {
3125                tail %= bs->bl.request_alignment;
3126                num -= tail;
3127            }
3128        }
3129        /* limit request size */
3130        if (num > max_pdiscard) {
3131            num = max_pdiscard;
3132        }
3133
3134        if (!bs->drv) {
3135            ret = -ENOMEDIUM;
3136            goto out;
3137        }
3138        if (bs->drv->bdrv_co_pdiscard) {
3139            ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3140        } else {
3141            BlockAIOCB *acb;
3142            CoroutineIOCompletion co = {
3143                .coroutine = qemu_coroutine_self(),
3144            };
3145
3146            acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3147                                             bdrv_co_io_em_complete, &co);
3148            if (acb == NULL) {
3149                ret = -EIO;
3150                goto out;
3151            } else {
3152                qemu_coroutine_yield();
3153                ret = co.ret;
3154            }
3155        }
3156        if (ret && ret != -ENOTSUP) {
3157            goto out;
3158        }
3159
3160        offset += num;
3161        bytes -= num;
3162    }
3163    ret = 0;
3164out:
3165    bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3166    tracked_request_end(&req);
3167    bdrv_dec_in_flight(bs);
3168    return ret;
3169}
3170
3171int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3172{
3173    BlockDriver *drv = bs->drv;
3174    CoroutineIOCompletion co = {
3175        .coroutine = qemu_coroutine_self(),
3176    };
3177    BlockAIOCB *acb;
3178    IO_CODE();
3179
3180    bdrv_inc_in_flight(bs);
3181    if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3182        co.ret = -ENOTSUP;
3183        goto out;
3184    }
3185
3186    if (drv->bdrv_co_ioctl) {
3187        co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3188    } else {
3189        acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3190        if (!acb) {
3191            co.ret = -ENOTSUP;
3192            goto out;
3193        }
3194        qemu_coroutine_yield();
3195    }
3196out:
3197    bdrv_dec_in_flight(bs);
3198    return co.ret;
3199}
3200
3201void *qemu_blockalign(BlockDriverState *bs, size_t size)
3202{
3203    IO_CODE();
3204    return qemu_memalign(bdrv_opt_mem_align(bs), size);
3205}
3206
3207void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3208{
3209    IO_CODE();
3210    return memset(qemu_blockalign(bs, size), 0, size);
3211}
3212
3213void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3214{
3215    size_t align = bdrv_opt_mem_align(bs);
3216    IO_CODE();
3217
3218    /* Ensure that NULL is never returned on success */
3219    assert(align > 0);
3220    if (size == 0) {
3221        size = align;
3222    }
3223
3224    return qemu_try_memalign(align, size);
3225}
3226
3227void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3228{
3229    void *mem = qemu_try_blockalign(bs, size);
3230    IO_CODE();
3231
3232    if (mem) {
3233        memset(mem, 0, size);
3234    }
3235
3236    return mem;
3237}
3238
3239/*
3240 * Check if all memory in this vector is sector aligned.
3241 */
3242bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3243{
3244    int i;
3245    size_t alignment = bdrv_min_mem_align(bs);
3246    IO_CODE();
3247
3248    for (i = 0; i < qiov->niov; i++) {
3249        if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3250            return false;
3251        }
3252        if (qiov->iov[i].iov_len % alignment) {
3253            return false;
3254        }
3255    }
3256
3257    return true;
3258}
3259
3260void bdrv_io_plug(BlockDriverState *bs)
3261{
3262    BdrvChild *child;
3263    IO_CODE();
3264
3265    QLIST_FOREACH(child, &bs->children, next) {
3266        bdrv_io_plug(child->bs);
3267    }
3268
3269    if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3270        BlockDriver *drv = bs->drv;
3271        if (drv && drv->bdrv_io_plug) {
3272            drv->bdrv_io_plug(bs);
3273        }
3274    }
3275}
3276
3277void bdrv_io_unplug(BlockDriverState *bs)
3278{
3279    BdrvChild *child;
3280    IO_CODE();
3281
3282    assert(bs->io_plugged);
3283    if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3284        BlockDriver *drv = bs->drv;
3285        if (drv && drv->bdrv_io_unplug) {
3286            drv->bdrv_io_unplug(bs);
3287        }
3288    }
3289
3290    QLIST_FOREACH(child, &bs->children, next) {
3291        bdrv_io_unplug(child->bs);
3292    }
3293}
3294
3295void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3296{
3297    BdrvChild *child;
3298
3299    GLOBAL_STATE_CODE();
3300    if (bs->drv && bs->drv->bdrv_register_buf) {
3301        bs->drv->bdrv_register_buf(bs, host, size);
3302    }
3303    QLIST_FOREACH(child, &bs->children, next) {
3304        bdrv_register_buf(child->bs, host, size);
3305    }
3306}
3307
3308void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3309{
3310    BdrvChild *child;
3311
3312    GLOBAL_STATE_CODE();
3313    if (bs->drv && bs->drv->bdrv_unregister_buf) {
3314        bs->drv->bdrv_unregister_buf(bs, host);
3315    }
3316    QLIST_FOREACH(child, &bs->children, next) {
3317        bdrv_unregister_buf(child->bs, host);
3318    }
3319}
3320
3321static int coroutine_fn bdrv_co_copy_range_internal(
3322        BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3323        int64_t dst_offset, int64_t bytes,
3324        BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3325        bool recurse_src)
3326{
3327    BdrvTrackedRequest req;
3328    int ret;
3329
3330    /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3331    assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3332    assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3333    assert(!(read_flags & BDRV_REQ_NO_WAIT));
3334    assert(!(write_flags & BDRV_REQ_NO_WAIT));
3335
3336    if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3337        return -ENOMEDIUM;
3338    }
3339    ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3340    if (ret) {
3341        return ret;
3342    }
3343    if (write_flags & BDRV_REQ_ZERO_WRITE) {
3344        return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3345    }
3346
3347    if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3348        return -ENOMEDIUM;
3349    }
3350    ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3351    if (ret) {
3352        return ret;
3353    }
3354
3355    if (!src->bs->drv->bdrv_co_copy_range_from
3356        || !dst->bs->drv->bdrv_co_copy_range_to
3357        || src->bs->encrypted || dst->bs->encrypted) {
3358        return -ENOTSUP;
3359    }
3360
3361    if (recurse_src) {
3362        bdrv_inc_in_flight(src->bs);
3363        tracked_request_begin(&req, src->bs, src_offset, bytes,
3364                              BDRV_TRACKED_READ);
3365
3366        /* BDRV_REQ_SERIALISING is only for write operation */
3367        assert(!(read_flags & BDRV_REQ_SERIALISING));
3368        bdrv_wait_serialising_requests(&req);
3369
3370        ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3371                                                    src, src_offset,
3372                                                    dst, dst_offset,
3373                                                    bytes,
3374                                                    read_flags, write_flags);
3375
3376        tracked_request_end(&req);
3377        bdrv_dec_in_flight(src->bs);
3378    } else {
3379        bdrv_inc_in_flight(dst->bs);
3380        tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3381                              BDRV_TRACKED_WRITE);
3382        ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3383                                        write_flags);
3384        if (!ret) {
3385            ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3386                                                      src, src_offset,
3387                                                      dst, dst_offset,
3388                                                      bytes,
3389                                                      read_flags, write_flags);
3390        }
3391        bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3392        tracked_request_end(&req);
3393        bdrv_dec_in_flight(dst->bs);
3394    }
3395
3396    return ret;
3397}
3398
3399/* Copy range from @src to @dst.
3400 *
3401 * See the comment of bdrv_co_copy_range for the parameter and return value
3402 * semantics. */
3403int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3404                                         BdrvChild *dst, int64_t dst_offset,
3405                                         int64_t bytes,
3406                                         BdrvRequestFlags read_flags,
3407                                         BdrvRequestFlags write_flags)
3408{
3409    IO_CODE();
3410    trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3411                                  read_flags, write_flags);
3412    return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3413                                       bytes, read_flags, write_flags, true);
3414}
3415
3416/* Copy range from @src to @dst.
3417 *
3418 * See the comment of bdrv_co_copy_range for the parameter and return value
3419 * semantics. */
3420int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3421                                       BdrvChild *dst, int64_t dst_offset,
3422                                       int64_t bytes,
3423                                       BdrvRequestFlags read_flags,
3424                                       BdrvRequestFlags write_flags)
3425{
3426    IO_CODE();
3427    trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3428                                read_flags, write_flags);
3429    return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3430                                       bytes, read_flags, write_flags, false);
3431}
3432
3433int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3434                                    BdrvChild *dst, int64_t dst_offset,
3435                                    int64_t bytes, BdrvRequestFlags read_flags,
3436                                    BdrvRequestFlags write_flags)
3437{
3438    IO_CODE();
3439    return bdrv_co_copy_range_from(src, src_offset,
3440                                   dst, dst_offset,
3441                                   bytes, read_flags, write_flags);
3442}
3443
3444static void bdrv_parent_cb_resize(BlockDriverState *bs)
3445{
3446    BdrvChild *c;
3447    QLIST_FOREACH(c, &bs->parents, next_parent) {
3448        if (c->klass->resize) {
3449            c->klass->resize(c);
3450        }
3451    }
3452}
3453
3454/**
3455 * Truncate file to 'offset' bytes (needed only for file protocols)
3456 *
3457 * If 'exact' is true, the file must be resized to exactly the given
3458 * 'offset'.  Otherwise, it is sufficient for the node to be at least
3459 * 'offset' bytes in length.
3460 */
3461int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3462                                  PreallocMode prealloc, BdrvRequestFlags flags,
3463                                  Error **errp)
3464{
3465    BlockDriverState *bs = child->bs;
3466    BdrvChild *filtered, *backing;
3467    BlockDriver *drv = bs->drv;
3468    BdrvTrackedRequest req;
3469    int64_t old_size, new_bytes;
3470    int ret;
3471    IO_CODE();
3472
3473    /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3474    if (!drv) {
3475        error_setg(errp, "No medium inserted");
3476        return -ENOMEDIUM;
3477    }
3478    if (offset < 0) {
3479        error_setg(errp, "Image size cannot be negative");
3480        return -EINVAL;
3481    }
3482
3483    ret = bdrv_check_request(offset, 0, errp);
3484    if (ret < 0) {
3485        return ret;
3486    }
3487
3488    old_size = bdrv_getlength(bs);
3489    if (old_size < 0) {
3490        error_setg_errno(errp, -old_size, "Failed to get old image size");
3491        return old_size;
3492    }
3493
3494    if (bdrv_is_read_only(bs)) {
3495        error_setg(errp, "Image is read-only");
3496        return -EACCES;
3497    }
3498
3499    if (offset > old_size) {
3500        new_bytes = offset - old_size;
3501    } else {
3502        new_bytes = 0;
3503    }
3504
3505    bdrv_inc_in_flight(bs);
3506    tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3507                          BDRV_TRACKED_TRUNCATE);
3508
3509    /* If we are growing the image and potentially using preallocation for the
3510     * new area, we need to make sure that no write requests are made to it
3511     * concurrently or they might be overwritten by preallocation. */
3512    if (new_bytes) {
3513        bdrv_make_request_serialising(&req, 1);
3514    }
3515    ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3516                                    0);
3517    if (ret < 0) {
3518        error_setg_errno(errp, -ret,
3519                         "Failed to prepare request for truncation");
3520        goto out;
3521    }
3522
3523    filtered = bdrv_filter_child(bs);
3524    backing = bdrv_cow_child(bs);
3525
3526    /*
3527     * If the image has a backing file that is large enough that it would
3528     * provide data for the new area, we cannot leave it unallocated because
3529     * then the backing file content would become visible. Instead, zero-fill
3530     * the new area.
3531     *
3532     * Note that if the image has a backing file, but was opened without the
3533     * backing file, taking care of keeping things consistent with that backing
3534     * file is the user's responsibility.
3535     */
3536    if (new_bytes && backing) {
3537        int64_t backing_len;
3538
3539        backing_len = bdrv_getlength(backing->bs);
3540        if (backing_len < 0) {
3541            ret = backing_len;
3542            error_setg_errno(errp, -ret, "Could not get backing file size");
3543            goto out;
3544        }
3545
3546        if (backing_len > old_size) {
3547            flags |= BDRV_REQ_ZERO_WRITE;
3548        }
3549    }
3550
3551    if (drv->bdrv_co_truncate) {
3552        if (flags & ~bs->supported_truncate_flags) {
3553            error_setg(errp, "Block driver does not support requested flags");
3554            ret = -ENOTSUP;
3555            goto out;
3556        }
3557        ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3558    } else if (filtered) {
3559        ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3560    } else {
3561        error_setg(errp, "Image format driver does not support resize");
3562        ret = -ENOTSUP;
3563        goto out;
3564    }
3565    if (ret < 0) {
3566        goto out;
3567    }
3568
3569    ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3570    if (ret < 0) {
3571        error_setg_errno(errp, -ret, "Could not refresh total sector count");
3572    } else {
3573        offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3574    }
3575    /* It's possible that truncation succeeded but refresh_total_sectors
3576     * failed, but the latter doesn't affect how we should finish the request.
3577     * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3578    bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3579
3580out:
3581    tracked_request_end(&req);
3582    bdrv_dec_in_flight(bs);
3583
3584    return ret;
3585}
3586
3587void bdrv_cancel_in_flight(BlockDriverState *bs)
3588{
3589    GLOBAL_STATE_CODE();
3590    if (!bs || !bs->drv) {
3591        return;
3592    }
3593
3594    if (bs->drv->bdrv_cancel_in_flight) {
3595        bs->drv->bdrv_cancel_in_flight(bs);
3596    }
3597}
3598
3599int coroutine_fn
3600bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3601                        QEMUIOVector *qiov, size_t qiov_offset)
3602{
3603    BlockDriverState *bs = child->bs;
3604    BlockDriver *drv = bs->drv;
3605    int ret;
3606    IO_CODE();
3607
3608    if (!drv) {
3609        return -ENOMEDIUM;
3610    }
3611
3612    if (!drv->bdrv_co_preadv_snapshot) {
3613        return -ENOTSUP;
3614    }
3615
3616    bdrv_inc_in_flight(bs);
3617    ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3618    bdrv_dec_in_flight(bs);
3619
3620    return ret;
3621}
3622
3623int coroutine_fn
3624bdrv_co_snapshot_block_status(BlockDriverState *bs,
3625                              bool want_zero, int64_t offset, int64_t bytes,
3626                              int64_t *pnum, int64_t *map,
3627                              BlockDriverState **file)
3628{
3629    BlockDriver *drv = bs->drv;
3630    int ret;
3631    IO_CODE();
3632
3633    if (!drv) {
3634        return -ENOMEDIUM;
3635    }
3636
3637    if (!drv->bdrv_co_snapshot_block_status) {
3638        return -ENOTSUP;
3639    }
3640
3641    bdrv_inc_in_flight(bs);
3642    ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3643                                             pnum, map, file);
3644    bdrv_dec_in_flight(bs);
3645
3646    return ret;
3647}
3648
3649int coroutine_fn
3650bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3651{
3652    BlockDriver *drv = bs->drv;
3653    int ret;
3654    IO_CODE();
3655
3656    if (!drv) {
3657        return -ENOMEDIUM;
3658    }
3659
3660    if (!drv->bdrv_co_pdiscard_snapshot) {
3661        return -ENOTSUP;
3662    }
3663
3664    bdrv_inc_in_flight(bs);
3665    ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3666    bdrv_dec_in_flight(bs);
3667
3668    return ret;
3669}
3670