qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/cutils.h"
  23#include "qemu/option.h"
  24#include "qemu/memalign.h"
  25#include "qemu/vfio-helpers.h"
  26#include "block/block_int.h"
  27#include "sysemu/replay.h"
  28#include "trace.h"
  29
  30#include "block/nvme.h"
  31
  32#define NVME_SQ_ENTRY_BYTES 64
  33#define NVME_CQ_ENTRY_BYTES 16
  34#define NVME_QUEUE_SIZE 128
  35#define NVME_DOORBELL_SIZE 4096
  36
  37/*
  38 * We have to leave one slot empty as that is the full queue case where
  39 * head == tail + 1.
  40 */
  41#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
  42
  43typedef struct BDRVNVMeState BDRVNVMeState;
  44
  45/* Same index is used for queues and IRQs */
  46#define INDEX_ADMIN     0
  47#define INDEX_IO(n)     (1 + n)
  48
  49/* This driver shares a single MSIX IRQ for the admin and I/O queues */
  50enum {
  51    MSIX_SHARED_IRQ_IDX = 0,
  52    MSIX_IRQ_COUNT = 1
  53};
  54
  55typedef struct {
  56    int32_t  head, tail;
  57    uint8_t  *queue;
  58    uint64_t iova;
  59    /* Hardware MMIO register */
  60    volatile uint32_t *doorbell;
  61} NVMeQueue;
  62
  63typedef struct {
  64    BlockCompletionFunc *cb;
  65    void *opaque;
  66    int cid;
  67    void *prp_list_page;
  68    uint64_t prp_list_iova;
  69    int free_req_next; /* q->reqs[] index of next free req */
  70} NVMeRequest;
  71
  72typedef struct {
  73    QemuMutex   lock;
  74
  75    /* Read from I/O code path, initialized under BQL */
  76    BDRVNVMeState   *s;
  77    int             index;
  78
  79    /* Fields protected by BQL */
  80    uint8_t     *prp_list_pages;
  81
  82    /* Fields protected by @lock */
  83    CoQueue     free_req_queue;
  84    NVMeQueue   sq, cq;
  85    int         cq_phase;
  86    int         free_req_head;
  87    NVMeRequest reqs[NVME_NUM_REQS];
  88    int         need_kick;
  89    int         inflight;
  90
  91    /* Thread-safe, no lock necessary */
  92    QEMUBH      *completion_bh;
  93} NVMeQueuePair;
  94
  95struct BDRVNVMeState {
  96    AioContext *aio_context;
  97    QEMUVFIOState *vfio;
  98    void *bar0_wo_map;
  99    /* Memory mapped registers */
 100    volatile struct {
 101        uint32_t sq_tail;
 102        uint32_t cq_head;
 103    } *doorbells;
 104    /* The submission/completion queue pairs.
 105     * [0]: admin queue.
 106     * [1..]: io queues.
 107     */
 108    NVMeQueuePair **queues;
 109    unsigned queue_count;
 110    size_t page_size;
 111    /* How many uint32_t elements does each doorbell entry take. */
 112    size_t doorbell_scale;
 113    bool write_cache_supported;
 114    EventNotifier irq_notifier[MSIX_IRQ_COUNT];
 115
 116    uint64_t nsze; /* Namespace size reported by identify command */
 117    int nsid;      /* The namespace id to read/write data. */
 118    int blkshift;
 119
 120    uint64_t max_transfer;
 121    bool plugged;
 122
 123    bool supports_write_zeroes;
 124    bool supports_discard;
 125
 126    CoMutex dma_map_lock;
 127    CoQueue dma_flush_queue;
 128
 129    /* Total size of mapped qiov, accessed under dma_map_lock */
 130    int dma_map_count;
 131
 132    /* PCI address (required for nvme_refresh_filename()) */
 133    char *device;
 134
 135    struct {
 136        uint64_t completion_errors;
 137        uint64_t aligned_accesses;
 138        uint64_t unaligned_accesses;
 139    } stats;
 140};
 141
 142#define NVME_BLOCK_OPT_DEVICE "device"
 143#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 144
 145static void nvme_process_completion_bh(void *opaque);
 146
 147static QemuOptsList runtime_opts = {
 148    .name = "nvme",
 149    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 150    .desc = {
 151        {
 152            .name = NVME_BLOCK_OPT_DEVICE,
 153            .type = QEMU_OPT_STRING,
 154            .help = "NVMe PCI device address",
 155        },
 156        {
 157            .name = NVME_BLOCK_OPT_NAMESPACE,
 158            .type = QEMU_OPT_NUMBER,
 159            .help = "NVMe namespace",
 160        },
 161        { /* end of list */ }
 162    },
 163};
 164
 165/* Returns true on success, false on failure. */
 166static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
 167                            unsigned nentries, size_t entry_bytes, Error **errp)
 168{
 169    size_t bytes;
 170    int r;
 171
 172    bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
 173    q->head = q->tail = 0;
 174    q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
 175    if (!q->queue) {
 176        error_setg(errp, "Cannot allocate queue");
 177        return false;
 178    }
 179    memset(q->queue, 0, bytes);
 180    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
 181    if (r) {
 182        error_prepend(errp, "Cannot map queue: ");
 183    }
 184    return r == 0;
 185}
 186
 187static void nvme_free_queue(NVMeQueue *q)
 188{
 189    qemu_vfree(q->queue);
 190}
 191
 192static void nvme_free_queue_pair(NVMeQueuePair *q)
 193{
 194    trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
 195    if (q->completion_bh) {
 196        qemu_bh_delete(q->completion_bh);
 197    }
 198    nvme_free_queue(&q->sq);
 199    nvme_free_queue(&q->cq);
 200    qemu_vfree(q->prp_list_pages);
 201    qemu_mutex_destroy(&q->lock);
 202    g_free(q);
 203}
 204
 205static void nvme_free_req_queue_cb(void *opaque)
 206{
 207    NVMeQueuePair *q = opaque;
 208
 209    qemu_mutex_lock(&q->lock);
 210    while (q->free_req_head != -1 &&
 211           qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 212        /* Retry waiting requests */
 213    }
 214    qemu_mutex_unlock(&q->lock);
 215}
 216
 217static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
 218                                             AioContext *aio_context,
 219                                             unsigned idx, size_t size,
 220                                             Error **errp)
 221{
 222    int i, r;
 223    NVMeQueuePair *q;
 224    uint64_t prp_list_iova;
 225    size_t bytes;
 226
 227    q = g_try_new0(NVMeQueuePair, 1);
 228    if (!q) {
 229        error_setg(errp, "Cannot allocate queue pair");
 230        return NULL;
 231    }
 232    trace_nvme_create_queue_pair(idx, q, size, aio_context,
 233                                 event_notifier_get_fd(s->irq_notifier));
 234    bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
 235                          qemu_real_host_page_size());
 236    q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
 237    if (!q->prp_list_pages) {
 238        error_setg(errp, "Cannot allocate PRP page list");
 239        goto fail;
 240    }
 241    memset(q->prp_list_pages, 0, bytes);
 242    qemu_mutex_init(&q->lock);
 243    q->s = s;
 244    q->index = idx;
 245    qemu_co_queue_init(&q->free_req_queue);
 246    q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
 247    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
 248                          false, &prp_list_iova, errp);
 249    if (r) {
 250        error_prepend(errp, "Cannot map buffer for DMA: ");
 251        goto fail;
 252    }
 253    q->free_req_head = -1;
 254    for (i = 0; i < NVME_NUM_REQS; i++) {
 255        NVMeRequest *req = &q->reqs[i];
 256        req->cid = i + 1;
 257        req->free_req_next = q->free_req_head;
 258        q->free_req_head = i;
 259        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 260        req->prp_list_iova = prp_list_iova + i * s->page_size;
 261    }
 262
 263    if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
 264        goto fail;
 265    }
 266    q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
 267
 268    if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
 269        goto fail;
 270    }
 271    q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
 272
 273    return q;
 274fail:
 275    nvme_free_queue_pair(q);
 276    return NULL;
 277}
 278
 279/* With q->lock */
 280static void nvme_kick(NVMeQueuePair *q)
 281{
 282    BDRVNVMeState *s = q->s;
 283
 284    if (s->plugged || !q->need_kick) {
 285        return;
 286    }
 287    trace_nvme_kick(s, q->index);
 288    assert(!(q->sq.tail & 0xFF00));
 289    /* Fence the write to submission queue entry before notifying the device. */
 290    smp_wmb();
 291    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 292    q->inflight += q->need_kick;
 293    q->need_kick = 0;
 294}
 295
 296/* Find a free request element if any, otherwise:
 297 * a) if in coroutine context, try to wait for one to become available;
 298 * b) if not in coroutine, return NULL;
 299 */
 300static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 301{
 302    NVMeRequest *req;
 303
 304    qemu_mutex_lock(&q->lock);
 305
 306    while (q->free_req_head == -1) {
 307        if (qemu_in_coroutine()) {
 308            trace_nvme_free_req_queue_wait(q->s, q->index);
 309            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 310        } else {
 311            qemu_mutex_unlock(&q->lock);
 312            return NULL;
 313        }
 314    }
 315
 316    req = &q->reqs[q->free_req_head];
 317    q->free_req_head = req->free_req_next;
 318    req->free_req_next = -1;
 319
 320    qemu_mutex_unlock(&q->lock);
 321    return req;
 322}
 323
 324/* With q->lock */
 325static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
 326{
 327    req->free_req_next = q->free_req_head;
 328    q->free_req_head = req - q->reqs;
 329}
 330
 331/* With q->lock */
 332static void nvme_wake_free_req_locked(NVMeQueuePair *q)
 333{
 334    if (!qemu_co_queue_empty(&q->free_req_queue)) {
 335        replay_bh_schedule_oneshot_event(q->s->aio_context,
 336                nvme_free_req_queue_cb, q);
 337    }
 338}
 339
 340/* Insert a request in the freelist and wake waiters */
 341static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
 342{
 343    qemu_mutex_lock(&q->lock);
 344    nvme_put_free_req_locked(q, req);
 345    nvme_wake_free_req_locked(q);
 346    qemu_mutex_unlock(&q->lock);
 347}
 348
 349static inline int nvme_translate_error(const NvmeCqe *c)
 350{
 351    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 352    if (status) {
 353        trace_nvme_error(le32_to_cpu(c->result),
 354                         le16_to_cpu(c->sq_head),
 355                         le16_to_cpu(c->sq_id),
 356                         le16_to_cpu(c->cid),
 357                         le16_to_cpu(status));
 358    }
 359    switch (status) {
 360    case 0:
 361        return 0;
 362    case 1:
 363        return -ENOSYS;
 364    case 2:
 365        return -EINVAL;
 366    default:
 367        return -EIO;
 368    }
 369}
 370
 371/* With q->lock */
 372static bool nvme_process_completion(NVMeQueuePair *q)
 373{
 374    BDRVNVMeState *s = q->s;
 375    bool progress = false;
 376    NVMeRequest *preq;
 377    NVMeRequest req;
 378    NvmeCqe *c;
 379
 380    trace_nvme_process_completion(s, q->index, q->inflight);
 381    if (s->plugged) {
 382        trace_nvme_process_completion_queue_plugged(s, q->index);
 383        return false;
 384    }
 385
 386    /*
 387     * Support re-entrancy when a request cb() function invokes aio_poll().
 388     * Pending completions must be visible to aio_poll() so that a cb()
 389     * function can wait for the completion of another request.
 390     *
 391     * The aio_poll() loop will execute our BH and we'll resume completion
 392     * processing there.
 393     */
 394    qemu_bh_schedule(q->completion_bh);
 395
 396    assert(q->inflight >= 0);
 397    while (q->inflight) {
 398        int ret;
 399        int16_t cid;
 400
 401        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 402        if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 403            break;
 404        }
 405        ret = nvme_translate_error(c);
 406        if (ret) {
 407            s->stats.completion_errors++;
 408        }
 409        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 410        if (!q->cq.head) {
 411            q->cq_phase = !q->cq_phase;
 412        }
 413        cid = le16_to_cpu(c->cid);
 414        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 415            warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
 416                        "queue size: %u", cid, NVME_QUEUE_SIZE);
 417            continue;
 418        }
 419        trace_nvme_complete_command(s, q->index, cid);
 420        preq = &q->reqs[cid - 1];
 421        req = *preq;
 422        assert(req.cid == cid);
 423        assert(req.cb);
 424        nvme_put_free_req_locked(q, preq);
 425        preq->cb = preq->opaque = NULL;
 426        q->inflight--;
 427        qemu_mutex_unlock(&q->lock);
 428        req.cb(req.opaque, ret);
 429        qemu_mutex_lock(&q->lock);
 430        progress = true;
 431    }
 432    if (progress) {
 433        /* Notify the device so it can post more completions. */
 434        smp_mb_release();
 435        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 436        nvme_wake_free_req_locked(q);
 437    }
 438
 439    qemu_bh_cancel(q->completion_bh);
 440
 441    return progress;
 442}
 443
 444static void nvme_process_completion_bh(void *opaque)
 445{
 446    NVMeQueuePair *q = opaque;
 447
 448    /*
 449     * We're being invoked because a nvme_process_completion() cb() function
 450     * called aio_poll(). The callback may be waiting for further completions
 451     * so notify the device that it has space to fill in more completions now.
 452     */
 453    smp_mb_release();
 454    *q->cq.doorbell = cpu_to_le32(q->cq.head);
 455    nvme_wake_free_req_locked(q);
 456
 457    nvme_process_completion(q);
 458}
 459
 460static void nvme_trace_command(const NvmeCmd *cmd)
 461{
 462    int i;
 463
 464    if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
 465        return;
 466    }
 467    for (i = 0; i < 8; ++i) {
 468        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 469        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 470                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 471    }
 472}
 473
 474static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
 475                                NvmeCmd *cmd, BlockCompletionFunc cb,
 476                                void *opaque)
 477{
 478    assert(!req->cb);
 479    req->cb = cb;
 480    req->opaque = opaque;
 481    cmd->cid = cpu_to_le16(req->cid);
 482
 483    trace_nvme_submit_command(q->s, q->index, req->cid);
 484    nvme_trace_command(cmd);
 485    qemu_mutex_lock(&q->lock);
 486    memcpy((uint8_t *)q->sq.queue +
 487           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 488    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 489    q->need_kick++;
 490    nvme_kick(q);
 491    nvme_process_completion(q);
 492    qemu_mutex_unlock(&q->lock);
 493}
 494
 495static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
 496{
 497    int *pret = opaque;
 498    *pret = ret;
 499    aio_wait_kick();
 500}
 501
 502static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
 503{
 504    BDRVNVMeState *s = bs->opaque;
 505    NVMeQueuePair *q = s->queues[INDEX_ADMIN];
 506    AioContext *aio_context = bdrv_get_aio_context(bs);
 507    NVMeRequest *req;
 508    int ret = -EINPROGRESS;
 509    req = nvme_get_free_req(q);
 510    if (!req) {
 511        return -EBUSY;
 512    }
 513    nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
 514
 515    AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
 516    return ret;
 517}
 518
 519/* Returns true on success, false on failure. */
 520static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 521{
 522    BDRVNVMeState *s = bs->opaque;
 523    bool ret = false;
 524    QEMU_AUTO_VFREE union {
 525        NvmeIdCtrl ctrl;
 526        NvmeIdNs ns;
 527    } *id = NULL;
 528    NvmeLBAF *lbaf;
 529    uint16_t oncs;
 530    int r;
 531    uint64_t iova;
 532    NvmeCmd cmd = {
 533        .opcode = NVME_ADM_CMD_IDENTIFY,
 534        .cdw10 = cpu_to_le32(0x1),
 535    };
 536    size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
 537
 538    id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
 539    if (!id) {
 540        error_setg(errp, "Cannot allocate buffer for identify response");
 541        goto out;
 542    }
 543    r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
 544    if (r) {
 545        error_prepend(errp, "Cannot map buffer for DMA: ");
 546        goto out;
 547    }
 548
 549    memset(id, 0, id_size);
 550    cmd.dptr.prp1 = cpu_to_le64(iova);
 551    if (nvme_admin_cmd_sync(bs, &cmd)) {
 552        error_setg(errp, "Failed to identify controller");
 553        goto out;
 554    }
 555
 556    if (le32_to_cpu(id->ctrl.nn) < namespace) {
 557        error_setg(errp, "Invalid namespace");
 558        goto out;
 559    }
 560    s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
 561    s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
 562    /* For now the page list buffer per command is one page, to hold at most
 563     * s->page_size / sizeof(uint64_t) entries. */
 564    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 565                          s->page_size / sizeof(uint64_t) * s->page_size);
 566
 567    oncs = le16_to_cpu(id->ctrl.oncs);
 568    s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
 569    s->supports_discard = !!(oncs & NVME_ONCS_DSM);
 570
 571    memset(id, 0, id_size);
 572    cmd.cdw10 = 0;
 573    cmd.nsid = cpu_to_le32(namespace);
 574    if (nvme_admin_cmd_sync(bs, &cmd)) {
 575        error_setg(errp, "Failed to identify namespace");
 576        goto out;
 577    }
 578
 579    s->nsze = le64_to_cpu(id->ns.nsze);
 580    lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
 581
 582    if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
 583            NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
 584                    NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
 585        bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
 586    }
 587
 588    if (lbaf->ms) {
 589        error_setg(errp, "Namespaces with metadata are not yet supported");
 590        goto out;
 591    }
 592
 593    if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
 594        (1 << lbaf->ds) > s->page_size)
 595    {
 596        error_setg(errp, "Namespace has unsupported block size (2^%d)",
 597                   lbaf->ds);
 598        goto out;
 599    }
 600
 601    ret = true;
 602    s->blkshift = lbaf->ds;
 603out:
 604    qemu_vfio_dma_unmap(s->vfio, id);
 605
 606    return ret;
 607}
 608
 609static void nvme_poll_queue(NVMeQueuePair *q)
 610{
 611    const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
 612    NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
 613
 614    trace_nvme_poll_queue(q->s, q->index);
 615    /*
 616     * Do an early check for completions. q->lock isn't needed because
 617     * nvme_process_completion() only runs in the event loop thread and
 618     * cannot race with itself.
 619     */
 620    if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
 621        return;
 622    }
 623
 624    qemu_mutex_lock(&q->lock);
 625    while (nvme_process_completion(q)) {
 626        /* Keep polling */
 627    }
 628    qemu_mutex_unlock(&q->lock);
 629}
 630
 631static void nvme_poll_queues(BDRVNVMeState *s)
 632{
 633    int i;
 634
 635    for (i = 0; i < s->queue_count; i++) {
 636        nvme_poll_queue(s->queues[i]);
 637    }
 638}
 639
 640static void nvme_handle_event(EventNotifier *n)
 641{
 642    BDRVNVMeState *s = container_of(n, BDRVNVMeState,
 643                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 644
 645    trace_nvme_handle_event(s);
 646    event_notifier_test_and_clear(n);
 647    nvme_poll_queues(s);
 648}
 649
 650static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 651{
 652    BDRVNVMeState *s = bs->opaque;
 653    unsigned n = s->queue_count;
 654    NVMeQueuePair *q;
 655    NvmeCmd cmd;
 656    unsigned queue_size = NVME_QUEUE_SIZE;
 657
 658    assert(n <= UINT16_MAX);
 659    q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
 660                               n, queue_size, errp);
 661    if (!q) {
 662        return false;
 663    }
 664    cmd = (NvmeCmd) {
 665        .opcode = NVME_ADM_CMD_CREATE_CQ,
 666        .dptr.prp1 = cpu_to_le64(q->cq.iova),
 667        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 668        .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
 669    };
 670    if (nvme_admin_cmd_sync(bs, &cmd)) {
 671        error_setg(errp, "Failed to create CQ io queue [%u]", n);
 672        goto out_error;
 673    }
 674    cmd = (NvmeCmd) {
 675        .opcode = NVME_ADM_CMD_CREATE_SQ,
 676        .dptr.prp1 = cpu_to_le64(q->sq.iova),
 677        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
 678        .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
 679    };
 680    if (nvme_admin_cmd_sync(bs, &cmd)) {
 681        error_setg(errp, "Failed to create SQ io queue [%u]", n);
 682        goto out_error;
 683    }
 684    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 685    s->queues[n] = q;
 686    s->queue_count++;
 687    return true;
 688out_error:
 689    nvme_free_queue_pair(q);
 690    return false;
 691}
 692
 693static bool nvme_poll_cb(void *opaque)
 694{
 695    EventNotifier *e = opaque;
 696    BDRVNVMeState *s = container_of(e, BDRVNVMeState,
 697                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 698    int i;
 699
 700    for (i = 0; i < s->queue_count; i++) {
 701        NVMeQueuePair *q = s->queues[i];
 702        const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
 703        NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
 704
 705        /*
 706         * q->lock isn't needed because nvme_process_completion() only runs in
 707         * the event loop thread and cannot race with itself.
 708         */
 709        if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
 710            return true;
 711        }
 712    }
 713    return false;
 714}
 715
 716static void nvme_poll_ready(EventNotifier *e)
 717{
 718    BDRVNVMeState *s = container_of(e, BDRVNVMeState,
 719                                    irq_notifier[MSIX_SHARED_IRQ_IDX]);
 720
 721    nvme_poll_queues(s);
 722}
 723
 724static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 725                     Error **errp)
 726{
 727    BDRVNVMeState *s = bs->opaque;
 728    NVMeQueuePair *q;
 729    AioContext *aio_context = bdrv_get_aio_context(bs);
 730    int ret;
 731    uint64_t cap;
 732    uint32_t ver;
 733    uint64_t timeout_ms;
 734    uint64_t deadline, now;
 735    volatile NvmeBar *regs = NULL;
 736
 737    qemu_co_mutex_init(&s->dma_map_lock);
 738    qemu_co_queue_init(&s->dma_flush_queue);
 739    s->device = g_strdup(device);
 740    s->nsid = namespace;
 741    s->aio_context = bdrv_get_aio_context(bs);
 742    ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
 743    if (ret) {
 744        error_setg(errp, "Failed to init event notifier");
 745        return ret;
 746    }
 747
 748    s->vfio = qemu_vfio_open_pci(device, errp);
 749    if (!s->vfio) {
 750        ret = -EINVAL;
 751        goto out;
 752    }
 753
 754    regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
 755                                 PROT_READ | PROT_WRITE, errp);
 756    if (!regs) {
 757        ret = -EINVAL;
 758        goto out;
 759    }
 760    /* Perform initialize sequence as described in NVMe spec "7.6.1
 761     * Initialization". */
 762
 763    cap = le64_to_cpu(regs->cap);
 764    trace_nvme_controller_capability_raw(cap);
 765    trace_nvme_controller_capability("Maximum Queue Entries Supported",
 766                                     1 + NVME_CAP_MQES(cap));
 767    trace_nvme_controller_capability("Contiguous Queues Required",
 768                                     NVME_CAP_CQR(cap));
 769    trace_nvme_controller_capability("Doorbell Stride",
 770                                     1 << (2 + NVME_CAP_DSTRD(cap)));
 771    trace_nvme_controller_capability("Subsystem Reset Supported",
 772                                     NVME_CAP_NSSRS(cap));
 773    trace_nvme_controller_capability("Memory Page Size Minimum",
 774                                     1 << (12 + NVME_CAP_MPSMIN(cap)));
 775    trace_nvme_controller_capability("Memory Page Size Maximum",
 776                                     1 << (12 + NVME_CAP_MPSMAX(cap)));
 777    if (!NVME_CAP_CSS(cap)) {
 778        error_setg(errp, "Device doesn't support NVMe command set");
 779        ret = -EINVAL;
 780        goto out;
 781    }
 782
 783    s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
 784    s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
 785    bs->bl.opt_mem_alignment = s->page_size;
 786    bs->bl.request_alignment = s->page_size;
 787    timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
 788
 789    ver = le32_to_cpu(regs->vs);
 790    trace_nvme_controller_spec_version(extract32(ver, 16, 16),
 791                                       extract32(ver, 8, 8),
 792                                       extract32(ver, 0, 8));
 793
 794    /* Reset device to get a clean state. */
 795    regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
 796    /* Wait for CSTS.RDY = 0. */
 797    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
 798    while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 799        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 800            error_setg(errp, "Timeout while waiting for device to reset (%"
 801                             PRId64 " ms)",
 802                       timeout_ms);
 803            ret = -ETIMEDOUT;
 804            goto out;
 805        }
 806    }
 807
 808    s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
 809                                           sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
 810                                           PROT_WRITE, errp);
 811    s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
 812    if (!s->doorbells) {
 813        ret = -EINVAL;
 814        goto out;
 815    }
 816
 817    /* Set up admin queue. */
 818    s->queues = g_new(NVMeQueuePair *, 1);
 819    q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
 820    if (!q) {
 821        ret = -EINVAL;
 822        goto out;
 823    }
 824    s->queues[INDEX_ADMIN] = q;
 825    s->queue_count = 1;
 826    QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
 827    regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
 828                            ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
 829    regs->asq = cpu_to_le64(q->sq.iova);
 830    regs->acq = cpu_to_le64(q->cq.iova);
 831
 832    /* After setting up all control registers we can enable device now. */
 833    regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
 834                           (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
 835                           CC_EN_MASK);
 836    /* Wait for CSTS.RDY = 1. */
 837    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 838    deadline = now + timeout_ms * SCALE_MS;
 839    while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
 840        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 841            error_setg(errp, "Timeout while waiting for device to start (%"
 842                             PRId64 " ms)",
 843                       timeout_ms);
 844            ret = -ETIMEDOUT;
 845            goto out;
 846        }
 847    }
 848
 849    ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
 850                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 851    if (ret) {
 852        goto out;
 853    }
 854    aio_set_event_notifier(bdrv_get_aio_context(bs),
 855                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 856                           false, nvme_handle_event, nvme_poll_cb,
 857                           nvme_poll_ready);
 858
 859    if (!nvme_identify(bs, namespace, errp)) {
 860        ret = -EIO;
 861        goto out;
 862    }
 863
 864    /* Set up command queues. */
 865    if (!nvme_add_io_queue(bs, errp)) {
 866        ret = -EIO;
 867    }
 868out:
 869    if (regs) {
 870        qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
 871    }
 872
 873    /* Cleaning up is done in nvme_file_open() upon error. */
 874    return ret;
 875}
 876
 877/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 878 *
 879 *     nvme://0000:44:00.0/1
 880 *
 881 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 882 * is the PCI address, and the last part is the namespace number starting from
 883 * 1 according to the NVMe spec. */
 884static void nvme_parse_filename(const char *filename, QDict *options,
 885                                Error **errp)
 886{
 887    int pref = strlen("nvme://");
 888
 889    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 890        const char *tmp = filename + pref;
 891        char *device;
 892        const char *namespace;
 893        unsigned long ns;
 894        const char *slash = strchr(tmp, '/');
 895        if (!slash) {
 896            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 897            return;
 898        }
 899        device = g_strndup(tmp, slash - tmp);
 900        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 901        g_free(device);
 902        namespace = slash + 1;
 903        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 904            error_setg(errp, "Invalid namespace '%s', positive number expected",
 905                       namespace);
 906            return;
 907        }
 908        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 909                      *namespace ? namespace : "1");
 910    }
 911}
 912
 913static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 914                                           Error **errp)
 915{
 916    int ret;
 917    BDRVNVMeState *s = bs->opaque;
 918    NvmeCmd cmd = {
 919        .opcode = NVME_ADM_CMD_SET_FEATURES,
 920        .nsid = cpu_to_le32(s->nsid),
 921        .cdw10 = cpu_to_le32(0x06),
 922        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 923    };
 924
 925    ret = nvme_admin_cmd_sync(bs, &cmd);
 926    if (ret) {
 927        error_setg(errp, "Failed to configure NVMe write cache");
 928    }
 929    return ret;
 930}
 931
 932static void nvme_close(BlockDriverState *bs)
 933{
 934    BDRVNVMeState *s = bs->opaque;
 935
 936    for (unsigned i = 0; i < s->queue_count; ++i) {
 937        nvme_free_queue_pair(s->queues[i]);
 938    }
 939    g_free(s->queues);
 940    aio_set_event_notifier(bdrv_get_aio_context(bs),
 941                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
 942                           false, NULL, NULL, NULL);
 943    event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
 944    qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
 945                            0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
 946    qemu_vfio_close(s->vfio);
 947
 948    g_free(s->device);
 949}
 950
 951static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 952                          Error **errp)
 953{
 954    const char *device;
 955    QemuOpts *opts;
 956    int namespace;
 957    int ret;
 958    BDRVNVMeState *s = bs->opaque;
 959
 960    bs->supported_write_flags = BDRV_REQ_FUA;
 961
 962    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 963    qemu_opts_absorb_qdict(opts, options, &error_abort);
 964    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 965    if (!device) {
 966        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 967        qemu_opts_del(opts);
 968        return -EINVAL;
 969    }
 970
 971    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 972    ret = nvme_init(bs, device, namespace, errp);
 973    qemu_opts_del(opts);
 974    if (ret) {
 975        goto fail;
 976    }
 977    if (flags & BDRV_O_NOCACHE) {
 978        if (!s->write_cache_supported) {
 979            error_setg(errp,
 980                       "NVMe controller doesn't support write cache configuration");
 981            ret = -EINVAL;
 982        } else {
 983            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 984                                                  errp);
 985        }
 986        if (ret) {
 987            goto fail;
 988        }
 989    }
 990    return 0;
 991fail:
 992    nvme_close(bs);
 993    return ret;
 994}
 995
 996static int64_t nvme_getlength(BlockDriverState *bs)
 997{
 998    BDRVNVMeState *s = bs->opaque;
 999    return s->nsze << s->blkshift;
1000}
1001
1002static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1003{
1004    BDRVNVMeState *s = bs->opaque;
1005    assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1006    return UINT32_C(1) << s->blkshift;
1007}
1008
1009static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1010{
1011    uint32_t blocksize = nvme_get_blocksize(bs);
1012    bsz->phys = blocksize;
1013    bsz->log = blocksize;
1014    return 0;
1015}
1016
1017/* Called with s->dma_map_lock */
1018static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1019                                            QEMUIOVector *qiov)
1020{
1021    int r = 0;
1022    BDRVNVMeState *s = bs->opaque;
1023
1024    s->dma_map_count -= qiov->size;
1025    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1026        r = qemu_vfio_dma_reset_temporary(s->vfio);
1027        if (!r) {
1028            qemu_co_queue_restart_all(&s->dma_flush_queue);
1029        }
1030    }
1031    return r;
1032}
1033
1034/* Called with s->dma_map_lock */
1035static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1036                                          NVMeRequest *req, QEMUIOVector *qiov)
1037{
1038    BDRVNVMeState *s = bs->opaque;
1039    uint64_t *pagelist = req->prp_list_page;
1040    int i, j, r;
1041    int entries = 0;
1042    Error *local_err = NULL, **errp = NULL;
1043
1044    assert(qiov->size);
1045    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1046    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1047    for (i = 0; i < qiov->niov; ++i) {
1048        bool retry = true;
1049        uint64_t iova;
1050        size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1051                                   qemu_real_host_page_size());
1052try_map:
1053        r = qemu_vfio_dma_map(s->vfio,
1054                              qiov->iov[i].iov_base,
1055                              len, true, &iova, errp);
1056        if (r == -ENOSPC) {
1057            /*
1058             * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1059             * ioctl returns -ENOSPC to signal the user exhausted the DMA
1060             * mappings available for a container since Linux kernel commit
1061             * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1062             * April 2019, see CVE-2019-3882).
1063             *
1064             * This block driver already handles this error path by checking
1065             * for the -ENOMEM error, so we directly replace -ENOSPC by
1066             * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1067             * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1068             * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1069             * to add more storage to the blockdev. Not something we can do
1070             * easily with an IOMMU :)
1071             */
1072            r = -ENOMEM;
1073        }
1074        if (r == -ENOMEM && retry) {
1075            /*
1076             * We exhausted the DMA mappings available for our container:
1077             * recycle the volatile IOVA mappings.
1078             */
1079            retry = false;
1080            trace_nvme_dma_flush_queue_wait(s);
1081            if (s->dma_map_count) {
1082                trace_nvme_dma_map_flush(s);
1083                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1084            } else {
1085                r = qemu_vfio_dma_reset_temporary(s->vfio);
1086                if (r) {
1087                    goto fail;
1088                }
1089            }
1090            errp = &local_err;
1091
1092            goto try_map;
1093        }
1094        if (r) {
1095            goto fail;
1096        }
1097
1098        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1099            pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1100        }
1101        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1102                                    qiov->iov[i].iov_len / s->page_size);
1103    }
1104
1105    s->dma_map_count += qiov->size;
1106
1107    assert(entries <= s->page_size / sizeof(uint64_t));
1108    switch (entries) {
1109    case 0:
1110        abort();
1111    case 1:
1112        cmd->dptr.prp1 = pagelist[0];
1113        cmd->dptr.prp2 = 0;
1114        break;
1115    case 2:
1116        cmd->dptr.prp1 = pagelist[0];
1117        cmd->dptr.prp2 = pagelist[1];
1118        break;
1119    default:
1120        cmd->dptr.prp1 = pagelist[0];
1121        cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1122        break;
1123    }
1124    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1125    for (i = 0; i < entries; ++i) {
1126        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1127    }
1128    return 0;
1129fail:
1130    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1131     * increment s->dma_map_count. This is okay for fixed mapping memory areas
1132     * because they are already mapped before calling this function; for
1133     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1134     * calling qemu_vfio_dma_reset_temporary when necessary. */
1135    if (local_err) {
1136        error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1137    }
1138    return r;
1139}
1140
1141typedef struct {
1142    Coroutine *co;
1143    int ret;
1144    AioContext *ctx;
1145} NVMeCoData;
1146
1147static void nvme_rw_cb_bh(void *opaque)
1148{
1149    NVMeCoData *data = opaque;
1150    qemu_coroutine_enter(data->co);
1151}
1152
1153static void nvme_rw_cb(void *opaque, int ret)
1154{
1155    NVMeCoData *data = opaque;
1156    data->ret = ret;
1157    if (!data->co) {
1158        /* The rw coroutine hasn't yielded, don't try to enter. */
1159        return;
1160    }
1161    replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1162}
1163
1164static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1165                                            uint64_t offset, uint64_t bytes,
1166                                            QEMUIOVector *qiov,
1167                                            bool is_write,
1168                                            int flags)
1169{
1170    int r;
1171    BDRVNVMeState *s = bs->opaque;
1172    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1173    NVMeRequest *req;
1174
1175    uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1176                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1177    NvmeCmd cmd = {
1178        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1179        .nsid = cpu_to_le32(s->nsid),
1180        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1181        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1182        .cdw12 = cpu_to_le32(cdw12),
1183    };
1184    NVMeCoData data = {
1185        .ctx = bdrv_get_aio_context(bs),
1186        .ret = -EINPROGRESS,
1187    };
1188
1189    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1190    assert(s->queue_count > 1);
1191    req = nvme_get_free_req(ioq);
1192    assert(req);
1193
1194    qemu_co_mutex_lock(&s->dma_map_lock);
1195    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1196    qemu_co_mutex_unlock(&s->dma_map_lock);
1197    if (r) {
1198        nvme_put_free_req_and_wake(ioq, req);
1199        return r;
1200    }
1201    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1202
1203    data.co = qemu_coroutine_self();
1204    while (data.ret == -EINPROGRESS) {
1205        qemu_coroutine_yield();
1206    }
1207
1208    qemu_co_mutex_lock(&s->dma_map_lock);
1209    r = nvme_cmd_unmap_qiov(bs, qiov);
1210    qemu_co_mutex_unlock(&s->dma_map_lock);
1211    if (r) {
1212        return r;
1213    }
1214
1215    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1216    return data.ret;
1217}
1218
1219static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1220                                     const QEMUIOVector *qiov)
1221{
1222    int i;
1223    BDRVNVMeState *s = bs->opaque;
1224
1225    for (i = 0; i < qiov->niov; ++i) {
1226        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1227                                 qemu_real_host_page_size()) ||
1228            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1229            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1230                                      qiov->iov[i].iov_len, s->page_size);
1231            return false;
1232        }
1233    }
1234    return true;
1235}
1236
1237static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1238                       QEMUIOVector *qiov, bool is_write, int flags)
1239{
1240    BDRVNVMeState *s = bs->opaque;
1241    int r;
1242    QEMU_AUTO_VFREE uint8_t *buf = NULL;
1243    QEMUIOVector local_qiov;
1244    size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1245    assert(QEMU_IS_ALIGNED(offset, s->page_size));
1246    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1247    assert(bytes <= s->max_transfer);
1248    if (nvme_qiov_aligned(bs, qiov)) {
1249        s->stats.aligned_accesses++;
1250        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1251    }
1252    s->stats.unaligned_accesses++;
1253    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1254    buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1255
1256    if (!buf) {
1257        return -ENOMEM;
1258    }
1259    qemu_iovec_init(&local_qiov, 1);
1260    if (is_write) {
1261        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1262    }
1263    qemu_iovec_add(&local_qiov, buf, bytes);
1264    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1265    qemu_iovec_destroy(&local_qiov);
1266    if (!r && !is_write) {
1267        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1268    }
1269    return r;
1270}
1271
1272static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1273                                       int64_t offset, int64_t bytes,
1274                                       QEMUIOVector *qiov,
1275                                       BdrvRequestFlags flags)
1276{
1277    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1278}
1279
1280static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1281                                        int64_t offset, int64_t bytes,
1282                                        QEMUIOVector *qiov,
1283                                        BdrvRequestFlags flags)
1284{
1285    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1286}
1287
1288static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1289{
1290    BDRVNVMeState *s = bs->opaque;
1291    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1292    NVMeRequest *req;
1293    NvmeCmd cmd = {
1294        .opcode = NVME_CMD_FLUSH,
1295        .nsid = cpu_to_le32(s->nsid),
1296    };
1297    NVMeCoData data = {
1298        .ctx = bdrv_get_aio_context(bs),
1299        .ret = -EINPROGRESS,
1300    };
1301
1302    assert(s->queue_count > 1);
1303    req = nvme_get_free_req(ioq);
1304    assert(req);
1305    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1306
1307    data.co = qemu_coroutine_self();
1308    if (data.ret == -EINPROGRESS) {
1309        qemu_coroutine_yield();
1310    }
1311
1312    return data.ret;
1313}
1314
1315
1316static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1317                                              int64_t offset,
1318                                              int64_t bytes,
1319                                              BdrvRequestFlags flags)
1320{
1321    BDRVNVMeState *s = bs->opaque;
1322    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1323    NVMeRequest *req;
1324    uint32_t cdw12;
1325
1326    if (!s->supports_write_zeroes) {
1327        return -ENOTSUP;
1328    }
1329
1330    if (bytes == 0) {
1331        return 0;
1332    }
1333
1334    cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1335    /*
1336     * We should not lose information. pwrite_zeroes_alignment and
1337     * max_pwrite_zeroes guarantees it.
1338     */
1339    assert(((cdw12 + 1) << s->blkshift) == bytes);
1340
1341    NvmeCmd cmd = {
1342        .opcode = NVME_CMD_WRITE_ZEROES,
1343        .nsid = cpu_to_le32(s->nsid),
1344        .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1345        .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1346    };
1347
1348    NVMeCoData data = {
1349        .ctx = bdrv_get_aio_context(bs),
1350        .ret = -EINPROGRESS,
1351    };
1352
1353    if (flags & BDRV_REQ_MAY_UNMAP) {
1354        cdw12 |= (1 << 25);
1355    }
1356
1357    if (flags & BDRV_REQ_FUA) {
1358        cdw12 |= (1 << 30);
1359    }
1360
1361    cmd.cdw12 = cpu_to_le32(cdw12);
1362
1363    trace_nvme_write_zeroes(s, offset, bytes, flags);
1364    assert(s->queue_count > 1);
1365    req = nvme_get_free_req(ioq);
1366    assert(req);
1367
1368    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1369
1370    data.co = qemu_coroutine_self();
1371    while (data.ret == -EINPROGRESS) {
1372        qemu_coroutine_yield();
1373    }
1374
1375    trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1376    return data.ret;
1377}
1378
1379
1380static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1381                                         int64_t offset,
1382                                         int64_t bytes)
1383{
1384    BDRVNVMeState *s = bs->opaque;
1385    NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1386    NVMeRequest *req;
1387    QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1388    QEMUIOVector local_qiov;
1389    int ret;
1390
1391    NvmeCmd cmd = {
1392        .opcode = NVME_CMD_DSM,
1393        .nsid = cpu_to_le32(s->nsid),
1394        .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1395        .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1396    };
1397
1398    NVMeCoData data = {
1399        .ctx = bdrv_get_aio_context(bs),
1400        .ret = -EINPROGRESS,
1401    };
1402
1403    if (!s->supports_discard) {
1404        return -ENOTSUP;
1405    }
1406
1407    assert(s->queue_count > 1);
1408
1409    /*
1410     * Filling the @buf requires @offset and @bytes to satisfy restrictions
1411     * defined in nvme_refresh_limits().
1412     */
1413    assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1414    assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1415    assert((bytes >> s->blkshift) <= UINT32_MAX);
1416
1417    buf = qemu_try_memalign(s->page_size, s->page_size);
1418    if (!buf) {
1419        return -ENOMEM;
1420    }
1421    memset(buf, 0, s->page_size);
1422    buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1423    buf->slba = cpu_to_le64(offset >> s->blkshift);
1424    buf->cattr = 0;
1425
1426    qemu_iovec_init(&local_qiov, 1);
1427    qemu_iovec_add(&local_qiov, buf, 4096);
1428
1429    req = nvme_get_free_req(ioq);
1430    assert(req);
1431
1432    qemu_co_mutex_lock(&s->dma_map_lock);
1433    ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1434    qemu_co_mutex_unlock(&s->dma_map_lock);
1435
1436    if (ret) {
1437        nvme_put_free_req_and_wake(ioq, req);
1438        goto out;
1439    }
1440
1441    trace_nvme_dsm(s, offset, bytes);
1442
1443    nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1444
1445    data.co = qemu_coroutine_self();
1446    while (data.ret == -EINPROGRESS) {
1447        qemu_coroutine_yield();
1448    }
1449
1450    qemu_co_mutex_lock(&s->dma_map_lock);
1451    ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1452    qemu_co_mutex_unlock(&s->dma_map_lock);
1453
1454    if (ret) {
1455        goto out;
1456    }
1457
1458    ret = data.ret;
1459    trace_nvme_dsm_done(s, offset, bytes, ret);
1460out:
1461    qemu_iovec_destroy(&local_qiov);
1462    return ret;
1463
1464}
1465
1466static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1467                                         bool exact, PreallocMode prealloc,
1468                                         BdrvRequestFlags flags, Error **errp)
1469{
1470    int64_t cur_length;
1471
1472    if (prealloc != PREALLOC_MODE_OFF) {
1473        error_setg(errp, "Unsupported preallocation mode '%s'",
1474                   PreallocMode_str(prealloc));
1475        return -ENOTSUP;
1476    }
1477
1478    cur_length = nvme_getlength(bs);
1479    if (offset != cur_length && exact) {
1480        error_setg(errp, "Cannot resize NVMe devices");
1481        return -ENOTSUP;
1482    } else if (offset > cur_length) {
1483        error_setg(errp, "Cannot grow NVMe devices");
1484        return -EINVAL;
1485    }
1486
1487    return 0;
1488}
1489
1490static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1491                               BlockReopenQueue *queue, Error **errp)
1492{
1493    return 0;
1494}
1495
1496static void nvme_refresh_filename(BlockDriverState *bs)
1497{
1498    BDRVNVMeState *s = bs->opaque;
1499
1500    snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1501             s->device, s->nsid);
1502}
1503
1504static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1505{
1506    BDRVNVMeState *s = bs->opaque;
1507
1508    bs->bl.opt_mem_alignment = s->page_size;
1509    bs->bl.request_alignment = s->page_size;
1510    bs->bl.max_transfer = s->max_transfer;
1511
1512    /*
1513     * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1514     * at most 0xFFFF
1515     */
1516    bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1517    bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1518                                         1UL << s->blkshift);
1519
1520    bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1521    bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1522                                    1UL << s->blkshift);
1523}
1524
1525static void nvme_detach_aio_context(BlockDriverState *bs)
1526{
1527    BDRVNVMeState *s = bs->opaque;
1528
1529    for (unsigned i = 0; i < s->queue_count; i++) {
1530        NVMeQueuePair *q = s->queues[i];
1531
1532        qemu_bh_delete(q->completion_bh);
1533        q->completion_bh = NULL;
1534    }
1535
1536    aio_set_event_notifier(bdrv_get_aio_context(bs),
1537                           &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1538                           false, NULL, NULL, NULL);
1539}
1540
1541static void nvme_attach_aio_context(BlockDriverState *bs,
1542                                    AioContext *new_context)
1543{
1544    BDRVNVMeState *s = bs->opaque;
1545
1546    s->aio_context = new_context;
1547    aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1548                           false, nvme_handle_event, nvme_poll_cb,
1549                           nvme_poll_ready);
1550
1551    for (unsigned i = 0; i < s->queue_count; i++) {
1552        NVMeQueuePair *q = s->queues[i];
1553
1554        q->completion_bh =
1555            aio_bh_new(new_context, nvme_process_completion_bh, q);
1556    }
1557}
1558
1559static void nvme_aio_plug(BlockDriverState *bs)
1560{
1561    BDRVNVMeState *s = bs->opaque;
1562    assert(!s->plugged);
1563    s->plugged = true;
1564}
1565
1566static void nvme_aio_unplug(BlockDriverState *bs)
1567{
1568    BDRVNVMeState *s = bs->opaque;
1569    assert(s->plugged);
1570    s->plugged = false;
1571    for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
1572        NVMeQueuePair *q = s->queues[i];
1573        qemu_mutex_lock(&q->lock);
1574        nvme_kick(q);
1575        nvme_process_completion(q);
1576        qemu_mutex_unlock(&q->lock);
1577    }
1578}
1579
1580static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1581{
1582    int ret;
1583    Error *local_err = NULL;
1584    BDRVNVMeState *s = bs->opaque;
1585
1586    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, &local_err);
1587    if (ret) {
1588        /* FIXME: we may run out of IOVA addresses after repeated
1589         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1590         * doesn't reclaim addresses for fixed mappings. */
1591        error_reportf_err(local_err, "nvme_register_buf failed: ");
1592    }
1593}
1594
1595static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1596{
1597    BDRVNVMeState *s = bs->opaque;
1598
1599    qemu_vfio_dma_unmap(s->vfio, host);
1600}
1601
1602static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1603{
1604    BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1605    BDRVNVMeState *s = bs->opaque;
1606
1607    stats->driver = BLOCKDEV_DRIVER_NVME;
1608    stats->u.nvme = (BlockStatsSpecificNvme) {
1609        .completion_errors = s->stats.completion_errors,
1610        .aligned_accesses = s->stats.aligned_accesses,
1611        .unaligned_accesses = s->stats.unaligned_accesses,
1612    };
1613
1614    return stats;
1615}
1616
1617static const char *const nvme_strong_runtime_opts[] = {
1618    NVME_BLOCK_OPT_DEVICE,
1619    NVME_BLOCK_OPT_NAMESPACE,
1620
1621    NULL
1622};
1623
1624static BlockDriver bdrv_nvme = {
1625    .format_name              = "nvme",
1626    .protocol_name            = "nvme",
1627    .instance_size            = sizeof(BDRVNVMeState),
1628
1629    .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1630    .create_opts              = &bdrv_create_opts_simple,
1631
1632    .bdrv_parse_filename      = nvme_parse_filename,
1633    .bdrv_file_open           = nvme_file_open,
1634    .bdrv_close               = nvme_close,
1635    .bdrv_getlength           = nvme_getlength,
1636    .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1637    .bdrv_co_truncate         = nvme_co_truncate,
1638
1639    .bdrv_co_preadv           = nvme_co_preadv,
1640    .bdrv_co_pwritev          = nvme_co_pwritev,
1641
1642    .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1643    .bdrv_co_pdiscard         = nvme_co_pdiscard,
1644
1645    .bdrv_co_flush_to_disk    = nvme_co_flush,
1646    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1647
1648    .bdrv_refresh_filename    = nvme_refresh_filename,
1649    .bdrv_refresh_limits      = nvme_refresh_limits,
1650    .strong_runtime_opts      = nvme_strong_runtime_opts,
1651    .bdrv_get_specific_stats  = nvme_get_specific_stats,
1652
1653    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1654    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1655
1656    .bdrv_io_plug             = nvme_aio_plug,
1657    .bdrv_io_unplug           = nvme_aio_unplug,
1658
1659    .bdrv_register_buf        = nvme_register_buf,
1660    .bdrv_unregister_buf      = nvme_unregister_buf,
1661};
1662
1663static void bdrv_nvme_init(void)
1664{
1665    bdrv_register(&bdrv_nvme);
1666}
1667
1668block_init(bdrv_nvme_init);
1669