qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/main-loop.h"
  21#include "qemu/module.h"
  22#include "qemu/option.h"
  23#include "qemu/memalign.h"
  24#include "trace.h"
  25#include "qed.h"
  26#include "sysemu/block-backend.h"
  27#include "qapi/qmp/qdict.h"
  28#include "qapi/qobject-input-visitor.h"
  29#include "qapi/qapi-visit-block-core.h"
  30
  31static QemuOptsList qed_create_opts;
  32
  33static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  34                          const char *filename)
  35{
  36    const QEDHeader *header = (const QEDHeader *)buf;
  37
  38    if (buf_size < sizeof(*header)) {
  39        return 0;
  40    }
  41    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  42        return 0;
  43    }
  44    return 100;
  45}
  46
  47/**
  48 * Check whether an image format is raw
  49 *
  50 * @fmt:    Backing file format, may be NULL
  51 */
  52static bool qed_fmt_is_raw(const char *fmt)
  53{
  54    return fmt && strcmp(fmt, "raw") == 0;
  55}
  56
  57static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  58{
  59    cpu->magic = le32_to_cpu(le->magic);
  60    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  61    cpu->table_size = le32_to_cpu(le->table_size);
  62    cpu->header_size = le32_to_cpu(le->header_size);
  63    cpu->features = le64_to_cpu(le->features);
  64    cpu->compat_features = le64_to_cpu(le->compat_features);
  65    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  66    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  67    cpu->image_size = le64_to_cpu(le->image_size);
  68    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  69    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  70}
  71
  72static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  73{
  74    le->magic = cpu_to_le32(cpu->magic);
  75    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  76    le->table_size = cpu_to_le32(cpu->table_size);
  77    le->header_size = cpu_to_le32(cpu->header_size);
  78    le->features = cpu_to_le64(cpu->features);
  79    le->compat_features = cpu_to_le64(cpu->compat_features);
  80    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  81    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  82    le->image_size = cpu_to_le64(cpu->image_size);
  83    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  84    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  85}
  86
  87int qed_write_header_sync(BDRVQEDState *s)
  88{
  89    QEDHeader le;
  90
  91    qed_header_cpu_to_le(&s->header, &le);
  92    return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
  93}
  94
  95/**
  96 * Update header in-place (does not rewrite backing filename or other strings)
  97 *
  98 * This function only updates known header fields in-place and does not affect
  99 * extra data after the QED header.
 100 *
 101 * No new allocating reqs can start while this function runs.
 102 */
 103static int coroutine_fn qed_write_header(BDRVQEDState *s)
 104{
 105    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 106     * the data following the header if an unrecognized compat feature is
 107     * active.  Therefore, first read the sectors containing the header, update
 108     * them, and write back.
 109     */
 110
 111    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 112    size_t len = nsectors * BDRV_SECTOR_SIZE;
 113    uint8_t *buf;
 114    int ret;
 115
 116    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 117
 118    buf = qemu_blockalign(s->bs, len);
 119
 120    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 121    if (ret < 0) {
 122        goto out;
 123    }
 124
 125    /* Update header */
 126    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 127
 128    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 129    if (ret < 0) {
 130        goto out;
 131    }
 132
 133    ret = 0;
 134out:
 135    qemu_vfree(buf);
 136    return ret;
 137}
 138
 139static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 140{
 141    uint64_t table_entries;
 142    uint64_t l2_size;
 143
 144    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 145    l2_size = table_entries * cluster_size;
 146
 147    return l2_size * table_entries;
 148}
 149
 150static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 151{
 152    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 153        cluster_size > QED_MAX_CLUSTER_SIZE) {
 154        return false;
 155    }
 156    if (cluster_size & (cluster_size - 1)) {
 157        return false; /* not power of 2 */
 158    }
 159    return true;
 160}
 161
 162static bool qed_is_table_size_valid(uint32_t table_size)
 163{
 164    if (table_size < QED_MIN_TABLE_SIZE ||
 165        table_size > QED_MAX_TABLE_SIZE) {
 166        return false;
 167    }
 168    if (table_size & (table_size - 1)) {
 169        return false; /* not power of 2 */
 170    }
 171    return true;
 172}
 173
 174static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 175                                    uint32_t table_size)
 176{
 177    if (image_size % BDRV_SECTOR_SIZE != 0) {
 178        return false; /* not multiple of sector size */
 179    }
 180    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 181        return false; /* image is too large */
 182    }
 183    return true;
 184}
 185
 186/**
 187 * Read a string of known length from the image file
 188 *
 189 * @file:       Image file
 190 * @offset:     File offset to start of string, in bytes
 191 * @n:          String length in bytes
 192 * @buf:        Destination buffer
 193 * @buflen:     Destination buffer length in bytes
 194 * @ret:        0 on success, -errno on failure
 195 *
 196 * The string is NUL-terminated.
 197 */
 198static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 199                           char *buf, size_t buflen)
 200{
 201    int ret;
 202    if (n >= buflen) {
 203        return -EINVAL;
 204    }
 205    ret = bdrv_pread(file, offset, n, buf, 0);
 206    if (ret < 0) {
 207        return ret;
 208    }
 209    buf[n] = '\0';
 210    return 0;
 211}
 212
 213/**
 214 * Allocate new clusters
 215 *
 216 * @s:          QED state
 217 * @n:          Number of contiguous clusters to allocate
 218 * @ret:        Offset of first allocated cluster
 219 *
 220 * This function only produces the offset where the new clusters should be
 221 * written.  It updates BDRVQEDState but does not make any changes to the image
 222 * file.
 223 *
 224 * Called with table_lock held.
 225 */
 226static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 227{
 228    uint64_t offset = s->file_size;
 229    s->file_size += n * s->header.cluster_size;
 230    return offset;
 231}
 232
 233QEDTable *qed_alloc_table(BDRVQEDState *s)
 234{
 235    /* Honor O_DIRECT memory alignment requirements */
 236    return qemu_blockalign(s->bs,
 237                           s->header.cluster_size * s->header.table_size);
 238}
 239
 240/**
 241 * Allocate a new zeroed L2 table
 242 *
 243 * Called with table_lock held.
 244 */
 245static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 246{
 247    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 248
 249    l2_table->table = qed_alloc_table(s);
 250    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 251
 252    memset(l2_table->table->offsets, 0,
 253           s->header.cluster_size * s->header.table_size);
 254    return l2_table;
 255}
 256
 257static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 258{
 259    qemu_co_mutex_lock(&s->table_lock);
 260
 261    /* No reentrancy is allowed.  */
 262    assert(!s->allocating_write_reqs_plugged);
 263    if (s->allocating_acb != NULL) {
 264        /* Another allocating write came concurrently.  This cannot happen
 265         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 266         */
 267        qemu_co_mutex_unlock(&s->table_lock);
 268        return false;
 269    }
 270
 271    s->allocating_write_reqs_plugged = true;
 272    qemu_co_mutex_unlock(&s->table_lock);
 273    return true;
 274}
 275
 276static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 277{
 278    qemu_co_mutex_lock(&s->table_lock);
 279    assert(s->allocating_write_reqs_plugged);
 280    s->allocating_write_reqs_plugged = false;
 281    qemu_co_queue_next(&s->allocating_write_reqs);
 282    qemu_co_mutex_unlock(&s->table_lock);
 283}
 284
 285static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 286{
 287    BDRVQEDState *s = opaque;
 288    int ret;
 289
 290    trace_qed_need_check_timer_cb(s);
 291
 292    if (!qed_plug_allocating_write_reqs(s)) {
 293        return;
 294    }
 295
 296    /* Ensure writes are on disk before clearing flag */
 297    ret = bdrv_co_flush(s->bs->file->bs);
 298    if (ret < 0) {
 299        qed_unplug_allocating_write_reqs(s);
 300        return;
 301    }
 302
 303    s->header.features &= ~QED_F_NEED_CHECK;
 304    ret = qed_write_header(s);
 305    (void) ret;
 306
 307    qed_unplug_allocating_write_reqs(s);
 308
 309    ret = bdrv_co_flush(s->bs);
 310    (void) ret;
 311}
 312
 313static void qed_need_check_timer_cb(void *opaque)
 314{
 315    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 316    qemu_coroutine_enter(co);
 317}
 318
 319static void qed_start_need_check_timer(BDRVQEDState *s)
 320{
 321    trace_qed_start_need_check_timer(s);
 322
 323    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 324     * migration.
 325     */
 326    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 327                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 328}
 329
 330/* It's okay to call this multiple times or when no timer is started */
 331static void qed_cancel_need_check_timer(BDRVQEDState *s)
 332{
 333    trace_qed_cancel_need_check_timer(s);
 334    timer_del(s->need_check_timer);
 335}
 336
 337static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 338{
 339    BDRVQEDState *s = bs->opaque;
 340
 341    qed_cancel_need_check_timer(s);
 342    timer_free(s->need_check_timer);
 343}
 344
 345static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 346                                        AioContext *new_context)
 347{
 348    BDRVQEDState *s = bs->opaque;
 349
 350    s->need_check_timer = aio_timer_new(new_context,
 351                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 352                                        qed_need_check_timer_cb, s);
 353    if (s->header.features & QED_F_NEED_CHECK) {
 354        qed_start_need_check_timer(s);
 355    }
 356}
 357
 358static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 359{
 360    BDRVQEDState *s = bs->opaque;
 361
 362    /* Fire the timer immediately in order to start doing I/O as soon as the
 363     * header is flushed.
 364     */
 365    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 366        qed_cancel_need_check_timer(s);
 367        qed_need_check_timer_entry(s);
 368    }
 369}
 370
 371static void bdrv_qed_init_state(BlockDriverState *bs)
 372{
 373    BDRVQEDState *s = bs->opaque;
 374
 375    memset(s, 0, sizeof(BDRVQEDState));
 376    s->bs = bs;
 377    qemu_co_mutex_init(&s->table_lock);
 378    qemu_co_queue_init(&s->allocating_write_reqs);
 379}
 380
 381/* Called with table_lock held.  */
 382static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 383                                         int flags, Error **errp)
 384{
 385    BDRVQEDState *s = bs->opaque;
 386    QEDHeader le_header;
 387    int64_t file_size;
 388    int ret;
 389
 390    ret = bdrv_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
 391    if (ret < 0) {
 392        error_setg(errp, "Failed to read QED header");
 393        return ret;
 394    }
 395    qed_header_le_to_cpu(&le_header, &s->header);
 396
 397    if (s->header.magic != QED_MAGIC) {
 398        error_setg(errp, "Image not in QED format");
 399        return -EINVAL;
 400    }
 401    if (s->header.features & ~QED_FEATURE_MASK) {
 402        /* image uses unsupported feature bits */
 403        error_setg(errp, "Unsupported QED features: %" PRIx64,
 404                   s->header.features & ~QED_FEATURE_MASK);
 405        return -ENOTSUP;
 406    }
 407    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 408        error_setg(errp, "QED cluster size is invalid");
 409        return -EINVAL;
 410    }
 411
 412    /* Round down file size to the last cluster */
 413    file_size = bdrv_getlength(bs->file->bs);
 414    if (file_size < 0) {
 415        error_setg(errp, "Failed to get file length");
 416        return file_size;
 417    }
 418    s->file_size = qed_start_of_cluster(s, file_size);
 419
 420    if (!qed_is_table_size_valid(s->header.table_size)) {
 421        error_setg(errp, "QED table size is invalid");
 422        return -EINVAL;
 423    }
 424    if (!qed_is_image_size_valid(s->header.image_size,
 425                                 s->header.cluster_size,
 426                                 s->header.table_size)) {
 427        error_setg(errp, "QED image size is invalid");
 428        return -EINVAL;
 429    }
 430    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 431        error_setg(errp, "QED table offset is invalid");
 432        return -EINVAL;
 433    }
 434
 435    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 436                      sizeof(uint64_t);
 437    s->l2_shift = ctz32(s->header.cluster_size);
 438    s->l2_mask = s->table_nelems - 1;
 439    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 440
 441    /* Header size calculation must not overflow uint32_t */
 442    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 443        error_setg(errp, "QED header size is too large");
 444        return -EINVAL;
 445    }
 446
 447    if ((s->header.features & QED_F_BACKING_FILE)) {
 448        if ((uint64_t)s->header.backing_filename_offset +
 449            s->header.backing_filename_size >
 450            s->header.cluster_size * s->header.header_size) {
 451            error_setg(errp, "QED backing filename offset is invalid");
 452            return -EINVAL;
 453        }
 454
 455        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 456                              s->header.backing_filename_size,
 457                              bs->auto_backing_file,
 458                              sizeof(bs->auto_backing_file));
 459        if (ret < 0) {
 460            error_setg(errp, "Failed to read backing filename");
 461            return ret;
 462        }
 463        pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 464                bs->auto_backing_file);
 465
 466        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 467            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 468        }
 469    }
 470
 471    /* Reset unknown autoclear feature bits.  This is a backwards
 472     * compatibility mechanism that allows images to be opened by older
 473     * programs, which "knock out" unknown feature bits.  When an image is
 474     * opened by a newer program again it can detect that the autoclear
 475     * feature is no longer valid.
 476     */
 477    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 478        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 479        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 480
 481        ret = qed_write_header_sync(s);
 482        if (ret) {
 483            error_setg(errp, "Failed to update header");
 484            return ret;
 485        }
 486
 487        /* From here on only known autoclear feature bits are valid */
 488        bdrv_flush(bs->file->bs);
 489    }
 490
 491    s->l1_table = qed_alloc_table(s);
 492    qed_init_l2_cache(&s->l2_cache);
 493
 494    ret = qed_read_l1_table_sync(s);
 495    if (ret) {
 496        error_setg(errp, "Failed to read L1 table");
 497        goto out;
 498    }
 499
 500    /* If image was not closed cleanly, check consistency */
 501    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 502        /* Read-only images cannot be fixed.  There is no risk of corruption
 503         * since write operations are not possible.  Therefore, allow
 504         * potentially inconsistent images to be opened read-only.  This can
 505         * aid data recovery from an otherwise inconsistent image.
 506         */
 507        if (!bdrv_is_read_only(bs->file->bs) &&
 508            !(flags & BDRV_O_INACTIVE)) {
 509            BdrvCheckResult result = {0};
 510
 511            ret = qed_check(s, &result, true);
 512            if (ret) {
 513                error_setg(errp, "Image corrupted");
 514                goto out;
 515            }
 516        }
 517    }
 518
 519    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 520
 521out:
 522    if (ret) {
 523        qed_free_l2_cache(&s->l2_cache);
 524        qemu_vfree(s->l1_table);
 525    }
 526    return ret;
 527}
 528
 529typedef struct QEDOpenCo {
 530    BlockDriverState *bs;
 531    QDict *options;
 532    int flags;
 533    Error **errp;
 534    int ret;
 535} QEDOpenCo;
 536
 537static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 538{
 539    QEDOpenCo *qoc = opaque;
 540    BDRVQEDState *s = qoc->bs->opaque;
 541
 542    qemu_co_mutex_lock(&s->table_lock);
 543    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 544    qemu_co_mutex_unlock(&s->table_lock);
 545}
 546
 547static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 548                         Error **errp)
 549{
 550    QEDOpenCo qoc = {
 551        .bs = bs,
 552        .options = options,
 553        .flags = flags,
 554        .errp = errp,
 555        .ret = -EINPROGRESS
 556    };
 557
 558    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
 559                               BDRV_CHILD_IMAGE, false, errp);
 560    if (!bs->file) {
 561        return -EINVAL;
 562    }
 563
 564    bdrv_qed_init_state(bs);
 565    if (qemu_in_coroutine()) {
 566        bdrv_qed_open_entry(&qoc);
 567    } else {
 568        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 569        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 570        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 571    }
 572    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 573    return qoc.ret;
 574}
 575
 576static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 577{
 578    BDRVQEDState *s = bs->opaque;
 579
 580    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 581    bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
 582}
 583
 584/* We have nothing to do for QED reopen, stubs just return
 585 * success */
 586static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 587                                   BlockReopenQueue *queue, Error **errp)
 588{
 589    return 0;
 590}
 591
 592static void bdrv_qed_close(BlockDriverState *bs)
 593{
 594    BDRVQEDState *s = bs->opaque;
 595
 596    bdrv_qed_detach_aio_context(bs);
 597
 598    /* Ensure writes reach stable storage */
 599    bdrv_flush(bs->file->bs);
 600
 601    /* Clean shutdown, no check required on next open */
 602    if (s->header.features & QED_F_NEED_CHECK) {
 603        s->header.features &= ~QED_F_NEED_CHECK;
 604        qed_write_header_sync(s);
 605    }
 606
 607    qed_free_l2_cache(&s->l2_cache);
 608    qemu_vfree(s->l1_table);
 609}
 610
 611static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 612                                           Error **errp)
 613{
 614    BlockdevCreateOptionsQed *qed_opts;
 615    BlockBackend *blk = NULL;
 616    BlockDriverState *bs = NULL;
 617
 618    QEDHeader header;
 619    QEDHeader le_header;
 620    uint8_t *l1_table = NULL;
 621    size_t l1_size;
 622    int ret = 0;
 623
 624    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 625    qed_opts = &opts->u.qed;
 626
 627    /* Validate options and set default values */
 628    if (!qed_opts->has_cluster_size) {
 629        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 630    }
 631    if (!qed_opts->has_table_size) {
 632        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 633    }
 634
 635    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 636        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 637                         "and power of 2",
 638                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 639        return -EINVAL;
 640    }
 641    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 642        error_setg(errp, "QED table size must be within range [%u, %u] "
 643                         "and power of 2",
 644                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 645        return -EINVAL;
 646    }
 647    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 648                                 qed_opts->table_size))
 649    {
 650        error_setg(errp, "QED image size must be a non-zero multiple of "
 651                         "cluster size and less than %" PRIu64 " bytes",
 652                   qed_max_image_size(qed_opts->cluster_size,
 653                                      qed_opts->table_size));
 654        return -EINVAL;
 655    }
 656
 657    /* Create BlockBackend to write to the image */
 658    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 659    if (bs == NULL) {
 660        return -EIO;
 661    }
 662
 663    blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
 664                          errp);
 665    if (!blk) {
 666        ret = -EPERM;
 667        goto out;
 668    }
 669    blk_set_allow_write_beyond_eof(blk, true);
 670
 671    /* Prepare image format */
 672    header = (QEDHeader) {
 673        .magic = QED_MAGIC,
 674        .cluster_size = qed_opts->cluster_size,
 675        .table_size = qed_opts->table_size,
 676        .header_size = 1,
 677        .features = 0,
 678        .compat_features = 0,
 679        .l1_table_offset = qed_opts->cluster_size,
 680        .image_size = qed_opts->size,
 681    };
 682
 683    l1_size = header.cluster_size * header.table_size;
 684
 685    /*
 686     * The QED format associates file length with allocation status,
 687     * so a new file (which is empty) must have a length of 0.
 688     */
 689    ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
 690    if (ret < 0) {
 691        goto out;
 692    }
 693
 694    if (qed_opts->has_backing_file) {
 695        header.features |= QED_F_BACKING_FILE;
 696        header.backing_filename_offset = sizeof(le_header);
 697        header.backing_filename_size = strlen(qed_opts->backing_file);
 698
 699        if (qed_opts->has_backing_fmt) {
 700            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 701            if (qed_fmt_is_raw(backing_fmt)) {
 702                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 703            }
 704        }
 705    }
 706
 707    qed_header_cpu_to_le(&header, &le_header);
 708    ret = blk_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
 709    if (ret < 0) {
 710        goto out;
 711    }
 712    ret = blk_pwrite(blk, sizeof(le_header), header.backing_filename_size,
 713                     qed_opts->backing_file, 0);
 714    if (ret < 0) {
 715        goto out;
 716    }
 717
 718    l1_table = g_malloc0(l1_size);
 719    ret = blk_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
 720    if (ret < 0) {
 721        goto out;
 722    }
 723
 724    ret = 0; /* success */
 725out:
 726    g_free(l1_table);
 727    blk_unref(blk);
 728    bdrv_unref(bs);
 729    return ret;
 730}
 731
 732static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
 733                                                const char *filename,
 734                                                QemuOpts *opts,
 735                                                Error **errp)
 736{
 737    BlockdevCreateOptions *create_options = NULL;
 738    QDict *qdict;
 739    Visitor *v;
 740    BlockDriverState *bs = NULL;
 741    int ret;
 742
 743    static const QDictRenames opt_renames[] = {
 744        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 745        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 746        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 747        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 748        { NULL, NULL },
 749    };
 750
 751    /* Parse options and convert legacy syntax */
 752    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 753
 754    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 755        ret = -EINVAL;
 756        goto fail;
 757    }
 758
 759    /* Create and open the file (protocol layer) */
 760    ret = bdrv_create_file(filename, opts, errp);
 761    if (ret < 0) {
 762        goto fail;
 763    }
 764
 765    bs = bdrv_open(filename, NULL, NULL,
 766                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 767    if (bs == NULL) {
 768        ret = -EIO;
 769        goto fail;
 770    }
 771
 772    /* Now get the QAPI type BlockdevCreateOptions */
 773    qdict_put_str(qdict, "driver", "qed");
 774    qdict_put_str(qdict, "file", bs->node_name);
 775
 776    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 777    if (!v) {
 778        ret = -EINVAL;
 779        goto fail;
 780    }
 781
 782    visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
 783    visit_free(v);
 784    if (!create_options) {
 785        ret = -EINVAL;
 786        goto fail;
 787    }
 788
 789    /* Silently round up size */
 790    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 791    create_options->u.qed.size =
 792        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 793
 794    /* Create the qed image (format layer) */
 795    ret = bdrv_qed_co_create(create_options, errp);
 796
 797fail:
 798    qobject_unref(qdict);
 799    bdrv_unref(bs);
 800    qapi_free_BlockdevCreateOptions(create_options);
 801    return ret;
 802}
 803
 804static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 805                                                 bool want_zero,
 806                                                 int64_t pos, int64_t bytes,
 807                                                 int64_t *pnum, int64_t *map,
 808                                                 BlockDriverState **file)
 809{
 810    BDRVQEDState *s = bs->opaque;
 811    size_t len = MIN(bytes, SIZE_MAX);
 812    int status;
 813    QEDRequest request = { .l2_table = NULL };
 814    uint64_t offset;
 815    int ret;
 816
 817    qemu_co_mutex_lock(&s->table_lock);
 818    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 819
 820    *pnum = len;
 821    switch (ret) {
 822    case QED_CLUSTER_FOUND:
 823        *map = offset | qed_offset_into_cluster(s, pos);
 824        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 825        *file = bs->file->bs;
 826        break;
 827    case QED_CLUSTER_ZERO:
 828        status = BDRV_BLOCK_ZERO;
 829        break;
 830    case QED_CLUSTER_L2:
 831    case QED_CLUSTER_L1:
 832        status = 0;
 833        break;
 834    default:
 835        assert(ret < 0);
 836        status = ret;
 837        break;
 838    }
 839
 840    qed_unref_l2_cache_entry(request.l2_table);
 841    qemu_co_mutex_unlock(&s->table_lock);
 842
 843    return status;
 844}
 845
 846static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 847{
 848    return acb->bs->opaque;
 849}
 850
 851/**
 852 * Read from the backing file or zero-fill if no backing file
 853 *
 854 * @s:              QED state
 855 * @pos:            Byte position in device
 856 * @qiov:           Destination I/O vector
 857 *
 858 * This function reads qiov->size bytes starting at pos from the backing file.
 859 * If there is no backing file then zeroes are read.
 860 */
 861static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 862                                              QEMUIOVector *qiov)
 863{
 864    if (s->bs->backing) {
 865        BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 866        return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
 867    }
 868    qemu_iovec_memset(qiov, 0, 0, qiov->size);
 869    return 0;
 870}
 871
 872/**
 873 * Copy data from backing file into the image
 874 *
 875 * @s:          QED state
 876 * @pos:        Byte position in device
 877 * @len:        Number of bytes
 878 * @offset:     Byte offset in image file
 879 */
 880static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 881                                                   uint64_t pos, uint64_t len,
 882                                                   uint64_t offset)
 883{
 884    QEMUIOVector qiov;
 885    int ret;
 886
 887    /* Skip copy entirely if there is no work to do */
 888    if (len == 0) {
 889        return 0;
 890    }
 891
 892    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 893
 894    ret = qed_read_backing_file(s, pos, &qiov);
 895
 896    if (ret) {
 897        goto out;
 898    }
 899
 900    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 901    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 902    if (ret < 0) {
 903        goto out;
 904    }
 905    ret = 0;
 906out:
 907    qemu_vfree(qemu_iovec_buf(&qiov));
 908    return ret;
 909}
 910
 911/**
 912 * Link one or more contiguous clusters into a table
 913 *
 914 * @s:              QED state
 915 * @table:          L2 table
 916 * @index:          First cluster index
 917 * @n:              Number of contiguous clusters
 918 * @cluster:        First cluster offset
 919 *
 920 * The cluster offset may be an allocated byte offset in the image file, the
 921 * zero cluster marker, or the unallocated cluster marker.
 922 *
 923 * Called with table_lock held.
 924 */
 925static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 926                                             int index, unsigned int n,
 927                                             uint64_t cluster)
 928{
 929    int i;
 930    for (i = index; i < index + n; i++) {
 931        table->offsets[i] = cluster;
 932        if (!qed_offset_is_unalloc_cluster(cluster) &&
 933            !qed_offset_is_zero_cluster(cluster)) {
 934            cluster += s->header.cluster_size;
 935        }
 936    }
 937}
 938
 939/* Called with table_lock held.  */
 940static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 941{
 942    BDRVQEDState *s = acb_to_s(acb);
 943
 944    /* Free resources */
 945    qemu_iovec_destroy(&acb->cur_qiov);
 946    qed_unref_l2_cache_entry(acb->request.l2_table);
 947
 948    /* Free the buffer we may have allocated for zero writes */
 949    if (acb->flags & QED_AIOCB_ZERO) {
 950        qemu_vfree(acb->qiov->iov[0].iov_base);
 951        acb->qiov->iov[0].iov_base = NULL;
 952    }
 953
 954    /* Start next allocating write request waiting behind this one.  Note that
 955     * requests enqueue themselves when they first hit an unallocated cluster
 956     * but they wait until the entire request is finished before waking up the
 957     * next request in the queue.  This ensures that we don't cycle through
 958     * requests multiple times but rather finish one at a time completely.
 959     */
 960    if (acb == s->allocating_acb) {
 961        s->allocating_acb = NULL;
 962        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
 963            qemu_co_queue_next(&s->allocating_write_reqs);
 964        } else if (s->header.features & QED_F_NEED_CHECK) {
 965            qed_start_need_check_timer(s);
 966        }
 967    }
 968}
 969
 970/**
 971 * Update L1 table with new L2 table offset and write it out
 972 *
 973 * Called with table_lock held.
 974 */
 975static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
 976{
 977    BDRVQEDState *s = acb_to_s(acb);
 978    CachedL2Table *l2_table = acb->request.l2_table;
 979    uint64_t l2_offset = l2_table->offset;
 980    int index, ret;
 981
 982    index = qed_l1_index(s, acb->cur_pos);
 983    s->l1_table->offsets[index] = l2_table->offset;
 984
 985    ret = qed_write_l1_table(s, index, 1);
 986
 987    /* Commit the current L2 table to the cache */
 988    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
 989
 990    /* This is guaranteed to succeed because we just committed the entry to the
 991     * cache.
 992     */
 993    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
 994    assert(acb->request.l2_table != NULL);
 995
 996    return ret;
 997}
 998
 999
1000/**
1001 * Update L2 table with new cluster offsets and write them out
1002 *
1003 * Called with table_lock held.
1004 */
1005static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1006{
1007    BDRVQEDState *s = acb_to_s(acb);
1008    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1009    int index, ret;
1010
1011    if (need_alloc) {
1012        qed_unref_l2_cache_entry(acb->request.l2_table);
1013        acb->request.l2_table = qed_new_l2_table(s);
1014    }
1015
1016    index = qed_l2_index(s, acb->cur_pos);
1017    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1018                         offset);
1019
1020    if (need_alloc) {
1021        /* Write out the whole new L2 table */
1022        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1023        if (ret) {
1024            return ret;
1025        }
1026        return qed_aio_write_l1_update(acb);
1027    } else {
1028        /* Write out only the updated part of the L2 table */
1029        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1030                                 false);
1031        if (ret) {
1032            return ret;
1033        }
1034    }
1035    return 0;
1036}
1037
1038/**
1039 * Write data to the image file
1040 *
1041 * Called with table_lock *not* held.
1042 */
1043static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1044{
1045    BDRVQEDState *s = acb_to_s(acb);
1046    uint64_t offset = acb->cur_cluster +
1047                      qed_offset_into_cluster(s, acb->cur_pos);
1048
1049    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1050
1051    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1052    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1053                           &acb->cur_qiov, 0);
1054}
1055
1056/**
1057 * Populate untouched regions of new data cluster
1058 *
1059 * Called with table_lock held.
1060 */
1061static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1062{
1063    BDRVQEDState *s = acb_to_s(acb);
1064    uint64_t start, len, offset;
1065    int ret;
1066
1067    qemu_co_mutex_unlock(&s->table_lock);
1068
1069    /* Populate front untouched region of new data cluster */
1070    start = qed_start_of_cluster(s, acb->cur_pos);
1071    len = qed_offset_into_cluster(s, acb->cur_pos);
1072
1073    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1074    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1075    if (ret < 0) {
1076        goto out;
1077    }
1078
1079    /* Populate back untouched region of new data cluster */
1080    start = acb->cur_pos + acb->cur_qiov.size;
1081    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1082    offset = acb->cur_cluster +
1083             qed_offset_into_cluster(s, acb->cur_pos) +
1084             acb->cur_qiov.size;
1085
1086    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1087    ret = qed_copy_from_backing_file(s, start, len, offset);
1088    if (ret < 0) {
1089        goto out;
1090    }
1091
1092    ret = qed_aio_write_main(acb);
1093    if (ret < 0) {
1094        goto out;
1095    }
1096
1097    if (s->bs->backing) {
1098        /*
1099         * Flush new data clusters before updating the L2 table
1100         *
1101         * This flush is necessary when a backing file is in use.  A crash
1102         * during an allocating write could result in empty clusters in the
1103         * image.  If the write only touched a subregion of the cluster,
1104         * then backing image sectors have been lost in the untouched
1105         * region.  The solution is to flush after writing a new data
1106         * cluster and before updating the L2 table.
1107         */
1108        ret = bdrv_co_flush(s->bs->file->bs);
1109    }
1110
1111out:
1112    qemu_co_mutex_lock(&s->table_lock);
1113    return ret;
1114}
1115
1116/**
1117 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1118 */
1119static bool qed_should_set_need_check(BDRVQEDState *s)
1120{
1121    /* The flush before L2 update path ensures consistency */
1122    if (s->bs->backing) {
1123        return false;
1124    }
1125
1126    return !(s->header.features & QED_F_NEED_CHECK);
1127}
1128
1129/**
1130 * Write new data cluster
1131 *
1132 * @acb:        Write request
1133 * @len:        Length in bytes
1134 *
1135 * This path is taken when writing to previously unallocated clusters.
1136 *
1137 * Called with table_lock held.
1138 */
1139static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1140{
1141    BDRVQEDState *s = acb_to_s(acb);
1142    int ret;
1143
1144    /* Cancel timer when the first allocating request comes in */
1145    if (s->allocating_acb == NULL) {
1146        qed_cancel_need_check_timer(s);
1147    }
1148
1149    /* Freeze this request if another allocating write is in progress */
1150    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1151        if (s->allocating_acb != NULL) {
1152            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1153            assert(s->allocating_acb == NULL);
1154        }
1155        s->allocating_acb = acb;
1156        return -EAGAIN; /* start over with looking up table entries */
1157    }
1158
1159    acb->cur_nclusters = qed_bytes_to_clusters(s,
1160            qed_offset_into_cluster(s, acb->cur_pos) + len);
1161    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1162
1163    if (acb->flags & QED_AIOCB_ZERO) {
1164        /* Skip ahead if the clusters are already zero */
1165        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1166            return 0;
1167        }
1168        acb->cur_cluster = 1;
1169    } else {
1170        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1171    }
1172
1173    if (qed_should_set_need_check(s)) {
1174        s->header.features |= QED_F_NEED_CHECK;
1175        ret = qed_write_header(s);
1176        if (ret < 0) {
1177            return ret;
1178        }
1179    }
1180
1181    if (!(acb->flags & QED_AIOCB_ZERO)) {
1182        ret = qed_aio_write_cow(acb);
1183        if (ret < 0) {
1184            return ret;
1185        }
1186    }
1187
1188    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1189}
1190
1191/**
1192 * Write data cluster in place
1193 *
1194 * @acb:        Write request
1195 * @offset:     Cluster offset in bytes
1196 * @len:        Length in bytes
1197 *
1198 * This path is taken when writing to already allocated clusters.
1199 *
1200 * Called with table_lock held.
1201 */
1202static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1203                                              size_t len)
1204{
1205    BDRVQEDState *s = acb_to_s(acb);
1206    int r;
1207
1208    qemu_co_mutex_unlock(&s->table_lock);
1209
1210    /* Allocate buffer for zero writes */
1211    if (acb->flags & QED_AIOCB_ZERO) {
1212        struct iovec *iov = acb->qiov->iov;
1213
1214        if (!iov->iov_base) {
1215            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1216            if (iov->iov_base == NULL) {
1217                r = -ENOMEM;
1218                goto out;
1219            }
1220            memset(iov->iov_base, 0, iov->iov_len);
1221        }
1222    }
1223
1224    /* Calculate the I/O vector */
1225    acb->cur_cluster = offset;
1226    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1227
1228    /* Do the actual write.  */
1229    r = qed_aio_write_main(acb);
1230out:
1231    qemu_co_mutex_lock(&s->table_lock);
1232    return r;
1233}
1234
1235/**
1236 * Write data cluster
1237 *
1238 * @opaque:     Write request
1239 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1240 * @offset:     Cluster offset in bytes
1241 * @len:        Length in bytes
1242 *
1243 * Called with table_lock held.
1244 */
1245static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1246                                           uint64_t offset, size_t len)
1247{
1248    QEDAIOCB *acb = opaque;
1249
1250    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1251
1252    acb->find_cluster_ret = ret;
1253
1254    switch (ret) {
1255    case QED_CLUSTER_FOUND:
1256        return qed_aio_write_inplace(acb, offset, len);
1257
1258    case QED_CLUSTER_L2:
1259    case QED_CLUSTER_L1:
1260    case QED_CLUSTER_ZERO:
1261        return qed_aio_write_alloc(acb, len);
1262
1263    default:
1264        g_assert_not_reached();
1265    }
1266}
1267
1268/**
1269 * Read data cluster
1270 *
1271 * @opaque:     Read request
1272 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1273 * @offset:     Cluster offset in bytes
1274 * @len:        Length in bytes
1275 *
1276 * Called with table_lock held.
1277 */
1278static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1279                                          uint64_t offset, size_t len)
1280{
1281    QEDAIOCB *acb = opaque;
1282    BDRVQEDState *s = acb_to_s(acb);
1283    BlockDriverState *bs = acb->bs;
1284    int r;
1285
1286    qemu_co_mutex_unlock(&s->table_lock);
1287
1288    /* Adjust offset into cluster */
1289    offset += qed_offset_into_cluster(s, acb->cur_pos);
1290
1291    trace_qed_aio_read_data(s, acb, ret, offset, len);
1292
1293    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1294
1295    /* Handle zero cluster and backing file reads, otherwise read
1296     * data cluster directly.
1297     */
1298    if (ret == QED_CLUSTER_ZERO) {
1299        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1300        r = 0;
1301    } else if (ret != QED_CLUSTER_FOUND) {
1302        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
1303    } else {
1304        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1305        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1306                           &acb->cur_qiov, 0);
1307    }
1308
1309    qemu_co_mutex_lock(&s->table_lock);
1310    return r;
1311}
1312
1313/**
1314 * Begin next I/O or complete the request
1315 */
1316static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1317{
1318    BDRVQEDState *s = acb_to_s(acb);
1319    uint64_t offset;
1320    size_t len;
1321    int ret;
1322
1323    qemu_co_mutex_lock(&s->table_lock);
1324    while (1) {
1325        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1326
1327        acb->qiov_offset += acb->cur_qiov.size;
1328        acb->cur_pos += acb->cur_qiov.size;
1329        qemu_iovec_reset(&acb->cur_qiov);
1330
1331        /* Complete request */
1332        if (acb->cur_pos >= acb->end_pos) {
1333            ret = 0;
1334            break;
1335        }
1336
1337        /* Find next cluster and start I/O */
1338        len = acb->end_pos - acb->cur_pos;
1339        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1340        if (ret < 0) {
1341            break;
1342        }
1343
1344        if (acb->flags & QED_AIOCB_WRITE) {
1345            ret = qed_aio_write_data(acb, ret, offset, len);
1346        } else {
1347            ret = qed_aio_read_data(acb, ret, offset, len);
1348        }
1349
1350        if (ret < 0 && ret != -EAGAIN) {
1351            break;
1352        }
1353    }
1354
1355    trace_qed_aio_complete(s, acb, ret);
1356    qed_aio_complete(acb);
1357    qemu_co_mutex_unlock(&s->table_lock);
1358    return ret;
1359}
1360
1361static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1362                                       QEMUIOVector *qiov, int nb_sectors,
1363                                       int flags)
1364{
1365    QEDAIOCB acb = {
1366        .bs         = bs,
1367        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1368        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1369        .qiov       = qiov,
1370        .flags      = flags,
1371    };
1372    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1373
1374    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1375
1376    /* Start request */
1377    return qed_aio_next_io(&acb);
1378}
1379
1380static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1381                                          int64_t sector_num, int nb_sectors,
1382                                          QEMUIOVector *qiov)
1383{
1384    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1385}
1386
1387static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1388                                           int64_t sector_num, int nb_sectors,
1389                                           QEMUIOVector *qiov, int flags)
1390{
1391    assert(!flags);
1392    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1393}
1394
1395static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1396                                                  int64_t offset,
1397                                                  int64_t bytes,
1398                                                  BdrvRequestFlags flags)
1399{
1400    BDRVQEDState *s = bs->opaque;
1401
1402    /*
1403     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1404     * then it will be allocated during request processing.
1405     */
1406    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1407
1408    /*
1409     * QED is not prepared for 63bit write-zero requests, so rely on
1410     * max_pwrite_zeroes.
1411     */
1412    assert(bytes <= INT_MAX);
1413
1414    /* Fall back if the request is not aligned */
1415    if (qed_offset_into_cluster(s, offset) ||
1416        qed_offset_into_cluster(s, bytes)) {
1417        return -ENOTSUP;
1418    }
1419
1420    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1421                          bytes >> BDRV_SECTOR_BITS,
1422                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1423}
1424
1425static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1426                                             int64_t offset,
1427                                             bool exact,
1428                                             PreallocMode prealloc,
1429                                             BdrvRequestFlags flags,
1430                                             Error **errp)
1431{
1432    BDRVQEDState *s = bs->opaque;
1433    uint64_t old_image_size;
1434    int ret;
1435
1436    if (prealloc != PREALLOC_MODE_OFF) {
1437        error_setg(errp, "Unsupported preallocation mode '%s'",
1438                   PreallocMode_str(prealloc));
1439        return -ENOTSUP;
1440    }
1441
1442    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1443                                 s->header.table_size)) {
1444        error_setg(errp, "Invalid image size specified");
1445        return -EINVAL;
1446    }
1447
1448    if ((uint64_t)offset < s->header.image_size) {
1449        error_setg(errp, "Shrinking images is currently not supported");
1450        return -ENOTSUP;
1451    }
1452
1453    old_image_size = s->header.image_size;
1454    s->header.image_size = offset;
1455    ret = qed_write_header_sync(s);
1456    if (ret < 0) {
1457        s->header.image_size = old_image_size;
1458        error_setg_errno(errp, -ret, "Failed to update the image size");
1459    }
1460    return ret;
1461}
1462
1463static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1464{
1465    BDRVQEDState *s = bs->opaque;
1466    return s->header.image_size;
1467}
1468
1469static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1470{
1471    BDRVQEDState *s = bs->opaque;
1472
1473    memset(bdi, 0, sizeof(*bdi));
1474    bdi->cluster_size = s->header.cluster_size;
1475    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1476    return 0;
1477}
1478
1479static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1480                                        const char *backing_file,
1481                                        const char *backing_fmt)
1482{
1483    BDRVQEDState *s = bs->opaque;
1484    QEDHeader new_header, le_header;
1485    void *buffer;
1486    size_t buffer_len, backing_file_len;
1487    int ret;
1488
1489    /* Refuse to set backing filename if unknown compat feature bits are
1490     * active.  If the image uses an unknown compat feature then we may not
1491     * know the layout of data following the header structure and cannot safely
1492     * add a new string.
1493     */
1494    if (backing_file && (s->header.compat_features &
1495                         ~QED_COMPAT_FEATURE_MASK)) {
1496        return -ENOTSUP;
1497    }
1498
1499    memcpy(&new_header, &s->header, sizeof(new_header));
1500
1501    new_header.features &= ~(QED_F_BACKING_FILE |
1502                             QED_F_BACKING_FORMAT_NO_PROBE);
1503
1504    /* Adjust feature flags */
1505    if (backing_file) {
1506        new_header.features |= QED_F_BACKING_FILE;
1507
1508        if (qed_fmt_is_raw(backing_fmt)) {
1509            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1510        }
1511    }
1512
1513    /* Calculate new header size */
1514    backing_file_len = 0;
1515
1516    if (backing_file) {
1517        backing_file_len = strlen(backing_file);
1518    }
1519
1520    buffer_len = sizeof(new_header);
1521    new_header.backing_filename_offset = buffer_len;
1522    new_header.backing_filename_size = backing_file_len;
1523    buffer_len += backing_file_len;
1524
1525    /* Make sure we can rewrite header without failing */
1526    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1527        return -ENOSPC;
1528    }
1529
1530    /* Prepare new header */
1531    buffer = g_malloc(buffer_len);
1532
1533    qed_header_cpu_to_le(&new_header, &le_header);
1534    memcpy(buffer, &le_header, sizeof(le_header));
1535    buffer_len = sizeof(le_header);
1536
1537    if (backing_file) {
1538        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1539        buffer_len += backing_file_len;
1540    }
1541
1542    /* Write new header */
1543    ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
1544    g_free(buffer);
1545    if (ret == 0) {
1546        memcpy(&s->header, &new_header, sizeof(new_header));
1547    }
1548    return ret;
1549}
1550
1551static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1552                                                      Error **errp)
1553{
1554    BDRVQEDState *s = bs->opaque;
1555    int ret;
1556
1557    bdrv_qed_close(bs);
1558
1559    bdrv_qed_init_state(bs);
1560    qemu_co_mutex_lock(&s->table_lock);
1561    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
1562    qemu_co_mutex_unlock(&s->table_lock);
1563    if (ret < 0) {
1564        error_prepend(errp, "Could not reopen qed layer: ");
1565    }
1566}
1567
1568static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1569                                          BdrvCheckResult *result,
1570                                          BdrvCheckMode fix)
1571{
1572    BDRVQEDState *s = bs->opaque;
1573    int ret;
1574
1575    qemu_co_mutex_lock(&s->table_lock);
1576    ret = qed_check(s, result, !!fix);
1577    qemu_co_mutex_unlock(&s->table_lock);
1578
1579    return ret;
1580}
1581
1582static QemuOptsList qed_create_opts = {
1583    .name = "qed-create-opts",
1584    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1585    .desc = {
1586        {
1587            .name = BLOCK_OPT_SIZE,
1588            .type = QEMU_OPT_SIZE,
1589            .help = "Virtual disk size"
1590        },
1591        {
1592            .name = BLOCK_OPT_BACKING_FILE,
1593            .type = QEMU_OPT_STRING,
1594            .help = "File name of a base image"
1595        },
1596        {
1597            .name = BLOCK_OPT_BACKING_FMT,
1598            .type = QEMU_OPT_STRING,
1599            .help = "Image format of the base image"
1600        },
1601        {
1602            .name = BLOCK_OPT_CLUSTER_SIZE,
1603            .type = QEMU_OPT_SIZE,
1604            .help = "Cluster size (in bytes)",
1605            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1606        },
1607        {
1608            .name = BLOCK_OPT_TABLE_SIZE,
1609            .type = QEMU_OPT_SIZE,
1610            .help = "L1/L2 table size (in clusters)"
1611        },
1612        { /* end of list */ }
1613    }
1614};
1615
1616static BlockDriver bdrv_qed = {
1617    .format_name              = "qed",
1618    .instance_size            = sizeof(BDRVQEDState),
1619    .create_opts              = &qed_create_opts,
1620    .is_format                = true,
1621    .supports_backing         = true,
1622
1623    .bdrv_probe               = bdrv_qed_probe,
1624    .bdrv_open                = bdrv_qed_open,
1625    .bdrv_close               = bdrv_qed_close,
1626    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1627    .bdrv_child_perm          = bdrv_default_perms,
1628    .bdrv_co_create           = bdrv_qed_co_create,
1629    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1630    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1631    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1632    .bdrv_co_readv            = bdrv_qed_co_readv,
1633    .bdrv_co_writev           = bdrv_qed_co_writev,
1634    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1635    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1636    .bdrv_getlength           = bdrv_qed_getlength,
1637    .bdrv_get_info            = bdrv_qed_get_info,
1638    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1639    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1640    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1641    .bdrv_co_check            = bdrv_qed_co_check,
1642    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1643    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1644    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1645};
1646
1647static void bdrv_qed_init(void)
1648{
1649    bdrv_register(&bdrv_qed);
1650}
1651
1652block_init(bdrv_qed_init);
1653