qemu/bsd-user/signal.c
<<
>>
Prefs
   1/*
   2 *  Emulation of BSD signals
   3 *
   4 *  Copyright (c) 2003 - 2008 Fabrice Bellard
   5 *  Copyright (c) 2013 Stacey Son
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2 of the License, or
  10 *  (at your option) any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/log.h"
  23#include "qemu.h"
  24#include "signal-common.h"
  25#include "trace.h"
  26#include "hw/core/tcg-cpu-ops.h"
  27#include "host-signal.h"
  28
  29static struct target_sigaction sigact_table[TARGET_NSIG];
  30static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
  31static void target_to_host_sigset_internal(sigset_t *d,
  32        const target_sigset_t *s);
  33
  34static inline int on_sig_stack(TaskState *ts, unsigned long sp)
  35{
  36    return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
  37}
  38
  39static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
  40{
  41    return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
  42        on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
  43}
  44
  45/*
  46 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
  47 * (unlike Linux) these functions are just the identity mapping. This might not
  48 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
  49 */
  50int host_to_target_signal(int sig)
  51{
  52    return sig;
  53}
  54
  55int target_to_host_signal(int sig)
  56{
  57    return sig;
  58}
  59
  60static inline void target_sigemptyset(target_sigset_t *set)
  61{
  62    memset(set, 0, sizeof(*set));
  63}
  64
  65static inline void target_sigaddset(target_sigset_t *set, int signum)
  66{
  67    signum--;
  68    uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
  69    set->__bits[signum / TARGET_NSIG_BPW] |= mask;
  70}
  71
  72static inline int target_sigismember(const target_sigset_t *set, int signum)
  73{
  74    signum--;
  75    abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
  76    return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
  77}
  78
  79/* Adjust the signal context to rewind out of safe-syscall if we're in it */
  80static inline void rewind_if_in_safe_syscall(void *puc)
  81{
  82    ucontext_t *uc = (ucontext_t *)puc;
  83    uintptr_t pcreg = host_signal_pc(uc);
  84
  85    if (pcreg > (uintptr_t)safe_syscall_start
  86        && pcreg < (uintptr_t)safe_syscall_end) {
  87        host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
  88    }
  89}
  90
  91/*
  92 * Note: The following take advantage of the BSD signal property that all
  93 * signals are available on all architectures.
  94 */
  95static void host_to_target_sigset_internal(target_sigset_t *d,
  96        const sigset_t *s)
  97{
  98    int i;
  99
 100    target_sigemptyset(d);
 101    for (i = 1; i <= NSIG; i++) {
 102        if (sigismember(s, i)) {
 103            target_sigaddset(d, host_to_target_signal(i));
 104        }
 105    }
 106}
 107
 108void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
 109{
 110    target_sigset_t d1;
 111    int i;
 112
 113    host_to_target_sigset_internal(&d1, s);
 114    for (i = 0; i < _SIG_WORDS; i++) {
 115        d->__bits[i] = tswap32(d1.__bits[i]);
 116    }
 117}
 118
 119static void target_to_host_sigset_internal(sigset_t *d,
 120        const target_sigset_t *s)
 121{
 122    int i;
 123
 124    sigemptyset(d);
 125    for (i = 1; i <= TARGET_NSIG; i++) {
 126        if (target_sigismember(s, i)) {
 127            sigaddset(d, target_to_host_signal(i));
 128        }
 129    }
 130}
 131
 132void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
 133{
 134    target_sigset_t s1;
 135    int i;
 136
 137    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 138        s1.__bits[i] = tswap32(s->__bits[i]);
 139    }
 140    target_to_host_sigset_internal(d, &s1);
 141}
 142
 143static bool has_trapno(int tsig)
 144{
 145    return tsig == TARGET_SIGILL ||
 146        tsig == TARGET_SIGFPE ||
 147        tsig == TARGET_SIGSEGV ||
 148        tsig == TARGET_SIGBUS ||
 149        tsig == TARGET_SIGTRAP;
 150}
 151
 152/* Siginfo conversion. */
 153
 154/*
 155 * Populate tinfo w/o swapping based on guessing which fields are valid.
 156 */
 157static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
 158        const siginfo_t *info)
 159{
 160    int sig = host_to_target_signal(info->si_signo);
 161    int si_code = info->si_code;
 162    int si_type;
 163
 164    /*
 165     * Make sure we that the variable portion of the target siginfo is zeroed
 166     * out so we don't leak anything into that.
 167     */
 168    memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
 169
 170    /*
 171     * This is awkward, because we have to use a combination of the si_code and
 172     * si_signo to figure out which of the union's members are valid.o We
 173     * therefore make our best guess.
 174     *
 175     * Once we have made our guess, we record it in the top 16 bits of
 176     * the si_code, so that tswap_siginfo() later can use it.
 177     * tswap_siginfo() will strip these top bits out before writing
 178     * si_code to the guest (sign-extending the lower bits).
 179     */
 180    tinfo->si_signo = sig;
 181    tinfo->si_errno = info->si_errno;
 182    tinfo->si_code = info->si_code;
 183    tinfo->si_pid = info->si_pid;
 184    tinfo->si_uid = info->si_uid;
 185    tinfo->si_status = info->si_status;
 186    tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
 187    /*
 188     * si_value is opaque to kernel. On all FreeBSD platforms,
 189     * sizeof(sival_ptr) >= sizeof(sival_int) so the following
 190     * always will copy the larger element.
 191     */
 192    tinfo->si_value.sival_ptr =
 193        (abi_ulong)(unsigned long)info->si_value.sival_ptr;
 194
 195    switch (si_code) {
 196        /*
 197         * All the SI_xxx codes that are defined here are global to
 198         * all the signals (they have values that none of the other,
 199         * more specific signal info will set).
 200         */
 201    case SI_USER:
 202    case SI_LWP:
 203    case SI_KERNEL:
 204    case SI_QUEUE:
 205    case SI_ASYNCIO:
 206        /*
 207         * Only the fixed parts are valid (though FreeBSD doesn't always
 208         * set all the fields to non-zero values.
 209         */
 210        si_type = QEMU_SI_NOINFO;
 211        break;
 212    case SI_TIMER:
 213        tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
 214        tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
 215        si_type = QEMU_SI_TIMER;
 216        break;
 217    case SI_MESGQ:
 218        tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
 219        si_type = QEMU_SI_MESGQ;
 220        break;
 221    default:
 222        /*
 223         * We have to go based on the signal number now to figure out
 224         * what's valid.
 225         */
 226        si_type = QEMU_SI_NOINFO;
 227        if (has_trapno(sig)) {
 228            tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
 229            si_type = QEMU_SI_FAULT;
 230        }
 231#ifdef TARGET_SIGPOLL
 232        /*
 233         * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
 234         * a chance it may popup in the future.
 235         */
 236        if (sig == TARGET_SIGPOLL) {
 237            tinfo->_reason._poll._band = info->_reason._poll._band;
 238            si_type = QEMU_SI_POLL;
 239        }
 240#endif
 241        /*
 242         * Unsure that this can actually be generated, and our support for
 243         * capsicum is somewhere between weak and non-existant, but if we get
 244         * one, then we know what to save.
 245         */
 246#ifdef QEMU_SI_CAPSICUM
 247        if (sig == TARGET_SIGTRAP) {
 248            tinfo->_reason._capsicum._syscall =
 249                info->_reason._capsicum._syscall;
 250            si_type = QEMU_SI_CAPSICUM;
 251        }
 252#endif
 253        break;
 254    }
 255    tinfo->si_code = deposit32(si_code, 24, 8, si_type);
 256}
 257
 258static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
 259{
 260    int si_type = extract32(info->si_code, 24, 8);
 261    int si_code = sextract32(info->si_code, 0, 24);
 262
 263    __put_user(info->si_signo, &tinfo->si_signo);
 264    __put_user(info->si_errno, &tinfo->si_errno);
 265    __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
 266    __put_user(info->si_pid, &tinfo->si_pid);
 267    __put_user(info->si_uid, &tinfo->si_uid);
 268    __put_user(info->si_status, &tinfo->si_status);
 269    __put_user(info->si_addr, &tinfo->si_addr);
 270    /*
 271     * Unswapped, because we passed it through mostly untouched.  si_value is
 272     * opaque to the kernel, so we didn't bother with potentially wasting cycles
 273     * to swap it into host byte order.
 274     */
 275    tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
 276
 277    /*
 278     * We can use our internal marker of which fields in the structure
 279     * are valid, rather than duplicating the guesswork of
 280     * host_to_target_siginfo_noswap() here.
 281     */
 282    switch (si_type) {
 283    case QEMU_SI_NOINFO:        /* No additional info */
 284        break;
 285    case QEMU_SI_FAULT:
 286        __put_user(info->_reason._fault._trapno,
 287                   &tinfo->_reason._fault._trapno);
 288        break;
 289    case QEMU_SI_TIMER:
 290        __put_user(info->_reason._timer._timerid,
 291                   &tinfo->_reason._timer._timerid);
 292        __put_user(info->_reason._timer._overrun,
 293                   &tinfo->_reason._timer._overrun);
 294        break;
 295    case QEMU_SI_MESGQ:
 296        __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
 297        break;
 298    case QEMU_SI_POLL:
 299        /* Note: Not generated on FreeBSD */
 300        __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
 301        break;
 302#ifdef QEMU_SI_CAPSICUM
 303    case QEMU_SI_CAPSICUM:
 304        __put_user(info->_reason._capsicum._syscall,
 305                   &tinfo->_reason._capsicum._syscall);
 306        break;
 307#endif
 308    default:
 309        g_assert_not_reached();
 310    }
 311}
 312
 313int block_signals(void)
 314{
 315    TaskState *ts = (TaskState *)thread_cpu->opaque;
 316    sigset_t set;
 317
 318    /*
 319     * It's OK to block everything including SIGSEGV, because we won't run any
 320     * further guest code before unblocking signals in
 321     * process_pending_signals(). We depend on the FreeBSD behaivor here where
 322     * this will only affect this thread's signal mask. We don't use
 323     * pthread_sigmask which might seem more correct because that routine also
 324     * does odd things with SIGCANCEL to implement pthread_cancel().
 325     */
 326    sigfillset(&set);
 327    sigprocmask(SIG_SETMASK, &set, 0);
 328
 329    return qatomic_xchg(&ts->signal_pending, 1);
 330}
 331
 332/* Returns 1 if given signal should dump core if not handled. */
 333static int core_dump_signal(int sig)
 334{
 335    switch (sig) {
 336    case TARGET_SIGABRT:
 337    case TARGET_SIGFPE:
 338    case TARGET_SIGILL:
 339    case TARGET_SIGQUIT:
 340    case TARGET_SIGSEGV:
 341    case TARGET_SIGTRAP:
 342    case TARGET_SIGBUS:
 343        return 1;
 344    default:
 345        return 0;
 346    }
 347}
 348
 349/* Abort execution with signal. */
 350static G_NORETURN
 351void dump_core_and_abort(int target_sig)
 352{
 353    CPUArchState *env = thread_cpu->env_ptr;
 354    CPUState *cpu = env_cpu(env);
 355    TaskState *ts = cpu->opaque;
 356    int core_dumped = 0;
 357    int host_sig;
 358    struct sigaction act;
 359
 360    host_sig = target_to_host_signal(target_sig);
 361    gdb_signalled(env, target_sig);
 362
 363    /* Dump core if supported by target binary format */
 364    if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
 365        stop_all_tasks();
 366        core_dumped =
 367            ((*ts->bprm->core_dump)(target_sig, env) == 0);
 368    }
 369    if (core_dumped) {
 370        struct rlimit nodump;
 371
 372        /*
 373         * We already dumped the core of target process, we don't want
 374         * a coredump of qemu itself.
 375         */
 376         getrlimit(RLIMIT_CORE, &nodump);
 377         nodump.rlim_cur = 0;
 378         setrlimit(RLIMIT_CORE, &nodump);
 379         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
 380             "- %s\n", target_sig, strsignal(host_sig), "core dumped");
 381    }
 382
 383    /*
 384     * The proper exit code for dying from an uncaught signal is
 385     * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
 386     * a negative value.  To get the proper exit code we need to
 387     * actually die from an uncaught signal.  Here the default signal
 388     * handler is installed, we send ourself a signal and we wait for
 389     * it to arrive.
 390     */
 391    memset(&act, 0, sizeof(act));
 392    sigfillset(&act.sa_mask);
 393    act.sa_handler = SIG_DFL;
 394    sigaction(host_sig, &act, NULL);
 395
 396    kill(getpid(), host_sig);
 397
 398    /*
 399     * Make sure the signal isn't masked (just reuse the mask inside
 400     * of act).
 401     */
 402    sigdelset(&act.sa_mask, host_sig);
 403    sigsuspend(&act.sa_mask);
 404
 405    /* unreachable */
 406    abort();
 407}
 408
 409/*
 410 * Queue a signal so that it will be send to the virtual CPU as soon as
 411 * possible.
 412 */
 413void queue_signal(CPUArchState *env, int sig, int si_type,
 414                  target_siginfo_t *info)
 415{
 416    CPUState *cpu = env_cpu(env);
 417    TaskState *ts = cpu->opaque;
 418
 419    trace_user_queue_signal(env, sig);
 420
 421    info->si_code = deposit32(info->si_code, 24, 8, si_type);
 422
 423    ts->sync_signal.info = *info;
 424    ts->sync_signal.pending = sig;
 425    /* Signal that a new signal is pending. */
 426    qatomic_set(&ts->signal_pending, 1);
 427    return;
 428}
 429
 430static int fatal_signal(int sig)
 431{
 432
 433    switch (sig) {
 434    case TARGET_SIGCHLD:
 435    case TARGET_SIGURG:
 436    case TARGET_SIGWINCH:
 437    case TARGET_SIGINFO:
 438        /* Ignored by default. */
 439        return 0;
 440    case TARGET_SIGCONT:
 441    case TARGET_SIGSTOP:
 442    case TARGET_SIGTSTP:
 443    case TARGET_SIGTTIN:
 444    case TARGET_SIGTTOU:
 445        /* Job control signals.  */
 446        return 0;
 447    default:
 448        return 1;
 449    }
 450}
 451
 452/*
 453 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
 454 * 'force' part is handled in process_pending_signals().
 455 */
 456void force_sig_fault(int sig, int code, abi_ulong addr)
 457{
 458    CPUState *cpu = thread_cpu;
 459    CPUArchState *env = cpu->env_ptr;
 460    target_siginfo_t info = {};
 461
 462    info.si_signo = sig;
 463    info.si_errno = 0;
 464    info.si_code = code;
 465    info.si_addr = addr;
 466    queue_signal(env, sig, QEMU_SI_FAULT, &info);
 467}
 468
 469static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
 470{
 471    CPUArchState *env = thread_cpu->env_ptr;
 472    CPUState *cpu = env_cpu(env);
 473    TaskState *ts = cpu->opaque;
 474    target_siginfo_t tinfo;
 475    ucontext_t *uc = puc;
 476    struct emulated_sigtable *k;
 477    int guest_sig;
 478    uintptr_t pc = 0;
 479    bool sync_sig = false;
 480
 481    /*
 482     * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
 483     * handling wrt signal blocking and unwinding.
 484     */
 485    if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
 486        MMUAccessType access_type;
 487        uintptr_t host_addr;
 488        abi_ptr guest_addr;
 489        bool is_write;
 490
 491        host_addr = (uintptr_t)info->si_addr;
 492
 493        /*
 494         * Convert forcefully to guest address space: addresses outside
 495         * reserved_va are still valid to report via SEGV_MAPERR.
 496         */
 497        guest_addr = h2g_nocheck(host_addr);
 498
 499        pc = host_signal_pc(uc);
 500        is_write = host_signal_write(info, uc);
 501        access_type = adjust_signal_pc(&pc, is_write);
 502
 503        if (host_sig == SIGSEGV) {
 504            bool maperr = true;
 505
 506            if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
 507                /* If this was a write to a TB protected page, restart. */
 508                if (is_write &&
 509                    handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
 510                                                pc, guest_addr)) {
 511                    return;
 512                }
 513
 514                /*
 515                 * With reserved_va, the whole address space is PROT_NONE,
 516                 * which means that we may get ACCERR when we want MAPERR.
 517                 */
 518                if (page_get_flags(guest_addr) & PAGE_VALID) {
 519                    maperr = false;
 520                } else {
 521                    info->si_code = SEGV_MAPERR;
 522                }
 523            }
 524
 525            sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
 526            cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
 527        } else {
 528            sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
 529            if (info->si_code == BUS_ADRALN) {
 530                cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
 531            }
 532        }
 533
 534        sync_sig = true;
 535    }
 536
 537    /* Get the target signal number. */
 538    guest_sig = host_to_target_signal(host_sig);
 539    if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
 540        return;
 541    }
 542    trace_user_host_signal(cpu, host_sig, guest_sig);
 543
 544    host_to_target_siginfo_noswap(&tinfo, info);
 545
 546    k = &ts->sigtab[guest_sig - 1];
 547    k->info = tinfo;
 548    k->pending = guest_sig;
 549    ts->signal_pending = 1;
 550
 551    /*
 552     * For synchronous signals, unwind the cpu state to the faulting
 553     * insn and then exit back to the main loop so that the signal
 554     * is delivered immediately.
 555     */
 556    if (sync_sig) {
 557        cpu->exception_index = EXCP_INTERRUPT;
 558        cpu_loop_exit_restore(cpu, pc);
 559    }
 560
 561    rewind_if_in_safe_syscall(puc);
 562
 563    /*
 564     * Block host signals until target signal handler entered. We
 565     * can't block SIGSEGV or SIGBUS while we're executing guest
 566     * code in case the guest code provokes one in the window between
 567     * now and it getting out to the main loop. Signals will be
 568     * unblocked again in process_pending_signals().
 569     */
 570    sigfillset(&uc->uc_sigmask);
 571    sigdelset(&uc->uc_sigmask, SIGSEGV);
 572    sigdelset(&uc->uc_sigmask, SIGBUS);
 573
 574    /* Interrupt the virtual CPU as soon as possible. */
 575    cpu_exit(thread_cpu);
 576}
 577
 578/* do_sigaltstack() returns target values and errnos. */
 579/* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
 580abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
 581{
 582    TaskState *ts = (TaskState *)thread_cpu->opaque;
 583    int ret;
 584    target_stack_t oss;
 585
 586    if (uoss_addr) {
 587        /* Save current signal stack params */
 588        oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
 589        oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
 590        oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
 591    }
 592
 593    if (uss_addr) {
 594        target_stack_t *uss;
 595        target_stack_t ss;
 596        size_t minstacksize = TARGET_MINSIGSTKSZ;
 597
 598        ret = -TARGET_EFAULT;
 599        if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
 600            goto out;
 601        }
 602        __get_user(ss.ss_sp, &uss->ss_sp);
 603        __get_user(ss.ss_size, &uss->ss_size);
 604        __get_user(ss.ss_flags, &uss->ss_flags);
 605        unlock_user_struct(uss, uss_addr, 0);
 606
 607        ret = -TARGET_EPERM;
 608        if (on_sig_stack(ts, sp)) {
 609            goto out;
 610        }
 611
 612        ret = -TARGET_EINVAL;
 613        if (ss.ss_flags != TARGET_SS_DISABLE
 614            && ss.ss_flags != TARGET_SS_ONSTACK
 615            && ss.ss_flags != 0) {
 616            goto out;
 617        }
 618
 619        if (ss.ss_flags == TARGET_SS_DISABLE) {
 620            ss.ss_size = 0;
 621            ss.ss_sp = 0;
 622        } else {
 623            ret = -TARGET_ENOMEM;
 624            if (ss.ss_size < minstacksize) {
 625                goto out;
 626            }
 627        }
 628
 629        ts->sigaltstack_used.ss_sp = ss.ss_sp;
 630        ts->sigaltstack_used.ss_size = ss.ss_size;
 631    }
 632
 633    if (uoss_addr) {
 634        ret = -TARGET_EFAULT;
 635        if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
 636            goto out;
 637        }
 638    }
 639
 640    ret = 0;
 641out:
 642    return ret;
 643}
 644
 645/* do_sigaction() return host values and errnos */
 646int do_sigaction(int sig, const struct target_sigaction *act,
 647        struct target_sigaction *oact)
 648{
 649    struct target_sigaction *k;
 650    struct sigaction act1;
 651    int host_sig;
 652    int ret = 0;
 653
 654    if (sig < 1 || sig > TARGET_NSIG) {
 655        return -TARGET_EINVAL;
 656    }
 657
 658    if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
 659        act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
 660        return -TARGET_EINVAL;
 661    }
 662
 663    if (block_signals()) {
 664        return -TARGET_ERESTART;
 665    }
 666
 667    k = &sigact_table[sig - 1];
 668    if (oact) {
 669        oact->_sa_handler = tswapal(k->_sa_handler);
 670        oact->sa_flags = tswap32(k->sa_flags);
 671        oact->sa_mask = k->sa_mask;
 672    }
 673    if (act) {
 674        k->_sa_handler = tswapal(act->_sa_handler);
 675        k->sa_flags = tswap32(act->sa_flags);
 676        k->sa_mask = act->sa_mask;
 677
 678        /* Update the host signal state. */
 679        host_sig = target_to_host_signal(sig);
 680        if (host_sig != SIGSEGV && host_sig != SIGBUS) {
 681            memset(&act1, 0, sizeof(struct sigaction));
 682            sigfillset(&act1.sa_mask);
 683            act1.sa_flags = SA_SIGINFO;
 684            if (k->sa_flags & TARGET_SA_RESTART) {
 685                act1.sa_flags |= SA_RESTART;
 686            }
 687            /*
 688             *  Note: It is important to update the host kernel signal mask to
 689             *  avoid getting unexpected interrupted system calls.
 690             */
 691            if (k->_sa_handler == TARGET_SIG_IGN) {
 692                act1.sa_sigaction = (void *)SIG_IGN;
 693            } else if (k->_sa_handler == TARGET_SIG_DFL) {
 694                if (fatal_signal(sig)) {
 695                    act1.sa_sigaction = host_signal_handler;
 696                } else {
 697                    act1.sa_sigaction = (void *)SIG_DFL;
 698                }
 699            } else {
 700                act1.sa_sigaction = host_signal_handler;
 701            }
 702            ret = sigaction(host_sig, &act1, NULL);
 703        }
 704    }
 705    return ret;
 706}
 707
 708static inline abi_ulong get_sigframe(struct target_sigaction *ka,
 709        CPUArchState *env, size_t frame_size)
 710{
 711    TaskState *ts = (TaskState *)thread_cpu->opaque;
 712    abi_ulong sp;
 713
 714    /* Use default user stack */
 715    sp = get_sp_from_cpustate(env);
 716
 717    if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
 718        sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
 719    }
 720
 721/* TODO: make this a target_arch function / define */
 722#if defined(TARGET_ARM)
 723    return (sp - frame_size) & ~7;
 724#elif defined(TARGET_AARCH64)
 725    return (sp - frame_size) & ~15;
 726#else
 727    return sp - frame_size;
 728#endif
 729}
 730
 731/* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
 732
 733static void setup_frame(int sig, int code, struct target_sigaction *ka,
 734    target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
 735{
 736    struct target_sigframe *frame;
 737    abi_ulong frame_addr;
 738    int i;
 739
 740    frame_addr = get_sigframe(ka, env, sizeof(*frame));
 741    trace_user_setup_frame(env, frame_addr);
 742    if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
 743        unlock_user_struct(frame, frame_addr, 1);
 744        dump_core_and_abort(TARGET_SIGILL);
 745        return;
 746    }
 747
 748    memset(frame, 0, sizeof(*frame));
 749    setup_sigframe_arch(env, frame_addr, frame, 0);
 750
 751    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 752        __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
 753    }
 754
 755    if (tinfo) {
 756        frame->sf_si.si_signo = tinfo->si_signo;
 757        frame->sf_si.si_errno = tinfo->si_errno;
 758        frame->sf_si.si_code = tinfo->si_code;
 759        frame->sf_si.si_pid = tinfo->si_pid;
 760        frame->sf_si.si_uid = tinfo->si_uid;
 761        frame->sf_si.si_status = tinfo->si_status;
 762        frame->sf_si.si_addr = tinfo->si_addr;
 763        /* see host_to_target_siginfo_noswap() for more details */
 764        frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
 765        /*
 766         * At this point, whatever is in the _reason union is complete
 767         * and in target order, so just copy the whole thing over, even
 768         * if it's too large for this specific signal.
 769         * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
 770         * that's so.
 771         */
 772        memcpy(&frame->sf_si._reason, &tinfo->_reason,
 773               sizeof(tinfo->_reason));
 774    }
 775
 776    set_sigtramp_args(env, sig, frame, frame_addr, ka);
 777
 778    unlock_user_struct(frame, frame_addr, 1);
 779}
 780
 781static int reset_signal_mask(target_ucontext_t *ucontext)
 782{
 783    int i;
 784    sigset_t blocked;
 785    target_sigset_t target_set;
 786    TaskState *ts = (TaskState *)thread_cpu->opaque;
 787
 788    for (i = 0; i < TARGET_NSIG_WORDS; i++) {
 789        if (__get_user(target_set.__bits[i],
 790                    &ucontext->uc_sigmask.__bits[i])) {
 791            return -TARGET_EFAULT;
 792        }
 793    }
 794    target_to_host_sigset_internal(&blocked, &target_set);
 795    ts->signal_mask = blocked;
 796
 797    return 0;
 798}
 799
 800/* See sys/$M/$M/exec_machdep.c sigreturn() */
 801long do_sigreturn(CPUArchState *env, abi_ulong addr)
 802{
 803    long ret;
 804    abi_ulong target_ucontext;
 805    target_ucontext_t *ucontext = NULL;
 806
 807    /* Get the target ucontext address from the stack frame */
 808    ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
 809    if (is_error(ret)) {
 810        return ret;
 811    }
 812    trace_user_do_sigreturn(env, addr);
 813    if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
 814        goto badframe;
 815    }
 816
 817    /* Set the register state back to before the signal. */
 818    if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
 819        goto badframe;
 820    }
 821
 822    /* And reset the signal mask. */
 823    if (reset_signal_mask(ucontext)) {
 824        goto badframe;
 825    }
 826
 827    unlock_user_struct(ucontext, target_ucontext, 0);
 828    return -TARGET_EJUSTRETURN;
 829
 830badframe:
 831    if (ucontext != NULL) {
 832        unlock_user_struct(ucontext, target_ucontext, 0);
 833    }
 834    return -TARGET_EFAULT;
 835}
 836
 837void signal_init(void)
 838{
 839    TaskState *ts = (TaskState *)thread_cpu->opaque;
 840    struct sigaction act;
 841    struct sigaction oact;
 842    int i;
 843    int host_sig;
 844
 845    /* Set the signal mask from the host mask. */
 846    sigprocmask(0, 0, &ts->signal_mask);
 847
 848    sigfillset(&act.sa_mask);
 849    act.sa_sigaction = host_signal_handler;
 850    act.sa_flags = SA_SIGINFO;
 851
 852    for (i = 1; i <= TARGET_NSIG; i++) {
 853#ifdef CONFIG_GPROF
 854        if (i == TARGET_SIGPROF) {
 855            continue;
 856        }
 857#endif
 858        host_sig = target_to_host_signal(i);
 859        sigaction(host_sig, NULL, &oact);
 860        if (oact.sa_sigaction == (void *)SIG_IGN) {
 861            sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
 862        } else if (oact.sa_sigaction == (void *)SIG_DFL) {
 863            sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
 864        }
 865        /*
 866         * If there's already a handler installed then something has
 867         * gone horribly wrong, so don't even try to handle that case.
 868         * Install some handlers for our own use.  We need at least
 869         * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
 870         * trap all signals because it affects syscall interrupt
 871         * behavior.  But do trap all default-fatal signals.
 872         */
 873        if (fatal_signal(i)) {
 874            sigaction(host_sig, &act, NULL);
 875        }
 876    }
 877}
 878
 879static void handle_pending_signal(CPUArchState *env, int sig,
 880                                  struct emulated_sigtable *k)
 881{
 882    CPUState *cpu = env_cpu(env);
 883    TaskState *ts = cpu->opaque;
 884    struct target_sigaction *sa;
 885    int code;
 886    sigset_t set;
 887    abi_ulong handler;
 888    target_siginfo_t tinfo;
 889    target_sigset_t target_old_set;
 890
 891    trace_user_handle_signal(env, sig);
 892
 893    k->pending = 0;
 894
 895    sig = gdb_handlesig(cpu, sig);
 896    if (!sig) {
 897        sa = NULL;
 898        handler = TARGET_SIG_IGN;
 899    } else {
 900        sa = &sigact_table[sig - 1];
 901        handler = sa->_sa_handler;
 902    }
 903
 904    if (do_strace) {
 905        print_taken_signal(sig, &k->info);
 906    }
 907
 908    if (handler == TARGET_SIG_DFL) {
 909        /*
 910         * default handler : ignore some signal. The other are job
 911         * control or fatal.
 912         */
 913        if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
 914            sig == TARGET_SIGTTOU) {
 915            kill(getpid(), SIGSTOP);
 916        } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
 917                   sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
 918                   sig != TARGET_SIGCONT) {
 919            dump_core_and_abort(sig);
 920        }
 921    } else if (handler == TARGET_SIG_IGN) {
 922        /* ignore sig */
 923    } else if (handler == TARGET_SIG_ERR) {
 924        dump_core_and_abort(sig);
 925    } else {
 926        /* compute the blocked signals during the handler execution */
 927        sigset_t *blocked_set;
 928
 929        target_to_host_sigset(&set, &sa->sa_mask);
 930        /*
 931         * SA_NODEFER indicates that the current signal should not be
 932         * blocked during the handler.
 933         */
 934        if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
 935            sigaddset(&set, target_to_host_signal(sig));
 936        }
 937
 938        /*
 939         * Save the previous blocked signal state to restore it at the
 940         * end of the signal execution (see do_sigreturn).
 941         */
 942        host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
 943
 944        blocked_set = ts->in_sigsuspend ?
 945            &ts->sigsuspend_mask : &ts->signal_mask;
 946        sigorset(&ts->signal_mask, blocked_set, &set);
 947        ts->in_sigsuspend = false;
 948        sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
 949
 950        /* XXX VM86 on x86 ??? */
 951
 952        code = k->info.si_code; /* From host, so no si_type */
 953        /* prepare the stack frame of the virtual CPU */
 954        if (sa->sa_flags & TARGET_SA_SIGINFO) {
 955            tswap_siginfo(&tinfo, &k->info);
 956            setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
 957        } else {
 958            setup_frame(sig, code, sa, &target_old_set, NULL, env);
 959        }
 960        if (sa->sa_flags & TARGET_SA_RESETHAND) {
 961            sa->_sa_handler = TARGET_SIG_DFL;
 962        }
 963    }
 964}
 965
 966void process_pending_signals(CPUArchState *env)
 967{
 968    CPUState *cpu = env_cpu(env);
 969    int sig;
 970    sigset_t *blocked_set, set;
 971    struct emulated_sigtable *k;
 972    TaskState *ts = cpu->opaque;
 973
 974    while (qatomic_read(&ts->signal_pending)) {
 975        sigfillset(&set);
 976        sigprocmask(SIG_SETMASK, &set, 0);
 977
 978    restart_scan:
 979        sig = ts->sync_signal.pending;
 980        if (sig) {
 981            /*
 982             * Synchronous signals are forced by the emulated CPU in some way.
 983             * If they are set to ignore, restore the default handler (see
 984             * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
 985             * though maybe this is done only when forcing exit for non SIGCHLD.
 986             */
 987            if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
 988                sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
 989                sigdelset(&ts->signal_mask, target_to_host_signal(sig));
 990                sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
 991            }
 992            handle_pending_signal(env, sig, &ts->sync_signal);
 993        }
 994
 995        k = ts->sigtab;
 996        for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
 997            blocked_set = ts->in_sigsuspend ?
 998                &ts->sigsuspend_mask : &ts->signal_mask;
 999            if (k->pending &&
1000                !sigismember(blocked_set, target_to_host_signal(sig))) {
1001                handle_pending_signal(env, sig, k);
1002                /*
1003                 * Restart scan from the beginning, as handle_pending_signal
1004                 * might have resulted in a new synchronous signal (eg SIGSEGV).
1005                 */
1006                goto restart_scan;
1007            }
1008        }
1009
1010        /*
1011         * Unblock signals and check one more time. Unblocking signals may cause
1012         * us to take another host signal, which will set signal_pending again.
1013         */
1014        qatomic_set(&ts->signal_pending, 0);
1015        ts->in_sigsuspend = false;
1016        set = ts->signal_mask;
1017        sigdelset(&set, SIGSEGV);
1018        sigdelset(&set, SIGBUS);
1019        sigprocmask(SIG_SETMASK, &set, 0);
1020    }
1021    ts->in_sigsuspend = false;
1022}
1023
1024void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1025                           MMUAccessType access_type, bool maperr, uintptr_t ra)
1026{
1027    const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1028
1029    if (tcg_ops->record_sigsegv) {
1030        tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1031    }
1032
1033    force_sig_fault(TARGET_SIGSEGV,
1034                    maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1035                    addr);
1036    cpu->exception_index = EXCP_INTERRUPT;
1037    cpu_loop_exit_restore(cpu, ra);
1038}
1039
1040void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1041                          MMUAccessType access_type, uintptr_t ra)
1042{
1043    const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1044
1045    if (tcg_ops->record_sigbus) {
1046        tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1047    }
1048
1049    force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1050    cpu->exception_index = EXCP_INTERRUPT;
1051    cpu_loop_exit_restore(cpu, ra);
1052}
1053