qemu/hw/acpi/nvdimm.c
<<
>>
Prefs
   1/*
   2 * NVDIMM ACPI Implementation
   3 *
   4 * Copyright(C) 2015 Intel Corporation.
   5 *
   6 * Author:
   7 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
   8 *
   9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  10 * and the DSM specification can be found at:
  11 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
  12 *
  13 * Currently, it only supports PMEM Virtualization.
  14 *
  15 * This library is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU Lesser General Public
  17 * License as published by the Free Software Foundation; either
  18 * version 2.1 of the License, or (at your option) any later version.
  19 *
  20 * This library is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * Lesser General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU Lesser General Public
  26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "qemu/uuid.h"
  31#include "qapi/error.h"
  32#include "hw/acpi/acpi.h"
  33#include "hw/acpi/aml-build.h"
  34#include "hw/acpi/bios-linker-loader.h"
  35#include "hw/nvram/fw_cfg.h"
  36#include "hw/mem/nvdimm.h"
  37#include "qemu/nvdimm-utils.h"
  38#include "trace.h"
  39
  40/*
  41 * define Byte Addressable Persistent Memory (PM) Region according to
  42 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
  43 */
  44static const uint8_t nvdimm_nfit_spa_uuid[] =
  45      UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
  46              0x18, 0xb7, 0x8c, 0xdb);
  47
  48/*
  49 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
  50 * Interface Table (NFIT).
  51 */
  52
  53/*
  54 * System Physical Address Range Structure
  55 *
  56 * It describes the system physical address ranges occupied by NVDIMMs and
  57 * the types of the regions.
  58 */
  59struct NvdimmNfitSpa {
  60    uint16_t type;
  61    uint16_t length;
  62    uint16_t spa_index;
  63    uint16_t flags;
  64    uint32_t reserved;
  65    uint32_t proximity_domain;
  66    uint8_t type_guid[16];
  67    uint64_t spa_base;
  68    uint64_t spa_length;
  69    uint64_t mem_attr;
  70} QEMU_PACKED;
  71typedef struct NvdimmNfitSpa NvdimmNfitSpa;
  72
  73/*
  74 * Memory Device to System Physical Address Range Mapping Structure
  75 *
  76 * It enables identifying each NVDIMM region and the corresponding SPA
  77 * describing the memory interleave
  78 */
  79struct NvdimmNfitMemDev {
  80    uint16_t type;
  81    uint16_t length;
  82    uint32_t nfit_handle;
  83    uint16_t phys_id;
  84    uint16_t region_id;
  85    uint16_t spa_index;
  86    uint16_t dcr_index;
  87    uint64_t region_len;
  88    uint64_t region_offset;
  89    uint64_t region_dpa;
  90    uint16_t interleave_index;
  91    uint16_t interleave_ways;
  92    uint16_t flags;
  93    uint16_t reserved;
  94} QEMU_PACKED;
  95typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
  96
  97#define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
  98
  99/*
 100 * NVDIMM Control Region Structure
 101 *
 102 * It describes the NVDIMM and if applicable, Block Control Window.
 103 */
 104struct NvdimmNfitControlRegion {
 105    uint16_t type;
 106    uint16_t length;
 107    uint16_t dcr_index;
 108    uint16_t vendor_id;
 109    uint16_t device_id;
 110    uint16_t revision_id;
 111    uint16_t sub_vendor_id;
 112    uint16_t sub_device_id;
 113    uint16_t sub_revision_id;
 114    uint8_t reserved[6];
 115    uint32_t serial_number;
 116    uint16_t fic;
 117    uint16_t num_bcw;
 118    uint64_t bcw_size;
 119    uint64_t cmd_offset;
 120    uint64_t cmd_size;
 121    uint64_t status_offset;
 122    uint64_t status_size;
 123    uint16_t flags;
 124    uint8_t reserved2[6];
 125} QEMU_PACKED;
 126typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
 127
 128/*
 129 * NVDIMM Platform Capabilities Structure
 130 *
 131 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
 132 */
 133struct NvdimmNfitPlatformCaps {
 134    uint16_t type;
 135    uint16_t length;
 136    uint8_t highest_cap;
 137    uint8_t reserved[3];
 138    uint32_t capabilities;
 139    uint8_t reserved2[4];
 140} QEMU_PACKED;
 141typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
 142
 143/*
 144 * Module serial number is a unique number for each device. We use the
 145 * slot id of NVDIMM device to generate this number so that each device
 146 * associates with a different number.
 147 *
 148 * 0x123456 is a magic number we arbitrarily chose.
 149 */
 150static uint32_t nvdimm_slot_to_sn(int slot)
 151{
 152    return 0x123456 + slot;
 153}
 154
 155/*
 156 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 157 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 158 * by ACPI device _ADR method.
 159 *
 160 * We generate the handle with the slot id of NVDIMM device and reserve
 161 * 0 for NVDIMM root device.
 162 */
 163static uint32_t nvdimm_slot_to_handle(int slot)
 164{
 165    return slot + 1;
 166}
 167
 168/*
 169 * index uniquely identifies the structure, 0 is reserved which indicates
 170 * that the structure is not valid or the associated structure is not
 171 * present.
 172 *
 173 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 174 * nfit_dc which are generated by the slot id of NVDIMM device.
 175 */
 176static uint16_t nvdimm_slot_to_spa_index(int slot)
 177{
 178    return (slot + 1) << 1;
 179}
 180
 181/* See the comments of nvdimm_slot_to_spa_index(). */
 182static uint32_t nvdimm_slot_to_dcr_index(int slot)
 183{
 184    return nvdimm_slot_to_spa_index(slot) + 1;
 185}
 186
 187static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
 188{
 189    NVDIMMDevice *nvdimm = NULL;
 190    GSList *list, *device_list = nvdimm_get_device_list();
 191
 192    for (list = device_list; list; list = list->next) {
 193        NVDIMMDevice *nvd = list->data;
 194        int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
 195                                           NULL);
 196
 197        if (nvdimm_slot_to_handle(slot) == handle) {
 198            nvdimm = nvd;
 199            break;
 200        }
 201    }
 202
 203    g_slist_free(device_list);
 204    return nvdimm;
 205}
 206
 207/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
 208static void
 209nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
 210{
 211    NvdimmNfitSpa *nfit_spa;
 212    uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
 213                                             NULL);
 214    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 215                                             NULL);
 216    uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
 217                                             NULL);
 218    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 219                                       NULL);
 220
 221    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
 222
 223    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
 224                                      Structure */);
 225    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
 226    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 227
 228    /*
 229     * Control region is strict as all the device info, such as SN, index,
 230     * is associated with slot id.
 231     */
 232    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
 233                                       management during hot add/online
 234                                       operation */ |
 235                                  2 /* Data in Proximity Domain field is
 236                                       valid*/);
 237
 238    /* NUMA node. */
 239    nfit_spa->proximity_domain = cpu_to_le32(node);
 240    /* the region reported as PMEM. */
 241    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
 242           sizeof(nvdimm_nfit_spa_uuid));
 243
 244    nfit_spa->spa_base = cpu_to_le64(addr);
 245    nfit_spa->spa_length = cpu_to_le64(size);
 246
 247    /* It is the PMEM and can be cached as writeback. */
 248    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
 249                                     0x8000ULL /* EFI_MEMORY_NV */);
 250}
 251
 252/*
 253 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 254 * Structure
 255 */
 256static void
 257nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
 258{
 259    NvdimmNfitMemDev *nfit_memdev;
 260    NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
 261    uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
 262                                             NULL);
 263    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 264                                            NULL);
 265    uint32_t handle = nvdimm_slot_to_handle(slot);
 266
 267    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
 268
 269    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
 270                                         Range Map Structure*/);
 271    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
 272    nfit_memdev->nfit_handle = cpu_to_le32(handle);
 273
 274    /*
 275     * associate memory device with System Physical Address Range
 276     * Structure.
 277     */
 278    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 279    /* associate memory device with Control Region Structure. */
 280    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 281
 282    /* The memory region on the device. */
 283    nfit_memdev->region_len = cpu_to_le64(size);
 284    /* The device address starts from 0. */
 285    nfit_memdev->region_dpa = cpu_to_le64(0);
 286
 287    /* Only one interleave for PMEM. */
 288    nfit_memdev->interleave_ways = cpu_to_le16(1);
 289
 290    if (nvdimm->unarmed) {
 291        nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
 292    }
 293}
 294
 295/*
 296 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 297 */
 298static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
 299{
 300    NvdimmNfitControlRegion *nfit_dcr;
 301    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 302                                       NULL);
 303    uint32_t sn = nvdimm_slot_to_sn(slot);
 304
 305    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
 306
 307    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
 308    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
 309    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 310
 311    /* vendor: Intel. */
 312    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
 313    nfit_dcr->device_id = cpu_to_le16(1);
 314
 315    /* The _DSM method is following Intel's DSM specification. */
 316    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
 317                                             in ACPI 6.0 is 1. */);
 318    nfit_dcr->serial_number = cpu_to_le32(sn);
 319    nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
 320                                         Byte addressable, no energy backed.
 321                                         See ACPI 6.2, sect 5.2.25.6 and
 322                                         JEDEC Annex L Release 3. */);
 323}
 324
 325/*
 326 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
 327 */
 328static void
 329nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
 330{
 331    NvdimmNfitPlatformCaps *nfit_caps;
 332
 333    nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
 334
 335    nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
 336    nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
 337    nfit_caps->highest_cap = 31 - clz32(capabilities);
 338    nfit_caps->capabilities = cpu_to_le32(capabilities);
 339}
 340
 341static GArray *nvdimm_build_device_structure(NVDIMMState *state)
 342{
 343    GSList *device_list, *list = nvdimm_get_device_list();
 344    GArray *structures = g_array_new(false, true /* clear */, 1);
 345
 346    for (device_list = list; device_list; device_list = device_list->next) {
 347        DeviceState *dev = device_list->data;
 348
 349        /* build System Physical Address Range Structure. */
 350        nvdimm_build_structure_spa(structures, dev);
 351
 352        /*
 353         * build Memory Device to System Physical Address Range Mapping
 354         * Structure.
 355         */
 356        nvdimm_build_structure_memdev(structures, dev);
 357
 358        /* build NVDIMM Control Region Structure. */
 359        nvdimm_build_structure_dcr(structures, dev);
 360    }
 361    g_slist_free(list);
 362
 363    if (state->persistence) {
 364        nvdimm_build_structure_caps(structures, state->persistence);
 365    }
 366
 367    return structures;
 368}
 369
 370static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
 371{
 372    fit_buf->fit = g_array_new(false, true /* clear */, 1);
 373}
 374
 375static void nvdimm_build_fit_buffer(NVDIMMState *state)
 376{
 377    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 378
 379    g_array_free(fit_buf->fit, true);
 380    fit_buf->fit = nvdimm_build_device_structure(state);
 381    fit_buf->dirty = true;
 382}
 383
 384void nvdimm_plug(NVDIMMState *state)
 385{
 386    nvdimm_build_fit_buffer(state);
 387}
 388
 389/*
 390 * NVDIMM Firmware Interface Table
 391 * @signature: "NFIT"
 392 *
 393 * It provides information that allows OSPM to enumerate NVDIMM present in
 394 * the platform and associate system physical address ranges created by the
 395 * NVDIMMs.
 396 *
 397 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
 398 */
 399
 400static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
 401                              GArray *table_data, BIOSLinker *linker,
 402                              const char *oem_id, const char *oem_table_id)
 403{
 404    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 405    AcpiTable table = { .sig = "NFIT", .rev = 1,
 406                        .oem_id = oem_id, .oem_table_id = oem_table_id };
 407
 408    acpi_add_table(table_offsets, table_data);
 409
 410    acpi_table_begin(&table, table_data);
 411    /* Reserved */
 412    build_append_int_noprefix(table_data, 0, 4);
 413    /* NVDIMM device structures. */
 414    g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
 415    acpi_table_end(linker, &table);
 416}
 417
 418#define NVDIMM_DSM_MEMORY_SIZE      4096
 419
 420struct NvdimmDsmIn {
 421    uint32_t handle;
 422    uint32_t revision;
 423    uint32_t function;
 424    /* the remaining size in the page is used by arg3. */
 425    union {
 426        uint8_t arg3[4084];
 427    };
 428} QEMU_PACKED;
 429typedef struct NvdimmDsmIn NvdimmDsmIn;
 430QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
 431
 432struct NvdimmDsmOut {
 433    /* the size of buffer filled by QEMU. */
 434    uint32_t len;
 435    uint8_t data[4092];
 436} QEMU_PACKED;
 437typedef struct NvdimmDsmOut NvdimmDsmOut;
 438QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
 439
 440struct NvdimmDsmFunc0Out {
 441    /* the size of buffer filled by QEMU. */
 442     uint32_t len;
 443     uint32_t supported_func;
 444} QEMU_PACKED;
 445typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
 446
 447struct NvdimmDsmFuncNoPayloadOut {
 448    /* the size of buffer filled by QEMU. */
 449     uint32_t len;
 450     uint32_t func_ret_status;
 451} QEMU_PACKED;
 452typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
 453
 454struct NvdimmFuncGetLabelSizeOut {
 455    /* the size of buffer filled by QEMU. */
 456    uint32_t len;
 457    uint32_t func_ret_status; /* return status code. */
 458    uint32_t label_size; /* the size of label data area. */
 459    /*
 460     * Maximum size of the namespace label data length supported by
 461     * the platform in Get/Set Namespace Label Data functions.
 462     */
 463    uint32_t max_xfer;
 464} QEMU_PACKED;
 465typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
 466QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
 467
 468struct NvdimmFuncGetLabelDataIn {
 469    uint32_t offset; /* the offset in the namespace label data area. */
 470    uint32_t length; /* the size of data is to be read via the function. */
 471} QEMU_PACKED;
 472typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
 473QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
 474                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 475
 476struct NvdimmFuncGetLabelDataOut {
 477    /* the size of buffer filled by QEMU. */
 478    uint32_t len;
 479    uint32_t func_ret_status; /* return status code. */
 480    uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
 481} QEMU_PACKED;
 482typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
 483QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
 484
 485struct NvdimmFuncSetLabelDataIn {
 486    uint32_t offset; /* the offset in the namespace label data area. */
 487    uint32_t length; /* the size of data is to be written via the function. */
 488    uint8_t in_buf[]; /* the data written to label data area. */
 489} QEMU_PACKED;
 490typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
 491QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
 492                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 493
 494struct NvdimmFuncReadFITIn {
 495    uint32_t offset; /* the offset into FIT buffer. */
 496} QEMU_PACKED;
 497typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
 498QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
 499                  offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
 500
 501struct NvdimmFuncReadFITOut {
 502    /* the size of buffer filled by QEMU. */
 503    uint32_t len;
 504    uint32_t func_ret_status; /* return status code. */
 505    uint8_t fit[]; /* the FIT data. */
 506} QEMU_PACKED;
 507typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
 508QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
 509
 510static void
 511nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
 512{
 513    NvdimmDsmFunc0Out func0 = {
 514        .len = cpu_to_le32(sizeof(func0)),
 515        .supported_func = cpu_to_le32(supported_func),
 516    };
 517    cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
 518}
 519
 520static void
 521nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
 522{
 523    NvdimmDsmFuncNoPayloadOut out = {
 524        .len = cpu_to_le32(sizeof(out)),
 525        .func_ret_status = cpu_to_le32(func_ret_status),
 526    };
 527    cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
 528}
 529
 530#define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
 531#define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
 532#define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
 533#define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
 534#define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
 535
 536#define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
 537
 538/* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
 539static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
 540                                     hwaddr dsm_mem_addr)
 541{
 542    NvdimmFitBuffer *fit_buf = &state->fit_buf;
 543    NvdimmFuncReadFITIn *read_fit;
 544    NvdimmFuncReadFITOut *read_fit_out;
 545    GArray *fit;
 546    uint32_t read_len = 0, func_ret_status;
 547    int size;
 548
 549    read_fit = (NvdimmFuncReadFITIn *)in->arg3;
 550    read_fit->offset = le32_to_cpu(read_fit->offset);
 551
 552    fit = fit_buf->fit;
 553
 554    trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
 555                               fit_buf->dirty ? "Yes" : "No");
 556
 557    if (read_fit->offset > fit->len) {
 558        func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
 559        goto exit;
 560    }
 561
 562    /* It is the first time to read FIT. */
 563    if (!read_fit->offset) {
 564        fit_buf->dirty = false;
 565    } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
 566        func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
 567        goto exit;
 568    }
 569
 570    func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
 571    read_len = MIN(fit->len - read_fit->offset,
 572                   NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
 573
 574exit:
 575    size = sizeof(NvdimmFuncReadFITOut) + read_len;
 576    read_fit_out = g_malloc(size);
 577
 578    read_fit_out->len = cpu_to_le32(size);
 579    read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
 580    memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
 581
 582    cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
 583
 584    g_free(read_fit_out);
 585}
 586
 587static void
 588nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
 589                                       NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 590{
 591    switch (in->function) {
 592    case 0x0:
 593        nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
 594        return;
 595    case 0x1 /* Read FIT */:
 596        nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
 597        return;
 598    }
 599
 600    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 601}
 602
 603static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 604{
 605    /*
 606     * function 0 is called to inquire which functions are supported by
 607     * OSPM
 608     */
 609    if (!in->function) {
 610        nvdimm_dsm_function0(0 /* No function supported other than
 611                                  function 0 */, dsm_mem_addr);
 612        return;
 613    }
 614
 615    /* No function except function 0 is supported yet. */
 616    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 617}
 618
 619/*
 620 * the max transfer size is the max size transferred by both a
 621 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
 622 * function.
 623 */
 624static uint32_t nvdimm_get_max_xfer_label_size(void)
 625{
 626    uint32_t max_get_size, max_set_size, dsm_memory_size;
 627
 628    dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
 629
 630    /*
 631     * the max data ACPI can read one time which is transferred by
 632     * the response of 'Get Namespace Label Data' function.
 633     */
 634    max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
 635
 636    /*
 637     * the max data ACPI can write one time which is transferred by
 638     * 'Set Namespace Label Data' function.
 639     */
 640    max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
 641                   sizeof(NvdimmFuncSetLabelDataIn);
 642
 643    return MIN(max_get_size, max_set_size);
 644}
 645
 646/*
 647 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
 648 *
 649 * It gets the size of Namespace Label data area and the max data size
 650 * that Get/Set Namespace Label Data functions can transfer.
 651 */
 652static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
 653{
 654    NvdimmFuncGetLabelSizeOut label_size_out = {
 655        .len = cpu_to_le32(sizeof(label_size_out)),
 656    };
 657    uint32_t label_size, mxfer;
 658
 659    label_size = nvdimm->label_size;
 660    mxfer = nvdimm_get_max_xfer_label_size();
 661
 662    trace_acpi_nvdimm_label_info(label_size, mxfer);
 663
 664    label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 665    label_size_out.label_size = cpu_to_le32(label_size);
 666    label_size_out.max_xfer = cpu_to_le32(mxfer);
 667
 668    cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
 669                              sizeof(label_size_out));
 670}
 671
 672static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
 673                                           uint32_t offset, uint32_t length)
 674{
 675    uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
 676
 677    if (offset + length < offset) {
 678        trace_acpi_nvdimm_label_overflow(offset, length);
 679        return ret;
 680    }
 681
 682    if (nvdimm->label_size < offset + length) {
 683        trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
 684        return ret;
 685    }
 686
 687    if (length > nvdimm_get_max_xfer_label_size()) {
 688        trace_acpi_nvdimm_label_xfer_exceed(length,
 689                                            nvdimm_get_max_xfer_label_size());
 690        return ret;
 691    }
 692
 693    return NVDIMM_DSM_RET_STATUS_SUCCESS;
 694}
 695
 696/*
 697 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
 698 */
 699static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 700                                      hwaddr dsm_mem_addr)
 701{
 702    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 703    NvdimmFuncGetLabelDataIn *get_label_data;
 704    NvdimmFuncGetLabelDataOut *get_label_data_out;
 705    uint32_t status;
 706    int size;
 707
 708    get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
 709    get_label_data->offset = le32_to_cpu(get_label_data->offset);
 710    get_label_data->length = le32_to_cpu(get_label_data->length);
 711
 712    trace_acpi_nvdimm_read_label(get_label_data->offset,
 713                                 get_label_data->length);
 714
 715    status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
 716                                        get_label_data->length);
 717    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 718        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 719        return;
 720    }
 721
 722    size = sizeof(*get_label_data_out) + get_label_data->length;
 723    assert(size <= NVDIMM_DSM_MEMORY_SIZE);
 724    get_label_data_out = g_malloc(size);
 725
 726    get_label_data_out->len = cpu_to_le32(size);
 727    get_label_data_out->func_ret_status =
 728                            cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
 729    nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
 730                         get_label_data->length, get_label_data->offset);
 731
 732    cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
 733    g_free(get_label_data_out);
 734}
 735
 736/*
 737 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
 738 */
 739static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
 740                                      hwaddr dsm_mem_addr)
 741{
 742    NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
 743    NvdimmFuncSetLabelDataIn *set_label_data;
 744    uint32_t status;
 745
 746    set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
 747
 748    set_label_data->offset = le32_to_cpu(set_label_data->offset);
 749    set_label_data->length = le32_to_cpu(set_label_data->length);
 750
 751    trace_acpi_nvdimm_write_label(set_label_data->offset,
 752                                  set_label_data->length);
 753
 754    status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
 755                                        set_label_data->length);
 756    if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
 757        nvdimm_dsm_no_payload(status, dsm_mem_addr);
 758        return;
 759    }
 760
 761    assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
 762                    set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
 763
 764    nvc->write_label_data(nvdimm, set_label_data->in_buf,
 765                          set_label_data->length, set_label_data->offset);
 766    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
 767}
 768
 769static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
 770{
 771    NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
 772
 773    /* See the comments in nvdimm_dsm_root(). */
 774    if (!in->function) {
 775        uint32_t supported_func = 0;
 776
 777        if (nvdimm && nvdimm->label_size) {
 778            supported_func |= 0x1 /* Bit 0 indicates whether there is
 779                                     support for any functions other
 780                                     than function 0. */ |
 781                              1 << 4 /* Get Namespace Label Size */ |
 782                              1 << 5 /* Get Namespace Label Data */ |
 783                              1 << 6 /* Set Namespace Label Data */;
 784        }
 785        nvdimm_dsm_function0(supported_func, dsm_mem_addr);
 786        return;
 787    }
 788
 789    if (!nvdimm) {
 790        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
 791                              dsm_mem_addr);
 792        return;
 793    }
 794
 795    /* Encode DSM function according to DSM Spec Rev1. */
 796    switch (in->function) {
 797    case 4 /* Get Namespace Label Size */:
 798        if (nvdimm->label_size) {
 799            nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
 800            return;
 801        }
 802        break;
 803    case 5 /* Get Namespace Label Data */:
 804        if (nvdimm->label_size) {
 805            nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
 806            return;
 807        }
 808        break;
 809    case 0x6 /* Set Namespace Label Data */:
 810        if (nvdimm->label_size) {
 811            nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
 812            return;
 813        }
 814        break;
 815    }
 816
 817    nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 818}
 819
 820static uint64_t
 821nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
 822{
 823    trace_acpi_nvdimm_read_io_port();
 824    return 0;
 825}
 826
 827static void
 828nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
 829{
 830    NVDIMMState *state = opaque;
 831    NvdimmDsmIn *in;
 832    hwaddr dsm_mem_addr = val;
 833
 834    trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
 835
 836    /*
 837     * The DSM memory is mapped to guest address space so an evil guest
 838     * can change its content while we are doing DSM emulation. Avoid
 839     * this by copying DSM memory to QEMU local memory.
 840     */
 841    in = g_new(NvdimmDsmIn, 1);
 842    cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
 843
 844    in->revision = le32_to_cpu(in->revision);
 845    in->function = le32_to_cpu(in->function);
 846    in->handle = le32_to_cpu(in->handle);
 847
 848    trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
 849
 850    if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
 851        trace_acpi_nvdimm_invalid_revision(in->revision);
 852        nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
 853        goto exit;
 854    }
 855
 856    if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
 857        nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
 858        goto exit;
 859    }
 860
 861     /* Handle 0 is reserved for NVDIMM Root Device. */
 862    if (!in->handle) {
 863        nvdimm_dsm_root(in, dsm_mem_addr);
 864        goto exit;
 865    }
 866
 867    nvdimm_dsm_device(in, dsm_mem_addr);
 868
 869exit:
 870    g_free(in);
 871}
 872
 873static const MemoryRegionOps nvdimm_dsm_ops = {
 874    .read = nvdimm_dsm_read,
 875    .write = nvdimm_dsm_write,
 876    .endianness = DEVICE_LITTLE_ENDIAN,
 877    .valid = {
 878        .min_access_size = 4,
 879        .max_access_size = 4,
 880    },
 881};
 882
 883void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
 884{
 885    if (dev->hotplugged) {
 886        acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
 887    }
 888}
 889
 890void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
 891                            struct AcpiGenericAddress dsm_io,
 892                            FWCfgState *fw_cfg, Object *owner)
 893{
 894    state->dsm_io = dsm_io;
 895    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
 896                          "nvdimm-acpi-io", dsm_io.bit_width >> 3);
 897    memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
 898
 899    state->dsm_mem = g_array_new(false, true /* clear */, 1);
 900    acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
 901    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
 902                    state->dsm_mem->len);
 903
 904    nvdimm_init_fit_buffer(&state->fit_buf);
 905}
 906
 907#define NVDIMM_COMMON_DSM       "NCAL"
 908#define NVDIMM_ACPI_MEM_ADDR    "MEMA"
 909
 910#define NVDIMM_DSM_MEMORY       "NRAM"
 911#define NVDIMM_DSM_IOPORT       "NPIO"
 912
 913#define NVDIMM_DSM_NOTIFY       "NTFI"
 914#define NVDIMM_DSM_HANDLE       "HDLE"
 915#define NVDIMM_DSM_REVISION     "REVS"
 916#define NVDIMM_DSM_FUNCTION     "FUNC"
 917#define NVDIMM_DSM_ARG3         "FARG"
 918
 919#define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
 920#define NVDIMM_DSM_OUT_BUF      "ODAT"
 921
 922#define NVDIMM_DSM_RFIT_STATUS  "RSTA"
 923
 924#define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
 925
 926static void nvdimm_build_common_dsm(Aml *dev,
 927                                    NVDIMMState *nvdimm_state)
 928{
 929    Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
 930    Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
 931    Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
 932    Aml *whilectx, *offset;
 933    uint8_t byte_list[1];
 934    AmlRegionSpace rs;
 935
 936    method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
 937    uuid = aml_arg(0);
 938    function = aml_arg(2);
 939    handle = aml_arg(4);
 940    dsm_mem = aml_local(6);
 941    dsm_out_buf = aml_local(7);
 942
 943    aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
 944
 945    if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
 946        rs = AML_SYSTEM_IO;
 947    } else {
 948        rs = AML_SYSTEM_MEMORY;
 949    }
 950
 951    /* map DSM memory and IO into ACPI namespace. */
 952    aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
 953               aml_int(nvdimm_state->dsm_io.address),
 954               nvdimm_state->dsm_io.bit_width >> 3));
 955    aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
 956               AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
 957
 958    /*
 959     * DSM notifier:
 960     * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
 961     *                    emulate the access.
 962     *
 963     * It is the IO port so that accessing them will cause VM-exit, the
 964     * control will be transferred to QEMU.
 965     */
 966    field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
 967                      AML_PRESERVE);
 968    aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
 969               nvdimm_state->dsm_io.bit_width));
 970    aml_append(method, field);
 971
 972    /*
 973     * DSM input:
 974     * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
 975     *                    happens on NVDIMM Root Device.
 976     * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
 977     * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
 978     * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
 979     *                  containing function-specific arguments.
 980     *
 981     * They are RAM mapping on host so that these accesses never cause
 982     * VM-EXIT.
 983     */
 984    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
 985                      AML_PRESERVE);
 986    aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
 987               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
 988    aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
 989               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
 990    aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
 991               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
 992    aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
 993         (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
 994    aml_append(method, field);
 995
 996    /*
 997     * DSM output:
 998     * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
 999     * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1000     *
1001     * Since the page is reused by both input and out, the input data
1002     * will be lost after storing new result into ODAT so we should fetch
1003     * all the input data before writing the result.
1004     */
1005    field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1006                      AML_PRESERVE);
1007    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1008               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1009    aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1010       (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1011    aml_append(method, field);
1012
1013    /*
1014     * do not support any method if DSM memory address has not been
1015     * patched.
1016     */
1017    unpatched = aml_equal(dsm_mem, aml_int(0x0));
1018
1019    expected_uuid = aml_local(0);
1020
1021    ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1022    aml_append(ifctx, aml_store(
1023               aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1024               /* UUID for NVDIMM Root Device */, expected_uuid));
1025    aml_append(method, ifctx);
1026    elsectx = aml_else();
1027    ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1028    aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1029               /* UUID for QEMU internal use */), expected_uuid));
1030    aml_append(elsectx, ifctx);
1031    elsectx2 = aml_else();
1032    aml_append(elsectx2, aml_store(
1033               aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1034               /* UUID for NVDIMM Devices */, expected_uuid));
1035    aml_append(elsectx, elsectx2);
1036    aml_append(method, elsectx);
1037
1038    uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1039
1040    unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1041
1042    /*
1043     * function 0 is called to inquire what functions are supported by
1044     * OSPM
1045     */
1046    ifctx = aml_if(aml_equal(function, aml_int(0)));
1047    byte_list[0] = 0 /* No function Supported */;
1048    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1049    aml_append(unsupport, ifctx);
1050
1051    /* No function is supported yet. */
1052    byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1053    aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1054    aml_append(method, unsupport);
1055
1056    /*
1057     * The HDLE indicates the DSM function is issued from which device,
1058     * it reserves 0 for root device and is the handle for NVDIMM devices.
1059     * See the comments in nvdimm_slot_to_handle().
1060     */
1061    aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1062    aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1063    aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1064
1065    /*
1066     * The fourth parameter (Arg3) of _DSM is a package which contains
1067     * a buffer, the layout of the buffer is specified by UUID (Arg0),
1068     * Revision ID (Arg1) and Function Index (Arg2) which are documented
1069     * in the DSM Spec.
1070     */
1071    pckg = aml_arg(3);
1072    ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1073                   aml_int(4 /* Package */)) /* It is a Package? */,
1074                   aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1075                   NULL));
1076
1077    pckg_index = aml_local(2);
1078    pckg_buf = aml_local(3);
1079    aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1080    aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1081    aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1082    aml_append(method, ifctx);
1083
1084    /*
1085     * tell QEMU about the real address of DSM memory, then QEMU
1086     * gets the control and fills the result in DSM memory.
1087     */
1088    aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1089
1090    dsm_out_buf_size = aml_local(1);
1091    /* RLEN is not included in the payload returned to guest. */
1092    aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1093               aml_int(4), dsm_out_buf_size));
1094
1095    /*
1096     * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1097     * the Buffer Field <= to the size of an Integer (in bits), it will
1098     * be treated as an integer. Moreover, the integer size depends on
1099     * DSDT tables revision number. If revision number is < 2, integer
1100     * size is 32 bits, otherwise it is 64 bits.
1101     * Because of this CreateField() canot be used if RLEN < Integer Size.
1102     *
1103     * Also please note that APCI ASL operator SizeOf() doesn't support
1104     * Integer and there isn't any other way to figure out the Integer
1105     * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1106     * build dsm_out_buf byte by byte.
1107     */
1108    ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1109    offset = aml_local(2);
1110    aml_append(ifctx, aml_store(aml_int(0), offset));
1111    aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1112    aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1113
1114    whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1115    /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1116    aml_append(whilectx, aml_store(aml_derefof(aml_index(
1117                                   aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1118                                   aml_index(aml_name("TBUF"), aml_int(0))));
1119    aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1120                                         dsm_out_buf));
1121    aml_append(whilectx, aml_increment(offset));
1122    aml_append(ifctx, whilectx);
1123
1124    aml_append(ifctx, aml_return(dsm_out_buf));
1125    aml_append(method, ifctx);
1126
1127    /* If RLEN >= Integer size, just use CreateField() operator */
1128    aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1129                                 dsm_out_buf_size));
1130    aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1131               aml_int(0), dsm_out_buf_size, "OBUF"));
1132    aml_append(method, aml_return(aml_name("OBUF")));
1133
1134    aml_append(dev, method);
1135}
1136
1137static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1138{
1139    Aml *method;
1140
1141    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1142    aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1143                                  aml_arg(1), aml_arg(2), aml_arg(3),
1144                                  aml_int(handle))));
1145    aml_append(dev, method);
1146}
1147
1148static void nvdimm_build_fit(Aml *dev)
1149{
1150    Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1151    Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1152
1153    buf = aml_local(0);
1154    buf_size = aml_local(1);
1155    fit = aml_local(2);
1156
1157    aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1158
1159    /* build helper function, RFIT. */
1160    method = aml_method("RFIT", 1, AML_SERIALIZED);
1161    aml_append(method, aml_name_decl("OFST", aml_int(0)));
1162
1163    /* prepare input package. */
1164    pkg = aml_package(1);
1165    aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1166    aml_append(pkg, aml_name("OFST"));
1167
1168    /* call Read_FIT function. */
1169    call_result = aml_call5(NVDIMM_COMMON_DSM,
1170                            aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1171                            aml_int(1) /* Revision 1 */,
1172                            aml_int(0x1) /* Read FIT */,
1173                            pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1174    aml_append(method, aml_store(call_result, buf));
1175
1176    /* handle _DSM result. */
1177    aml_append(method, aml_create_dword_field(buf,
1178               aml_int(0) /* offset at byte 0 */, "STAU"));
1179
1180    aml_append(method, aml_store(aml_name("STAU"),
1181                                 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1182
1183     /* if something is wrong during _DSM. */
1184    ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1185                       aml_name("STAU"));
1186    ifctx = aml_if(aml_lnot(ifcond));
1187    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1188    aml_append(method, ifctx);
1189
1190    aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1191    aml_append(method, aml_subtract(buf_size,
1192                                    aml_int(4) /* the size of "STAU" */,
1193                                    buf_size));
1194
1195    /* if we read the end of fit. */
1196    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1197    aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1198    aml_append(method, ifctx);
1199
1200    aml_append(method, aml_create_field(buf,
1201                            aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1202                            aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1203    aml_append(method, aml_return(aml_name("BUFF")));
1204    aml_append(dev, method);
1205
1206    /* build _FIT. */
1207    method = aml_method("_FIT", 0, AML_SERIALIZED);
1208    offset = aml_local(3);
1209
1210    aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1211    aml_append(method, aml_store(aml_int(0), offset));
1212
1213    whilectx = aml_while(aml_int(1));
1214    aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1215    aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1216
1217    /*
1218     * if fit buffer was changed during RFIT, read from the beginning
1219     * again.
1220     */
1221    ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1222                             aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1223    aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1224    aml_append(ifctx, aml_store(aml_int(0), offset));
1225    aml_append(whilectx, ifctx);
1226
1227    elsectx = aml_else();
1228
1229    /* finish fit read if no data is read out. */
1230    ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1231    aml_append(ifctx, aml_return(fit));
1232    aml_append(elsectx, ifctx);
1233
1234    /* update the offset. */
1235    aml_append(elsectx, aml_add(offset, buf_size, offset));
1236    /* append the data we read out to the fit buffer. */
1237    aml_append(elsectx, aml_concatenate(fit, buf, fit));
1238    aml_append(whilectx, elsectx);
1239    aml_append(method, whilectx);
1240
1241    aml_append(dev, method);
1242}
1243
1244static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1245{
1246    uint32_t slot;
1247
1248    for (slot = 0; slot < ram_slots; slot++) {
1249        uint32_t handle = nvdimm_slot_to_handle(slot);
1250        Aml *nvdimm_dev;
1251
1252        nvdimm_dev = aml_device("NV%02X", slot);
1253
1254        /*
1255         * ACPI 6.0: 9.20 NVDIMM Devices:
1256         *
1257         * _ADR object that is used to supply OSPM with unique address
1258         * of the NVDIMM device. This is done by returning the NFIT Device
1259         * handle that is used to identify the associated entries in ACPI
1260         * table NFIT or _FIT.
1261         */
1262        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1263
1264        nvdimm_build_device_dsm(nvdimm_dev, handle);
1265        aml_append(root_dev, nvdimm_dev);
1266    }
1267}
1268
1269static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1270                              BIOSLinker *linker,
1271                              NVDIMMState *nvdimm_state,
1272                              uint32_t ram_slots, const char *oem_id)
1273{
1274    int mem_addr_offset;
1275    Aml *ssdt, *sb_scope, *dev;
1276    AcpiTable table = { .sig = "SSDT", .rev = 1,
1277                        .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1278
1279    acpi_add_table(table_offsets, table_data);
1280
1281    acpi_table_begin(&table, table_data);
1282    ssdt = init_aml_allocator();
1283    sb_scope = aml_scope("\\_SB");
1284
1285    dev = aml_device("NVDR");
1286
1287    /*
1288     * ACPI 6.0: 9.20 NVDIMM Devices:
1289     *
1290     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1291     * NVDIMM interface device. Platform firmware is required to contain one
1292     * such device in _SB scope if NVDIMMs support is exposed by platform to
1293     * OSPM.
1294     * For each NVDIMM present or intended to be supported by platform,
1295     * platform firmware also exposes an ACPI Namespace Device under the
1296     * root device.
1297     */
1298    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1299
1300    nvdimm_build_common_dsm(dev, nvdimm_state);
1301
1302    /* 0 is reserved for root device. */
1303    nvdimm_build_device_dsm(dev, 0);
1304    nvdimm_build_fit(dev);
1305
1306    nvdimm_build_nvdimm_devices(dev, ram_slots);
1307
1308    aml_append(sb_scope, dev);
1309    aml_append(ssdt, sb_scope);
1310
1311    /* copy AML table into ACPI tables blob and patch header there */
1312    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1313    mem_addr_offset = build_append_named_dword(table_data,
1314                                               NVDIMM_ACPI_MEM_ADDR);
1315
1316    bios_linker_loader_alloc(linker,
1317                             NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1318                             sizeof(NvdimmDsmIn), false /* high memory */);
1319    bios_linker_loader_add_pointer(linker,
1320        ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1321        NVDIMM_DSM_MEM_FILE, 0);
1322    free_aml_allocator();
1323    /*
1324     * must be executed as the last so that pointer patching command above
1325     * would be executed by guest before it recalculated checksum which were
1326     * scheduled by acpi_table_end()
1327     */
1328    acpi_table_end(linker, &table);
1329}
1330
1331void nvdimm_build_srat(GArray *table_data)
1332{
1333    GSList *device_list, *list = nvdimm_get_device_list();
1334
1335    for (device_list = list; device_list; device_list = device_list->next) {
1336        DeviceState *dev = device_list->data;
1337        Object *obj = OBJECT(dev);
1338        uint64_t addr, size;
1339        int node;
1340
1341        node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1342        addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1343        size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1344
1345        build_srat_memory(table_data, addr, size, node,
1346                          MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1347    }
1348    g_slist_free(list);
1349}
1350
1351void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1352                       BIOSLinker *linker, NVDIMMState *state,
1353                       uint32_t ram_slots, const char *oem_id,
1354                       const char *oem_table_id)
1355{
1356    GSList *device_list;
1357
1358    /* no nvdimm device can be plugged. */
1359    if (!ram_slots) {
1360        return;
1361    }
1362
1363    nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1364                      ram_slots, oem_id);
1365
1366    device_list = nvdimm_get_device_list();
1367    /* no NVDIMM device is plugged. */
1368    if (!device_list) {
1369        return;
1370    }
1371
1372    nvdimm_build_nfit(state, table_offsets, table_data, linker,
1373                      oem_id, oem_table_id);
1374    g_slist_free(device_list);
1375}
1376