qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/datadir.h"
  12#include "qemu/error-report.h"
  13#include "qapi/error.h"
  14#include <libfdt.h>
  15#include "hw/arm/boot.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/sysemu.h"
  19#include "sysemu/numa.h"
  20#include "hw/boards.h"
  21#include "sysemu/reset.h"
  22#include "hw/loader.h"
  23#include "elf.h"
  24#include "sysemu/device_tree.h"
  25#include "qemu/config-file.h"
  26#include "qemu/option.h"
  27#include "qemu/units.h"
  28
  29/* Kernel boot protocol is specified in the kernel docs
  30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  31 * They have different preferred image load offsets from system RAM base.
  32 */
  33#define KERNEL_ARGS_ADDR   0x100
  34#define KERNEL_NOLOAD_ADDR 0x02000000
  35#define KERNEL_LOAD_ADDR   0x00010000
  36#define KERNEL64_LOAD_ADDR 0x00080000
  37
  38#define ARM64_TEXT_OFFSET_OFFSET    8
  39#define ARM64_MAGIC_OFFSET          56
  40
  41#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  42
  43AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  44                                     const struct arm_boot_info *info)
  45{
  46    /* Return the address space to use for bootloader reads and writes.
  47     * We prefer the secure address space if the CPU has it and we're
  48     * going to boot the guest into it.
  49     */
  50    int asidx;
  51    CPUState *cs = CPU(cpu);
  52
  53    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  54        asidx = ARMASIdx_S;
  55    } else {
  56        asidx = ARMASIdx_NS;
  57    }
  58
  59    return cpu_get_address_space(cs, asidx);
  60}
  61
  62typedef enum {
  63    FIXUP_NONE = 0,     /* do nothing */
  64    FIXUP_TERMINATOR,   /* end of insns */
  65    FIXUP_BOARDID,      /* overwrite with board ID number */
  66    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  67    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
  68    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
  69    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
  70    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
  71    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  72    FIXUP_BOOTREG,      /* overwrite with boot register address */
  73    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  74    FIXUP_MAX,
  75} FixupType;
  76
  77typedef struct ARMInsnFixup {
  78    uint32_t insn;
  79    FixupType fixup;
  80} ARMInsnFixup;
  81
  82static const ARMInsnFixup bootloader_aarch64[] = {
  83    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  84    { 0xaa1f03e1 }, /* mov x1, xzr */
  85    { 0xaa1f03e2 }, /* mov x2, xzr */
  86    { 0xaa1f03e3 }, /* mov x3, xzr */
  87    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  88    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  89    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  90    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  91    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  92    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  93    { 0, FIXUP_TERMINATOR }
  94};
  95
  96/* A very small bootloader: call the board-setup code (if needed),
  97 * set r0-r2, then jump to the kernel.
  98 * If we're not calling boot setup code then we don't copy across
  99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 100 */
 101
 102static const ARMInsnFixup bootloader[] = {
 103    { 0xe28fe004 }, /* add     lr, pc, #4 */
 104    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 105    { 0, FIXUP_BOARD_SETUP },
 106#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 107    { 0xe3a00000 }, /* mov     r0, #0 */
 108    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 109    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 110    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 111    { 0, FIXUP_BOARDID },
 112    { 0, FIXUP_ARGPTR_LO },
 113    { 0, FIXUP_ENTRYPOINT_LO },
 114    { 0, FIXUP_TERMINATOR }
 115};
 116
 117/* Handling for secondary CPU boot in a multicore system.
 118 * Unlike the uniprocessor/primary CPU boot, this is platform
 119 * dependent. The default code here is based on the secondary
 120 * CPU boot protocol used on realview/vexpress boards, with
 121 * some parameterisation to increase its flexibility.
 122 * QEMU platform models for which this code is not appropriate
 123 * should override write_secondary_boot and secondary_cpu_reset_hook
 124 * instead.
 125 *
 126 * This code enables the interrupt controllers for the secondary
 127 * CPUs and then puts all the secondary CPUs into a loop waiting
 128 * for an interprocessor interrupt and polling a configurable
 129 * location for the kernel secondary CPU entry point.
 130 */
 131#define DSB_INSN 0xf57ff04f
 132#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 133
 134static const ARMInsnFixup smpboot[] = {
 135    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 136    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 137    { 0xe3a01001 }, /* mov r1, #1 */
 138    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 139    { 0xe3a010ff }, /* mov r1, #0xff */
 140    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 141    { 0, FIXUP_DSB },   /* dsb */
 142    { 0xe320f003 }, /* wfi */
 143    { 0xe5901000 }, /* ldr     r1, [r0] */
 144    { 0xe1110001 }, /* tst     r1, r1 */
 145    { 0x0afffffb }, /* beq     <wfi> */
 146    { 0xe12fff11 }, /* bx      r1 */
 147    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 148    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 149    { 0, FIXUP_TERMINATOR }
 150};
 151
 152static void write_bootloader(const char *name, hwaddr addr,
 153                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 154                             AddressSpace *as)
 155{
 156    /* Fix up the specified bootloader fragment and write it into
 157     * guest memory using rom_add_blob_fixed(). fixupcontext is
 158     * an array giving the values to write in for the fixup types
 159     * which write a value into the code array.
 160     */
 161    int i, len;
 162    uint32_t *code;
 163
 164    len = 0;
 165    while (insns[len].fixup != FIXUP_TERMINATOR) {
 166        len++;
 167    }
 168
 169    code = g_new0(uint32_t, len);
 170
 171    for (i = 0; i < len; i++) {
 172        uint32_t insn = insns[i].insn;
 173        FixupType fixup = insns[i].fixup;
 174
 175        switch (fixup) {
 176        case FIXUP_NONE:
 177            break;
 178        case FIXUP_BOARDID:
 179        case FIXUP_BOARD_SETUP:
 180        case FIXUP_ARGPTR_LO:
 181        case FIXUP_ARGPTR_HI:
 182        case FIXUP_ENTRYPOINT_LO:
 183        case FIXUP_ENTRYPOINT_HI:
 184        case FIXUP_GIC_CPU_IF:
 185        case FIXUP_BOOTREG:
 186        case FIXUP_DSB:
 187            insn = fixupcontext[fixup];
 188            break;
 189        default:
 190            abort();
 191        }
 192        code[i] = tswap32(insn);
 193    }
 194
 195    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 196
 197    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 198
 199    g_free(code);
 200}
 201
 202static void default_write_secondary(ARMCPU *cpu,
 203                                    const struct arm_boot_info *info)
 204{
 205    uint32_t fixupcontext[FIXUP_MAX];
 206    AddressSpace *as = arm_boot_address_space(cpu, info);
 207
 208    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 209    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 210    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 211        fixupcontext[FIXUP_DSB] = DSB_INSN;
 212    } else {
 213        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 214    }
 215
 216    write_bootloader("smpboot", info->smp_loader_start,
 217                     smpboot, fixupcontext, as);
 218}
 219
 220void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 221                                            const struct arm_boot_info *info,
 222                                            hwaddr mvbar_addr)
 223{
 224    AddressSpace *as = arm_boot_address_space(cpu, info);
 225    int n;
 226    uint32_t mvbar_blob[] = {
 227        /* mvbar_addr: secure monitor vectors
 228         * Default unimplemented and unused vectors to spin. Makes it
 229         * easier to debug (as opposed to the CPU running away).
 230         */
 231        0xeafffffe, /* (spin) */
 232        0xeafffffe, /* (spin) */
 233        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 234        0xeafffffe, /* (spin) */
 235        0xeafffffe, /* (spin) */
 236        0xeafffffe, /* (spin) */
 237        0xeafffffe, /* (spin) */
 238        0xeafffffe, /* (spin) */
 239    };
 240    uint32_t board_setup_blob[] = {
 241        /* board setup addr */
 242        0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 243        0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 244        0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 245        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 246        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 247        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 248        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 249        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 250        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 251        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 252        0xe1a0f001, /* mov     pc, r1                 ;return */
 253    };
 254
 255    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 256    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 257
 258    /* check that these blobs don't overlap */
 259    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 260          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 261
 262    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 263        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 264    }
 265    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 266                          mvbar_addr, as);
 267
 268    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 269        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 270    }
 271    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 272                          sizeof(board_setup_blob), info->board_setup_addr, as);
 273}
 274
 275static void default_reset_secondary(ARMCPU *cpu,
 276                                    const struct arm_boot_info *info)
 277{
 278    AddressSpace *as = arm_boot_address_space(cpu, info);
 279    CPUState *cs = CPU(cpu);
 280
 281    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 282                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 283    cpu_set_pc(cs, info->smp_loader_start);
 284}
 285
 286static inline bool have_dtb(const struct arm_boot_info *info)
 287{
 288    return info->dtb_filename || info->get_dtb;
 289}
 290
 291#define WRITE_WORD(p, value) do { \
 292    address_space_stl_notdirty(as, p, value, \
 293                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 294    p += 4;                       \
 295} while (0)
 296
 297static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 298{
 299    int initrd_size = info->initrd_size;
 300    hwaddr base = info->loader_start;
 301    hwaddr p;
 302
 303    p = base + KERNEL_ARGS_ADDR;
 304    /* ATAG_CORE */
 305    WRITE_WORD(p, 5);
 306    WRITE_WORD(p, 0x54410001);
 307    WRITE_WORD(p, 1);
 308    WRITE_WORD(p, 0x1000);
 309    WRITE_WORD(p, 0);
 310    /* ATAG_MEM */
 311    /* TODO: handle multiple chips on one ATAG list */
 312    WRITE_WORD(p, 4);
 313    WRITE_WORD(p, 0x54410002);
 314    WRITE_WORD(p, info->ram_size);
 315    WRITE_WORD(p, info->loader_start);
 316    if (initrd_size) {
 317        /* ATAG_INITRD2 */
 318        WRITE_WORD(p, 4);
 319        WRITE_WORD(p, 0x54420005);
 320        WRITE_WORD(p, info->initrd_start);
 321        WRITE_WORD(p, initrd_size);
 322    }
 323    if (info->kernel_cmdline && *info->kernel_cmdline) {
 324        /* ATAG_CMDLINE */
 325        int cmdline_size;
 326
 327        cmdline_size = strlen(info->kernel_cmdline);
 328        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 329                            info->kernel_cmdline, cmdline_size + 1);
 330        cmdline_size = (cmdline_size >> 2) + 1;
 331        WRITE_WORD(p, cmdline_size + 2);
 332        WRITE_WORD(p, 0x54410009);
 333        p += cmdline_size * 4;
 334    }
 335    if (info->atag_board) {
 336        /* ATAG_BOARD */
 337        int atag_board_len;
 338        uint8_t atag_board_buf[0x1000];
 339
 340        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 341        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 342        WRITE_WORD(p, 0x414f4d50);
 343        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 344                            atag_board_buf, atag_board_len);
 345        p += atag_board_len;
 346    }
 347    /* ATAG_END */
 348    WRITE_WORD(p, 0);
 349    WRITE_WORD(p, 0);
 350}
 351
 352static void set_kernel_args_old(const struct arm_boot_info *info,
 353                                AddressSpace *as)
 354{
 355    hwaddr p;
 356    const char *s;
 357    int initrd_size = info->initrd_size;
 358    hwaddr base = info->loader_start;
 359
 360    /* see linux/include/asm-arm/setup.h */
 361    p = base + KERNEL_ARGS_ADDR;
 362    /* page_size */
 363    WRITE_WORD(p, 4096);
 364    /* nr_pages */
 365    WRITE_WORD(p, info->ram_size / 4096);
 366    /* ramdisk_size */
 367    WRITE_WORD(p, 0);
 368#define FLAG_READONLY   1
 369#define FLAG_RDLOAD     4
 370#define FLAG_RDPROMPT   8
 371    /* flags */
 372    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 373    /* rootdev */
 374    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 375    /* video_num_cols */
 376    WRITE_WORD(p, 0);
 377    /* video_num_rows */
 378    WRITE_WORD(p, 0);
 379    /* video_x */
 380    WRITE_WORD(p, 0);
 381    /* video_y */
 382    WRITE_WORD(p, 0);
 383    /* memc_control_reg */
 384    WRITE_WORD(p, 0);
 385    /* unsigned char sounddefault */
 386    /* unsigned char adfsdrives */
 387    /* unsigned char bytes_per_char_h */
 388    /* unsigned char bytes_per_char_v */
 389    WRITE_WORD(p, 0);
 390    /* pages_in_bank[4] */
 391    WRITE_WORD(p, 0);
 392    WRITE_WORD(p, 0);
 393    WRITE_WORD(p, 0);
 394    WRITE_WORD(p, 0);
 395    /* pages_in_vram */
 396    WRITE_WORD(p, 0);
 397    /* initrd_start */
 398    if (initrd_size) {
 399        WRITE_WORD(p, info->initrd_start);
 400    } else {
 401        WRITE_WORD(p, 0);
 402    }
 403    /* initrd_size */
 404    WRITE_WORD(p, initrd_size);
 405    /* rd_start */
 406    WRITE_WORD(p, 0);
 407    /* system_rev */
 408    WRITE_WORD(p, 0);
 409    /* system_serial_low */
 410    WRITE_WORD(p, 0);
 411    /* system_serial_high */
 412    WRITE_WORD(p, 0);
 413    /* mem_fclk_21285 */
 414    WRITE_WORD(p, 0);
 415    /* zero unused fields */
 416    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 417        WRITE_WORD(p, 0);
 418    }
 419    s = info->kernel_cmdline;
 420    if (s) {
 421        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 422    } else {
 423        WRITE_WORD(p, 0);
 424    }
 425}
 426
 427static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 428                               uint32_t scells, hwaddr mem_len,
 429                               int numa_node_id)
 430{
 431    char *nodename;
 432    int ret;
 433
 434    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 435    qemu_fdt_add_subnode(fdt, nodename);
 436    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 437    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 438                                       scells, mem_len);
 439    if (ret < 0) {
 440        goto out;
 441    }
 442
 443    /* only set the NUMA ID if it is specified */
 444    if (numa_node_id >= 0) {
 445        ret = qemu_fdt_setprop_cell(fdt, nodename,
 446                                    "numa-node-id", numa_node_id);
 447    }
 448out:
 449    g_free(nodename);
 450    return ret;
 451}
 452
 453static void fdt_add_psci_node(void *fdt)
 454{
 455    uint32_t cpu_suspend_fn;
 456    uint32_t cpu_off_fn;
 457    uint32_t cpu_on_fn;
 458    uint32_t migrate_fn;
 459    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 460    const char *psci_method;
 461    int64_t psci_conduit;
 462    int rc;
 463
 464    psci_conduit = object_property_get_int(OBJECT(armcpu),
 465                                           "psci-conduit",
 466                                           &error_abort);
 467    switch (psci_conduit) {
 468    case QEMU_PSCI_CONDUIT_DISABLED:
 469        return;
 470    case QEMU_PSCI_CONDUIT_HVC:
 471        psci_method = "hvc";
 472        break;
 473    case QEMU_PSCI_CONDUIT_SMC:
 474        psci_method = "smc";
 475        break;
 476    default:
 477        g_assert_not_reached();
 478    }
 479
 480    /*
 481     * A pre-existing /psci node might specify function ID values
 482     * that don't match QEMU's PSCI implementation. Delete the whole
 483     * node and put our own in instead.
 484     */
 485    rc = fdt_path_offset(fdt, "/psci");
 486    if (rc >= 0) {
 487        qemu_fdt_nop_node(fdt, "/psci");
 488    }
 489
 490    qemu_fdt_add_subnode(fdt, "/psci");
 491    if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
 492        if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
 493            const char comp[] = "arm,psci-0.2\0arm,psci";
 494            qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 495        } else {
 496            const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
 497            qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 498        }
 499
 500        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 501        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 502            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 503            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 504            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 505        } else {
 506            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 507            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 508            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 509        }
 510    } else {
 511        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 512
 513        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 514        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 515        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 516        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 517    }
 518
 519    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 520     * to the instruction that should be used to invoke PSCI functions.
 521     * However, the device tree binding uses 'method' instead, so that is
 522     * what we should use here.
 523     */
 524    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 525
 526    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 527    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 528    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 529    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 530}
 531
 532int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 533                 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 534{
 535    void *fdt = NULL;
 536    int size, rc, n = 0;
 537    uint32_t acells, scells;
 538    unsigned int i;
 539    hwaddr mem_base, mem_len;
 540    char **node_path;
 541    Error *err = NULL;
 542
 543    if (binfo->dtb_filename) {
 544        char *filename;
 545        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 546        if (!filename) {
 547            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 548            goto fail;
 549        }
 550
 551        fdt = load_device_tree(filename, &size);
 552        if (!fdt) {
 553            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 554            g_free(filename);
 555            goto fail;
 556        }
 557        g_free(filename);
 558    } else {
 559        fdt = binfo->get_dtb(binfo, &size);
 560        if (!fdt) {
 561            fprintf(stderr, "Board was unable to create a dtb blob\n");
 562            goto fail;
 563        }
 564    }
 565
 566    if (addr_limit > addr && size > (addr_limit - addr)) {
 567        /* Installing the device tree blob at addr would exceed addr_limit.
 568         * Whether this constitutes failure is up to the caller to decide,
 569         * so just return 0 as size, i.e., no error.
 570         */
 571        g_free(fdt);
 572        return 0;
 573    }
 574
 575    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 576                                   NULL, &error_fatal);
 577    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 578                                   NULL, &error_fatal);
 579    if (acells == 0 || scells == 0) {
 580        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 581        goto fail;
 582    }
 583
 584    if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 585        /* This is user error so deserves a friendlier error message
 586         * than the failure of setprop_sized_cells would provide
 587         */
 588        fprintf(stderr, "qemu: dtb file not compatible with "
 589                "RAM size > 4GB\n");
 590        goto fail;
 591    }
 592
 593    /* nop all root nodes matching /memory or /memory@unit-address */
 594    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 595    if (err) {
 596        error_report_err(err);
 597        goto fail;
 598    }
 599    while (node_path[n]) {
 600        if (g_str_has_prefix(node_path[n], "/memory")) {
 601            qemu_fdt_nop_node(fdt, node_path[n]);
 602        }
 603        n++;
 604    }
 605    g_strfreev(node_path);
 606
 607    /*
 608     * We drop all the memory nodes which correspond to empty NUMA nodes
 609     * from the device tree, because the Linux NUMA binding document
 610     * states they should not be generated. Linux will get the NUMA node
 611     * IDs of the empty NUMA nodes from the distance map if they are needed.
 612     * This means QEMU users may be obliged to provide command lines which
 613     * configure distance maps when the empty NUMA node IDs are needed and
 614     * Linux's default distance map isn't sufficient.
 615     */
 616    if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 617        mem_base = binfo->loader_start;
 618        for (i = 0; i < ms->numa_state->num_nodes; i++) {
 619            mem_len = ms->numa_state->nodes[i].node_mem;
 620            if (!mem_len) {
 621                continue;
 622            }
 623
 624            rc = fdt_add_memory_node(fdt, acells, mem_base,
 625                                     scells, mem_len, i);
 626            if (rc < 0) {
 627                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 628                        mem_base);
 629                goto fail;
 630            }
 631
 632            mem_base += mem_len;
 633        }
 634    } else {
 635        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 636                                 scells, binfo->ram_size, -1);
 637        if (rc < 0) {
 638            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 639                    binfo->loader_start);
 640            goto fail;
 641        }
 642    }
 643
 644    rc = fdt_path_offset(fdt, "/chosen");
 645    if (rc < 0) {
 646        qemu_fdt_add_subnode(fdt, "/chosen");
 647    }
 648
 649    if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 650        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 651                                     ms->kernel_cmdline);
 652        if (rc < 0) {
 653            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 654            goto fail;
 655        }
 656    }
 657
 658    if (binfo->initrd_size) {
 659        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 660                                   binfo->initrd_start);
 661        if (rc < 0) {
 662            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 663            goto fail;
 664        }
 665
 666        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 667                                   binfo->initrd_start + binfo->initrd_size);
 668        if (rc < 0) {
 669            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 670            goto fail;
 671        }
 672    }
 673
 674    fdt_add_psci_node(fdt);
 675
 676    if (binfo->modify_dtb) {
 677        binfo->modify_dtb(binfo, fdt);
 678    }
 679
 680    qemu_fdt_dumpdtb(fdt, size);
 681
 682    /* Put the DTB into the memory map as a ROM image: this will ensure
 683     * the DTB is copied again upon reset, even if addr points into RAM.
 684     */
 685    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 686
 687    g_free(fdt);
 688
 689    return size;
 690
 691fail:
 692    g_free(fdt);
 693    return -1;
 694}
 695
 696static void do_cpu_reset(void *opaque)
 697{
 698    ARMCPU *cpu = opaque;
 699    CPUState *cs = CPU(cpu);
 700    CPUARMState *env = &cpu->env;
 701    const struct arm_boot_info *info = env->boot_info;
 702
 703    cpu_reset(cs);
 704    if (info) {
 705        if (!info->is_linux) {
 706            int i;
 707            /* Jump to the entry point.  */
 708            uint64_t entry = info->entry;
 709
 710            switch (info->endianness) {
 711            case ARM_ENDIANNESS_LE:
 712                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 713                for (i = 1; i < 4; ++i) {
 714                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 715                }
 716                env->uncached_cpsr &= ~CPSR_E;
 717                break;
 718            case ARM_ENDIANNESS_BE8:
 719                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 720                for (i = 1; i < 4; ++i) {
 721                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 722                }
 723                env->uncached_cpsr |= CPSR_E;
 724                break;
 725            case ARM_ENDIANNESS_BE32:
 726                env->cp15.sctlr_el[1] |= SCTLR_B;
 727                break;
 728            case ARM_ENDIANNESS_UNKNOWN:
 729                break; /* Board's decision */
 730            default:
 731                g_assert_not_reached();
 732            }
 733
 734            cpu_set_pc(cs, entry);
 735        } else {
 736            /* If we are booting Linux then we need to check whether we are
 737             * booting into secure or non-secure state and adjust the state
 738             * accordingly.  Out of reset, ARM is defined to be in secure state
 739             * (SCR.NS = 0), we change that here if non-secure boot has been
 740             * requested.
 741             */
 742            if (arm_feature(env, ARM_FEATURE_EL3)) {
 743                /* AArch64 is defined to come out of reset into EL3 if enabled.
 744                 * If we are booting Linux then we need to adjust our EL as
 745                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 746                 * SVC, which Linux expects, so no privilege/exception level to
 747                 * adjust.
 748                 */
 749                if (env->aarch64) {
 750                    env->cp15.scr_el3 |= SCR_RW;
 751                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 752                        env->cp15.hcr_el2 |= HCR_RW;
 753                        env->pstate = PSTATE_MODE_EL2h;
 754                    } else {
 755                        env->pstate = PSTATE_MODE_EL1h;
 756                    }
 757                    if (cpu_isar_feature(aa64_pauth, cpu)) {
 758                        env->cp15.scr_el3 |= SCR_API | SCR_APK;
 759                    }
 760                    if (cpu_isar_feature(aa64_mte, cpu)) {
 761                        env->cp15.scr_el3 |= SCR_ATA;
 762                    }
 763                    if (cpu_isar_feature(aa64_sve, cpu)) {
 764                        env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
 765                    }
 766                    /* AArch64 kernels never boot in secure mode */
 767                    assert(!info->secure_boot);
 768                    /* This hook is only supported for AArch32 currently:
 769                     * bootloader_aarch64[] will not call the hook, and
 770                     * the code above has already dropped us into EL2 or EL1.
 771                     */
 772                    assert(!info->secure_board_setup);
 773                }
 774
 775                if (arm_feature(env, ARM_FEATURE_EL2)) {
 776                    /* If we have EL2 then Linux expects the HVC insn to work */
 777                    env->cp15.scr_el3 |= SCR_HCE;
 778                }
 779
 780                /* Set to non-secure if not a secure boot */
 781                if (!info->secure_boot &&
 782                    (cs != first_cpu || !info->secure_board_setup)) {
 783                    /* Linux expects non-secure state */
 784                    env->cp15.scr_el3 |= SCR_NS;
 785                    /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 786                    env->cp15.nsacr |= 3 << 10;
 787                }
 788            }
 789
 790            if (!env->aarch64 && !info->secure_boot &&
 791                arm_feature(env, ARM_FEATURE_EL2)) {
 792                /*
 793                 * This is an AArch32 boot not to Secure state, and
 794                 * we have Hyp mode available, so boot the kernel into
 795                 * Hyp mode. This is not how the CPU comes out of reset,
 796                 * so we need to manually put it there.
 797                 */
 798                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 799            }
 800
 801            if (cs == first_cpu) {
 802                AddressSpace *as = arm_boot_address_space(cpu, info);
 803
 804                cpu_set_pc(cs, info->loader_start);
 805
 806                if (!have_dtb(info)) {
 807                    if (old_param) {
 808                        set_kernel_args_old(info, as);
 809                    } else {
 810                        set_kernel_args(info, as);
 811                    }
 812                }
 813            } else if (info->secondary_cpu_reset_hook) {
 814                info->secondary_cpu_reset_hook(cpu, info);
 815            }
 816        }
 817        arm_rebuild_hflags(env);
 818    }
 819}
 820
 821/**
 822 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 823 *                          by key.
 824 * @fw_cfg:         The firmware config instance to store the data in.
 825 * @size_key:       The firmware config key to store the size of the loaded
 826 *                  data under, with fw_cfg_add_i32().
 827 * @data_key:       The firmware config key to store the loaded data under,
 828 *                  with fw_cfg_add_bytes().
 829 * @image_name:     The name of the image file to load. If it is NULL, the
 830 *                  function returns without doing anything.
 831 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 832 *                  adding it to fw_cfg. If decompression fails, the image is
 833 *                  loaded as-is.
 834 *
 835 * In case of failure, the function prints an error message to stderr and the
 836 * process exits with status 1.
 837 */
 838static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 839                                 uint16_t data_key, const char *image_name,
 840                                 bool try_decompress)
 841{
 842    size_t size = -1;
 843    uint8_t *data;
 844
 845    if (image_name == NULL) {
 846        return;
 847    }
 848
 849    if (try_decompress) {
 850        size = load_image_gzipped_buffer(image_name,
 851                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 852    }
 853
 854    if (size == (size_t)-1) {
 855        gchar *contents;
 856        gsize length;
 857
 858        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 859            error_report("failed to load \"%s\"", image_name);
 860            exit(1);
 861        }
 862        size = length;
 863        data = (uint8_t *)contents;
 864    }
 865
 866    fw_cfg_add_i32(fw_cfg, size_key, size);
 867    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 868}
 869
 870static int do_arm_linux_init(Object *obj, void *opaque)
 871{
 872    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 873        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 874        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 875        struct arm_boot_info *info = opaque;
 876
 877        if (albifc->arm_linux_init) {
 878            albifc->arm_linux_init(albif, info->secure_boot);
 879        }
 880    }
 881    return 0;
 882}
 883
 884static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 885                            uint64_t *lowaddr, uint64_t *highaddr,
 886                            int elf_machine, AddressSpace *as)
 887{
 888    bool elf_is64;
 889    union {
 890        Elf32_Ehdr h32;
 891        Elf64_Ehdr h64;
 892    } elf_header;
 893    int data_swab = 0;
 894    bool big_endian;
 895    ssize_t ret = -1;
 896    Error *err = NULL;
 897
 898
 899    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 900    if (err) {
 901        error_free(err);
 902        return ret;
 903    }
 904
 905    if (elf_is64) {
 906        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 907        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 908                                      : ARM_ENDIANNESS_LE;
 909    } else {
 910        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 911        if (big_endian) {
 912            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 913                info->endianness = ARM_ENDIANNESS_BE8;
 914            } else {
 915                info->endianness = ARM_ENDIANNESS_BE32;
 916                /* In BE32, the CPU has a different view of the per-byte
 917                 * address map than the rest of the system. BE32 ELF files
 918                 * are organised such that they can be programmed through
 919                 * the CPU's per-word byte-reversed view of the world. QEMU
 920                 * however loads ELF files independently of the CPU. So
 921                 * tell the ELF loader to byte reverse the data for us.
 922                 */
 923                data_swab = 2;
 924            }
 925        } else {
 926            info->endianness = ARM_ENDIANNESS_LE;
 927        }
 928    }
 929
 930    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 931                      pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 932                      1, data_swab, as);
 933    if (ret <= 0) {
 934        /* The header loaded but the image didn't */
 935        exit(1);
 936    }
 937
 938    return ret;
 939}
 940
 941static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 942                                   hwaddr *entry, AddressSpace *as)
 943{
 944    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 945    uint64_t kernel_size = 0;
 946    uint8_t *buffer;
 947    int size;
 948
 949    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 950    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 951                                     &buffer);
 952
 953    if (size < 0) {
 954        gsize len;
 955
 956        /* Load as raw file otherwise */
 957        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 958            return -1;
 959        }
 960        size = len;
 961    }
 962
 963    /* check the arm64 magic header value -- very old kernels may not have it */
 964    if (size > ARM64_MAGIC_OFFSET + 4 &&
 965        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 966        uint64_t hdrvals[2];
 967
 968        /* The arm64 Image header has text_offset and image_size fields at 8 and
 969         * 16 bytes into the Image header, respectively. The text_offset field
 970         * is only valid if the image_size is non-zero.
 971         */
 972        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 973
 974        kernel_size = le64_to_cpu(hdrvals[1]);
 975
 976        if (kernel_size != 0) {
 977            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 978
 979            /*
 980             * We write our startup "bootloader" at the very bottom of RAM,
 981             * so that bit can't be used for the image. Luckily the Image
 982             * format specification is that the image requests only an offset
 983             * from a 2MB boundary, not an absolute load address. So if the
 984             * image requests an offset that might mean it overlaps with the
 985             * bootloader, we can just load it starting at 2MB+offset rather
 986             * than 0MB + offset.
 987             */
 988            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 989                kernel_load_offset += 2 * MiB;
 990            }
 991        }
 992    }
 993
 994    /*
 995     * Kernels before v3.17 don't populate the image_size field, and
 996     * raw images have no header. For those our best guess at the size
 997     * is the size of the Image file itself.
 998     */
 999    if (kernel_size == 0) {
1000        kernel_size = size;
1001    }
1002
1003    *entry = mem_base + kernel_load_offset;
1004    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
1005
1006    g_free(buffer);
1007
1008    return kernel_size;
1009}
1010
1011static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
1012                                         struct arm_boot_info *info)
1013{
1014    /* Set up for a direct boot of a kernel image file. */
1015    CPUState *cs;
1016    AddressSpace *as = arm_boot_address_space(cpu, info);
1017    ssize_t kernel_size;
1018    int initrd_size;
1019    int is_linux = 0;
1020    uint64_t elf_entry;
1021    /* Addresses of first byte used and first byte not used by the image */
1022    uint64_t image_low_addr = 0, image_high_addr = 0;
1023    int elf_machine;
1024    hwaddr entry;
1025    static const ARMInsnFixup *primary_loader;
1026    uint64_t ram_end = info->loader_start + info->ram_size;
1027
1028    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1029        primary_loader = bootloader_aarch64;
1030        elf_machine = EM_AARCH64;
1031    } else {
1032        primary_loader = bootloader;
1033        if (!info->write_board_setup) {
1034            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1035        }
1036        elf_machine = EM_ARM;
1037    }
1038
1039    /* Assume that raw images are linux kernels, and ELF images are not.  */
1040    kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1041                               &image_high_addr, elf_machine, as);
1042    if (kernel_size > 0 && have_dtb(info)) {
1043        /*
1044         * If there is still some room left at the base of RAM, try and put
1045         * the DTB there like we do for images loaded with -bios or -pflash.
1046         */
1047        if (image_low_addr > info->loader_start
1048            || image_high_addr < info->loader_start) {
1049            /*
1050             * Set image_low_addr as address limit for arm_load_dtb if it may be
1051             * pointing into RAM, otherwise pass '0' (no limit)
1052             */
1053            if (image_low_addr < info->loader_start) {
1054                image_low_addr = 0;
1055            }
1056            info->dtb_start = info->loader_start;
1057            info->dtb_limit = image_low_addr;
1058        }
1059    }
1060    entry = elf_entry;
1061    if (kernel_size < 0) {
1062        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1063        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1064                                     &is_linux, NULL, NULL, as);
1065        if (kernel_size >= 0) {
1066            image_low_addr = loadaddr;
1067            image_high_addr = image_low_addr + kernel_size;
1068        }
1069    }
1070    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1071        kernel_size = load_aarch64_image(info->kernel_filename,
1072                                         info->loader_start, &entry, as);
1073        is_linux = 1;
1074        if (kernel_size >= 0) {
1075            image_low_addr = entry;
1076            image_high_addr = image_low_addr + kernel_size;
1077        }
1078    } else if (kernel_size < 0) {
1079        /* 32-bit ARM */
1080        entry = info->loader_start + KERNEL_LOAD_ADDR;
1081        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1082                                             ram_end - KERNEL_LOAD_ADDR, as);
1083        is_linux = 1;
1084        if (kernel_size >= 0) {
1085            image_low_addr = entry;
1086            image_high_addr = image_low_addr + kernel_size;
1087        }
1088    }
1089    if (kernel_size < 0) {
1090        error_report("could not load kernel '%s'", info->kernel_filename);
1091        exit(1);
1092    }
1093
1094    if (kernel_size > info->ram_size) {
1095        error_report("kernel '%s' is too large to fit in RAM "
1096                     "(kernel size %zd, RAM size %" PRId64 ")",
1097                     info->kernel_filename, kernel_size, info->ram_size);
1098        exit(1);
1099    }
1100
1101    info->entry = entry;
1102
1103    /*
1104     * We want to put the initrd far enough into RAM that when the
1105     * kernel is uncompressed it will not clobber the initrd. However
1106     * on boards without much RAM we must ensure that we still leave
1107     * enough room for a decent sized initrd, and on boards with large
1108     * amounts of RAM we must avoid the initrd being so far up in RAM
1109     * that it is outside lowmem and inaccessible to the kernel.
1110     * So for boards with less  than 256MB of RAM we put the initrd
1111     * halfway into RAM, and for boards with 256MB of RAM or more we put
1112     * the initrd at 128MB.
1113     * We also refuse to put the initrd somewhere that will definitely
1114     * overlay the kernel we just loaded, though for kernel formats which
1115     * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1116     * we might still make a bad choice here.
1117     */
1118    info->initrd_start = info->loader_start +
1119        MIN(info->ram_size / 2, 128 * MiB);
1120    if (image_high_addr) {
1121        info->initrd_start = MAX(info->initrd_start, image_high_addr);
1122    }
1123    info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1124
1125    if (is_linux) {
1126        uint32_t fixupcontext[FIXUP_MAX];
1127
1128        if (info->initrd_filename) {
1129
1130            if (info->initrd_start >= ram_end) {
1131                error_report("not enough space after kernel to load initrd");
1132                exit(1);
1133            }
1134
1135            initrd_size = load_ramdisk_as(info->initrd_filename,
1136                                          info->initrd_start,
1137                                          ram_end - info->initrd_start, as);
1138            if (initrd_size < 0) {
1139                initrd_size = load_image_targphys_as(info->initrd_filename,
1140                                                     info->initrd_start,
1141                                                     ram_end -
1142                                                     info->initrd_start,
1143                                                     as);
1144            }
1145            if (initrd_size < 0) {
1146                error_report("could not load initrd '%s'",
1147                             info->initrd_filename);
1148                exit(1);
1149            }
1150            if (info->initrd_start + initrd_size > ram_end) {
1151                error_report("could not load initrd '%s': "
1152                             "too big to fit into RAM after the kernel",
1153                             info->initrd_filename);
1154                exit(1);
1155            }
1156        } else {
1157            initrd_size = 0;
1158        }
1159        info->initrd_size = initrd_size;
1160
1161        fixupcontext[FIXUP_BOARDID] = info->board_id;
1162        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1163
1164        /*
1165         * for device tree boot, we pass the DTB directly in r2. Otherwise
1166         * we point to the kernel args.
1167         */
1168        if (have_dtb(info)) {
1169            hwaddr align;
1170
1171            if (elf_machine == EM_AARCH64) {
1172                /*
1173                 * Some AArch64 kernels on early bootup map the fdt region as
1174                 *
1175                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1176                 *
1177                 * Let's play safe and prealign it to 2MB to give us some space.
1178                 */
1179                align = 2 * MiB;
1180            } else {
1181                /*
1182                 * Some 32bit kernels will trash anything in the 4K page the
1183                 * initrd ends in, so make sure the DTB isn't caught up in that.
1184                 */
1185                align = 4 * KiB;
1186            }
1187
1188            /* Place the DTB after the initrd in memory with alignment. */
1189            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1190                                           align);
1191            if (info->dtb_start >= ram_end) {
1192                error_report("Not enough space for DTB after kernel/initrd");
1193                exit(1);
1194            }
1195            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1196            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1197        } else {
1198            fixupcontext[FIXUP_ARGPTR_LO] =
1199                info->loader_start + KERNEL_ARGS_ADDR;
1200            fixupcontext[FIXUP_ARGPTR_HI] =
1201                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1202            if (info->ram_size >= 4 * GiB) {
1203                error_report("RAM size must be less than 4GB to boot"
1204                             " Linux kernel using ATAGS (try passing a device tree"
1205                             " using -dtb)");
1206                exit(1);
1207            }
1208        }
1209        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1210        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1211
1212        write_bootloader("bootloader", info->loader_start,
1213                         primary_loader, fixupcontext, as);
1214
1215        if (info->write_board_setup) {
1216            info->write_board_setup(cpu, info);
1217        }
1218
1219        /*
1220         * Notify devices which need to fake up firmware initialization
1221         * that we're doing a direct kernel boot.
1222         */
1223        object_child_foreach_recursive(object_get_root(),
1224                                       do_arm_linux_init, info);
1225    }
1226    info->is_linux = is_linux;
1227
1228    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1229        ARM_CPU(cs)->env.boot_info = info;
1230    }
1231}
1232
1233static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1234{
1235    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1236
1237    if (have_dtb(info)) {
1238        /*
1239         * If we have a device tree blob, but no kernel to supply it to (or
1240         * the kernel is supposed to be loaded by the bootloader), copy the
1241         * DTB to the base of RAM for the bootloader to pick up.
1242         */
1243        info->dtb_start = info->loader_start;
1244    }
1245
1246    if (info->kernel_filename) {
1247        FWCfgState *fw_cfg;
1248        bool try_decompressing_kernel;
1249
1250        fw_cfg = fw_cfg_find();
1251
1252        if (!fw_cfg) {
1253            error_report("This machine type does not support loading both "
1254                         "a guest firmware/BIOS image and a guest kernel at "
1255                         "the same time. You should change your QEMU command "
1256                         "line to specify one or the other, but not both.");
1257            exit(1);
1258        }
1259
1260        try_decompressing_kernel = arm_feature(&cpu->env,
1261                                               ARM_FEATURE_AARCH64);
1262
1263        /*
1264         * Expose the kernel, the command line, and the initrd in fw_cfg.
1265         * We don't process them here at all, it's all left to the
1266         * firmware.
1267         */
1268        load_image_to_fw_cfg(fw_cfg,
1269                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1270                             info->kernel_filename,
1271                             try_decompressing_kernel);
1272        load_image_to_fw_cfg(fw_cfg,
1273                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1274                             info->initrd_filename, false);
1275
1276        if (info->kernel_cmdline) {
1277            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1278                           strlen(info->kernel_cmdline) + 1);
1279            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1280                              info->kernel_cmdline);
1281        }
1282    }
1283
1284    /*
1285     * We will start from address 0 (typically a boot ROM image) in the
1286     * same way as hardware. Leave env->boot_info NULL, so that
1287     * do_cpu_reset() knows it does not need to alter the PC on reset.
1288     */
1289}
1290
1291void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1292{
1293    CPUState *cs;
1294    AddressSpace *as = arm_boot_address_space(cpu, info);
1295    int boot_el;
1296    CPUARMState *env = &cpu->env;
1297    int nb_cpus = 0;
1298
1299    /*
1300     * CPU objects (unlike devices) are not automatically reset on system
1301     * reset, so we must always register a handler to do so. If we're
1302     * actually loading a kernel, the handler is also responsible for
1303     * arranging that we start it correctly.
1304     */
1305    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1306        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1307        nb_cpus++;
1308    }
1309
1310    /*
1311     * The board code is not supposed to set secure_board_setup unless
1312     * running its code in secure mode is actually possible, and KVM
1313     * doesn't support secure.
1314     */
1315    assert(!(info->secure_board_setup && kvm_enabled()));
1316    info->kernel_filename = ms->kernel_filename;
1317    info->kernel_cmdline = ms->kernel_cmdline;
1318    info->initrd_filename = ms->initrd_filename;
1319    info->dtb_filename = ms->dtb;
1320    info->dtb_limit = 0;
1321
1322    /* Load the kernel.  */
1323    if (!info->kernel_filename || info->firmware_loaded) {
1324        arm_setup_firmware_boot(cpu, info);
1325    } else {
1326        arm_setup_direct_kernel_boot(cpu, info);
1327    }
1328
1329    /*
1330     * Disable the PSCI conduit if it is set up to target the same
1331     * or a lower EL than the one we're going to start the guest code in.
1332     * This logic needs to agree with the code in do_cpu_reset() which
1333     * decides whether we're going to boot the guest in the highest
1334     * supported exception level or in a lower one.
1335     */
1336
1337    /*
1338     * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1339     * are never emulated to trap into guest code. It therefore does not
1340     * make sense for the board to have a setup code fragment that runs
1341     * in Secure, because this will probably need to itself issue an SMC of some
1342     * kind as part of its operation.
1343     */
1344    assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1345           !info->secure_board_setup);
1346
1347    /* Boot into highest supported EL ... */
1348    if (arm_feature(env, ARM_FEATURE_EL3)) {
1349        boot_el = 3;
1350    } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1351        boot_el = 2;
1352    } else {
1353        boot_el = 1;
1354    }
1355    /* ...except that if we're booting Linux we adjust the EL we boot into */
1356    if (info->is_linux && !info->secure_boot) {
1357        boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1358    }
1359
1360    if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1361        (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1362        info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1363    }
1364
1365    if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1366        for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1367            Object *cpuobj = OBJECT(cs);
1368
1369            object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1370                                    &error_abort);
1371            /*
1372             * Secondary CPUs start in PSCI powered-down state. Like the
1373             * code in do_cpu_reset(), we assume first_cpu is the primary
1374             * CPU.
1375             */
1376            if (cs != first_cpu) {
1377                object_property_set_bool(cpuobj, "start-powered-off", true,
1378                                         &error_abort);
1379            }
1380        }
1381    }
1382
1383    if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1384        info->is_linux && nb_cpus > 1) {
1385        /*
1386         * We're booting Linux but not using PSCI, so for SMP we need
1387         * to write a custom secondary CPU boot loader stub, and arrange
1388         * for the secondary CPU reset to make the accompanying initialization.
1389         */
1390        if (!info->secondary_cpu_reset_hook) {
1391            info->secondary_cpu_reset_hook = default_reset_secondary;
1392        }
1393        if (!info->write_secondary_boot) {
1394            info->write_secondary_boot = default_write_secondary;
1395        }
1396        info->write_secondary_boot(cpu, info);
1397    } else {
1398        /*
1399         * No secondary boot stub; don't use the reset hook that would
1400         * have set the CPU up to call it
1401         */
1402        info->write_secondary_boot = NULL;
1403        info->secondary_cpu_reset_hook = NULL;
1404    }
1405
1406    /*
1407     * arm_load_dtb() may add a PSCI node so it must be called after we have
1408     * decided whether to enable PSCI and set the psci-conduit CPU properties.
1409     */
1410    if (!info->skip_dtb_autoload && have_dtb(info)) {
1411        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1412            exit(1);
1413        }
1414    }
1415}
1416
1417static const TypeInfo arm_linux_boot_if_info = {
1418    .name = TYPE_ARM_LINUX_BOOT_IF,
1419    .parent = TYPE_INTERFACE,
1420    .class_size = sizeof(ARMLinuxBootIfClass),
1421};
1422
1423static void arm_linux_boot_register_types(void)
1424{
1425    type_register_static(&arm_linux_boot_if_info);
1426}
1427
1428type_init(arm_linux_boot_register_types)
1429