qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3 (emulation)
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/bitops.h"
  17#include "qemu/log.h"
  18#include "qemu/main-loop.h"
  19#include "trace.h"
  20#include "gicv3_internal.h"
  21#include "hw/irq.h"
  22#include "cpu.h"
  23#include "target/arm/cpregs.h"
  24
  25/*
  26 * Special case return value from hppvi_index(); must be larger than
  27 * the architecturally maximum possible list register index (which is 15)
  28 */
  29#define HPPVI_INDEX_VLPI 16
  30
  31static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  32{
  33    return env->gicv3state;
  34}
  35
  36static bool gicv3_use_ns_bank(CPUARMState *env)
  37{
  38    /* Return true if we should use the NonSecure bank for a banked GIC
  39     * CPU interface register. Note that this differs from the
  40     * access_secure_reg() function because GICv3 banked registers are
  41     * banked even for AArch64, unlike the other CPU system registers.
  42     */
  43    return !arm_is_secure_below_el3(env);
  44}
  45
  46/* The minimum BPR for the virtual interface is a configurable property */
  47static inline int icv_min_vbpr(GICv3CPUState *cs)
  48{
  49    return 7 - cs->vprebits;
  50}
  51
  52static inline int ich_num_aprs(GICv3CPUState *cs)
  53{
  54    /* Return the number of virtual APR registers (1, 2, or 4) */
  55    int aprmax = 1 << (cs->vprebits - 5);
  56    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
  57    return aprmax;
  58}
  59
  60/* Simple accessor functions for LR fields */
  61static uint32_t ich_lr_vintid(uint64_t lr)
  62{
  63    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
  64}
  65
  66static uint32_t ich_lr_pintid(uint64_t lr)
  67{
  68    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
  69}
  70
  71static uint32_t ich_lr_prio(uint64_t lr)
  72{
  73    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
  74}
  75
  76static int ich_lr_state(uint64_t lr)
  77{
  78    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
  79}
  80
  81static bool icv_access(CPUARMState *env, int hcr_flags)
  82{
  83    /* Return true if this ICC_ register access should really be
  84     * directed to an ICV_ access. hcr_flags is a mask of
  85     * HCR_EL2 bits to check: we treat this as an ICV_ access
  86     * if we are in NS EL1 and at least one of the specified
  87     * HCR_EL2 bits is set.
  88     *
  89     * ICV registers fall into four categories:
  90     *  * access if NS EL1 and HCR_EL2.FMO == 1:
  91     *    all ICV regs with '0' in their name
  92     *  * access if NS EL1 and HCR_EL2.IMO == 1:
  93     *    all ICV regs with '1' in their name
  94     *  * access if NS EL1 and either IMO or FMO == 1:
  95     *    CTLR, DIR, PMR, RPR
  96     */
  97    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
  98    bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
  99
 100    return flagmatch && arm_current_el(env) == 1
 101        && !arm_is_secure_below_el3(env);
 102}
 103
 104static int read_vbpr(GICv3CPUState *cs, int grp)
 105{
 106    /* Read VBPR value out of the VMCR field (caller must handle
 107     * VCBPR effects if required)
 108     */
 109    if (grp == GICV3_G0) {
 110        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 111                     ICH_VMCR_EL2_VBPR0_LENGTH);
 112    } else {
 113        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 114                         ICH_VMCR_EL2_VBPR1_LENGTH);
 115    }
 116}
 117
 118static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 119{
 120    /* Write new VBPR1 value, handling the "writing a value less than
 121     * the minimum sets it to the minimum" semantics.
 122     */
 123    int min = icv_min_vbpr(cs);
 124
 125    if (grp != GICV3_G0) {
 126        min++;
 127    }
 128
 129    value = MAX(value, min);
 130
 131    if (grp == GICV3_G0) {
 132        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 133                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
 134    } else {
 135        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 136                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
 137    }
 138}
 139
 140static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 141{
 142    /* Return a mask word which clears the unimplemented priority bits
 143     * from a priority value for a virtual interrupt. (Not to be confused
 144     * with the group priority, whose mask depends on the value of VBPR
 145     * for the interrupt group.)
 146     */
 147    return ~0U << (8 - cs->vpribits);
 148}
 149
 150static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 151{
 152    /* Calculate the current running priority based on the set bits
 153     * in the ICH Active Priority Registers.
 154     */
 155    int i;
 156    int aprmax = ich_num_aprs(cs);
 157
 158    for (i = 0; i < aprmax; i++) {
 159        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 160            cs->ich_apr[GICV3_G1NS][i];
 161
 162        if (!apr) {
 163            continue;
 164        }
 165        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 166    }
 167    /* No current active interrupts: return idle priority */
 168    return 0xff;
 169}
 170
 171static int hppvi_index(GICv3CPUState *cs)
 172{
 173    /*
 174     * Return the list register index of the highest priority pending
 175     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 176     * pseudocode. If no pending virtual interrupts, return -1.
 177     * If the highest priority pending virtual interrupt is a vLPI,
 178     * return HPPVI_INDEX_VLPI.
 179     * (The pseudocode handles checking whether the vLPI is higher
 180     * priority than the highest priority list register at every
 181     * callsite of HighestPriorityVirtualInterrupt; we check it here.)
 182     */
 183    ARMCPU *cpu = ARM_CPU(cs->cpu);
 184    CPUARMState *env = &cpu->env;
 185    int idx = -1;
 186    int i;
 187    /* Note that a list register entry with a priority of 0xff will
 188     * never be reported by this function; this is the architecturally
 189     * correct behaviour.
 190     */
 191    int prio = 0xff;
 192
 193    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 194        /* Both groups disabled, definitely nothing to do */
 195        return idx;
 196    }
 197
 198    for (i = 0; i < cs->num_list_regs; i++) {
 199        uint64_t lr = cs->ich_lr_el2[i];
 200        int thisprio;
 201
 202        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 203            /* Not Pending */
 204            continue;
 205        }
 206
 207        /* Ignore interrupts if relevant group enable not set */
 208        if (lr & ICH_LR_EL2_GROUP) {
 209            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 210                continue;
 211            }
 212        } else {
 213            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 214                continue;
 215            }
 216        }
 217
 218        thisprio = ich_lr_prio(lr);
 219
 220        if (thisprio < prio) {
 221            prio = thisprio;
 222            idx = i;
 223        }
 224    }
 225
 226    /*
 227     * "no pending vLPI" is indicated with prio = 0xff, which always
 228     * fails the priority check here. vLPIs are only considered
 229     * when we are in Non-Secure state.
 230     */
 231    if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
 232        if (cs->hppvlpi.grp == GICV3_G0) {
 233            if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
 234                return HPPVI_INDEX_VLPI;
 235            }
 236        } else {
 237            if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
 238                return HPPVI_INDEX_VLPI;
 239            }
 240        }
 241    }
 242
 243    return idx;
 244}
 245
 246static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 247{
 248    /* Return a mask word which clears the subpriority bits from
 249     * a priority value for a virtual interrupt in the specified group.
 250     * This depends on the VBPR value.
 251     * If using VBPR0 then:
 252     *  a BPR of 0 means the group priority bits are [7:1];
 253     *  a BPR of 1 means they are [7:2], and so on down to
 254     *  a BPR of 7 meaning no group priority bits at all.
 255     * If using VBPR1 then:
 256     *  a BPR of 0 is impossible (the minimum value is 1)
 257     *  a BPR of 1 means the group priority bits are [7:1];
 258     *  a BPR of 2 means they are [7:2], and so on down to
 259     *  a BPR of 7 meaning the group priority is [7].
 260     *
 261     * Which BPR to use depends on the group of the interrupt and
 262     * the current ICH_VMCR_EL2.VCBPR settings.
 263     *
 264     * This corresponds to the VGroupBits() pseudocode.
 265     */
 266    int bpr;
 267
 268    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 269        group = GICV3_G0;
 270    }
 271
 272    bpr = read_vbpr(cs, group);
 273    if (group == GICV3_G1NS) {
 274        assert(bpr > 0);
 275        bpr--;
 276    }
 277
 278    return ~0U << (bpr + 1);
 279}
 280
 281static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 282{
 283    /* Return true if we can signal this virtual interrupt defined by
 284     * the given list register value; see the pseudocode functions
 285     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 286     * Compare also icc_hppi_can_preempt() which is the non-virtual
 287     * equivalent of these checks.
 288     */
 289    int grp;
 290    uint32_t mask, prio, rprio, vpmr;
 291
 292    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 293        /* Virtual interface disabled */
 294        return false;
 295    }
 296
 297    /* We don't need to check that this LR is in Pending state because
 298     * that has already been done in hppvi_index().
 299     */
 300
 301    prio = ich_lr_prio(lr);
 302    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 303                     ICH_VMCR_EL2_VPMR_LENGTH);
 304
 305    if (prio >= vpmr) {
 306        /* Priority mask masks this interrupt */
 307        return false;
 308    }
 309
 310    rprio = ich_highest_active_virt_prio(cs);
 311    if (rprio == 0xff) {
 312        /* No running interrupt so we can preempt */
 313        return true;
 314    }
 315
 316    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 317
 318    mask = icv_gprio_mask(cs, grp);
 319
 320    /* We only preempt a running interrupt if the pending interrupt's
 321     * group priority is sufficient (the subpriorities are not considered).
 322     */
 323    if ((prio & mask) < (rprio & mask)) {
 324        return true;
 325    }
 326
 327    return false;
 328}
 329
 330static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
 331{
 332    /*
 333     * Return true if we can signal the highest priority pending vLPI.
 334     * We can assume we're Non-secure because hppvi_index() already
 335     * tested for that.
 336     */
 337    uint32_t mask, rprio, vpmr;
 338
 339    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 340        /* Virtual interface disabled */
 341        return false;
 342    }
 343
 344    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 345                     ICH_VMCR_EL2_VPMR_LENGTH);
 346
 347    if (cs->hppvlpi.prio >= vpmr) {
 348        /* Priority mask masks this interrupt */
 349        return false;
 350    }
 351
 352    rprio = ich_highest_active_virt_prio(cs);
 353    if (rprio == 0xff) {
 354        /* No running interrupt so we can preempt */
 355        return true;
 356    }
 357
 358    mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
 359
 360    /*
 361     * We only preempt a running interrupt if the pending interrupt's
 362     * group priority is sufficient (the subpriorities are not considered).
 363     */
 364    if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
 365        return true;
 366    }
 367
 368    return false;
 369}
 370
 371static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 372                                                uint32_t *misr)
 373{
 374    /* Return a set of bits indicating the EOI maintenance interrupt status
 375     * for each list register. The EOI maintenance interrupt status is
 376     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 377     * (see the GICv3 spec for the ICH_EISR_EL2 register).
 378     * If misr is not NULL then we should also collect the information
 379     * about the MISR.EOI, MISR.NP and MISR.U bits.
 380     */
 381    uint32_t value = 0;
 382    int validcount = 0;
 383    bool seenpending = false;
 384    int i;
 385
 386    for (i = 0; i < cs->num_list_regs; i++) {
 387        uint64_t lr = cs->ich_lr_el2[i];
 388
 389        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 390            == ICH_LR_EL2_EOI) {
 391            value |= (1 << i);
 392        }
 393        if ((lr & ICH_LR_EL2_STATE_MASK)) {
 394            validcount++;
 395        }
 396        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 397            seenpending = true;
 398        }
 399    }
 400
 401    if (misr) {
 402        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 403            *misr |= ICH_MISR_EL2_U;
 404        }
 405        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 406            *misr |= ICH_MISR_EL2_NP;
 407        }
 408        if (value) {
 409            *misr |= ICH_MISR_EL2_EOI;
 410        }
 411    }
 412    return value;
 413}
 414
 415static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 416{
 417    /* Return a set of bits indicating the maintenance interrupt status
 418     * (as seen in the ICH_MISR_EL2 register).
 419     */
 420    uint32_t value = 0;
 421
 422    /* Scan list registers and fill in the U, NP and EOI bits */
 423    eoi_maintenance_interrupt_state(cs, &value);
 424
 425    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
 426        (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
 427        value |= ICH_MISR_EL2_LRENP;
 428    }
 429
 430    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 431        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 432        value |= ICH_MISR_EL2_VGRP0E;
 433    }
 434
 435    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 436        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 437        value |= ICH_MISR_EL2_VGRP0D;
 438    }
 439    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 440        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 441        value |= ICH_MISR_EL2_VGRP1E;
 442    }
 443
 444    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 445        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 446        value |= ICH_MISR_EL2_VGRP1D;
 447    }
 448
 449    return value;
 450}
 451
 452void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
 453{
 454    /*
 455     * Tell the CPU about any pending virtual interrupts.
 456     * This should only be called for changes that affect the
 457     * vIRQ and vFIQ status and do not change the maintenance
 458     * interrupt status. This means that unlike gicv3_cpuif_virt_update()
 459     * this function won't recursively call back into the GIC code.
 460     * The main use of this is when the redistributor has changed the
 461     * highest priority pending virtual LPI.
 462     */
 463    int idx;
 464    int irqlevel = 0;
 465    int fiqlevel = 0;
 466
 467    idx = hppvi_index(cs);
 468    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
 469                                  cs->hppvlpi.irq, cs->hppvlpi.grp,
 470                                  cs->hppvlpi.prio);
 471    if (idx == HPPVI_INDEX_VLPI) {
 472        if (icv_hppvlpi_can_preempt(cs)) {
 473            if (cs->hppvlpi.grp == GICV3_G0) {
 474                fiqlevel = 1;
 475            } else {
 476                irqlevel = 1;
 477            }
 478        }
 479    } else if (idx >= 0) {
 480        uint64_t lr = cs->ich_lr_el2[idx];
 481
 482        if (icv_hppi_can_preempt(cs, lr)) {
 483            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 484            if (lr & ICH_LR_EL2_GROUP) {
 485                irqlevel = 1;
 486            } else {
 487                fiqlevel = 1;
 488            }
 489        }
 490    }
 491
 492    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 493    qemu_set_irq(cs->parent_vfiq, fiqlevel);
 494    qemu_set_irq(cs->parent_virq, irqlevel);
 495}
 496
 497static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 498{
 499    /*
 500     * Tell the CPU about any pending virtual interrupts or
 501     * maintenance interrupts, following a change to the state
 502     * of the CPU interface relevant to virtual interrupts.
 503     *
 504     * CAUTION: this function will call qemu_set_irq() on the
 505     * CPU maintenance IRQ line, which is typically wired up
 506     * to the GIC as a per-CPU interrupt. This means that it
 507     * will recursively call back into the GIC code via
 508     * gicv3_redist_set_irq() and thus into the CPU interface code's
 509     * gicv3_cpuif_update(). It is therefore important that this
 510     * function is only called as the final action of a CPU interface
 511     * register write implementation, after all the GIC state
 512     * fields have been updated. gicv3_cpuif_update() also must
 513     * not cause this function to be called, but that happens
 514     * naturally as a result of there being no architectural
 515     * linkage between the physical and virtual GIC logic.
 516     */
 517    ARMCPU *cpu = ARM_CPU(cs->cpu);
 518    int maintlevel = 0;
 519
 520    gicv3_cpuif_virt_irq_fiq_update(cs);
 521
 522    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
 523        maintenance_interrupt_state(cs) != 0) {
 524        maintlevel = 1;
 525    }
 526
 527    trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
 528    qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
 529}
 530
 531static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 532{
 533    GICv3CPUState *cs = icc_cs_from_env(env);
 534    int regno = ri->opc2 & 3;
 535    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 536    uint64_t value = cs->ich_apr[grp][regno];
 537
 538    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 539    return value;
 540}
 541
 542static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 543                         uint64_t value)
 544{
 545    GICv3CPUState *cs = icc_cs_from_env(env);
 546    int regno = ri->opc2 & 3;
 547    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 548
 549    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 550
 551    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 552
 553    gicv3_cpuif_virt_irq_fiq_update(cs);
 554    return;
 555}
 556
 557static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 558{
 559    GICv3CPUState *cs = icc_cs_from_env(env);
 560    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 561    uint64_t bpr;
 562    bool satinc = false;
 563
 564    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 565        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 566        grp = GICV3_G0;
 567        satinc = true;
 568    }
 569
 570    bpr = read_vbpr(cs, grp);
 571
 572    if (satinc) {
 573        bpr++;
 574        bpr = MIN(bpr, 7);
 575    }
 576
 577    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 578
 579    return bpr;
 580}
 581
 582static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 583                          uint64_t value)
 584{
 585    GICv3CPUState *cs = icc_cs_from_env(env);
 586    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 587
 588    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 589                              gicv3_redist_affid(cs), value);
 590
 591    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 592        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 593        return;
 594    }
 595
 596    write_vbpr(cs, grp, value);
 597
 598    gicv3_cpuif_virt_irq_fiq_update(cs);
 599}
 600
 601static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 602{
 603    GICv3CPUState *cs = icc_cs_from_env(env);
 604    uint64_t value;
 605
 606    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 607                      ICH_VMCR_EL2_VPMR_LENGTH);
 608
 609    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 610    return value;
 611}
 612
 613static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 614                          uint64_t value)
 615{
 616    GICv3CPUState *cs = icc_cs_from_env(env);
 617
 618    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 619
 620    value &= icv_fullprio_mask(cs);
 621
 622    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 623                                 ICH_VMCR_EL2_VPMR_LENGTH, value);
 624
 625    gicv3_cpuif_virt_irq_fiq_update(cs);
 626}
 627
 628static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 629{
 630    GICv3CPUState *cs = icc_cs_from_env(env);
 631    int enbit;
 632    uint64_t value;
 633
 634    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 635    value = extract64(cs->ich_vmcr_el2, enbit, 1);
 636
 637    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 638                                gicv3_redist_affid(cs), value);
 639    return value;
 640}
 641
 642static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 643                             uint64_t value)
 644{
 645    GICv3CPUState *cs = icc_cs_from_env(env);
 646    int enbit;
 647
 648    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 649                                 gicv3_redist_affid(cs), value);
 650
 651    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 652
 653    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 654    gicv3_cpuif_virt_update(cs);
 655}
 656
 657static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 658{
 659    GICv3CPUState *cs = icc_cs_from_env(env);
 660    uint64_t value;
 661
 662    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 663     * should match the ones reported in ich_vtr_read().
 664     */
 665    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 666        ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
 667
 668    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 669        value |= ICC_CTLR_EL1_EOIMODE;
 670    }
 671
 672    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 673        value |= ICC_CTLR_EL1_CBPR;
 674    }
 675
 676    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 677    return value;
 678}
 679
 680static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 681                               uint64_t value)
 682{
 683    GICv3CPUState *cs = icc_cs_from_env(env);
 684
 685    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 686
 687    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 688                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 689    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 690                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 691
 692    gicv3_cpuif_virt_irq_fiq_update(cs);
 693}
 694
 695static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 696{
 697    GICv3CPUState *cs = icc_cs_from_env(env);
 698    int prio = ich_highest_active_virt_prio(cs);
 699
 700    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 701    return prio;
 702}
 703
 704static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 705{
 706    GICv3CPUState *cs = icc_cs_from_env(env);
 707    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 708    int idx = hppvi_index(cs);
 709    uint64_t value = INTID_SPURIOUS;
 710
 711    if (idx == HPPVI_INDEX_VLPI) {
 712        if (cs->hppvlpi.grp == grp) {
 713            value = cs->hppvlpi.irq;
 714        }
 715    } else if (idx >= 0) {
 716        uint64_t lr = cs->ich_lr_el2[idx];
 717        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 718
 719        if (grp == thisgrp) {
 720            value = ich_lr_vintid(lr);
 721        }
 722    }
 723
 724    trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
 725                               gicv3_redist_affid(cs), value);
 726    return value;
 727}
 728
 729static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 730{
 731    /* Activate the interrupt in the specified list register
 732     * by moving it from Pending to Active state, and update the
 733     * Active Priority Registers.
 734     */
 735    uint32_t mask = icv_gprio_mask(cs, grp);
 736    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 737    int aprbit = prio >> (8 - cs->vprebits);
 738    int regno = aprbit / 32;
 739    int regbit = aprbit % 32;
 740
 741    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 742    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 743    cs->ich_apr[grp][regno] |= (1 << regbit);
 744}
 745
 746static void icv_activate_vlpi(GICv3CPUState *cs)
 747{
 748    uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
 749    int prio = cs->hppvlpi.prio & mask;
 750    int aprbit = prio >> (8 - cs->vprebits);
 751    int regno = aprbit / 32;
 752    int regbit = aprbit % 32;
 753
 754    cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
 755    gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
 756}
 757
 758static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 759{
 760    GICv3CPUState *cs = icc_cs_from_env(env);
 761    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 762    int idx = hppvi_index(cs);
 763    uint64_t intid = INTID_SPURIOUS;
 764
 765    if (idx == HPPVI_INDEX_VLPI) {
 766        if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
 767            intid = cs->hppvlpi.irq;
 768            icv_activate_vlpi(cs);
 769        }
 770    } else if (idx >= 0) {
 771        uint64_t lr = cs->ich_lr_el2[idx];
 772        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 773
 774        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 775            intid = ich_lr_vintid(lr);
 776            if (!gicv3_intid_is_special(intid)) {
 777                icv_activate_irq(cs, idx, grp);
 778            } else {
 779                /* Interrupt goes from Pending to Invalid */
 780                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 781                /* We will now return the (bogus) ID from the list register,
 782                 * as per the pseudocode.
 783                 */
 784            }
 785        }
 786    }
 787
 788    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 789                             gicv3_redist_affid(cs), intid);
 790
 791    gicv3_cpuif_virt_update(cs);
 792
 793    return intid;
 794}
 795
 796static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
 797{
 798    /*
 799     * Return a mask word which clears the unimplemented priority bits
 800     * from a priority value for a physical interrupt. (Not to be confused
 801     * with the group priority, whose mask depends on the value of BPR
 802     * for the interrupt group.)
 803     */
 804    return ~0U << (8 - cs->pribits);
 805}
 806
 807static inline int icc_min_bpr(GICv3CPUState *cs)
 808{
 809    /* The minimum BPR for the physical interface. */
 810    return 7 - cs->prebits;
 811}
 812
 813static inline int icc_min_bpr_ns(GICv3CPUState *cs)
 814{
 815    return icc_min_bpr(cs) + 1;
 816}
 817
 818static inline int icc_num_aprs(GICv3CPUState *cs)
 819{
 820    /* Return the number of APR registers (1, 2, or 4) */
 821    int aprmax = 1 << MAX(cs->prebits - 5, 0);
 822    assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
 823    return aprmax;
 824}
 825
 826static int icc_highest_active_prio(GICv3CPUState *cs)
 827{
 828    /* Calculate the current running priority based on the set bits
 829     * in the Active Priority Registers.
 830     */
 831    int i;
 832
 833    for (i = 0; i < icc_num_aprs(cs); i++) {
 834        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 835            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 836
 837        if (!apr) {
 838            continue;
 839        }
 840        return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
 841    }
 842    /* No current active interrupts: return idle priority */
 843    return 0xff;
 844}
 845
 846static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 847{
 848    /* Return a mask word which clears the subpriority bits from
 849     * a priority value for an interrupt in the specified group.
 850     * This depends on the BPR value. For CBPR0 (S or NS):
 851     *  a BPR of 0 means the group priority bits are [7:1];
 852     *  a BPR of 1 means they are [7:2], and so on down to
 853     *  a BPR of 7 meaning no group priority bits at all.
 854     * For CBPR1 NS:
 855     *  a BPR of 0 is impossible (the minimum value is 1)
 856     *  a BPR of 1 means the group priority bits are [7:1];
 857     *  a BPR of 2 means they are [7:2], and so on down to
 858     *  a BPR of 7 meaning the group priority is [7].
 859     *
 860     * Which BPR to use depends on the group of the interrupt and
 861     * the current ICC_CTLR.CBPR settings.
 862     *
 863     * This corresponds to the GroupBits() pseudocode.
 864     */
 865    int bpr;
 866
 867    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 868        (group == GICV3_G1NS &&
 869         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 870        group = GICV3_G0;
 871    }
 872
 873    bpr = cs->icc_bpr[group] & 7;
 874
 875    if (group == GICV3_G1NS) {
 876        assert(bpr > 0);
 877        bpr--;
 878    }
 879
 880    return ~0U << (bpr + 1);
 881}
 882
 883static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 884{
 885    /* Return true if there is no pending interrupt, or the
 886     * highest priority pending interrupt is in a group which has been
 887     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 888     */
 889    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 890}
 891
 892static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 893{
 894    /* Return true if we have a pending interrupt of sufficient
 895     * priority to preempt.
 896     */
 897    int rprio;
 898    uint32_t mask;
 899
 900    if (icc_no_enabled_hppi(cs)) {
 901        return false;
 902    }
 903
 904    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 905        /* Priority mask masks this interrupt */
 906        return false;
 907    }
 908
 909    rprio = icc_highest_active_prio(cs);
 910    if (rprio == 0xff) {
 911        /* No currently running interrupt so we can preempt */
 912        return true;
 913    }
 914
 915    mask = icc_gprio_mask(cs, cs->hppi.grp);
 916
 917    /* We only preempt a running interrupt if the pending interrupt's
 918     * group priority is sufficient (the subpriorities are not considered).
 919     */
 920    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 921        return true;
 922    }
 923
 924    return false;
 925}
 926
 927void gicv3_cpuif_update(GICv3CPUState *cs)
 928{
 929    /* Tell the CPU about its highest priority pending interrupt */
 930    int irqlevel = 0;
 931    int fiqlevel = 0;
 932    ARMCPU *cpu = ARM_CPU(cs->cpu);
 933    CPUARMState *env = &cpu->env;
 934
 935    g_assert(qemu_mutex_iothread_locked());
 936
 937    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 938                             cs->hppi.grp, cs->hppi.prio);
 939
 940    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 941        /* If a Security-enabled GIC sends a G1S interrupt to a
 942         * Security-disabled CPU, we must treat it as if it were G0.
 943         */
 944        cs->hppi.grp = GICV3_G0;
 945    }
 946
 947    if (icc_hppi_can_preempt(cs)) {
 948        /* We have an interrupt: should we signal it as IRQ or FIQ?
 949         * This is described in the GICv3 spec section 4.6.2.
 950         */
 951        bool isfiq;
 952
 953        switch (cs->hppi.grp) {
 954        case GICV3_G0:
 955            isfiq = true;
 956            break;
 957        case GICV3_G1:
 958            isfiq = (!arm_is_secure(env) ||
 959                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 960            break;
 961        case GICV3_G1NS:
 962            isfiq = arm_is_secure(env);
 963            break;
 964        default:
 965            g_assert_not_reached();
 966        }
 967
 968        if (isfiq) {
 969            fiqlevel = 1;
 970        } else {
 971            irqlevel = 1;
 972        }
 973    }
 974
 975    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 976
 977    qemu_set_irq(cs->parent_fiq, fiqlevel);
 978    qemu_set_irq(cs->parent_irq, irqlevel);
 979}
 980
 981static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 982{
 983    GICv3CPUState *cs = icc_cs_from_env(env);
 984    uint32_t value = cs->icc_pmr_el1;
 985
 986    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 987        return icv_pmr_read(env, ri);
 988    }
 989
 990    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 991        (env->cp15.scr_el3 & SCR_FIQ)) {
 992        /* NS access and Group 0 is inaccessible to NS: return the
 993         * NS view of the current priority
 994         */
 995        if ((value & 0x80) == 0) {
 996            /* Secure priorities not visible to NS */
 997            value = 0;
 998        } else if (value != 0xff) {
 999            value = (value << 1) & 0xff;
1000        }
1001    }
1002
1003    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1004
1005    return value;
1006}
1007
1008static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1009                          uint64_t value)
1010{
1011    GICv3CPUState *cs = icc_cs_from_env(env);
1012
1013    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1014        return icv_pmr_write(env, ri, value);
1015    }
1016
1017    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1018
1019    value &= icc_fullprio_mask(cs);
1020
1021    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1022        (env->cp15.scr_el3 & SCR_FIQ)) {
1023        /* NS access and Group 0 is inaccessible to NS: return the
1024         * NS view of the current priority
1025         */
1026        if (!(cs->icc_pmr_el1 & 0x80)) {
1027            /* Current PMR in the secure range, don't allow NS to change it */
1028            return;
1029        }
1030        value = (value >> 1) | 0x80;
1031    }
1032    cs->icc_pmr_el1 = value;
1033    gicv3_cpuif_update(cs);
1034}
1035
1036static void icc_activate_irq(GICv3CPUState *cs, int irq)
1037{
1038    /* Move the interrupt from the Pending state to Active, and update
1039     * the Active Priority Registers
1040     */
1041    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1042    int prio = cs->hppi.prio & mask;
1043    int aprbit = prio >> (8 - cs->prebits);
1044    int regno = aprbit / 32;
1045    int regbit = aprbit % 32;
1046
1047    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1048
1049    if (irq < GIC_INTERNAL) {
1050        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1051        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1052        gicv3_redist_update(cs);
1053    } else if (irq < GICV3_LPI_INTID_START) {
1054        gicv3_gicd_active_set(cs->gic, irq);
1055        gicv3_gicd_pending_clear(cs->gic, irq);
1056        gicv3_update(cs->gic, irq, 1);
1057    } else {
1058        gicv3_redist_lpi_pending(cs, irq, 0);
1059    }
1060}
1061
1062static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1063{
1064    /* Return the highest priority pending interrupt register value
1065     * for group 0.
1066     */
1067    bool irq_is_secure;
1068
1069    if (cs->hppi.prio == 0xff) {
1070        return INTID_SPURIOUS;
1071    }
1072
1073    /* Check whether we can return the interrupt or if we should return
1074     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1075     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1076     * is always zero.)
1077     */
1078    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1079                     (cs->hppi.grp != GICV3_G1NS));
1080
1081    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1082        return INTID_SPURIOUS;
1083    }
1084    if (irq_is_secure && !arm_is_secure(env)) {
1085        /* Secure interrupts not visible to Nonsecure */
1086        return INTID_SPURIOUS;
1087    }
1088
1089    if (cs->hppi.grp != GICV3_G0) {
1090        /* Indicate to EL3 that there's a Group 1 interrupt for the other
1091         * state pending.
1092         */
1093        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1094    }
1095
1096    return cs->hppi.irq;
1097}
1098
1099static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1100{
1101    /* Return the highest priority pending interrupt register value
1102     * for group 1.
1103     */
1104    bool irq_is_secure;
1105
1106    if (cs->hppi.prio == 0xff) {
1107        return INTID_SPURIOUS;
1108    }
1109
1110    /* Check whether we can return the interrupt or if we should return
1111     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1112     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1113     * is always zero.)
1114     */
1115    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1116                     (cs->hppi.grp != GICV3_G1NS));
1117
1118    if (cs->hppi.grp == GICV3_G0) {
1119        /* Group 0 interrupts not visible via HPPIR1 */
1120        return INTID_SPURIOUS;
1121    }
1122    if (irq_is_secure) {
1123        if (!arm_is_secure(env)) {
1124            /* Secure interrupts not visible in Non-secure */
1125            return INTID_SPURIOUS;
1126        }
1127    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1128        /* Group 1 non-secure interrupts not visible in Secure EL1 */
1129        return INTID_SPURIOUS;
1130    }
1131
1132    return cs->hppi.irq;
1133}
1134
1135static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136{
1137    GICv3CPUState *cs = icc_cs_from_env(env);
1138    uint64_t intid;
1139
1140    if (icv_access(env, HCR_FMO)) {
1141        return icv_iar_read(env, ri);
1142    }
1143
1144    if (!icc_hppi_can_preempt(cs)) {
1145        intid = INTID_SPURIOUS;
1146    } else {
1147        intid = icc_hppir0_value(cs, env);
1148    }
1149
1150    if (!gicv3_intid_is_special(intid)) {
1151        icc_activate_irq(cs, intid);
1152    }
1153
1154    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1155    return intid;
1156}
1157
1158static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1159{
1160    GICv3CPUState *cs = icc_cs_from_env(env);
1161    uint64_t intid;
1162
1163    if (icv_access(env, HCR_IMO)) {
1164        return icv_iar_read(env, ri);
1165    }
1166
1167    if (!icc_hppi_can_preempt(cs)) {
1168        intid = INTID_SPURIOUS;
1169    } else {
1170        intid = icc_hppir1_value(cs, env);
1171    }
1172
1173    if (!gicv3_intid_is_special(intid)) {
1174        icc_activate_irq(cs, intid);
1175    }
1176
1177    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1178    return intid;
1179}
1180
1181static void icc_drop_prio(GICv3CPUState *cs, int grp)
1182{
1183    /* Drop the priority of the currently active interrupt in
1184     * the specified group.
1185     *
1186     * Note that we can guarantee (because of the requirement to nest
1187     * ICC_IAR reads [which activate an interrupt and raise priority]
1188     * with ICC_EOIR writes [which drop the priority for the interrupt])
1189     * that the interrupt we're being called for is the highest priority
1190     * active interrupt, meaning that it has the lowest set bit in the
1191     * APR registers.
1192     *
1193     * If the guest does not honour the ordering constraints then the
1194     * behaviour of the GIC is UNPREDICTABLE, which for us means that
1195     * the values of the APR registers might become incorrect and the
1196     * running priority will be wrong, so interrupts that should preempt
1197     * might not do so, and interrupts that should not preempt might do so.
1198     */
1199    int i;
1200
1201    for (i = 0; i < icc_num_aprs(cs); i++) {
1202        uint64_t *papr = &cs->icc_apr[grp][i];
1203
1204        if (!*papr) {
1205            continue;
1206        }
1207        /* Clear the lowest set bit */
1208        *papr &= *papr - 1;
1209        break;
1210    }
1211
1212    /* running priority change means we need an update for this cpu i/f */
1213    gicv3_cpuif_update(cs);
1214}
1215
1216static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1217{
1218    /* Return true if we should split priority drop and interrupt
1219     * deactivation, ie whether the relevant EOIMode bit is set.
1220     */
1221    if (arm_is_el3_or_mon(env)) {
1222        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1223    }
1224    if (arm_is_secure_below_el3(env)) {
1225        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1226    } else {
1227        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1228    }
1229}
1230
1231static int icc_highest_active_group(GICv3CPUState *cs)
1232{
1233    /* Return the group with the highest priority active interrupt.
1234     * We can do this by just comparing the APRs to see which one
1235     * has the lowest set bit.
1236     * (If more than one group is active at the same priority then
1237     * we're in UNPREDICTABLE territory.)
1238     */
1239    int i;
1240
1241    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1242        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1243        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1244        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1245
1246        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1247            return GICV3_G1NS;
1248        }
1249        if (g1ctz < g0ctz) {
1250            return GICV3_G1;
1251        }
1252        if (g0ctz < 32) {
1253            return GICV3_G0;
1254        }
1255    }
1256    /* No set active bits? UNPREDICTABLE; return -1 so the caller
1257     * ignores the spurious EOI attempt.
1258     */
1259    return -1;
1260}
1261
1262static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1263{
1264    if (irq < GIC_INTERNAL) {
1265        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1266        gicv3_redist_update(cs);
1267    } else {
1268        gicv3_gicd_active_clear(cs->gic, irq);
1269        gicv3_update(cs->gic, irq, 1);
1270    }
1271}
1272
1273static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1274{
1275    /* Return true if we should split priority drop and interrupt
1276     * deactivation, ie whether the virtual EOIMode bit is set.
1277     */
1278    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1279}
1280
1281static int icv_find_active(GICv3CPUState *cs, int irq)
1282{
1283    /* Given an interrupt number for an active interrupt, return the index
1284     * of the corresponding list register, or -1 if there is no match.
1285     * Corresponds to FindActiveVirtualInterrupt pseudocode.
1286     */
1287    int i;
1288
1289    for (i = 0; i < cs->num_list_regs; i++) {
1290        uint64_t lr = cs->ich_lr_el2[i];
1291
1292        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1293            return i;
1294        }
1295    }
1296
1297    return -1;
1298}
1299
1300static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1301{
1302    /* Deactivate the interrupt in the specified list register index */
1303    uint64_t lr = cs->ich_lr_el2[idx];
1304
1305    if (lr & ICH_LR_EL2_HW) {
1306        /* Deactivate the associated physical interrupt */
1307        int pirq = ich_lr_pintid(lr);
1308
1309        if (pirq < INTID_SECURE) {
1310            icc_deactivate_irq(cs, pirq);
1311        }
1312    }
1313
1314    /* Clear the 'active' part of the state, so ActivePending->Pending
1315     * and Active->Invalid.
1316     */
1317    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1318    cs->ich_lr_el2[idx] = lr;
1319}
1320
1321static void icv_increment_eoicount(GICv3CPUState *cs)
1322{
1323    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1324    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1325                             ICH_HCR_EL2_EOICOUNT_LENGTH);
1326
1327    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1328                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1329}
1330
1331static int icv_drop_prio(GICv3CPUState *cs)
1332{
1333    /* Drop the priority of the currently active virtual interrupt
1334     * (favouring group 0 if there is a set active bit at
1335     * the same priority for both group 0 and group 1).
1336     * Return the priority value for the bit we just cleared,
1337     * or 0xff if no bits were set in the AP registers at all.
1338     * Note that though the ich_apr[] are uint64_t only the low
1339     * 32 bits are actually relevant.
1340     */
1341    int i;
1342    int aprmax = ich_num_aprs(cs);
1343
1344    for (i = 0; i < aprmax; i++) {
1345        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1346        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1347        int apr0count, apr1count;
1348
1349        if (!*papr0 && !*papr1) {
1350            continue;
1351        }
1352
1353        /* We can't just use the bit-twiddling hack icc_drop_prio() does
1354         * because we need to return the bit number we cleared so
1355         * it can be compared against the list register's priority field.
1356         */
1357        apr0count = ctz32(*papr0);
1358        apr1count = ctz32(*papr1);
1359
1360        if (apr0count <= apr1count) {
1361            *papr0 &= *papr0 - 1;
1362            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1363        } else {
1364            *papr1 &= *papr1 - 1;
1365            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1366        }
1367    }
1368    return 0xff;
1369}
1370
1371static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1372                          uint64_t value)
1373{
1374    /* Deactivate interrupt */
1375    GICv3CPUState *cs = icc_cs_from_env(env);
1376    int idx;
1377    int irq = value & 0xffffff;
1378
1379    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1380
1381    if (irq >= GICV3_MAXIRQ) {
1382        /* Also catches special interrupt numbers and LPIs */
1383        return;
1384    }
1385
1386    if (!icv_eoi_split(env, cs)) {
1387        return;
1388    }
1389
1390    idx = icv_find_active(cs, irq);
1391
1392    if (idx < 0) {
1393        /* No list register matching this, so increment the EOI count
1394         * (might trigger a maintenance interrupt)
1395         */
1396        icv_increment_eoicount(cs);
1397    } else {
1398        icv_deactivate_irq(cs, idx);
1399    }
1400
1401    gicv3_cpuif_virt_update(cs);
1402}
1403
1404static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405                           uint64_t value)
1406{
1407    /* End of Interrupt */
1408    GICv3CPUState *cs = icc_cs_from_env(env);
1409    int irq = value & 0xffffff;
1410    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1411    int idx, dropprio;
1412
1413    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1414                               gicv3_redist_affid(cs), value);
1415
1416    if (gicv3_intid_is_special(irq)) {
1417        return;
1418    }
1419
1420    /* We implement the IMPDEF choice of "drop priority before doing
1421     * error checks" (because that lets us avoid scanning the AP
1422     * registers twice).
1423     */
1424    dropprio = icv_drop_prio(cs);
1425    if (dropprio == 0xff) {
1426        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1427         * whether the list registers are checked in this
1428         * situation; we choose not to.
1429         */
1430        return;
1431    }
1432
1433    idx = icv_find_active(cs, irq);
1434
1435    if (idx < 0) {
1436        /* No valid list register corresponding to EOI ID */
1437        icv_increment_eoicount(cs);
1438    } else {
1439        uint64_t lr = cs->ich_lr_el2[idx];
1440        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1441        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1442
1443        if (thisgrp == grp && lr_gprio == dropprio) {
1444            if (!icv_eoi_split(env, cs)) {
1445                /* Priority drop and deactivate not split: deactivate irq now */
1446                icv_deactivate_irq(cs, idx);
1447            }
1448        }
1449    }
1450
1451    gicv3_cpuif_virt_update(cs);
1452}
1453
1454static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                           uint64_t value)
1456{
1457    /* End of Interrupt */
1458    GICv3CPUState *cs = icc_cs_from_env(env);
1459    int irq = value & 0xffffff;
1460    int grp;
1461    bool is_eoir0 = ri->crm == 8;
1462
1463    if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1464        icv_eoir_write(env, ri, value);
1465        return;
1466    }
1467
1468    trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1469                               gicv3_redist_affid(cs), value);
1470
1471    if ((irq >= cs->gic->num_irq) &&
1472        !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1473        /* This handles two cases:
1474         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1475         * to the GICC_EOIR, the GIC ignores that write.
1476         * 2. If software writes the number of a non-existent interrupt
1477         * this must be a subcase of "value written does not match the last
1478         * valid interrupt value read from the Interrupt Acknowledge
1479         * register" and so this is UNPREDICTABLE. We choose to ignore it.
1480         */
1481        return;
1482    }
1483
1484    grp = icc_highest_active_group(cs);
1485    switch (grp) {
1486    case GICV3_G0:
1487        if (!is_eoir0) {
1488            return;
1489        }
1490        if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1491            && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1492            return;
1493        }
1494        break;
1495    case GICV3_G1:
1496        if (is_eoir0) {
1497            return;
1498        }
1499        if (!arm_is_secure(env)) {
1500            return;
1501        }
1502        break;
1503    case GICV3_G1NS:
1504        if (is_eoir0) {
1505            return;
1506        }
1507        if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1508            return;
1509        }
1510        break;
1511    default:
1512        qemu_log_mask(LOG_GUEST_ERROR,
1513                      "%s: IRQ %d isn't active\n", __func__, irq);
1514        return;
1515    }
1516
1517    icc_drop_prio(cs, grp);
1518
1519    if (!icc_eoi_split(env, cs)) {
1520        /* Priority drop and deactivate not split: deactivate irq now */
1521        icc_deactivate_irq(cs, irq);
1522    }
1523}
1524
1525static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1526{
1527    GICv3CPUState *cs = icc_cs_from_env(env);
1528    uint64_t value;
1529
1530    if (icv_access(env, HCR_FMO)) {
1531        return icv_hppir_read(env, ri);
1532    }
1533
1534    value = icc_hppir0_value(cs, env);
1535    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1536    return value;
1537}
1538
1539static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1540{
1541    GICv3CPUState *cs = icc_cs_from_env(env);
1542    uint64_t value;
1543
1544    if (icv_access(env, HCR_IMO)) {
1545        return icv_hppir_read(env, ri);
1546    }
1547
1548    value = icc_hppir1_value(cs, env);
1549    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1550    return value;
1551}
1552
1553static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1554{
1555    GICv3CPUState *cs = icc_cs_from_env(env);
1556    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1557    bool satinc = false;
1558    uint64_t bpr;
1559
1560    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1561        return icv_bpr_read(env, ri);
1562    }
1563
1564    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1565        grp = GICV3_G1NS;
1566    }
1567
1568    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1569        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1570        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1571         * modify BPR0
1572         */
1573        grp = GICV3_G0;
1574    }
1575
1576    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1577        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1578        /* reads return bpr0 + 1 sat to 7, writes ignored */
1579        grp = GICV3_G0;
1580        satinc = true;
1581    }
1582
1583    bpr = cs->icc_bpr[grp];
1584    if (satinc) {
1585        bpr++;
1586        bpr = MIN(bpr, 7);
1587    }
1588
1589    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1590
1591    return bpr;
1592}
1593
1594static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1595                          uint64_t value)
1596{
1597    GICv3CPUState *cs = icc_cs_from_env(env);
1598    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1599    uint64_t minval;
1600
1601    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1602        icv_bpr_write(env, ri, value);
1603        return;
1604    }
1605
1606    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1607                              gicv3_redist_affid(cs), value);
1608
1609    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1610        grp = GICV3_G1NS;
1611    }
1612
1613    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1614        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1615        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1616         * modify BPR0
1617         */
1618        grp = GICV3_G0;
1619    }
1620
1621    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1622        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1623        /* reads return bpr0 + 1 sat to 7, writes ignored */
1624        return;
1625    }
1626
1627    minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1628    if (value < minval) {
1629        value = minval;
1630    }
1631
1632    cs->icc_bpr[grp] = value & 7;
1633    gicv3_cpuif_update(cs);
1634}
1635
1636static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1637{
1638    GICv3CPUState *cs = icc_cs_from_env(env);
1639    uint64_t value;
1640
1641    int regno = ri->opc2 & 3;
1642    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1643
1644    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1645        return icv_ap_read(env, ri);
1646    }
1647
1648    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1649        grp = GICV3_G1NS;
1650    }
1651
1652    value = cs->icc_apr[grp][regno];
1653
1654    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1655    return value;
1656}
1657
1658static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659                         uint64_t value)
1660{
1661    GICv3CPUState *cs = icc_cs_from_env(env);
1662
1663    int regno = ri->opc2 & 3;
1664    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1665
1666    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1667        icv_ap_write(env, ri, value);
1668        return;
1669    }
1670
1671    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1672
1673    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1674        grp = GICV3_G1NS;
1675    }
1676
1677    /* It's not possible to claim that a Non-secure interrupt is active
1678     * at a priority outside the Non-secure range (128..255), since this
1679     * would otherwise allow malicious NS code to block delivery of S interrupts
1680     * by writing a bad value to these registers.
1681     */
1682    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1683        return;
1684    }
1685
1686    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1687    gicv3_cpuif_update(cs);
1688}
1689
1690static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691                          uint64_t value)
1692{
1693    /* Deactivate interrupt */
1694    GICv3CPUState *cs = icc_cs_from_env(env);
1695    int irq = value & 0xffffff;
1696    bool irq_is_secure, single_sec_state, irq_is_grp0;
1697    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1698
1699    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1700        icv_dir_write(env, ri, value);
1701        return;
1702    }
1703
1704    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1705
1706    if (irq >= cs->gic->num_irq) {
1707        /* Also catches special interrupt numbers and LPIs */
1708        return;
1709    }
1710
1711    if (!icc_eoi_split(env, cs)) {
1712        return;
1713    }
1714
1715    int grp = gicv3_irq_group(cs->gic, cs, irq);
1716
1717    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1718    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1719    irq_is_grp0 = grp == GICV3_G0;
1720
1721    /* Check whether we're allowed to deactivate this interrupt based
1722     * on its group and the current CPU state.
1723     * These checks are laid out to correspond to the spec's pseudocode.
1724     */
1725    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1726    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1727    /* No need to include !IsSecure in route_*_to_el2 as it's only
1728     * tested in cases where we know !IsSecure is true.
1729     */
1730    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1731    route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1732    route_irq_to_el2 = hcr_el2 & HCR_IMO;
1733
1734    switch (arm_current_el(env)) {
1735    case 3:
1736        break;
1737    case 2:
1738        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1739            break;
1740        }
1741        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1742            break;
1743        }
1744        return;
1745    case 1:
1746        if (!arm_is_secure_below_el3(env)) {
1747            if (single_sec_state && irq_is_grp0 &&
1748                !route_fiq_to_el3 && !route_fiq_to_el2) {
1749                break;
1750            }
1751            if (!irq_is_secure && !irq_is_grp0 &&
1752                !route_irq_to_el3 && !route_irq_to_el2) {
1753                break;
1754            }
1755        } else {
1756            if (irq_is_grp0 && !route_fiq_to_el3) {
1757                break;
1758            }
1759            if (!irq_is_grp0 &&
1760                (!irq_is_secure || !single_sec_state) &&
1761                !route_irq_to_el3) {
1762                break;
1763            }
1764        }
1765        return;
1766    default:
1767        g_assert_not_reached();
1768    }
1769
1770    icc_deactivate_irq(cs, irq);
1771}
1772
1773static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1774{
1775    GICv3CPUState *cs = icc_cs_from_env(env);
1776    int prio;
1777
1778    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1779        return icv_rpr_read(env, ri);
1780    }
1781
1782    prio = icc_highest_active_prio(cs);
1783
1784    if (arm_feature(env, ARM_FEATURE_EL3) &&
1785        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1786        /* NS GIC access and Group 0 is inaccessible to NS */
1787        if ((prio & 0x80) == 0) {
1788            /* NS mustn't see priorities in the Secure half of the range */
1789            prio = 0;
1790        } else if (prio != 0xff) {
1791            /* Non-idle priority: show the Non-secure view of it */
1792            prio = (prio << 1) & 0xff;
1793        }
1794    }
1795
1796    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1797    return prio;
1798}
1799
1800static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1801                             uint64_t value, int grp, bool ns)
1802{
1803    GICv3State *s = cs->gic;
1804
1805    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1806    uint64_t aff = extract64(value, 48, 8) << 16 |
1807        extract64(value, 32, 8) << 8 |
1808        extract64(value, 16, 8);
1809    uint32_t targetlist = extract64(value, 0, 16);
1810    uint32_t irq = extract64(value, 24, 4);
1811    bool irm = extract64(value, 40, 1);
1812    int i;
1813
1814    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1815        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1816         * interrupts as Group 0 interrupts and must send Secure Group 0
1817         * interrupts to the target CPUs.
1818         */
1819        grp = GICV3_G0;
1820    }
1821
1822    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1823                                 aff, targetlist);
1824
1825    for (i = 0; i < s->num_cpu; i++) {
1826        GICv3CPUState *ocs = &s->cpu[i];
1827
1828        if (irm) {
1829            /* IRM == 1 : route to all CPUs except self */
1830            if (cs == ocs) {
1831                continue;
1832            }
1833        } else {
1834            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1835             * where the corresponding bit is set in targetlist
1836             */
1837            int aff0;
1838
1839            if (ocs->gicr_typer >> 40 != aff) {
1840                continue;
1841            }
1842            aff0 = extract64(ocs->gicr_typer, 32, 8);
1843            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1844                continue;
1845            }
1846        }
1847
1848        /* The redistributor will check against its own GICR_NSACR as needed */
1849        gicv3_redist_send_sgi(ocs, grp, irq, ns);
1850    }
1851}
1852
1853static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1854                           uint64_t value)
1855{
1856    /* Generate Secure Group 0 SGI. */
1857    GICv3CPUState *cs = icc_cs_from_env(env);
1858    bool ns = !arm_is_secure(env);
1859
1860    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1861}
1862
1863static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864                           uint64_t value)
1865{
1866    /* Generate Group 1 SGI for the current Security state */
1867    GICv3CPUState *cs = icc_cs_from_env(env);
1868    int grp;
1869    bool ns = !arm_is_secure(env);
1870
1871    grp = ns ? GICV3_G1NS : GICV3_G1;
1872    icc_generate_sgi(env, cs, value, grp, ns);
1873}
1874
1875static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1876                             uint64_t value)
1877{
1878    /* Generate Group 1 SGI for the Security state that is not
1879     * the current state
1880     */
1881    GICv3CPUState *cs = icc_cs_from_env(env);
1882    int grp;
1883    bool ns = !arm_is_secure(env);
1884
1885    grp = ns ? GICV3_G1 : GICV3_G1NS;
1886    icc_generate_sgi(env, cs, value, grp, ns);
1887}
1888
1889static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1890{
1891    GICv3CPUState *cs = icc_cs_from_env(env);
1892    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1893    uint64_t value;
1894
1895    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1896        return icv_igrpen_read(env, ri);
1897    }
1898
1899    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1900        grp = GICV3_G1NS;
1901    }
1902
1903    value = cs->icc_igrpen[grp];
1904    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1905                                gicv3_redist_affid(cs), value);
1906    return value;
1907}
1908
1909static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1910                             uint64_t value)
1911{
1912    GICv3CPUState *cs = icc_cs_from_env(env);
1913    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1914
1915    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1916        icv_igrpen_write(env, ri, value);
1917        return;
1918    }
1919
1920    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1921                                 gicv3_redist_affid(cs), value);
1922
1923    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1924        grp = GICV3_G1NS;
1925    }
1926
1927    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1928    gicv3_cpuif_update(cs);
1929}
1930
1931static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1932{
1933    GICv3CPUState *cs = icc_cs_from_env(env);
1934    uint64_t value;
1935
1936    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1937    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1938    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1939    return value;
1940}
1941
1942static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1943                                  uint64_t value)
1944{
1945    GICv3CPUState *cs = icc_cs_from_env(env);
1946
1947    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1948
1949    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1950    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1951    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1952    gicv3_cpuif_update(cs);
1953}
1954
1955static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1956{
1957    GICv3CPUState *cs = icc_cs_from_env(env);
1958    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1959    uint64_t value;
1960
1961    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1962        return icv_ctlr_read(env, ri);
1963    }
1964
1965    value = cs->icc_ctlr_el1[bank];
1966    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1967    return value;
1968}
1969
1970static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1971                               uint64_t value)
1972{
1973    GICv3CPUState *cs = icc_cs_from_env(env);
1974    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1975    uint64_t mask;
1976
1977    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1978        icv_ctlr_write(env, ri, value);
1979        return;
1980    }
1981
1982    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1983
1984    /* Only CBPR and EOIMODE can be RW;
1985     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1986     * the asseciated priority-based routing of them);
1987     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1988     */
1989    if (arm_feature(env, ARM_FEATURE_EL3) &&
1990        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1991        mask = ICC_CTLR_EL1_EOIMODE;
1992    } else {
1993        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1994    }
1995
1996    cs->icc_ctlr_el1[bank] &= ~mask;
1997    cs->icc_ctlr_el1[bank] |= (value & mask);
1998    gicv3_cpuif_update(cs);
1999}
2000
2001
2002static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003{
2004    GICv3CPUState *cs = icc_cs_from_env(env);
2005    uint64_t value;
2006
2007    value = cs->icc_ctlr_el3;
2008    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2009        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2010    }
2011    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2012        value |= ICC_CTLR_EL3_CBPR_EL1NS;
2013    }
2014    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2015        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2016    }
2017    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2018        value |= ICC_CTLR_EL3_CBPR_EL1S;
2019    }
2020
2021    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2022    return value;
2023}
2024
2025static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2026                               uint64_t value)
2027{
2028    GICv3CPUState *cs = icc_cs_from_env(env);
2029    uint64_t mask;
2030
2031    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2032
2033    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2034    cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2035    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2036        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2037    }
2038    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2039        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2040    }
2041
2042    cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2043    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2044        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2045    }
2046    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2047        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2048    }
2049
2050    /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2051    mask = ICC_CTLR_EL3_EOIMODE_EL3;
2052
2053    cs->icc_ctlr_el3 &= ~mask;
2054    cs->icc_ctlr_el3 |= (value & mask);
2055    gicv3_cpuif_update(cs);
2056}
2057
2058static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2059                                          const ARMCPRegInfo *ri, bool isread)
2060{
2061    CPAccessResult r = CP_ACCESS_OK;
2062    GICv3CPUState *cs = icc_cs_from_env(env);
2063    int el = arm_current_el(env);
2064
2065    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2066        el == 1 && !arm_is_secure_below_el3(env)) {
2067        /* Takes priority over a possible EL3 trap */
2068        return CP_ACCESS_TRAP_EL2;
2069    }
2070
2071    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2072        switch (el) {
2073        case 1:
2074            /* Note that arm_hcr_el2_eff takes secure state into account.  */
2075            if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2076                r = CP_ACCESS_TRAP_EL3;
2077            }
2078            break;
2079        case 2:
2080            r = CP_ACCESS_TRAP_EL3;
2081            break;
2082        case 3:
2083            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2084                r = CP_ACCESS_TRAP_EL3;
2085            }
2086            break;
2087        default:
2088            g_assert_not_reached();
2089        }
2090    }
2091
2092    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2093        r = CP_ACCESS_TRAP;
2094    }
2095    return r;
2096}
2097
2098static CPAccessResult gicv3_dir_access(CPUARMState *env,
2099                                       const ARMCPRegInfo *ri, bool isread)
2100{
2101    GICv3CPUState *cs = icc_cs_from_env(env);
2102
2103    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2104        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2105        /* Takes priority over a possible EL3 trap */
2106        return CP_ACCESS_TRAP_EL2;
2107    }
2108
2109    return gicv3_irqfiq_access(env, ri, isread);
2110}
2111
2112static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2113                                       const ARMCPRegInfo *ri, bool isread)
2114{
2115    if (arm_current_el(env) == 1 &&
2116        (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2117        /* Takes priority over a possible EL3 trap */
2118        return CP_ACCESS_TRAP_EL2;
2119    }
2120
2121    return gicv3_irqfiq_access(env, ri, isread);
2122}
2123
2124static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2125                                       const ARMCPRegInfo *ri, bool isread)
2126{
2127    CPAccessResult r = CP_ACCESS_OK;
2128    GICv3CPUState *cs = icc_cs_from_env(env);
2129    int el = arm_current_el(env);
2130
2131    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2132        el == 1 && !arm_is_secure_below_el3(env)) {
2133        /* Takes priority over a possible EL3 trap */
2134        return CP_ACCESS_TRAP_EL2;
2135    }
2136
2137    if (env->cp15.scr_el3 & SCR_FIQ) {
2138        switch (el) {
2139        case 1:
2140            if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2141                r = CP_ACCESS_TRAP_EL3;
2142            }
2143            break;
2144        case 2:
2145            r = CP_ACCESS_TRAP_EL3;
2146            break;
2147        case 3:
2148            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2149                r = CP_ACCESS_TRAP_EL3;
2150            }
2151            break;
2152        default:
2153            g_assert_not_reached();
2154        }
2155    }
2156
2157    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2158        r = CP_ACCESS_TRAP;
2159    }
2160    return r;
2161}
2162
2163static CPAccessResult gicv3_irq_access(CPUARMState *env,
2164                                       const ARMCPRegInfo *ri, bool isread)
2165{
2166    CPAccessResult r = CP_ACCESS_OK;
2167    GICv3CPUState *cs = icc_cs_from_env(env);
2168    int el = arm_current_el(env);
2169
2170    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2171        el == 1 && !arm_is_secure_below_el3(env)) {
2172        /* Takes priority over a possible EL3 trap */
2173        return CP_ACCESS_TRAP_EL2;
2174    }
2175
2176    if (env->cp15.scr_el3 & SCR_IRQ) {
2177        switch (el) {
2178        case 1:
2179            if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2180                r = CP_ACCESS_TRAP_EL3;
2181            }
2182            break;
2183        case 2:
2184            r = CP_ACCESS_TRAP_EL3;
2185            break;
2186        case 3:
2187            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2188                r = CP_ACCESS_TRAP_EL3;
2189            }
2190            break;
2191        default:
2192            g_assert_not_reached();
2193        }
2194    }
2195
2196    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2197        r = CP_ACCESS_TRAP;
2198    }
2199    return r;
2200}
2201
2202static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2203{
2204    GICv3CPUState *cs = icc_cs_from_env(env);
2205
2206    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2207        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2208        ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2209    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2210        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2211        ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2212    cs->icc_pmr_el1 = 0;
2213    cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2214    cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2215    cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2216    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2217    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2218    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2219        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2220        ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2221
2222    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2223    cs->ich_hcr_el2 = 0;
2224    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2225    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2226        ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2227        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2228}
2229
2230static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2231    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2232      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2233      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2234      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2235      .readfn = icc_pmr_read,
2236      .writefn = icc_pmr_write,
2237      /* We hang the whole cpu interface reset routine off here
2238       * rather than parcelling it out into one little function
2239       * per register
2240       */
2241      .resetfn = icc_reset,
2242    },
2243    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2244      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2245      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2246      .access = PL1_R, .accessfn = gicv3_fiq_access,
2247      .readfn = icc_iar0_read,
2248    },
2249    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2250      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2251      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2252      .access = PL1_W, .accessfn = gicv3_fiq_access,
2253      .writefn = icc_eoir_write,
2254    },
2255    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2256      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2257      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2258      .access = PL1_R, .accessfn = gicv3_fiq_access,
2259      .readfn = icc_hppir0_read,
2260    },
2261    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2262      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2263      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2264      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2265      .readfn = icc_bpr_read,
2266      .writefn = icc_bpr_write,
2267    },
2268    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2269      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2270      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2271      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2272      .readfn = icc_ap_read,
2273      .writefn = icc_ap_write,
2274    },
2275    /* All the ICC_AP1R*_EL1 registers are banked */
2276    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2277      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2278      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2279      .access = PL1_RW, .accessfn = gicv3_irq_access,
2280      .readfn = icc_ap_read,
2281      .writefn = icc_ap_write,
2282    },
2283    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2284      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2285      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2286      .access = PL1_W, .accessfn = gicv3_dir_access,
2287      .writefn = icc_dir_write,
2288    },
2289    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2290      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2291      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2292      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2293      .readfn = icc_rpr_read,
2294    },
2295    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2296      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2297      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2298      .access = PL1_W, .accessfn = gicv3_sgi_access,
2299      .writefn = icc_sgi1r_write,
2300    },
2301    { .name = "ICC_SGI1R",
2302      .cp = 15, .opc1 = 0, .crm = 12,
2303      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2304      .access = PL1_W, .accessfn = gicv3_sgi_access,
2305      .writefn = icc_sgi1r_write,
2306    },
2307    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2308      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2309      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2310      .access = PL1_W, .accessfn = gicv3_sgi_access,
2311      .writefn = icc_asgi1r_write,
2312    },
2313    { .name = "ICC_ASGI1R",
2314      .cp = 15, .opc1 = 1, .crm = 12,
2315      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2316      .access = PL1_W, .accessfn = gicv3_sgi_access,
2317      .writefn = icc_asgi1r_write,
2318    },
2319    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2320      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2321      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2322      .access = PL1_W, .accessfn = gicv3_sgi_access,
2323      .writefn = icc_sgi0r_write,
2324    },
2325    { .name = "ICC_SGI0R",
2326      .cp = 15, .opc1 = 2, .crm = 12,
2327      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2328      .access = PL1_W, .accessfn = gicv3_sgi_access,
2329      .writefn = icc_sgi0r_write,
2330    },
2331    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2332      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2333      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2334      .access = PL1_R, .accessfn = gicv3_irq_access,
2335      .readfn = icc_iar1_read,
2336    },
2337    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2338      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2339      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2340      .access = PL1_W, .accessfn = gicv3_irq_access,
2341      .writefn = icc_eoir_write,
2342    },
2343    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2344      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2345      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2346      .access = PL1_R, .accessfn = gicv3_irq_access,
2347      .readfn = icc_hppir1_read,
2348    },
2349    /* This register is banked */
2350    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2351      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2352      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2353      .access = PL1_RW, .accessfn = gicv3_irq_access,
2354      .readfn = icc_bpr_read,
2355      .writefn = icc_bpr_write,
2356    },
2357    /* This register is banked */
2358    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2359      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2360      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2361      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2362      .readfn = icc_ctlr_el1_read,
2363      .writefn = icc_ctlr_el1_write,
2364    },
2365    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2366      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2367      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2368      .access = PL1_RW,
2369      /* We don't support IRQ/FIQ bypass and system registers are
2370       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2371       * This register is banked but since it's constant we don't
2372       * need to do anything special.
2373       */
2374      .resetvalue = 0x7,
2375    },
2376    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2377      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2378      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2379      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2380      .readfn = icc_igrpen_read,
2381      .writefn = icc_igrpen_write,
2382    },
2383    /* This register is banked */
2384    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2385      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2386      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2387      .access = PL1_RW, .accessfn = gicv3_irq_access,
2388      .readfn = icc_igrpen_read,
2389      .writefn = icc_igrpen_write,
2390    },
2391    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2392      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2393      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2394      .access = PL2_RW,
2395      /* We don't support IRQ/FIQ bypass and system registers are
2396       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2397       */
2398      .resetvalue = 0xf,
2399    },
2400    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2401      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2402      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2403      .access = PL3_RW,
2404      .readfn = icc_ctlr_el3_read,
2405      .writefn = icc_ctlr_el3_write,
2406    },
2407    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2408      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2409      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2410      .access = PL3_RW,
2411      /* We don't support IRQ/FIQ bypass and system registers are
2412       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2413       */
2414      .resetvalue = 0xf,
2415    },
2416    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2417      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2418      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2419      .access = PL3_RW,
2420      .readfn = icc_igrpen1_el3_read,
2421      .writefn = icc_igrpen1_el3_write,
2422    },
2423};
2424
2425static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2426    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2427      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2428      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2429      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2430      .readfn = icc_ap_read,
2431      .writefn = icc_ap_write,
2432    },
2433    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2434      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2435      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2436      .access = PL1_RW, .accessfn = gicv3_irq_access,
2437      .readfn = icc_ap_read,
2438      .writefn = icc_ap_write,
2439    },
2440};
2441
2442static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2443    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2444      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2445      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2446      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2447      .readfn = icc_ap_read,
2448      .writefn = icc_ap_write,
2449    },
2450    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2451      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2452      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2453      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2454      .readfn = icc_ap_read,
2455      .writefn = icc_ap_write,
2456    },
2457    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2458      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2459      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2460      .access = PL1_RW, .accessfn = gicv3_irq_access,
2461      .readfn = icc_ap_read,
2462      .writefn = icc_ap_write,
2463    },
2464    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2465      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2466      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2467      .access = PL1_RW, .accessfn = gicv3_irq_access,
2468      .readfn = icc_ap_read,
2469      .writefn = icc_ap_write,
2470    },
2471};
2472
2473static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2474{
2475    GICv3CPUState *cs = icc_cs_from_env(env);
2476    int regno = ri->opc2 & 3;
2477    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2478    uint64_t value;
2479
2480    value = cs->ich_apr[grp][regno];
2481    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2482    return value;
2483}
2484
2485static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2486                         uint64_t value)
2487{
2488    GICv3CPUState *cs = icc_cs_from_env(env);
2489    int regno = ri->opc2 & 3;
2490    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2491
2492    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2493
2494    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2495    gicv3_cpuif_virt_irq_fiq_update(cs);
2496}
2497
2498static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499{
2500    GICv3CPUState *cs = icc_cs_from_env(env);
2501    uint64_t value = cs->ich_hcr_el2;
2502
2503    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2504    return value;
2505}
2506
2507static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2508                          uint64_t value)
2509{
2510    GICv3CPUState *cs = icc_cs_from_env(env);
2511
2512    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2513
2514    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2515        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2516        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2517        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2518        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2519
2520    cs->ich_hcr_el2 = value;
2521    gicv3_cpuif_virt_update(cs);
2522}
2523
2524static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2525{
2526    GICv3CPUState *cs = icc_cs_from_env(env);
2527    uint64_t value = cs->ich_vmcr_el2;
2528
2529    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2530    return value;
2531}
2532
2533static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2534                         uint64_t value)
2535{
2536    GICv3CPUState *cs = icc_cs_from_env(env);
2537
2538    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2539
2540    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2541        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2542        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2543    value |= ICH_VMCR_EL2_VFIQEN;
2544
2545    cs->ich_vmcr_el2 = value;
2546    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2547     * by reading and writing back the fields.
2548     */
2549    write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2550    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2551
2552    gicv3_cpuif_virt_update(cs);
2553}
2554
2555static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2556{
2557    GICv3CPUState *cs = icc_cs_from_env(env);
2558    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2559    uint64_t value;
2560
2561    /* This read function handles all of:
2562     * 64-bit reads of the whole LR
2563     * 32-bit reads of the low half of the LR
2564     * 32-bit reads of the high half of the LR
2565     */
2566    if (ri->state == ARM_CP_STATE_AA32) {
2567        if (ri->crm >= 14) {
2568            value = extract64(cs->ich_lr_el2[regno], 32, 32);
2569            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2570        } else {
2571            value = extract64(cs->ich_lr_el2[regno], 0, 32);
2572            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2573        }
2574    } else {
2575        value = cs->ich_lr_el2[regno];
2576        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2577    }
2578
2579    return value;
2580}
2581
2582static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2583                         uint64_t value)
2584{
2585    GICv3CPUState *cs = icc_cs_from_env(env);
2586    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2587
2588    /* This write function handles all of:
2589     * 64-bit writes to the whole LR
2590     * 32-bit writes to the low half of the LR
2591     * 32-bit writes to the high half of the LR
2592     */
2593    if (ri->state == ARM_CP_STATE_AA32) {
2594        if (ri->crm >= 14) {
2595            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2596            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2597        } else {
2598            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2599            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2600        }
2601    } else {
2602        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2603    }
2604
2605    /* Enforce RES0 bits in priority field */
2606    if (cs->vpribits < 8) {
2607        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2608                          8 - cs->vpribits, 0);
2609    }
2610
2611    cs->ich_lr_el2[regno] = value;
2612    gicv3_cpuif_virt_update(cs);
2613}
2614
2615static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2616{
2617    GICv3CPUState *cs = icc_cs_from_env(env);
2618    uint64_t value;
2619
2620    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2621        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2622        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2623        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2624        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2625
2626    if (cs->gic->revision < 4) {
2627        value |= ICH_VTR_EL2_NV4;
2628    }
2629
2630    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2631    return value;
2632}
2633
2634static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2635{
2636    GICv3CPUState *cs = icc_cs_from_env(env);
2637    uint64_t value = maintenance_interrupt_state(cs);
2638
2639    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2640    return value;
2641}
2642
2643static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2644{
2645    GICv3CPUState *cs = icc_cs_from_env(env);
2646    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2647
2648    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2649    return value;
2650}
2651
2652static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2653{
2654    GICv3CPUState *cs = icc_cs_from_env(env);
2655    uint64_t value = 0;
2656    int i;
2657
2658    for (i = 0; i < cs->num_list_regs; i++) {
2659        uint64_t lr = cs->ich_lr_el2[i];
2660
2661        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2662            ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2663            value |= (1 << i);
2664        }
2665    }
2666
2667    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2668    return value;
2669}
2670
2671static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2672    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2673      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2674      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2675      .access = PL2_RW,
2676      .readfn = ich_ap_read,
2677      .writefn = ich_ap_write,
2678    },
2679    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2680      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2681      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2682      .access = PL2_RW,
2683      .readfn = ich_ap_read,
2684      .writefn = ich_ap_write,
2685    },
2686    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2687      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2688      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2689      .access = PL2_RW,
2690      .readfn = ich_hcr_read,
2691      .writefn = ich_hcr_write,
2692    },
2693    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2694      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2695      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2696      .access = PL2_R,
2697      .readfn = ich_vtr_read,
2698    },
2699    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2700      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2701      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2702      .access = PL2_R,
2703      .readfn = ich_misr_read,
2704    },
2705    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2706      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2707      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2708      .access = PL2_R,
2709      .readfn = ich_eisr_read,
2710    },
2711    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2712      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2713      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2714      .access = PL2_R,
2715      .readfn = ich_elrsr_read,
2716    },
2717    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2718      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2719      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2720      .access = PL2_RW,
2721      .readfn = ich_vmcr_read,
2722      .writefn = ich_vmcr_write,
2723    },
2724};
2725
2726static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2727    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2728      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2729      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2730      .access = PL2_RW,
2731      .readfn = ich_ap_read,
2732      .writefn = ich_ap_write,
2733    },
2734    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2735      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2736      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2737      .access = PL2_RW,
2738      .readfn = ich_ap_read,
2739      .writefn = ich_ap_write,
2740    },
2741};
2742
2743static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2744    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2745      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2746      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2747      .access = PL2_RW,
2748      .readfn = ich_ap_read,
2749      .writefn = ich_ap_write,
2750    },
2751    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2752      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2753      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2754      .access = PL2_RW,
2755      .readfn = ich_ap_read,
2756      .writefn = ich_ap_write,
2757    },
2758    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2759      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2760      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2761      .access = PL2_RW,
2762      .readfn = ich_ap_read,
2763      .writefn = ich_ap_write,
2764    },
2765    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2766      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2767      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2768      .access = PL2_RW,
2769      .readfn = ich_ap_read,
2770      .writefn = ich_ap_write,
2771    },
2772};
2773
2774static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2775{
2776    GICv3CPUState *cs = opaque;
2777
2778    gicv3_cpuif_update(cs);
2779    /*
2780     * Because vLPIs are only pending in NonSecure state,
2781     * an EL change can change the VIRQ/VFIQ status (but
2782     * cannot affect the maintenance interrupt state)
2783     */
2784    gicv3_cpuif_virt_irq_fiq_update(cs);
2785}
2786
2787void gicv3_init_cpuif(GICv3State *s)
2788{
2789    /* Called from the GICv3 realize function; register our system
2790     * registers with the CPU
2791     */
2792    int i;
2793
2794    for (i = 0; i < s->num_cpu; i++) {
2795        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2796        GICv3CPUState *cs = &s->cpu[i];
2797
2798        /*
2799         * If the CPU doesn't define a GICv3 configuration, probably because
2800         * in real hardware it doesn't have one, then we use default values
2801         * matching the one used by most Arm CPUs. This applies to:
2802         *  cpu->gic_num_lrs
2803         *  cpu->gic_vpribits
2804         *  cpu->gic_vprebits
2805         *  cpu->gic_pribits
2806         */
2807
2808        /* Note that we can't just use the GICv3CPUState as an opaque pointer
2809         * in define_arm_cp_regs_with_opaque(), because when we're called back
2810         * it might be with code translated by CPU 0 but run by CPU 1, in
2811         * which case we'd get the wrong value.
2812         * So instead we define the regs with no ri->opaque info, and
2813         * get back to the GICv3CPUState from the CPUARMState.
2814         */
2815        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2816
2817        /*
2818         * The CPU implementation specifies the number of supported
2819         * bits of physical priority. For backwards compatibility
2820         * of migration, we have a compat property that forces use
2821         * of 8 priority bits regardless of what the CPU really has.
2822         */
2823        if (s->force_8bit_prio) {
2824            cs->pribits = 8;
2825        } else {
2826            cs->pribits = cpu->gic_pribits ?: 5;
2827        }
2828
2829        /*
2830         * The GICv3 has separate ID register fields for virtual priority
2831         * and preemption bit values, but only a single ID register field
2832         * for the physical priority bits. The preemption bit count is
2833         * always the same as the priority bit count, except that 8 bits
2834         * of priority means 7 preemption bits. We precalculate the
2835         * preemption bits because it simplifies the code and makes the
2836         * parallels between the virtual and physical bits of the GIC
2837         * a bit clearer.
2838         */
2839        cs->prebits = cs->pribits;
2840        if (cs->prebits == 8) {
2841            cs->prebits--;
2842        }
2843        /*
2844         * Check that CPU code defining pribits didn't violate
2845         * architectural constraints our implementation relies on.
2846         */
2847        g_assert(cs->pribits >= 4 && cs->pribits <= 8);
2848
2849        /*
2850         * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
2851         * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
2852         */
2853        if (cs->prebits >= 6) {
2854            define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
2855        }
2856        if (cs->prebits == 7) {
2857            define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
2858        }
2859
2860        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
2861            int j;
2862
2863            cs->num_list_regs = cpu->gic_num_lrs ?: 4;
2864            cs->vpribits = cpu->gic_vpribits ?: 5;
2865            cs->vprebits = cpu->gic_vprebits ?: 5;
2866
2867            /* Check against architectural constraints: getting these
2868             * wrong would be a bug in the CPU code defining these,
2869             * and the implementation relies on them holding.
2870             */
2871            g_assert(cs->vprebits <= cs->vpribits);
2872            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2873            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2874
2875            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2876
2877            for (j = 0; j < cs->num_list_regs; j++) {
2878                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2879                 * are split into two cp15 regs, LR (the low part, with the
2880                 * same encoding as the AArch64 LR) and LRC (the high part).
2881                 */
2882                ARMCPRegInfo lr_regset[] = {
2883                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2884                      .opc0 = 3, .opc1 = 4, .crn = 12,
2885                      .crm = 12 + (j >> 3), .opc2 = j & 7,
2886                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2887                      .access = PL2_RW,
2888                      .readfn = ich_lr_read,
2889                      .writefn = ich_lr_write,
2890                    },
2891                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2892                      .cp = 15, .opc1 = 4, .crn = 12,
2893                      .crm = 14 + (j >> 3), .opc2 = j & 7,
2894                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2895                      .access = PL2_RW,
2896                      .readfn = ich_lr_read,
2897                      .writefn = ich_lr_write,
2898                    },
2899                };
2900                define_arm_cp_regs(cpu, lr_regset);
2901            }
2902            if (cs->vprebits >= 6) {
2903                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2904            }
2905            if (cs->vprebits == 7) {
2906                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2907            }
2908        }
2909        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2910    }
2911}
2912