qemu/hw/intc/arm_gicv3_dist.c
<<
>>
Prefs
   1/*
   2 * ARM GICv3 emulation: Distributor
   3 *
   4 * Copyright (c) 2015 Huawei.
   5 * Copyright (c) 2016 Linaro Limited.
   6 * Written by Shlomo Pongratz, Peter Maydell
   7 *
   8 * This code is licensed under the GPL, version 2 or (at your option)
   9 * any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "trace.h"
  15#include "gicv3_internal.h"
  16
  17/* The GICD_NSACR registers contain a two bit field for each interrupt which
  18 * allows the guest to give NonSecure code access to registers controlling
  19 * Secure interrupts:
  20 *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
  21 *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
  22 *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
  23 *        and w/o to CLRSPI_NSR
  24 *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
  25 *
  26 * Given a (multiple-of-32) interrupt number, these mask functions return
  27 * a mask word where each bit is 1 if the NSACR settings permit access
  28 * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
  29 * word for this set of interrupts to give an overall mask.
  30 */
  31
  32typedef uint32_t maskfn(GICv3State *s, int irq);
  33
  34static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
  35{
  36    /* Return a mask where each bit is set if the NSACR field is >= 1 */
  37    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
  38
  39    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
  40    raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
  41    return half_unshuffle64(raw_nsacr);
  42}
  43
  44static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
  45{
  46    /* Return a mask where each bit is set if the NSACR field is >= 2 */
  47    uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
  48
  49    raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
  50    raw_nsacr = raw_nsacr >> 1;
  51    return half_unshuffle64(raw_nsacr);
  52}
  53
  54/* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
  55 * but it would be implemented using:
  56 *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
  57 */
  58
  59static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
  60                                     maskfn *maskfn, int irq)
  61{
  62    /* Return a 32-bit mask which should be applied for this set of 32
  63     * interrupts; each bit is 1 if access is permitted by the
  64     * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
  65     */
  66    uint32_t mask;
  67
  68    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
  69        /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
  70         * unless the NSACR bits permit access.
  71         */
  72        mask = *gic_bmp_ptr32(s->group, irq);
  73        if (maskfn) {
  74            mask |= maskfn(s, irq);
  75        }
  76        return mask;
  77    }
  78    return 0xFFFFFFFFU;
  79}
  80
  81static int gicd_ns_access(GICv3State *s, int irq)
  82{
  83    /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
  84     * specified interrupt.
  85     */
  86    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
  87        return 0;
  88    }
  89    return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
  90}
  91
  92static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
  93                                      uint32_t *bmp,
  94                                      maskfn *maskfn,
  95                                      int offset, uint32_t val)
  96{
  97    /* Helper routine to implement writing to a "set-bitmap" register
  98     * (GICD_ISENABLER, GICD_ISPENDR, etc).
  99     * Semantics implemented here:
 100     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 101     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 102     * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
 103     * offset should be the offset in bytes of the register from the start
 104     * of its group.
 105     */
 106    int irq = offset * 8;
 107
 108    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 109        return;
 110    }
 111    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 112    *gic_bmp_ptr32(bmp, irq) |= val;
 113    gicv3_update(s, irq, 32);
 114}
 115
 116static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
 117                                        uint32_t *bmp,
 118                                        maskfn *maskfn,
 119                                        int offset, uint32_t val)
 120{
 121    /* Helper routine to implement writing to a "clear-bitmap" register
 122     * (GICD_ICENABLER, GICD_ICPENDR, etc).
 123     * Semantics implemented here:
 124     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 125     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 126     * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
 127     * offset should be the offset in bytes of the register from the start
 128     * of its group.
 129     */
 130    int irq = offset * 8;
 131
 132    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 133        return;
 134    }
 135    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 136    *gic_bmp_ptr32(bmp, irq) &= ~val;
 137    gicv3_update(s, irq, 32);
 138}
 139
 140static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
 141                                     uint32_t *bmp,
 142                                     maskfn *maskfn,
 143                                     int offset)
 144{
 145    /* Helper routine to implement reading a "set/clear-bitmap" register
 146     * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
 147     * Semantics implemented here:
 148     * RAZ/WI for SGIs, PPIs, unimplemented IRQs
 149     * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
 150     * offset should be the offset in bytes of the register from the start
 151     * of its group.
 152     */
 153    int irq = offset * 8;
 154    uint32_t val;
 155
 156    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 157        return 0;
 158    }
 159    val = *gic_bmp_ptr32(bmp, irq);
 160    if (bmp == s->pending) {
 161        /* The PENDING register is a special case -- for level triggered
 162         * interrupts, the PENDING state is the logical OR of the state of
 163         * the PENDING latch with the input line level.
 164         */
 165        uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
 166        uint32_t level = *gic_bmp_ptr32(s->level, irq);
 167        val |= (~edge & level);
 168    }
 169    val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
 170    return val;
 171}
 172
 173static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
 174{
 175    /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
 176     * honouring security state (these are RAZ/WI for Group 0 or Secure
 177     * Group 1 interrupts).
 178     */
 179    uint32_t prio;
 180
 181    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 182        return 0;
 183    }
 184
 185    prio = s->gicd_ipriority[irq];
 186
 187    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 188        if (!gicv3_gicd_group_test(s, irq)) {
 189            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 190            return 0;
 191        }
 192        /* NS view of the interrupt priority */
 193        prio = (prio << 1) & 0xff;
 194    }
 195    return prio;
 196}
 197
 198static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
 199                                  uint8_t value)
 200{
 201    /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
 202     * honouring security state (these are RAZ/WI for Group 0 or Secure
 203     * Group 1 interrupts).
 204     */
 205    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 206        return;
 207    }
 208
 209    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 210        if (!gicv3_gicd_group_test(s, irq)) {
 211            /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
 212            return;
 213        }
 214        /* NS view of the interrupt priority */
 215        value = 0x80 | (value >> 1);
 216    }
 217    s->gicd_ipriority[irq] = value;
 218}
 219
 220static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
 221{
 222    /* Read the value of GICD_IROUTER<n> for the specified interrupt,
 223     * honouring security state.
 224     */
 225    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 226        return 0;
 227    }
 228
 229    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 230        /* RAZ/WI for NS accesses to secure interrupts */
 231        if (!gicv3_gicd_group_test(s, irq)) {
 232            if (gicd_ns_access(s, irq) != 3) {
 233                return 0;
 234            }
 235        }
 236    }
 237
 238    return s->gicd_irouter[irq];
 239}
 240
 241static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
 242                               uint64_t val)
 243{
 244    /* Write the value of GICD_IROUTER<n> for the specified interrupt,
 245     * honouring security state.
 246     */
 247    if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 248        return;
 249    }
 250
 251    if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 252        /* RAZ/WI for NS accesses to secure interrupts */
 253        if (!gicv3_gicd_group_test(s, irq)) {
 254            if (gicd_ns_access(s, irq) != 3) {
 255                return;
 256            }
 257        }
 258    }
 259
 260    s->gicd_irouter[irq] = val;
 261    gicv3_cache_target_cpustate(s, irq);
 262    gicv3_update(s, irq, 1);
 263}
 264
 265/**
 266 * gicd_readb
 267 * gicd_readw
 268 * gicd_readl
 269 * gicd_readq
 270 * gicd_writeb
 271 * gicd_writew
 272 * gicd_writel
 273 * gicd_writeq
 274 *
 275 * Return %true if the operation succeeded, %false otherwise.
 276 */
 277
 278static bool gicd_readb(GICv3State *s, hwaddr offset,
 279                       uint64_t *data, MemTxAttrs attrs)
 280{
 281    /* Most GICv3 distributor registers do not support byte accesses. */
 282    switch (offset) {
 283    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 284    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 285    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 286        /* This GIC implementation always has affinity routing enabled,
 287         * so these registers are all RAZ/WI.
 288         */
 289        return true;
 290    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 291        *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
 292        return true;
 293    default:
 294        return false;
 295    }
 296}
 297
 298static bool gicd_writeb(GICv3State *s, hwaddr offset,
 299                        uint64_t value, MemTxAttrs attrs)
 300{
 301    /* Most GICv3 distributor registers do not support byte accesses. */
 302    switch (offset) {
 303    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 304    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 305    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 306        /* This GIC implementation always has affinity routing enabled,
 307         * so these registers are all RAZ/WI.
 308         */
 309        return true;
 310    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 311    {
 312        int irq = offset - GICD_IPRIORITYR;
 313
 314        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 315            return true;
 316        }
 317        gicd_write_ipriorityr(s, attrs, irq, value);
 318        gicv3_update(s, irq, 1);
 319        return true;
 320    }
 321    default:
 322        return false;
 323    }
 324}
 325
 326static bool gicd_readw(GICv3State *s, hwaddr offset,
 327                       uint64_t *data, MemTxAttrs attrs)
 328{
 329    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
 330     * support 16 bit accesses, and those registers are all part of the
 331     * optional message-based SPI feature which this GIC does not currently
 332     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
 333     * reserved.
 334     */
 335    return false;
 336}
 337
 338static bool gicd_writew(GICv3State *s, hwaddr offset,
 339                        uint64_t value, MemTxAttrs attrs)
 340{
 341    /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
 342     * support 16 bit accesses, and those registers are all part of the
 343     * optional message-based SPI feature which this GIC does not currently
 344     * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
 345     * reserved.
 346     */
 347    return false;
 348}
 349
 350static bool gicd_readl(GICv3State *s, hwaddr offset,
 351                       uint64_t *data, MemTxAttrs attrs)
 352{
 353    /* Almost all GICv3 distributor registers are 32-bit.
 354     * Note that WO registers must return an UNKNOWN value on reads,
 355     * not an abort.
 356     */
 357
 358    switch (offset) {
 359    case GICD_CTLR:
 360        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 361            /* The NS view of the GICD_CTLR sees only certain bits:
 362             * + bit [31] (RWP) is an alias of the Secure bit [31]
 363             * + bit [4] (ARE_NS) is an alias of Secure bit [5]
 364             * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
 365             *   NS affinity routing is enabled, otherwise RES0
 366             * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
 367             *   NS affinity routing is not enabled, otherwise RES0
 368             * Since for QEMU affinity routing is always enabled
 369             * for both S and NS this means that bits [4] and [5] are
 370             * both always 1, and we can simply make the NS view
 371             * be bits 31, 4 and 1 of the S view.
 372             */
 373            *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
 374                                    GICD_CTLR_EN_GRP1NS |
 375                                    GICD_CTLR_RWP);
 376        } else {
 377            *data = s->gicd_ctlr;
 378        }
 379        return true;
 380    case GICD_TYPER:
 381    {
 382        /* For this implementation:
 383         * No1N == 1 (1-of-N SPI interrupts not supported)
 384         * A3V == 1 (non-zero values of Affinity level 3 supported)
 385         * IDbits == 0xf (we support 16-bit interrupt identifiers)
 386         * DVIS == 1 (Direct virtual LPI injection supported) if GICv4
 387         * LPIS == 1 (LPIs are supported if affinity routing is enabled)
 388         * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
 389         *                      by GICD_TYPER.IDbits)
 390         * MBIS == 0 (message-based SPIs not supported)
 391         * SecurityExtn == 1 if security extns supported
 392         * CPUNumber == 0 since for us ARE is always 1
 393         * ITLinesNumber == (num external irqs / 32) - 1
 394         */
 395        int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
 396        /*
 397         * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
 398         * "security extensions not supported" always implies DS == 1,
 399         * so we only need to check the DS bit.
 400         */
 401        bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
 402        bool dvis = s->revision >= 4;
 403
 404        *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) |
 405            (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
 406            (0xf << 19) | itlinesnumber;
 407        return true;
 408    }
 409    case GICD_IIDR:
 410        /* We claim to be an ARM r0p0 with a zero ProductID.
 411         * This is the same as an r0p0 GIC-500.
 412         */
 413        *data = gicv3_iidr();
 414        return true;
 415    case GICD_STATUSR:
 416        /* RAZ/WI for us (this is an optional register and our implementation
 417         * does not track RO/WO/reserved violations to report them to the guest)
 418         */
 419        *data = 0;
 420        return true;
 421    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
 422    {
 423        int irq;
 424
 425        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 426            *data = 0;
 427            return true;
 428        }
 429        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 430        irq = (offset - GICD_IGROUPR) * 8;
 431        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 432            *data = 0;
 433            return true;
 434        }
 435        *data = *gic_bmp_ptr32(s->group, irq);
 436        return true;
 437    }
 438    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
 439        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
 440                                     offset - GICD_ISENABLER);
 441        return true;
 442    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
 443        *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
 444                                     offset - GICD_ICENABLER);
 445        return true;
 446    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
 447        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
 448                                     offset - GICD_ISPENDR);
 449        return true;
 450    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
 451        *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
 452                                     offset - GICD_ICPENDR);
 453        return true;
 454    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
 455        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
 456                                     offset - GICD_ISACTIVER);
 457        return true;
 458    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
 459        *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
 460                                     offset - GICD_ICACTIVER);
 461        return true;
 462    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 463    {
 464        int i, irq = offset - GICD_IPRIORITYR;
 465        uint32_t value = 0;
 466
 467        for (i = irq + 3; i >= irq; i--) {
 468            value <<= 8;
 469            value |= gicd_read_ipriorityr(s, attrs, i);
 470        }
 471        *data = value;
 472        return true;
 473    }
 474    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 475        /* RAZ/WI since affinity routing is always enabled */
 476        *data = 0;
 477        return true;
 478    case GICD_ICFGR ... GICD_ICFGR + 0xff:
 479    {
 480        /* Here only the even bits are used; odd bits are RES0 */
 481        int irq = (offset - GICD_ICFGR) * 4;
 482        uint32_t value = 0;
 483
 484        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 485            *data = 0;
 486            return true;
 487        }
 488
 489        /* Since our edge_trigger bitmap is one bit per irq, we only need
 490         * half of the 32-bit word, which we can then spread out
 491         * into the odd bits.
 492         */
 493        value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
 494        value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
 495        value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
 496        value = half_shuffle32(value) << 1;
 497        *data = value;
 498        return true;
 499    }
 500    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
 501    {
 502        int irq;
 503
 504        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 505            /* RAZ/WI if security disabled, or if
 506             * security enabled and this is an NS access
 507             */
 508            *data = 0;
 509            return true;
 510        }
 511        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 512        irq = (offset - GICD_IGRPMODR) * 8;
 513        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 514            *data = 0;
 515            return true;
 516        }
 517        *data = *gic_bmp_ptr32(s->grpmod, irq);
 518        return true;
 519    }
 520    case GICD_NSACR ... GICD_NSACR + 0xff:
 521    {
 522        /* Two bits per interrupt */
 523        int irq = (offset - GICD_NSACR) * 4;
 524
 525        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 526            *data = 0;
 527            return true;
 528        }
 529
 530        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 531            /* RAZ/WI if security disabled, or if
 532             * security enabled and this is an NS access
 533             */
 534            *data = 0;
 535            return true;
 536        }
 537
 538        *data = s->gicd_nsacr[irq / 16];
 539        return true;
 540    }
 541    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 542    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 543        /* RAZ/WI since affinity routing is always enabled */
 544        *data = 0;
 545        return true;
 546    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 547    {
 548        uint64_t r;
 549        int irq = (offset - GICD_IROUTER) / 8;
 550
 551        r = gicd_read_irouter(s, attrs, irq);
 552        if (offset & 7) {
 553            *data = r >> 32;
 554        } else {
 555            *data = (uint32_t)r;
 556        }
 557        return true;
 558    }
 559    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
 560        /* ID registers */
 561        *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST);
 562        return true;
 563    case GICD_SGIR:
 564        /* WO registers, return unknown value */
 565        qemu_log_mask(LOG_GUEST_ERROR,
 566                      "%s: invalid guest read from WO register at offset "
 567                      TARGET_FMT_plx "\n", __func__, offset);
 568        *data = 0;
 569        return true;
 570    default:
 571        return false;
 572    }
 573}
 574
 575static bool gicd_writel(GICv3State *s, hwaddr offset,
 576                        uint64_t value, MemTxAttrs attrs)
 577{
 578    /* Almost all GICv3 distributor registers are 32-bit. Note that
 579     * RO registers must ignore writes, not abort.
 580     */
 581
 582    switch (offset) {
 583    case GICD_CTLR:
 584    {
 585        uint32_t mask;
 586        /* GICv3 5.3.20 */
 587        if (s->gicd_ctlr & GICD_CTLR_DS) {
 588            /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
 589             * ARE is RAO/WI (affinity routing always on), and only
 590             * bits 0 and 1 (group enables) are writable.
 591             */
 592            mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
 593        } else {
 594            if (attrs.secure) {
 595                /* for secure access:
 596                 * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
 597                 * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
 598                 *
 599                 * We can only modify bits[2:0] (the group enables).
 600                 */
 601                mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
 602            } else {
 603                /* For non secure access ARE_NS is RAO/WI and EnableGrp1
 604                 * is RES0. The only writable bit is [1] (EnableGrp1A), which
 605                 * is an alias of the Secure bit [1].
 606                 */
 607                mask = GICD_CTLR_EN_GRP1NS;
 608            }
 609        }
 610        s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
 611        if (value & mask & GICD_CTLR_DS) {
 612            /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
 613             * Note that this is a one-way transition because if DS is set
 614             * then it's not writable, so it can only go back to 0 with a
 615             * hardware reset.
 616             */
 617            s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
 618        }
 619        gicv3_full_update(s);
 620        return true;
 621    }
 622    case GICD_STATUSR:
 623        /* RAZ/WI for our implementation */
 624        return true;
 625    case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
 626    {
 627        int irq;
 628
 629        if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
 630            return true;
 631        }
 632        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 633        irq = (offset - GICD_IGROUPR) * 8;
 634        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 635            return true;
 636        }
 637        *gic_bmp_ptr32(s->group, irq) = value;
 638        gicv3_update(s, irq, 32);
 639        return true;
 640    }
 641    case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
 642        gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
 643                                  offset - GICD_ISENABLER, value);
 644        return true;
 645    case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
 646        gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
 647                                    offset - GICD_ICENABLER, value);
 648        return true;
 649    case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
 650        gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
 651                                  offset - GICD_ISPENDR, value);
 652        return true;
 653    case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
 654        gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
 655                                    offset - GICD_ICPENDR, value);
 656        return true;
 657    case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
 658        gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
 659                                  offset - GICD_ISACTIVER, value);
 660        return true;
 661    case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
 662        gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
 663                                    offset - GICD_ICACTIVER, value);
 664        return true;
 665    case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
 666    {
 667        int i, irq = offset - GICD_IPRIORITYR;
 668
 669        if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
 670            return true;
 671        }
 672
 673        for (i = irq; i < irq + 4; i++, value >>= 8) {
 674            gicd_write_ipriorityr(s, attrs, i, value);
 675        }
 676        gicv3_update(s, irq, 4);
 677        return true;
 678    }
 679    case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
 680        /* RAZ/WI since affinity routing is always enabled */
 681        return true;
 682    case GICD_ICFGR ... GICD_ICFGR + 0xff:
 683    {
 684        /* Here only the odd bits are used; even bits are RES0 */
 685        int irq = (offset - GICD_ICFGR) * 4;
 686        uint32_t mask, oldval;
 687
 688        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 689            return true;
 690        }
 691
 692        /* Since our edge_trigger bitmap is one bit per irq, our input
 693         * 32-bits will compress down into 16 bits which we need
 694         * to write into the bitmap.
 695         */
 696        value = half_unshuffle32(value >> 1);
 697        mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
 698        if (irq & 0x1f) {
 699            value <<= 16;
 700            mask &= 0xffff0000U;
 701        } else {
 702            mask &= 0xffff;
 703        }
 704        oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
 705        value = (oldval & ~mask) | (value & mask);
 706        *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
 707        return true;
 708    }
 709    case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
 710    {
 711        int irq;
 712
 713        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 714            /* RAZ/WI if security disabled, or if
 715             * security enabled and this is an NS access
 716             */
 717            return true;
 718        }
 719        /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
 720        irq = (offset - GICD_IGRPMODR) * 8;
 721        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 722            return true;
 723        }
 724        *gic_bmp_ptr32(s->grpmod, irq) = value;
 725        gicv3_update(s, irq, 32);
 726        return true;
 727    }
 728    case GICD_NSACR ... GICD_NSACR + 0xff:
 729    {
 730        /* Two bits per interrupt */
 731        int irq = (offset - GICD_NSACR) * 4;
 732
 733        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 734            return true;
 735        }
 736
 737        if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
 738            /* RAZ/WI if security disabled, or if
 739             * security enabled and this is an NS access
 740             */
 741            return true;
 742        }
 743
 744        s->gicd_nsacr[irq / 16] = value;
 745        /* No update required as this only affects access permission checks */
 746        return true;
 747    }
 748    case GICD_SGIR:
 749        /* RES0 if affinity routing is enabled */
 750        return true;
 751    case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
 752    case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
 753        /* RAZ/WI since affinity routing is always enabled */
 754        return true;
 755    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 756    {
 757        uint64_t r;
 758        int irq = (offset - GICD_IROUTER) / 8;
 759
 760        if (irq < GIC_INTERNAL || irq >= s->num_irq) {
 761            return true;
 762        }
 763
 764        /* Write half of the 64-bit register */
 765        r = gicd_read_irouter(s, attrs, irq);
 766        r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
 767        gicd_write_irouter(s, attrs, irq, r);
 768        return true;
 769    }
 770    case GICD_IDREGS ... GICD_IDREGS + 0x2f:
 771    case GICD_TYPER:
 772    case GICD_IIDR:
 773        /* RO registers, ignore the write */
 774        qemu_log_mask(LOG_GUEST_ERROR,
 775                      "%s: invalid guest write to RO register at offset "
 776                      TARGET_FMT_plx "\n", __func__, offset);
 777        return true;
 778    default:
 779        return false;
 780    }
 781}
 782
 783static bool gicd_writeq(GICv3State *s, hwaddr offset,
 784                        uint64_t value, MemTxAttrs attrs)
 785{
 786    /* Our only 64-bit registers are GICD_IROUTER<n> */
 787    int irq;
 788
 789    switch (offset) {
 790    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 791        irq = (offset - GICD_IROUTER) / 8;
 792        gicd_write_irouter(s, attrs, irq, value);
 793        return true;
 794    default:
 795        return false;
 796    }
 797}
 798
 799static bool gicd_readq(GICv3State *s, hwaddr offset,
 800                       uint64_t *data, MemTxAttrs attrs)
 801{
 802    /* Our only 64-bit registers are GICD_IROUTER<n> */
 803    int irq;
 804
 805    switch (offset) {
 806    case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
 807        irq = (offset - GICD_IROUTER) / 8;
 808        *data = gicd_read_irouter(s, attrs, irq);
 809        return true;
 810    default:
 811        return false;
 812    }
 813}
 814
 815MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
 816                            unsigned size, MemTxAttrs attrs)
 817{
 818    GICv3State *s = (GICv3State *)opaque;
 819    bool r;
 820
 821    switch (size) {
 822    case 1:
 823        r = gicd_readb(s, offset, data, attrs);
 824        break;
 825    case 2:
 826        r = gicd_readw(s, offset, data, attrs);
 827        break;
 828    case 4:
 829        r = gicd_readl(s, offset, data, attrs);
 830        break;
 831    case 8:
 832        r = gicd_readq(s, offset, data, attrs);
 833        break;
 834    default:
 835        r = false;
 836        break;
 837    }
 838
 839    if (!r) {
 840        qemu_log_mask(LOG_GUEST_ERROR,
 841                      "%s: invalid guest read at offset " TARGET_FMT_plx
 842                      " size %u\n", __func__, offset, size);
 843        trace_gicv3_dist_badread(offset, size, attrs.secure);
 844        /* The spec requires that reserved registers are RAZ/WI;
 845         * so use MEMTX_ERROR returns from leaf functions as a way to
 846         * trigger the guest-error logging but don't return it to
 847         * the caller, or we'll cause a spurious guest data abort.
 848         */
 849        *data = 0;
 850    } else {
 851        trace_gicv3_dist_read(offset, *data, size, attrs.secure);
 852    }
 853    return MEMTX_OK;
 854}
 855
 856MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
 857                             unsigned size, MemTxAttrs attrs)
 858{
 859    GICv3State *s = (GICv3State *)opaque;
 860    bool r;
 861
 862    switch (size) {
 863    case 1:
 864        r = gicd_writeb(s, offset, data, attrs);
 865        break;
 866    case 2:
 867        r = gicd_writew(s, offset, data, attrs);
 868        break;
 869    case 4:
 870        r = gicd_writel(s, offset, data, attrs);
 871        break;
 872    case 8:
 873        r = gicd_writeq(s, offset, data, attrs);
 874        break;
 875    default:
 876        r = false;
 877        break;
 878    }
 879
 880    if (!r) {
 881        qemu_log_mask(LOG_GUEST_ERROR,
 882                      "%s: invalid guest write at offset " TARGET_FMT_plx
 883                      " size %u\n", __func__, offset, size);
 884        trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
 885        /* The spec requires that reserved registers are RAZ/WI;
 886         * so use MEMTX_ERROR returns from leaf functions as a way to
 887         * trigger the guest-error logging but don't return it to
 888         * the caller, or we'll cause a spurious guest data abort.
 889         */
 890    } else {
 891        trace_gicv3_dist_write(offset, data, size, attrs.secure);
 892    }
 893    return MEMTX_OK;
 894}
 895
 896void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
 897{
 898    /* Update distributor state for a change in an external SPI input line */
 899    if (level == gicv3_gicd_level_test(s, irq)) {
 900        return;
 901    }
 902
 903    trace_gicv3_dist_set_irq(irq, level);
 904
 905    gicv3_gicd_level_replace(s, irq, level);
 906
 907    if (level) {
 908        /* 0->1 edges latch the pending bit for edge-triggered interrupts */
 909        if (gicv3_gicd_edge_trigger_test(s, irq)) {
 910            gicv3_gicd_pending_set(s, irq);
 911        }
 912    }
 913
 914    gicv3_update(s, irq, 1);
 915}
 916