qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22
  23#include "elf.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/ide/pci.h"
  27#include "hw/ide/ahci.h"
  28#include "hw/loader.h"
  29#include "hw/loader-fit.h"
  30#include "hw/mips/bootloader.h"
  31#include "hw/mips/cps.h"
  32#include "hw/pci-host/xilinx-pcie.h"
  33#include "hw/qdev-clock.h"
  34#include "hw/qdev-properties.h"
  35#include "qapi/error.h"
  36#include "qemu/error-report.h"
  37#include "qemu/guest-random.h"
  38#include "qemu/log.h"
  39#include "chardev/char.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/sysemu.h"
  42#include "sysemu/qtest.h"
  43#include "sysemu/runstate.h"
  44
  45#include <libfdt.h>
  46#include "qom/object.h"
  47
  48#define TYPE_BOSTON "mips-boston"
  49typedef struct BostonState BostonState;
  50DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
  51                         TYPE_BOSTON)
  52
  53#define FDT_IRQ_TYPE_NONE       0
  54#define FDT_IRQ_TYPE_LEVEL_HIGH 4
  55#define FDT_GIC_SHARED          0
  56#define FDT_GIC_LOCAL           1
  57#define FDT_BOSTON_CLK_SYS      1
  58#define FDT_BOSTON_CLK_CPU      2
  59#define FDT_PCI_IRQ_MAP_PINS    4
  60#define FDT_PCI_IRQ_MAP_DESCS   6
  61
  62struct BostonState {
  63    SysBusDevice parent_obj;
  64
  65    MachineState *mach;
  66    MIPSCPSState cps;
  67    SerialMM *uart;
  68    Clock *cpuclk;
  69
  70    CharBackend lcd_display;
  71    char lcd_content[8];
  72    bool lcd_inited;
  73
  74    hwaddr kernel_entry;
  75    hwaddr fdt_base;
  76};
  77
  78enum {
  79    BOSTON_LOWDDR,
  80    BOSTON_PCIE0,
  81    BOSTON_PCIE1,
  82    BOSTON_PCIE2,
  83    BOSTON_PCIE2_MMIO,
  84    BOSTON_CM,
  85    BOSTON_GIC,
  86    BOSTON_CDMM,
  87    BOSTON_CPC,
  88    BOSTON_PLATREG,
  89    BOSTON_UART,
  90    BOSTON_LCD,
  91    BOSTON_FLASH,
  92    BOSTON_PCIE1_MMIO,
  93    BOSTON_PCIE0_MMIO,
  94    BOSTON_HIGHDDR,
  95};
  96
  97static const MemMapEntry boston_memmap[] = {
  98    [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
  99    [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
 100    [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
 101    [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
 102    [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
 103    [BOSTON_CM] =         { 0x16100000,       0x20000 },
 104    [BOSTON_GIC] =        { 0x16120000,       0x20000 },
 105    [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
 106    [BOSTON_CPC] =        { 0x16200000,        0x8000 },
 107    [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
 108    [BOSTON_UART] =       { 0x17ffe000,          0x20 },
 109    [BOSTON_LCD] =        { 0x17fff000,           0x8 },
 110    [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
 111    [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
 112    [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
 113    [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
 114};
 115
 116enum boston_plat_reg {
 117    PLAT_FPGA_BUILD     = 0x00,
 118    PLAT_CORE_CL        = 0x04,
 119    PLAT_WRAPPER_CL     = 0x08,
 120    PLAT_SYSCLK_STATUS  = 0x0c,
 121    PLAT_SOFTRST_CTL    = 0x10,
 122#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
 123    PLAT_DDR3_STATUS    = 0x14,
 124#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
 125#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
 126    PLAT_PCIE_STATUS    = 0x18,
 127#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
 128#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
 129#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
 130    PLAT_FLASH_CTL      = 0x1c,
 131    PLAT_SPARE0         = 0x20,
 132    PLAT_SPARE1         = 0x24,
 133    PLAT_SPARE2         = 0x28,
 134    PLAT_SPARE3         = 0x2c,
 135    PLAT_MMCM_DIV       = 0x30,
 136#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
 137#define PLAT_MMCM_DIV_INPUT_SHIFT       8
 138#define PLAT_MMCM_DIV_MUL_SHIFT         16
 139#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
 140    PLAT_BUILD_CFG      = 0x34,
 141#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
 142#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
 143#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
 144#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
 145    PLAT_DDR_CFG        = 0x38,
 146#define PLAT_DDR_CFG_SIZE               (0xf << 0)
 147#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
 148    PLAT_NOC_PCIE0_ADDR = 0x3c,
 149    PLAT_NOC_PCIE1_ADDR = 0x40,
 150    PLAT_NOC_PCIE2_ADDR = 0x44,
 151    PLAT_SYS_CTL        = 0x48,
 152};
 153
 154static void boston_lcd_event(void *opaque, QEMUChrEvent event)
 155{
 156    BostonState *s = opaque;
 157    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 158        qemu_chr_fe_printf(&s->lcd_display, "        ");
 159        s->lcd_inited = true;
 160    }
 161}
 162
 163static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 164                                unsigned size)
 165{
 166    BostonState *s = opaque;
 167    uint64_t val = 0;
 168
 169    switch (size) {
 170    case 8:
 171        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 172        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 173        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 174        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 175        /* fall through */
 176    case 4:
 177        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 178        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 179        /* fall through */
 180    case 2:
 181        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 182        /* fall through */
 183    case 1:
 184        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 185        break;
 186    }
 187
 188    return val;
 189}
 190
 191static void boston_lcd_write(void *opaque, hwaddr addr,
 192                             uint64_t val, unsigned size)
 193{
 194    BostonState *s = opaque;
 195
 196    switch (size) {
 197    case 8:
 198        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 199        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 200        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 201        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 202        /* fall through */
 203    case 4:
 204        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 205        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 206        /* fall through */
 207    case 2:
 208        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 209        /* fall through */
 210    case 1:
 211        s->lcd_content[(addr + 0) & 0x7] = val;
 212        break;
 213    }
 214
 215    qemu_chr_fe_printf(&s->lcd_display,
 216                       "\r%-8.8s", s->lcd_content);
 217}
 218
 219static const MemoryRegionOps boston_lcd_ops = {
 220    .read = boston_lcd_read,
 221    .write = boston_lcd_write,
 222    .endianness = DEVICE_NATIVE_ENDIAN,
 223};
 224
 225static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 226                                    unsigned size)
 227{
 228    BostonState *s = opaque;
 229    uint32_t gic_freq, val;
 230
 231    if (size != 4) {
 232        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 233        return 0;
 234    }
 235
 236    switch (addr & 0xffff) {
 237    case PLAT_FPGA_BUILD:
 238    case PLAT_CORE_CL:
 239    case PLAT_WRAPPER_CL:
 240        return 0;
 241    case PLAT_DDR3_STATUS:
 242        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 243    case PLAT_MMCM_DIV:
 244        gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
 245        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 246        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 247        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 248        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 249        return val;
 250    case PLAT_BUILD_CFG:
 251        val = PLAT_BUILD_CFG_PCIE0_EN;
 252        val |= PLAT_BUILD_CFG_PCIE1_EN;
 253        val |= PLAT_BUILD_CFG_PCIE2_EN;
 254        return val;
 255    case PLAT_DDR_CFG:
 256        val = s->mach->ram_size / GiB;
 257        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 258        val |= PLAT_DDR_CFG_MHZ;
 259        return val;
 260    default:
 261        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 262                      addr & 0xffff);
 263        return 0;
 264    }
 265}
 266
 267static void boston_platreg_write(void *opaque, hwaddr addr,
 268                                 uint64_t val, unsigned size)
 269{
 270    if (size != 4) {
 271        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 272        return;
 273    }
 274
 275    switch (addr & 0xffff) {
 276    case PLAT_FPGA_BUILD:
 277    case PLAT_CORE_CL:
 278    case PLAT_WRAPPER_CL:
 279    case PLAT_DDR3_STATUS:
 280    case PLAT_PCIE_STATUS:
 281    case PLAT_MMCM_DIV:
 282    case PLAT_BUILD_CFG:
 283    case PLAT_DDR_CFG:
 284        /* read only */
 285        break;
 286    case PLAT_SOFTRST_CTL:
 287        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 288            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 289        }
 290        break;
 291    default:
 292        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 293                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 294        break;
 295    }
 296}
 297
 298static const MemoryRegionOps boston_platreg_ops = {
 299    .read = boston_platreg_read,
 300    .write = boston_platreg_write,
 301    .endianness = DEVICE_NATIVE_ENDIAN,
 302};
 303
 304static void mips_boston_instance_init(Object *obj)
 305{
 306    BostonState *s = BOSTON(obj);
 307
 308    s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
 309    clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
 310}
 311
 312static const TypeInfo boston_device = {
 313    .name          = TYPE_BOSTON,
 314    .parent        = TYPE_SYS_BUS_DEVICE,
 315    .instance_size = sizeof(BostonState),
 316    .instance_init = mips_boston_instance_init,
 317};
 318
 319static void boston_register_types(void)
 320{
 321    type_register_static(&boston_device);
 322}
 323type_init(boston_register_types)
 324
 325static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
 326{
 327    uint64_t regaddr;
 328
 329    /* Move CM GCRs */
 330    regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
 331    bl_gen_write_ulong(&p, regaddr,
 332                       boston_memmap[BOSTON_CM].base);
 333
 334    /* Move & enable GIC GCRs */
 335    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 336                                           + GCR_GIC_BASE_OFS),
 337    bl_gen_write_ulong(&p, regaddr,
 338                       boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
 339
 340    /* Move & enable CPC GCRs */
 341    regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
 342                                           + GCR_CPC_BASE_OFS),
 343    bl_gen_write_ulong(&p, regaddr,
 344                       boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
 345
 346    /*
 347     * Setup argument registers to follow the UHI boot protocol:
 348     *
 349     * a0/$4 = -2
 350     * a1/$5 = virtual address of FDT
 351     * a2/$6 = 0
 352     * a3/$7 = 0
 353     */
 354    bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
 355}
 356
 357static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 358                                     const void *match_data, hwaddr *load_addr)
 359{
 360    BostonState *s = BOSTON(opaque);
 361    MachineState *machine = s->mach;
 362    const char *cmdline;
 363    int err;
 364    size_t ram_low_sz, ram_high_sz;
 365    size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
 366    g_autofree void *fdt = g_malloc0(fdt_sz);
 367    uint8_t rng_seed[32];
 368
 369    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 370    if (err) {
 371        fprintf(stderr, "unable to open FDT\n");
 372        return NULL;
 373    }
 374
 375    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
 376    qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
 377
 378    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 379            ? machine->kernel_cmdline : " ";
 380    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 381    if (err < 0) {
 382        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 383        return NULL;
 384    }
 385
 386    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 387    ram_high_sz = machine->ram_size - ram_low_sz;
 388    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 389                        1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
 390                        1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
 391                        1, ram_high_sz);
 392
 393    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 394    qemu_fdt_dumpdtb(fdt, fdt_sz);
 395
 396    s->fdt_base = *load_addr;
 397
 398    return g_steal_pointer(&fdt);
 399}
 400
 401static const void *boston_kernel_filter(void *opaque, const void *kernel,
 402                                        hwaddr *load_addr, hwaddr *entry_addr)
 403{
 404    BostonState *s = BOSTON(opaque);
 405
 406    s->kernel_entry = *entry_addr;
 407
 408    return kernel;
 409}
 410
 411static const struct fit_loader_match boston_matches[] = {
 412    { "img,boston" },
 413    { NULL },
 414};
 415
 416static const struct fit_loader boston_fit_loader = {
 417    .matches = boston_matches,
 418    .addr_to_phys = cpu_mips_kseg0_to_phys,
 419    .fdt_filter = boston_fdt_filter,
 420    .kernel_filter = boston_kernel_filter,
 421};
 422
 423static inline XilinxPCIEHost *
 424xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 425                 hwaddr cfg_base, uint64_t cfg_size,
 426                 hwaddr mmio_base, uint64_t mmio_size,
 427                 qemu_irq irq, bool link_up)
 428{
 429    DeviceState *dev;
 430    MemoryRegion *cfg, *mmio;
 431
 432    dev = qdev_new(TYPE_XILINX_PCIE_HOST);
 433
 434    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 435    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 436    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 437    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 438    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 439    qdev_prop_set_bit(dev, "link_up", link_up);
 440
 441    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 442
 443    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 444    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 445
 446    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 447    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 448
 449    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 450
 451    return XILINX_PCIE_HOST(dev);
 452}
 453
 454
 455static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
 456                            hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
 457{
 458    int i;
 459    char *name, *intc_name;
 460    uint32_t intc_ph;
 461    uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
 462
 463    intc_ph = qemu_fdt_alloc_phandle(fdt);
 464    name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
 465    qemu_fdt_add_subnode(fdt, name);
 466    qemu_fdt_setprop_string(fdt, name, "compatible",
 467                            "xlnx,axi-pcie-host-1.00.a");
 468    qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
 469    qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
 470
 471    qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
 472    qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
 473    qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
 474
 475    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 476    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
 477                            FDT_IRQ_TYPE_LEVEL_HIGH);
 478
 479    qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
 480                            mmio_base, 0, mmio_size);
 481    qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
 482
 483
 484
 485    intc_name = g_strdup_printf("%s/interrupt-controller", name);
 486    qemu_fdt_add_subnode(fdt, intc_name);
 487    qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 488    qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
 489    qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 490    qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
 491
 492    qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
 493    for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
 494        uint32_t *irqmap = interrupt_map[i];
 495
 496        irqmap[0] = cpu_to_be32(0);
 497        irqmap[1] = cpu_to_be32(0);
 498        irqmap[2] = cpu_to_be32(0);
 499        irqmap[3] = cpu_to_be32(i + 1);
 500        irqmap[4] = cpu_to_be32(intc_ph);
 501        irqmap[5] = cpu_to_be32(i + 1);
 502    }
 503    qemu_fdt_setprop(fdt, name, "interrupt-map",
 504                     &interrupt_map, sizeof(interrupt_map));
 505
 506    g_free(intc_name);
 507    g_free(name);
 508}
 509
 510static const void *create_fdt(BostonState *s,
 511                              const MemMapEntry *memmap, int *dt_size)
 512{
 513    void *fdt;
 514    int cpu;
 515    MachineState *mc = s->mach;
 516    uint32_t platreg_ph, gic_ph, clk_ph;
 517    char *name, *gic_name, *platreg_name, *stdout_name;
 518    static const char * const syscon_compat[2] = {
 519        "img,boston-platform-regs", "syscon"
 520    };
 521
 522    fdt = create_device_tree(dt_size);
 523    if (!fdt) {
 524        error_report("create_device_tree() failed");
 525        exit(1);
 526    }
 527
 528    platreg_ph = qemu_fdt_alloc_phandle(fdt);
 529    gic_ph = qemu_fdt_alloc_phandle(fdt);
 530    clk_ph = qemu_fdt_alloc_phandle(fdt);
 531
 532    qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
 533    qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
 534    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
 535    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
 536
 537
 538    qemu_fdt_add_subnode(fdt, "/cpus");
 539    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
 540    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
 541
 542    for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
 543        name = g_strdup_printf("/cpus/cpu@%d", cpu);
 544        qemu_fdt_add_subnode(fdt, name);
 545        qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
 546        qemu_fdt_setprop_string(fdt, name, "status", "okay");
 547        qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
 548        qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
 549        qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 550        g_free(name);
 551    }
 552
 553    qemu_fdt_add_subnode(fdt, "/soc");
 554    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
 555    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
 556    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
 557    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
 558
 559    fdt_create_pcie(fdt, gic_ph, 2,
 560                memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
 561                memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
 562
 563    fdt_create_pcie(fdt, gic_ph, 1,
 564                memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
 565                memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
 566
 567    fdt_create_pcie(fdt, gic_ph, 0,
 568                memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
 569                memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
 570
 571    /* GIC with it's timer node */
 572    gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
 573                                memmap[BOSTON_GIC].base);
 574    qemu_fdt_add_subnode(fdt, gic_name);
 575    qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
 576    qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
 577                            memmap[BOSTON_GIC].size);
 578    qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
 579    qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
 580    qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
 581
 582    name = g_strdup_printf("%s/timer", gic_name);
 583    qemu_fdt_add_subnode(fdt, name);
 584    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
 585    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
 586                            FDT_IRQ_TYPE_NONE);
 587    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
 588    g_free(name);
 589    g_free(gic_name);
 590
 591    /* CDMM node */
 592    name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
 593    qemu_fdt_add_subnode(fdt, name);
 594    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
 595    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
 596                            memmap[BOSTON_CDMM].size);
 597    g_free(name);
 598
 599    /* CPC node */
 600    name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
 601    qemu_fdt_add_subnode(fdt, name);
 602    qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
 603    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
 604                            memmap[BOSTON_CPC].size);
 605    g_free(name);
 606
 607    /* platreg and it's clk node */
 608    platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
 609                                   memmap[BOSTON_PLATREG].base);
 610    qemu_fdt_add_subnode(fdt, platreg_name);
 611    qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
 612                                 (char **)&syscon_compat,
 613                                 ARRAY_SIZE(syscon_compat));
 614    qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
 615                           memmap[BOSTON_PLATREG].base,
 616                           memmap[BOSTON_PLATREG].size);
 617    qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
 618
 619    name = g_strdup_printf("%s/clock", platreg_name);
 620    qemu_fdt_add_subnode(fdt, name);
 621    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
 622    qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
 623    qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
 624    g_free(name);
 625    g_free(platreg_name);
 626
 627    /* reboot node */
 628    name = g_strdup_printf("/soc/reboot");
 629    qemu_fdt_add_subnode(fdt, name);
 630    qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
 631    qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
 632    qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
 633    qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
 634    g_free(name);
 635
 636    /* uart node */
 637    name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
 638    qemu_fdt_add_subnode(fdt, name);
 639    qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
 640    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
 641                            memmap[BOSTON_UART].size);
 642    qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
 643    qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
 644    qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
 645                            FDT_IRQ_TYPE_LEVEL_HIGH);
 646    qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
 647
 648    qemu_fdt_add_subnode(fdt, "/chosen");
 649    stdout_name = g_strdup_printf("%s:115200", name);
 650    qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
 651    g_free(stdout_name);
 652    g_free(name);
 653
 654    /* lcd node */
 655    name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
 656    qemu_fdt_add_subnode(fdt, name);
 657    qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
 658    qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
 659                            memmap[BOSTON_LCD].size);
 660    g_free(name);
 661
 662    name = g_strdup_printf("/memory@0");
 663    qemu_fdt_add_subnode(fdt, name);
 664    qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
 665    g_free(name);
 666
 667    return fdt;
 668}
 669
 670static void boston_mach_init(MachineState *machine)
 671{
 672    DeviceState *dev;
 673    BostonState *s;
 674    MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
 675    MemoryRegion *sys_mem = get_system_memory();
 676    XilinxPCIEHost *pcie2;
 677    PCIDevice *ahci;
 678    DriveInfo *hd[6];
 679    Chardev *chr;
 680    int fw_size, fit_err;
 681
 682    if ((machine->ram_size % GiB) ||
 683        (machine->ram_size > (2 * GiB))) {
 684        error_report("Memory size must be 1GB or 2GB");
 685        exit(1);
 686    }
 687
 688    dev = qdev_new(TYPE_BOSTON);
 689    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 690
 691    s = BOSTON(dev);
 692    s->mach = machine;
 693
 694    if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
 695        error_report("Boston requires CPUs which support CPS");
 696        exit(1);
 697    }
 698
 699    object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
 700    object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
 701                            &error_fatal);
 702    object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
 703                            &error_fatal);
 704    qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
 705                          qdev_get_clock_out(dev, "cpu-refclk"));
 706    sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
 707
 708    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
 709
 710    flash =  g_new(MemoryRegion, 1);
 711    memory_region_init_rom(flash, NULL, "boston.flash",
 712                           boston_memmap[BOSTON_FLASH].size, &error_fatal);
 713    memory_region_add_subregion_overlap(sys_mem,
 714                                        boston_memmap[BOSTON_FLASH].base,
 715                                        flash, 0);
 716
 717    memory_region_add_subregion_overlap(sys_mem,
 718                                        boston_memmap[BOSTON_HIGHDDR].base,
 719                                        machine->ram, 0);
 720
 721    ddr_low_alias = g_new(MemoryRegion, 1);
 722    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 723                             machine->ram, 0,
 724                             MIN(machine->ram_size, (256 * MiB)));
 725    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 726
 727    xilinx_pcie_init(sys_mem, 0,
 728                     boston_memmap[BOSTON_PCIE0].base,
 729                     boston_memmap[BOSTON_PCIE0].size,
 730                     boston_memmap[BOSTON_PCIE0_MMIO].base,
 731                     boston_memmap[BOSTON_PCIE0_MMIO].size,
 732                     get_cps_irq(&s->cps, 2), false);
 733
 734    xilinx_pcie_init(sys_mem, 1,
 735                     boston_memmap[BOSTON_PCIE1].base,
 736                     boston_memmap[BOSTON_PCIE1].size,
 737                     boston_memmap[BOSTON_PCIE1_MMIO].base,
 738                     boston_memmap[BOSTON_PCIE1_MMIO].size,
 739                     get_cps_irq(&s->cps, 1), false);
 740
 741    pcie2 = xilinx_pcie_init(sys_mem, 2,
 742                             boston_memmap[BOSTON_PCIE2].base,
 743                             boston_memmap[BOSTON_PCIE2].size,
 744                             boston_memmap[BOSTON_PCIE2_MMIO].base,
 745                             boston_memmap[BOSTON_PCIE2_MMIO].size,
 746                             get_cps_irq(&s->cps, 0), true);
 747
 748    platreg = g_new(MemoryRegion, 1);
 749    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 750                          "boston-platregs",
 751                          boston_memmap[BOSTON_PLATREG].size);
 752    memory_region_add_subregion_overlap(sys_mem,
 753                          boston_memmap[BOSTON_PLATREG].base, platreg, 0);
 754
 755    s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
 756                             get_cps_irq(&s->cps, 3), 10000000,
 757                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 758
 759    lcd = g_new(MemoryRegion, 1);
 760    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 761    memory_region_add_subregion_overlap(sys_mem,
 762                                        boston_memmap[BOSTON_LCD].base, lcd, 0);
 763
 764    chr = qemu_chr_new("lcd", "vc:320x240", NULL);
 765    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 766    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 767                             boston_lcd_event, NULL, s, NULL, true);
 768
 769    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 770                                           PCI_DEVFN(0, 0),
 771                                           true, TYPE_ICH9_AHCI);
 772    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 773    ide_drive_get(hd, ahci_get_num_ports(ahci));
 774    ahci_ide_create_devs(ahci, hd);
 775
 776    if (machine->firmware) {
 777        fw_size = load_image_targphys(machine->firmware,
 778                                      0x1fc00000, 4 * MiB);
 779        if (fw_size == -1) {
 780            error_report("unable to load firmware image '%s'",
 781                          machine->firmware);
 782            exit(1);
 783        }
 784    } else if (machine->kernel_filename) {
 785        uint64_t kernel_entry, kernel_high;
 786        ssize_t kernel_size;
 787
 788        kernel_size = load_elf(machine->kernel_filename, NULL,
 789                           cpu_mips_kseg0_to_phys, NULL,
 790                           &kernel_entry, NULL, &kernel_high,
 791                           NULL, 0, EM_MIPS, 1, 0);
 792
 793        if (kernel_size > 0) {
 794            int dt_size;
 795            g_autofree const void *dtb_file_data = NULL;
 796            g_autofree const void *dtb_load_data = NULL;
 797            hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
 798            hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
 799
 800            s->kernel_entry = kernel_entry;
 801            if (machine->dtb) {
 802                dtb_file_data = load_device_tree(machine->dtb, &dt_size);
 803            } else {
 804                dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
 805            }
 806
 807            dtb_load_data = boston_fdt_filter(s, dtb_file_data,
 808                                              NULL, &dtb_vaddr);
 809
 810            /* Calculate real fdt size after filter */
 811            dt_size = fdt_totalsize(dtb_load_data);
 812            rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
 813        } else {
 814            /* Try to load file as FIT */
 815            fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 816            if (fit_err) {
 817                error_report("unable to load kernel image");
 818                exit(1);
 819            }
 820        }
 821
 822        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 823                     s->kernel_entry, s->fdt_base);
 824    } else if (!qtest_enabled()) {
 825        error_report("Please provide either a -kernel or -bios argument");
 826        exit(1);
 827    }
 828}
 829
 830static void boston_mach_class_init(MachineClass *mc)
 831{
 832    mc->desc = "MIPS Boston";
 833    mc->init = boston_mach_init;
 834    mc->block_default_type = IF_IDE;
 835    mc->default_ram_size = 1 * GiB;
 836    mc->default_ram_id = "boston.ddr";
 837    mc->max_cpus = 16;
 838    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 839}
 840
 841DEFINE_MACHINE("boston", boston_mach_class_init)
 842