qemu/hw/net/e1000e_core.c
<<
>>
Prefs
   1/*
   2* Core code for QEMU e1000e emulation
   3*
   4* Software developer's manuals:
   5* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
   6*
   7* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
   8* Developed by Daynix Computing LTD (http://www.daynix.com)
   9*
  10* Authors:
  11* Dmitry Fleytman <dmitry@daynix.com>
  12* Leonid Bloch <leonid@daynix.com>
  13* Yan Vugenfirer <yan@daynix.com>
  14*
  15* Based on work done by:
  16* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
  17* Copyright (c) 2008 Qumranet
  18* Based on work done by:
  19* Copyright (c) 2007 Dan Aloni
  20* Copyright (c) 2004 Antony T Curtis
  21*
  22* This library is free software; you can redistribute it and/or
  23* modify it under the terms of the GNU Lesser General Public
  24* License as published by the Free Software Foundation; either
  25* version 2.1 of the License, or (at your option) any later version.
  26*
  27* This library is distributed in the hope that it will be useful,
  28* but WITHOUT ANY WARRANTY; without even the implied warranty of
  29* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  30* Lesser General Public License for more details.
  31*
  32* You should have received a copy of the GNU Lesser General Public
  33* License along with this library; if not, see <http://www.gnu.org/licenses/>.
  34*/
  35
  36#include "qemu/osdep.h"
  37#include "qemu/log.h"
  38#include "net/net.h"
  39#include "net/tap.h"
  40#include "hw/pci/msi.h"
  41#include "hw/pci/msix.h"
  42#include "sysemu/runstate.h"
  43
  44#include "net_tx_pkt.h"
  45#include "net_rx_pkt.h"
  46
  47#include "e1000x_common.h"
  48#include "e1000e_core.h"
  49
  50#include "trace.h"
  51
  52#define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
  53                                     second according to spec 10.2.4.2 */
  54#define E1000E_MAX_TX_FRAGS (64)
  55
  56static inline void
  57e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
  58
  59static inline void
  60e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
  61{
  62    if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
  63        trace_e1000e_wrn_no_ts_support();
  64    }
  65}
  66
  67static inline void
  68e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
  69{
  70    if (cmd_and_length & E1000_TXD_CMD_SNAP) {
  71        trace_e1000e_wrn_no_snap_support();
  72    }
  73}
  74
  75static inline void
  76e1000e_raise_legacy_irq(E1000ECore *core)
  77{
  78    trace_e1000e_irq_legacy_notify(true);
  79    e1000x_inc_reg_if_not_full(core->mac, IAC);
  80    pci_set_irq(core->owner, 1);
  81}
  82
  83static inline void
  84e1000e_lower_legacy_irq(E1000ECore *core)
  85{
  86    trace_e1000e_irq_legacy_notify(false);
  87    pci_set_irq(core->owner, 0);
  88}
  89
  90static inline void
  91e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
  92{
  93    int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
  94                                 timer->delay_resolution_ns;
  95
  96    trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
  97
  98    timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
  99
 100    timer->running = true;
 101}
 102
 103static void
 104e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
 105{
 106    if (timer->running) {
 107        e1000e_intrmgr_rearm_timer(timer);
 108    }
 109}
 110
 111static void
 112e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
 113{
 114    if (timer->running) {
 115        timer_del(timer->timer);
 116    }
 117}
 118
 119static inline void
 120e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
 121{
 122    if (timer->running) {
 123        timer_del(timer->timer);
 124        timer->running = false;
 125    }
 126}
 127
 128static inline void
 129e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
 130{
 131    trace_e1000e_irq_fire_delayed_interrupts();
 132    e1000e_set_interrupt_cause(core, 0);
 133}
 134
 135static void
 136e1000e_intrmgr_on_timer(void *opaque)
 137{
 138    E1000IntrDelayTimer *timer = opaque;
 139
 140    trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
 141
 142    timer->running = false;
 143    e1000e_intrmgr_fire_delayed_interrupts(timer->core);
 144}
 145
 146static void
 147e1000e_intrmgr_on_throttling_timer(void *opaque)
 148{
 149    E1000IntrDelayTimer *timer = opaque;
 150
 151    assert(!msix_enabled(timer->core->owner));
 152
 153    timer->running = false;
 154
 155    if (!timer->core->itr_intr_pending) {
 156        trace_e1000e_irq_throttling_no_pending_interrupts();
 157        return;
 158    }
 159
 160    if (msi_enabled(timer->core->owner)) {
 161        trace_e1000e_irq_msi_notify_postponed();
 162        /* Clear msi_causes_pending to fire MSI eventually */
 163        timer->core->msi_causes_pending = 0;
 164        e1000e_set_interrupt_cause(timer->core, 0);
 165    } else {
 166        trace_e1000e_irq_legacy_notify_postponed();
 167        e1000e_set_interrupt_cause(timer->core, 0);
 168    }
 169}
 170
 171static void
 172e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
 173{
 174    E1000IntrDelayTimer *timer = opaque;
 175    int idx = timer - &timer->core->eitr[0];
 176
 177    assert(msix_enabled(timer->core->owner));
 178
 179    timer->running = false;
 180
 181    if (!timer->core->eitr_intr_pending[idx]) {
 182        trace_e1000e_irq_throttling_no_pending_vec(idx);
 183        return;
 184    }
 185
 186    trace_e1000e_irq_msix_notify_postponed_vec(idx);
 187    msix_notify(timer->core->owner, idx);
 188}
 189
 190static void
 191e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
 192{
 193    int i;
 194
 195    core->radv.delay_reg = RADV;
 196    core->rdtr.delay_reg = RDTR;
 197    core->raid.delay_reg = RAID;
 198    core->tadv.delay_reg = TADV;
 199    core->tidv.delay_reg = TIDV;
 200
 201    core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 202    core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 203    core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 204    core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 205    core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
 206
 207    core->radv.core = core;
 208    core->rdtr.core = core;
 209    core->raid.core = core;
 210    core->tadv.core = core;
 211    core->tidv.core = core;
 212
 213    core->itr.core = core;
 214    core->itr.delay_reg = ITR;
 215    core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
 216
 217    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 218        core->eitr[i].core = core;
 219        core->eitr[i].delay_reg = EITR + i;
 220        core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
 221    }
 222
 223    if (!create) {
 224        return;
 225    }
 226
 227    core->radv.timer =
 228        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
 229    core->rdtr.timer =
 230        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
 231    core->raid.timer =
 232        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
 233
 234    core->tadv.timer =
 235        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
 236    core->tidv.timer =
 237        timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
 238
 239    core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 240                                   e1000e_intrmgr_on_throttling_timer,
 241                                   &core->itr);
 242
 243    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 244        core->eitr[i].timer =
 245            timer_new_ns(QEMU_CLOCK_VIRTUAL,
 246                         e1000e_intrmgr_on_msix_throttling_timer,
 247                         &core->eitr[i]);
 248    }
 249}
 250
 251static inline void
 252e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
 253{
 254    e1000e_intrmgr_stop_timer(&core->radv);
 255    e1000e_intrmgr_stop_timer(&core->rdtr);
 256    e1000e_intrmgr_stop_timer(&core->raid);
 257    e1000e_intrmgr_stop_timer(&core->tidv);
 258    e1000e_intrmgr_stop_timer(&core->tadv);
 259}
 260
 261static bool
 262e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
 263{
 264    uint32_t delayable_causes;
 265    uint32_t rdtr = core->mac[RDTR];
 266    uint32_t radv = core->mac[RADV];
 267    uint32_t raid = core->mac[RAID];
 268
 269    if (msix_enabled(core->owner)) {
 270        return false;
 271    }
 272
 273    delayable_causes = E1000_ICR_RXQ0 |
 274                       E1000_ICR_RXQ1 |
 275                       E1000_ICR_RXT0;
 276
 277    if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
 278        delayable_causes |= E1000_ICR_ACK;
 279    }
 280
 281    /* Clean up all causes that may be delayed */
 282    core->delayed_causes |= *causes & delayable_causes;
 283    *causes &= ~delayable_causes;
 284
 285    /* Check if delayed RX interrupts disabled by client
 286       or if there are causes that cannot be delayed */
 287    if ((rdtr == 0) || (*causes != 0)) {
 288        return false;
 289    }
 290
 291    /* Check if delayed RX ACK interrupts disabled by client
 292       and there is an ACK packet received */
 293    if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
 294        return false;
 295    }
 296
 297    /* All causes delayed */
 298    e1000e_intrmgr_rearm_timer(&core->rdtr);
 299
 300    if (!core->radv.running && (radv != 0)) {
 301        e1000e_intrmgr_rearm_timer(&core->radv);
 302    }
 303
 304    if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
 305        e1000e_intrmgr_rearm_timer(&core->raid);
 306    }
 307
 308    return true;
 309}
 310
 311static bool
 312e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
 313{
 314    static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
 315                                             E1000_ICR_TXQ1 |
 316                                             E1000_ICR_TXQE |
 317                                             E1000_ICR_TXDW;
 318
 319    if (msix_enabled(core->owner)) {
 320        return false;
 321    }
 322
 323    /* Clean up all causes that may be delayed */
 324    core->delayed_causes |= *causes & delayable_causes;
 325    *causes &= ~delayable_causes;
 326
 327    /* If there are causes that cannot be delayed */
 328    if (*causes != 0) {
 329        return false;
 330    }
 331
 332    /* All causes delayed */
 333    e1000e_intrmgr_rearm_timer(&core->tidv);
 334
 335    if (!core->tadv.running && (core->mac[TADV] != 0)) {
 336        e1000e_intrmgr_rearm_timer(&core->tadv);
 337    }
 338
 339    return true;
 340}
 341
 342static uint32_t
 343e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
 344{
 345    uint32_t res;
 346
 347    if (msix_enabled(core->owner)) {
 348        assert(core->delayed_causes == 0);
 349        return 0;
 350    }
 351
 352    res = core->delayed_causes;
 353    core->delayed_causes = 0;
 354
 355    e1000e_intrmgr_stop_delay_timers(core);
 356
 357    return res;
 358}
 359
 360static void
 361e1000e_intrmgr_fire_all_timers(E1000ECore *core)
 362{
 363    int i;
 364    uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
 365
 366    trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
 367    core->mac[ICR] |= val;
 368
 369    if (core->itr.running) {
 370        timer_del(core->itr.timer);
 371        e1000e_intrmgr_on_throttling_timer(&core->itr);
 372    }
 373
 374    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 375        if (core->eitr[i].running) {
 376            timer_del(core->eitr[i].timer);
 377            e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
 378        }
 379    }
 380}
 381
 382static void
 383e1000e_intrmgr_resume(E1000ECore *core)
 384{
 385    int i;
 386
 387    e1000e_intmgr_timer_resume(&core->radv);
 388    e1000e_intmgr_timer_resume(&core->rdtr);
 389    e1000e_intmgr_timer_resume(&core->raid);
 390    e1000e_intmgr_timer_resume(&core->tidv);
 391    e1000e_intmgr_timer_resume(&core->tadv);
 392
 393    e1000e_intmgr_timer_resume(&core->itr);
 394
 395    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 396        e1000e_intmgr_timer_resume(&core->eitr[i]);
 397    }
 398}
 399
 400static void
 401e1000e_intrmgr_pause(E1000ECore *core)
 402{
 403    int i;
 404
 405    e1000e_intmgr_timer_pause(&core->radv);
 406    e1000e_intmgr_timer_pause(&core->rdtr);
 407    e1000e_intmgr_timer_pause(&core->raid);
 408    e1000e_intmgr_timer_pause(&core->tidv);
 409    e1000e_intmgr_timer_pause(&core->tadv);
 410
 411    e1000e_intmgr_timer_pause(&core->itr);
 412
 413    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 414        e1000e_intmgr_timer_pause(&core->eitr[i]);
 415    }
 416}
 417
 418static void
 419e1000e_intrmgr_reset(E1000ECore *core)
 420{
 421    int i;
 422
 423    core->delayed_causes = 0;
 424
 425    e1000e_intrmgr_stop_delay_timers(core);
 426
 427    e1000e_intrmgr_stop_timer(&core->itr);
 428
 429    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 430        e1000e_intrmgr_stop_timer(&core->eitr[i]);
 431    }
 432}
 433
 434static void
 435e1000e_intrmgr_pci_unint(E1000ECore *core)
 436{
 437    int i;
 438
 439    timer_free(core->radv.timer);
 440    timer_free(core->rdtr.timer);
 441    timer_free(core->raid.timer);
 442
 443    timer_free(core->tadv.timer);
 444    timer_free(core->tidv.timer);
 445
 446    timer_free(core->itr.timer);
 447
 448    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
 449        timer_free(core->eitr[i].timer);
 450    }
 451}
 452
 453static void
 454e1000e_intrmgr_pci_realize(E1000ECore *core)
 455{
 456    e1000e_intrmgr_initialize_all_timers(core, true);
 457}
 458
 459static inline bool
 460e1000e_rx_csum_enabled(E1000ECore *core)
 461{
 462    return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
 463}
 464
 465static inline bool
 466e1000e_rx_use_legacy_descriptor(E1000ECore *core)
 467{
 468    return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
 469}
 470
 471static inline bool
 472e1000e_rx_use_ps_descriptor(E1000ECore *core)
 473{
 474    return !e1000e_rx_use_legacy_descriptor(core) &&
 475           (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
 476}
 477
 478static inline bool
 479e1000e_rss_enabled(E1000ECore *core)
 480{
 481    return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
 482           !e1000e_rx_csum_enabled(core) &&
 483           !e1000e_rx_use_legacy_descriptor(core);
 484}
 485
 486typedef struct E1000E_RSSInfo_st {
 487    bool enabled;
 488    uint32_t hash;
 489    uint32_t queue;
 490    uint32_t type;
 491} E1000E_RSSInfo;
 492
 493static uint32_t
 494e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
 495{
 496    bool isip4, isip6, isudp, istcp;
 497
 498    assert(e1000e_rss_enabled(core));
 499
 500    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
 501
 502    if (isip4) {
 503        bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
 504
 505        trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
 506                                E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
 507                                E1000_MRQC_EN_IPV4(core->mac[MRQC]));
 508
 509        if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
 510            return E1000_MRQ_RSS_TYPE_IPV4TCP;
 511        }
 512
 513        if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
 514            return E1000_MRQ_RSS_TYPE_IPV4;
 515        }
 516    } else if (isip6) {
 517        eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
 518
 519        bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
 520        bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
 521
 522        /*
 523         * Following two traces must not be combined because resulting
 524         * event will have 11 arguments totally and some trace backends
 525         * (at least "ust") have limitation of maximum 10 arguments per
 526         * event. Events with more arguments fail to compile for
 527         * backends like these.
 528         */
 529        trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
 530        trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
 531                                ip6info->has_ext_hdrs,
 532                                ip6info->rss_ex_dst_valid,
 533                                ip6info->rss_ex_src_valid,
 534                                core->mac[MRQC],
 535                                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
 536                                E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
 537                                E1000_MRQC_EN_IPV6(core->mac[MRQC]));
 538
 539        if ((!ex_dis || !ip6info->has_ext_hdrs) &&
 540            (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
 541                              ip6info->rss_ex_src_valid))) {
 542
 543            if (istcp && !ip6info->fragment &&
 544                E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
 545                return E1000_MRQ_RSS_TYPE_IPV6TCP;
 546            }
 547
 548            if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
 549                return E1000_MRQ_RSS_TYPE_IPV6EX;
 550            }
 551
 552        }
 553
 554        if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
 555            return E1000_MRQ_RSS_TYPE_IPV6;
 556        }
 557
 558    }
 559
 560    return E1000_MRQ_RSS_TYPE_NONE;
 561}
 562
 563static uint32_t
 564e1000e_rss_calc_hash(E1000ECore *core,
 565                     struct NetRxPkt *pkt,
 566                     E1000E_RSSInfo *info)
 567{
 568    NetRxPktRssType type;
 569
 570    assert(e1000e_rss_enabled(core));
 571
 572    switch (info->type) {
 573    case E1000_MRQ_RSS_TYPE_IPV4:
 574        type = NetPktRssIpV4;
 575        break;
 576    case E1000_MRQ_RSS_TYPE_IPV4TCP:
 577        type = NetPktRssIpV4Tcp;
 578        break;
 579    case E1000_MRQ_RSS_TYPE_IPV6TCP:
 580        type = NetPktRssIpV6TcpEx;
 581        break;
 582    case E1000_MRQ_RSS_TYPE_IPV6:
 583        type = NetPktRssIpV6;
 584        break;
 585    case E1000_MRQ_RSS_TYPE_IPV6EX:
 586        type = NetPktRssIpV6Ex;
 587        break;
 588    default:
 589        assert(false);
 590        return 0;
 591    }
 592
 593    return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
 594}
 595
 596static void
 597e1000e_rss_parse_packet(E1000ECore *core,
 598                        struct NetRxPkt *pkt,
 599                        E1000E_RSSInfo *info)
 600{
 601    trace_e1000e_rx_rss_started();
 602
 603    if (!e1000e_rss_enabled(core)) {
 604        info->enabled = false;
 605        info->hash = 0;
 606        info->queue = 0;
 607        info->type = 0;
 608        trace_e1000e_rx_rss_disabled();
 609        return;
 610    }
 611
 612    info->enabled = true;
 613
 614    info->type = e1000e_rss_get_hash_type(core, pkt);
 615
 616    trace_e1000e_rx_rss_type(info->type);
 617
 618    if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
 619        info->hash = 0;
 620        info->queue = 0;
 621        return;
 622    }
 623
 624    info->hash = e1000e_rss_calc_hash(core, pkt, info);
 625    info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
 626}
 627
 628static void
 629e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
 630{
 631    if (tx->props.tse && tx->cptse) {
 632        net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
 633        net_tx_pkt_update_ip_checksums(tx->tx_pkt);
 634        e1000x_inc_reg_if_not_full(core->mac, TSCTC);
 635        return;
 636    }
 637
 638    if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
 639        net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
 640    }
 641
 642    if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
 643        net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
 644    }
 645}
 646
 647static bool
 648e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
 649{
 650    int target_queue = MIN(core->max_queue_num, queue_index);
 651    NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
 652
 653    e1000e_setup_tx_offloads(core, tx);
 654
 655    net_tx_pkt_dump(tx->tx_pkt);
 656
 657    if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
 658        ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
 659        return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
 660    } else {
 661        return net_tx_pkt_send(tx->tx_pkt, queue);
 662    }
 663}
 664
 665static void
 666e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
 667{
 668    static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
 669                                    PTC1023, PTC1522 };
 670
 671    size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
 672
 673    e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
 674    e1000x_inc_reg_if_not_full(core->mac, TPT);
 675    e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
 676
 677    switch (net_tx_pkt_get_packet_type(tx_pkt)) {
 678    case ETH_PKT_BCAST:
 679        e1000x_inc_reg_if_not_full(core->mac, BPTC);
 680        break;
 681    case ETH_PKT_MCAST:
 682        e1000x_inc_reg_if_not_full(core->mac, MPTC);
 683        break;
 684    case ETH_PKT_UCAST:
 685        break;
 686    default:
 687        g_assert_not_reached();
 688    }
 689
 690    core->mac[GPTC] = core->mac[TPT];
 691    core->mac[GOTCL] = core->mac[TOTL];
 692    core->mac[GOTCH] = core->mac[TOTH];
 693}
 694
 695static void
 696e1000e_process_tx_desc(E1000ECore *core,
 697                       struct e1000e_tx *tx,
 698                       struct e1000_tx_desc *dp,
 699                       int queue_index)
 700{
 701    uint32_t txd_lower = le32_to_cpu(dp->lower.data);
 702    uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
 703    unsigned int split_size = txd_lower & 0xffff;
 704    uint64_t addr;
 705    struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
 706    bool eop = txd_lower & E1000_TXD_CMD_EOP;
 707
 708    if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
 709        e1000x_read_tx_ctx_descr(xp, &tx->props);
 710        e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
 711        return;
 712    } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
 713        /* data descriptor */
 714        tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
 715        tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
 716        e1000e_process_ts_option(core, dp);
 717    } else {
 718        /* legacy descriptor */
 719        e1000e_process_ts_option(core, dp);
 720        tx->cptse = 0;
 721    }
 722
 723    addr = le64_to_cpu(dp->buffer_addr);
 724
 725    if (!tx->skip_cp) {
 726        if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
 727            tx->skip_cp = true;
 728        }
 729    }
 730
 731    if (eop) {
 732        if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
 733            if (e1000x_vlan_enabled(core->mac) &&
 734                e1000x_is_vlan_txd(txd_lower)) {
 735                net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
 736                    le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
 737            }
 738            if (e1000e_tx_pkt_send(core, tx, queue_index)) {
 739                e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
 740            }
 741        }
 742
 743        tx->skip_cp = false;
 744        net_tx_pkt_reset(tx->tx_pkt);
 745
 746        tx->sum_needed = 0;
 747        tx->cptse = 0;
 748    }
 749}
 750
 751static inline uint32_t
 752e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
 753{
 754    if (!msix_enabled(core->owner)) {
 755        return E1000_ICR_TXDW;
 756    }
 757
 758    return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
 759}
 760
 761static inline uint32_t
 762e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
 763                             bool min_threshold_hit)
 764{
 765    if (!msix_enabled(core->owner)) {
 766        return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
 767    }
 768
 769    return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
 770}
 771
 772static uint32_t
 773e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
 774                        struct e1000_tx_desc *dp, bool *ide, int queue_idx)
 775{
 776    uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
 777
 778    if (!(txd_lower & E1000_TXD_CMD_RS) &&
 779        !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
 780        return 0;
 781    }
 782
 783    *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
 784
 785    txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
 786
 787    dp->upper.data = cpu_to_le32(txd_upper);
 788    pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
 789                  &dp->upper, sizeof(dp->upper));
 790    return e1000e_tx_wb_interrupt_cause(core, queue_idx);
 791}
 792
 793typedef struct E1000E_RingInfo_st {
 794    int dbah;
 795    int dbal;
 796    int dlen;
 797    int dh;
 798    int dt;
 799    int idx;
 800} E1000E_RingInfo;
 801
 802static inline bool
 803e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
 804{
 805    return core->mac[r->dh] == core->mac[r->dt] ||
 806                core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
 807}
 808
 809static inline uint64_t
 810e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
 811{
 812    uint64_t bah = core->mac[r->dbah];
 813    uint64_t bal = core->mac[r->dbal];
 814
 815    return (bah << 32) + bal;
 816}
 817
 818static inline uint64_t
 819e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
 820{
 821    return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
 822}
 823
 824static inline void
 825e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
 826{
 827    core->mac[r->dh] += count;
 828
 829    if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
 830        core->mac[r->dh] = 0;
 831    }
 832}
 833
 834static inline uint32_t
 835e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
 836{
 837    trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
 838                                 core->mac[r->dh],  core->mac[r->dt]);
 839
 840    if (core->mac[r->dh] <= core->mac[r->dt]) {
 841        return core->mac[r->dt] - core->mac[r->dh];
 842    }
 843
 844    if (core->mac[r->dh] > core->mac[r->dt]) {
 845        return core->mac[r->dlen] / E1000_RING_DESC_LEN +
 846               core->mac[r->dt] - core->mac[r->dh];
 847    }
 848
 849    g_assert_not_reached();
 850    return 0;
 851}
 852
 853static inline bool
 854e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
 855{
 856    return core->mac[r->dlen] > 0;
 857}
 858
 859static inline uint32_t
 860e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
 861{
 862    return core->mac[r->dlen];
 863}
 864
 865typedef struct E1000E_TxRing_st {
 866    const E1000E_RingInfo *i;
 867    struct e1000e_tx *tx;
 868} E1000E_TxRing;
 869
 870static inline int
 871e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
 872{
 873    return (reg_idx - base_reg_idx) / (0x100 >> 2);
 874}
 875
 876static inline void
 877e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
 878{
 879    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
 880        { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
 881        { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
 882    };
 883
 884    assert(idx < ARRAY_SIZE(i));
 885
 886    txr->i     = &i[idx];
 887    txr->tx    = &core->tx[idx];
 888}
 889
 890typedef struct E1000E_RxRing_st {
 891    const E1000E_RingInfo *i;
 892} E1000E_RxRing;
 893
 894static inline void
 895e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
 896{
 897    static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
 898        { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
 899        { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
 900    };
 901
 902    assert(idx < ARRAY_SIZE(i));
 903
 904    rxr->i      = &i[idx];
 905}
 906
 907static void
 908e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
 909{
 910    dma_addr_t base;
 911    struct e1000_tx_desc desc;
 912    bool ide = false;
 913    const E1000E_RingInfo *txi = txr->i;
 914    uint32_t cause = E1000_ICS_TXQE;
 915
 916    if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
 917        trace_e1000e_tx_disabled();
 918        return;
 919    }
 920
 921    while (!e1000e_ring_empty(core, txi)) {
 922        base = e1000e_ring_head_descr(core, txi);
 923
 924        pci_dma_read(core->owner, base, &desc, sizeof(desc));
 925
 926        trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
 927                              desc.lower.data, desc.upper.data);
 928
 929        e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
 930        cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
 931
 932        e1000e_ring_advance(core, txi, 1);
 933    }
 934
 935    if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
 936        e1000e_set_interrupt_cause(core, cause);
 937    }
 938}
 939
 940static bool
 941e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
 942                  size_t total_size)
 943{
 944    uint32_t bufs = e1000e_ring_free_descr_num(core, r);
 945
 946    trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
 947                                core->rx_desc_buf_size);
 948
 949    return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
 950                         core->rx_desc_buf_size;
 951}
 952
 953void
 954e1000e_start_recv(E1000ECore *core)
 955{
 956    int i;
 957
 958    trace_e1000e_rx_start_recv();
 959
 960    for (i = 0; i <= core->max_queue_num; i++) {
 961        qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
 962    }
 963}
 964
 965bool
 966e1000e_can_receive(E1000ECore *core)
 967{
 968    int i;
 969
 970    if (!e1000x_rx_ready(core->owner, core->mac)) {
 971        return false;
 972    }
 973
 974    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
 975        E1000E_RxRing rxr;
 976
 977        e1000e_rx_ring_init(core, &rxr, i);
 978        if (e1000e_ring_enabled(core, rxr.i) &&
 979            e1000e_has_rxbufs(core, rxr.i, 1)) {
 980            trace_e1000e_rx_can_recv();
 981            return true;
 982        }
 983    }
 984
 985    trace_e1000e_rx_can_recv_rings_full();
 986    return false;
 987}
 988
 989ssize_t
 990e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
 991{
 992    const struct iovec iov = {
 993        .iov_base = (uint8_t *)buf,
 994        .iov_len = size
 995    };
 996
 997    return e1000e_receive_iov(core, &iov, 1);
 998}
 999
1000static inline bool
1001e1000e_rx_l3_cso_enabled(E1000ECore *core)
1002{
1003    return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1004}
1005
1006static inline bool
1007e1000e_rx_l4_cso_enabled(E1000ECore *core)
1008{
1009    return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1010}
1011
1012static bool
1013e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1014{
1015    uint32_t rctl = core->mac[RCTL];
1016
1017    if (e1000x_is_vlan_packet(buf, core->mac[VET]) &&
1018        e1000x_vlan_rx_filter_enabled(core->mac)) {
1019        uint16_t vid = lduw_be_p(buf + 14);
1020        uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1021                                 ((vid >> 5) & 0x7f));
1022        if ((vfta & (1 << (vid & 0x1f))) == 0) {
1023            trace_e1000e_rx_flt_vlan_mismatch(vid);
1024            return false;
1025        } else {
1026            trace_e1000e_rx_flt_vlan_match(vid);
1027        }
1028    }
1029
1030    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1031    case ETH_PKT_UCAST:
1032        if (rctl & E1000_RCTL_UPE) {
1033            return true; /* promiscuous ucast */
1034        }
1035        break;
1036
1037    case ETH_PKT_BCAST:
1038        if (rctl & E1000_RCTL_BAM) {
1039            return true; /* broadcast enabled */
1040        }
1041        break;
1042
1043    case ETH_PKT_MCAST:
1044        if (rctl & E1000_RCTL_MPE) {
1045            return true; /* promiscuous mcast */
1046        }
1047        break;
1048
1049    default:
1050        g_assert_not_reached();
1051    }
1052
1053    return e1000x_rx_group_filter(core->mac, buf);
1054}
1055
1056static inline void
1057e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1058{
1059    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1060    *buff_addr = le64_to_cpu(d->buffer_addr);
1061}
1062
1063static inline void
1064e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1065{
1066    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1067    *buff_addr = le64_to_cpu(d->read.buffer_addr);
1068}
1069
1070static inline void
1071e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1072                        hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1073{
1074    int i;
1075    union e1000_rx_desc_packet_split *d =
1076        (union e1000_rx_desc_packet_split *) desc;
1077
1078    for (i = 0; i < MAX_PS_BUFFERS; i++) {
1079        (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1080    }
1081
1082    trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1083                                 (*buff_addr)[2], (*buff_addr)[3]);
1084}
1085
1086static inline void
1087e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1088                     hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1089{
1090    if (e1000e_rx_use_legacy_descriptor(core)) {
1091        e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1092        (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1093    } else {
1094        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1095            e1000e_read_ps_rx_descr(core, desc, buff_addr);
1096        } else {
1097            e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1098            (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1099        }
1100    }
1101}
1102
1103static void
1104e1000e_verify_csum_in_sw(E1000ECore *core,
1105                         struct NetRxPkt *pkt,
1106                         uint32_t *status_flags,
1107                         bool istcp, bool isudp)
1108{
1109    bool csum_valid;
1110    uint32_t csum_error;
1111
1112    if (e1000e_rx_l3_cso_enabled(core)) {
1113        if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1114            trace_e1000e_rx_metadata_l3_csum_validation_failed();
1115        } else {
1116            csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1117            *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1118        }
1119    } else {
1120        trace_e1000e_rx_metadata_l3_cso_disabled();
1121    }
1122
1123    if (!e1000e_rx_l4_cso_enabled(core)) {
1124        trace_e1000e_rx_metadata_l4_cso_disabled();
1125        return;
1126    }
1127
1128    if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1129        trace_e1000e_rx_metadata_l4_csum_validation_failed();
1130        return;
1131    }
1132
1133    csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1134
1135    if (istcp) {
1136        *status_flags |= E1000_RXD_STAT_TCPCS |
1137                         csum_error;
1138    } else if (isudp) {
1139        *status_flags |= E1000_RXD_STAT_TCPCS |
1140                         E1000_RXD_STAT_UDPCS |
1141                         csum_error;
1142    }
1143}
1144
1145static inline bool
1146e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1147{
1148    if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1149        return false;
1150    }
1151
1152    if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1153        return !net_rx_pkt_has_tcp_data(rx_pkt);
1154    }
1155
1156    return true;
1157}
1158
1159static void
1160e1000e_build_rx_metadata(E1000ECore *core,
1161                         struct NetRxPkt *pkt,
1162                         bool is_eop,
1163                         const E1000E_RSSInfo *rss_info,
1164                         uint32_t *rss, uint32_t *mrq,
1165                         uint32_t *status_flags,
1166                         uint16_t *ip_id,
1167                         uint16_t *vlan_tag)
1168{
1169    struct virtio_net_hdr *vhdr;
1170    bool isip4, isip6, istcp, isudp;
1171    uint32_t pkt_type;
1172
1173    *status_flags = E1000_RXD_STAT_DD;
1174
1175    /* No additional metadata needed for non-EOP descriptors */
1176    if (!is_eop) {
1177        goto func_exit;
1178    }
1179
1180    *status_flags |= E1000_RXD_STAT_EOP;
1181
1182    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1183    trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1184
1185    /* VLAN state */
1186    if (net_rx_pkt_is_vlan_stripped(pkt)) {
1187        *status_flags |= E1000_RXD_STAT_VP;
1188        *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1189        trace_e1000e_rx_metadata_vlan(*vlan_tag);
1190    }
1191
1192    /* Packet parsing results */
1193    if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1194        if (rss_info->enabled) {
1195            *rss = cpu_to_le32(rss_info->hash);
1196            *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1197            trace_e1000e_rx_metadata_rss(*rss, *mrq);
1198        }
1199    } else if (isip4) {
1200            *status_flags |= E1000_RXD_STAT_IPIDV;
1201            *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1202            trace_e1000e_rx_metadata_ip_id(*ip_id);
1203    }
1204
1205    if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1206        *status_flags |= E1000_RXD_STAT_ACK;
1207        trace_e1000e_rx_metadata_ack();
1208    }
1209
1210    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1211        trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1212        pkt_type = E1000_RXD_PKT_MAC;
1213    } else if (istcp || isudp) {
1214        pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1215    } else if (isip4 || isip6) {
1216        pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1217    } else {
1218        pkt_type = E1000_RXD_PKT_MAC;
1219    }
1220
1221    *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1222    trace_e1000e_rx_metadata_pkt_type(pkt_type);
1223
1224    /* RX CSO information */
1225    if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1226        trace_e1000e_rx_metadata_ipv6_sum_disabled();
1227        goto func_exit;
1228    }
1229
1230    if (!net_rx_pkt_has_virt_hdr(pkt)) {
1231        trace_e1000e_rx_metadata_no_virthdr();
1232        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1233        goto func_exit;
1234    }
1235
1236    vhdr = net_rx_pkt_get_vhdr(pkt);
1237
1238    if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1239        !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1240        trace_e1000e_rx_metadata_virthdr_no_csum_info();
1241        e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1242        goto func_exit;
1243    }
1244
1245    if (e1000e_rx_l3_cso_enabled(core)) {
1246        *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1247    } else {
1248        trace_e1000e_rx_metadata_l3_cso_disabled();
1249    }
1250
1251    if (e1000e_rx_l4_cso_enabled(core)) {
1252        if (istcp) {
1253            *status_flags |= E1000_RXD_STAT_TCPCS;
1254        } else if (isudp) {
1255            *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1256        }
1257    } else {
1258        trace_e1000e_rx_metadata_l4_cso_disabled();
1259    }
1260
1261    trace_e1000e_rx_metadata_status_flags(*status_flags);
1262
1263func_exit:
1264    *status_flags = cpu_to_le32(*status_flags);
1265}
1266
1267static inline void
1268e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1269                           struct NetRxPkt *pkt,
1270                           const E1000E_RSSInfo *rss_info,
1271                           uint16_t length)
1272{
1273    uint32_t status_flags, rss, mrq;
1274    uint16_t ip_id;
1275
1276    struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1277
1278    assert(!rss_info->enabled);
1279
1280    d->length = cpu_to_le16(length);
1281    d->csum = 0;
1282
1283    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1284                             rss_info,
1285                             &rss, &mrq,
1286                             &status_flags, &ip_id,
1287                             &d->special);
1288    d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1289    d->status = (uint8_t) le32_to_cpu(status_flags);
1290}
1291
1292static inline void
1293e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1294                          struct NetRxPkt *pkt,
1295                          const E1000E_RSSInfo *rss_info,
1296                          uint16_t length)
1297{
1298    union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1299
1300    memset(&d->wb, 0, sizeof(d->wb));
1301
1302    d->wb.upper.length = cpu_to_le16(length);
1303
1304    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1305                             rss_info,
1306                             &d->wb.lower.hi_dword.rss,
1307                             &d->wb.lower.mrq,
1308                             &d->wb.upper.status_error,
1309                             &d->wb.lower.hi_dword.csum_ip.ip_id,
1310                             &d->wb.upper.vlan);
1311}
1312
1313static inline void
1314e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1315                         struct NetRxPkt *pkt,
1316                         const E1000E_RSSInfo *rss_info,
1317                         size_t ps_hdr_len,
1318                         uint16_t(*written)[MAX_PS_BUFFERS])
1319{
1320    int i;
1321    union e1000_rx_desc_packet_split *d =
1322        (union e1000_rx_desc_packet_split *) desc;
1323
1324    memset(&d->wb, 0, sizeof(d->wb));
1325
1326    d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1327
1328    for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1329        d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1330    }
1331
1332    e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1333                             rss_info,
1334                             &d->wb.lower.hi_dword.rss,
1335                             &d->wb.lower.mrq,
1336                             &d->wb.middle.status_error,
1337                             &d->wb.lower.hi_dword.csum_ip.ip_id,
1338                             &d->wb.middle.vlan);
1339
1340    d->wb.upper.header_status =
1341        cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1342
1343    trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1344                                  (*written)[2], (*written)[3]);
1345}
1346
1347static inline void
1348e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1349struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1350    size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1351{
1352    if (e1000e_rx_use_legacy_descriptor(core)) {
1353        assert(ps_hdr_len == 0);
1354        e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1355    } else {
1356        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1357            e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1358                                      ps_hdr_len, written);
1359        } else {
1360            assert(ps_hdr_len == 0);
1361            e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1362                                       (*written)[0]);
1363        }
1364    }
1365}
1366
1367typedef struct e1000e_ba_state_st {
1368    uint16_t written[MAX_PS_BUFFERS];
1369    uint8_t cur_idx;
1370} e1000e_ba_state;
1371
1372static inline void
1373e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1374                               hwaddr (*ba)[MAX_PS_BUFFERS],
1375                               e1000e_ba_state *bastate,
1376                               const char *data,
1377                               dma_addr_t data_len)
1378{
1379    assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1380
1381    pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1382    bastate->written[0] += data_len;
1383
1384    bastate->cur_idx = 1;
1385}
1386
1387static void
1388e1000e_write_to_rx_buffers(E1000ECore *core,
1389                           hwaddr (*ba)[MAX_PS_BUFFERS],
1390                           e1000e_ba_state *bastate,
1391                           const char *data,
1392                           dma_addr_t data_len)
1393{
1394    while (data_len > 0) {
1395        uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1396        uint32_t cur_buf_bytes_left = cur_buf_len -
1397                                      bastate->written[bastate->cur_idx];
1398        uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1399
1400        trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1401                                        (*ba)[bastate->cur_idx],
1402                                        bastate->written[bastate->cur_idx],
1403                                        data,
1404                                        bytes_to_write);
1405
1406        pci_dma_write(core->owner,
1407            (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1408            data, bytes_to_write);
1409
1410        bastate->written[bastate->cur_idx] += bytes_to_write;
1411        data += bytes_to_write;
1412        data_len -= bytes_to_write;
1413
1414        if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1415            bastate->cur_idx++;
1416        }
1417
1418        assert(bastate->cur_idx < MAX_PS_BUFFERS);
1419    }
1420}
1421
1422static void
1423e1000e_update_rx_stats(E1000ECore *core,
1424                       size_t data_size,
1425                       size_t data_fcs_size)
1426{
1427    e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1428
1429    switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1430    case ETH_PKT_BCAST:
1431        e1000x_inc_reg_if_not_full(core->mac, BPRC);
1432        break;
1433
1434    case ETH_PKT_MCAST:
1435        e1000x_inc_reg_if_not_full(core->mac, MPRC);
1436        break;
1437
1438    default:
1439        break;
1440    }
1441}
1442
1443static inline bool
1444e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1445{
1446    return e1000e_ring_free_descr_num(core, rxi) ==
1447           e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1448}
1449
1450static bool
1451e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1452{
1453    bool isip4, isip6, isudp, istcp;
1454    bool fragment;
1455
1456    if (!e1000e_rx_use_ps_descriptor(core)) {
1457        return false;
1458    }
1459
1460    net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1461
1462    if (isip4) {
1463        fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1464    } else if (isip6) {
1465        fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1466    } else {
1467        return false;
1468    }
1469
1470    if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1471        return false;
1472    }
1473
1474    if (!fragment && (isudp || istcp)) {
1475        *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1476    } else {
1477        *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1478    }
1479
1480    if ((*hdr_len > core->rxbuf_sizes[0]) ||
1481        (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1482        return false;
1483    }
1484
1485    return true;
1486}
1487
1488static void
1489e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1490                             const E1000E_RxRing *rxr,
1491                             const E1000E_RSSInfo *rss_info)
1492{
1493    PCIDevice *d = core->owner;
1494    dma_addr_t base;
1495    uint8_t desc[E1000_MAX_RX_DESC_LEN];
1496    size_t desc_size;
1497    size_t desc_offset = 0;
1498    size_t iov_ofs = 0;
1499
1500    struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1501    size_t size = net_rx_pkt_get_total_len(pkt);
1502    size_t total_size = size + e1000x_fcs_len(core->mac);
1503    const E1000E_RingInfo *rxi;
1504    size_t ps_hdr_len = 0;
1505    bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1506    bool is_first = true;
1507
1508    rxi = rxr->i;
1509
1510    do {
1511        hwaddr ba[MAX_PS_BUFFERS];
1512        e1000e_ba_state bastate = { { 0 } };
1513        bool is_last = false;
1514
1515        desc_size = total_size - desc_offset;
1516
1517        if (desc_size > core->rx_desc_buf_size) {
1518            desc_size = core->rx_desc_buf_size;
1519        }
1520
1521        if (e1000e_ring_empty(core, rxi)) {
1522            return;
1523        }
1524
1525        base = e1000e_ring_head_descr(core, rxi);
1526
1527        pci_dma_read(d, base, &desc, core->rx_desc_len);
1528
1529        trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1530
1531        e1000e_read_rx_descr(core, desc, &ba);
1532
1533        if (ba[0]) {
1534            if (desc_offset < size) {
1535                static const uint32_t fcs_pad;
1536                size_t iov_copy;
1537                size_t copy_size = size - desc_offset;
1538                if (copy_size > core->rx_desc_buf_size) {
1539                    copy_size = core->rx_desc_buf_size;
1540                }
1541
1542                /* For PS mode copy the packet header first */
1543                if (do_ps) {
1544                    if (is_first) {
1545                        size_t ps_hdr_copied = 0;
1546                        do {
1547                            iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1548                                           iov->iov_len - iov_ofs);
1549
1550                            e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1551                                                      iov->iov_base, iov_copy);
1552
1553                            copy_size -= iov_copy;
1554                            ps_hdr_copied += iov_copy;
1555
1556                            iov_ofs += iov_copy;
1557                            if (iov_ofs == iov->iov_len) {
1558                                iov++;
1559                                iov_ofs = 0;
1560                            }
1561                        } while (ps_hdr_copied < ps_hdr_len);
1562
1563                        is_first = false;
1564                    } else {
1565                        /* Leave buffer 0 of each descriptor except first */
1566                        /* empty as per spec 7.1.5.1                      */
1567                        e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1568                                                       NULL, 0);
1569                    }
1570                }
1571
1572                /* Copy packet payload */
1573                while (copy_size) {
1574                    iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1575
1576                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
1577                                            iov->iov_base + iov_ofs, iov_copy);
1578
1579                    copy_size -= iov_copy;
1580                    iov_ofs += iov_copy;
1581                    if (iov_ofs == iov->iov_len) {
1582                        iov++;
1583                        iov_ofs = 0;
1584                    }
1585                }
1586
1587                if (desc_offset + desc_size >= total_size) {
1588                    /* Simulate FCS checksum presence in the last descriptor */
1589                    e1000e_write_to_rx_buffers(core, &ba, &bastate,
1590                          (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1591                }
1592            }
1593        } else { /* as per intel docs; skip descriptors with null buf addr */
1594            trace_e1000e_rx_null_descriptor();
1595        }
1596        desc_offset += desc_size;
1597        if (desc_offset >= total_size) {
1598            is_last = true;
1599        }
1600
1601        e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1602                           rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1603        pci_dma_write(d, base, &desc, core->rx_desc_len);
1604
1605        e1000e_ring_advance(core, rxi,
1606                            core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1607
1608    } while (desc_offset < total_size);
1609
1610    e1000e_update_rx_stats(core, size, total_size);
1611}
1612
1613static inline void
1614e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1615{
1616    if (net_rx_pkt_has_virt_hdr(pkt)) {
1617        struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1618
1619        if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1620            net_rx_pkt_fix_l4_csum(pkt);
1621        }
1622    }
1623}
1624
1625ssize_t
1626e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1627{
1628    static const int maximum_ethernet_hdr_len = (14 + 4);
1629    /* Min. octets in an ethernet frame sans FCS */
1630    static const int min_buf_size = 60;
1631
1632    uint32_t n = 0;
1633    uint8_t min_buf[min_buf_size];
1634    struct iovec min_iov;
1635    uint8_t *filter_buf;
1636    size_t size, orig_size;
1637    size_t iov_ofs = 0;
1638    E1000E_RxRing rxr;
1639    E1000E_RSSInfo rss_info;
1640    size_t total_size;
1641    ssize_t retval;
1642    bool rdmts_hit;
1643
1644    trace_e1000e_rx_receive_iov(iovcnt);
1645
1646    if (!e1000x_hw_rx_enabled(core->mac)) {
1647        return -1;
1648    }
1649
1650    /* Pull virtio header in */
1651    if (core->has_vnet) {
1652        net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1653        iov_ofs = sizeof(struct virtio_net_hdr);
1654    }
1655
1656    filter_buf = iov->iov_base + iov_ofs;
1657    orig_size = iov_size(iov, iovcnt);
1658    size = orig_size - iov_ofs;
1659
1660    /* Pad to minimum Ethernet frame length */
1661    if (size < sizeof(min_buf)) {
1662        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1663        memset(&min_buf[size], 0, sizeof(min_buf) - size);
1664        e1000x_inc_reg_if_not_full(core->mac, RUC);
1665        min_iov.iov_base = filter_buf = min_buf;
1666        min_iov.iov_len = size = sizeof(min_buf);
1667        iovcnt = 1;
1668        iov = &min_iov;
1669        iov_ofs = 0;
1670    } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1671        /* This is very unlikely, but may happen. */
1672        iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1673        filter_buf = min_buf;
1674    }
1675
1676    /* Discard oversized packets if !LPE and !SBP. */
1677    if (e1000x_is_oversized(core->mac, size)) {
1678        return orig_size;
1679    }
1680
1681    net_rx_pkt_set_packet_type(core->rx_pkt,
1682        get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1683
1684    if (!e1000e_receive_filter(core, filter_buf, size)) {
1685        trace_e1000e_rx_flt_dropped();
1686        return orig_size;
1687    }
1688
1689    net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1690                               e1000x_vlan_enabled(core->mac), core->mac[VET]);
1691
1692    e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1693    e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1694
1695    trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1696
1697    total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1698        e1000x_fcs_len(core->mac);
1699
1700    if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1701        e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1702
1703        e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1704
1705        retval = orig_size;
1706
1707        /* Perform small receive detection (RSRPD) */
1708        if (total_size < core->mac[RSRPD]) {
1709            n |= E1000_ICS_SRPD;
1710        }
1711
1712        /* Perform ACK receive detection */
1713        if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1714             (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1715            n |= E1000_ICS_ACK;
1716        }
1717
1718        /* Check if receive descriptor minimum threshold hit */
1719        rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1720        n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1721
1722        trace_e1000e_rx_written_to_guest(n);
1723    } else {
1724        n |= E1000_ICS_RXO;
1725        retval = 0;
1726
1727        trace_e1000e_rx_not_written_to_guest(n);
1728    }
1729
1730    if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1731        trace_e1000e_rx_interrupt_set(n);
1732        e1000e_set_interrupt_cause(core, n);
1733    } else {
1734        trace_e1000e_rx_interrupt_delayed(n);
1735    }
1736
1737    return retval;
1738}
1739
1740static inline bool
1741e1000e_have_autoneg(E1000ECore *core)
1742{
1743    return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1744}
1745
1746static void e1000e_update_flowctl_status(E1000ECore *core)
1747{
1748    if (e1000e_have_autoneg(core) &&
1749        core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1750        trace_e1000e_link_autoneg_flowctl(true);
1751        core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1752    } else {
1753        trace_e1000e_link_autoneg_flowctl(false);
1754    }
1755}
1756
1757static inline void
1758e1000e_link_down(E1000ECore *core)
1759{
1760    e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1761    e1000e_update_flowctl_status(core);
1762}
1763
1764static inline void
1765e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1766{
1767    /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1768    core->phy[0][PHY_CTRL] = val & ~(0x3f |
1769                                     MII_CR_RESET |
1770                                     MII_CR_RESTART_AUTO_NEG);
1771
1772    if ((val & MII_CR_RESTART_AUTO_NEG) &&
1773        e1000e_have_autoneg(core)) {
1774        e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1775    }
1776}
1777
1778static void
1779e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1780{
1781    core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1782
1783    if (val & BIT(10)) {
1784        e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1785    }
1786}
1787
1788static void
1789e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1790{
1791    core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1792}
1793
1794void
1795e1000e_core_set_link_status(E1000ECore *core)
1796{
1797    NetClientState *nc = qemu_get_queue(core->owner_nic);
1798    uint32_t old_status = core->mac[STATUS];
1799
1800    trace_e1000e_link_status_changed(nc->link_down ? false : true);
1801
1802    if (nc->link_down) {
1803        e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1804    } else {
1805        if (e1000e_have_autoneg(core) &&
1806            !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1807            e1000x_restart_autoneg(core->mac, core->phy[0],
1808                                   core->autoneg_timer);
1809        } else {
1810            e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1811            e1000e_start_recv(core);
1812        }
1813    }
1814
1815    if (core->mac[STATUS] != old_status) {
1816        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1817    }
1818}
1819
1820static void
1821e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1822{
1823    trace_e1000e_core_ctrl_write(index, val);
1824
1825    /* RST is self clearing */
1826    core->mac[CTRL] = val & ~E1000_CTRL_RST;
1827    core->mac[CTRL_DUP] = core->mac[CTRL];
1828
1829    trace_e1000e_link_set_params(
1830        !!(val & E1000_CTRL_ASDE),
1831        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1832        !!(val & E1000_CTRL_FRCSPD),
1833        !!(val & E1000_CTRL_FRCDPX),
1834        !!(val & E1000_CTRL_RFCE),
1835        !!(val & E1000_CTRL_TFCE));
1836
1837    if (val & E1000_CTRL_RST) {
1838        trace_e1000e_core_ctrl_sw_reset();
1839        e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1840    }
1841
1842    if (val & E1000_CTRL_PHY_RST) {
1843        trace_e1000e_core_ctrl_phy_reset();
1844        core->mac[STATUS] |= E1000_STATUS_PHYRA;
1845    }
1846}
1847
1848static void
1849e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1850{
1851    trace_e1000e_rx_set_rfctl(val);
1852
1853    if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1854        trace_e1000e_wrn_iscsi_filtering_not_supported();
1855    }
1856
1857    if (!(val & E1000_RFCTL_NFSW_DIS)) {
1858        trace_e1000e_wrn_nfsw_filtering_not_supported();
1859    }
1860
1861    if (!(val & E1000_RFCTL_NFSR_DIS)) {
1862        trace_e1000e_wrn_nfsr_filtering_not_supported();
1863    }
1864
1865    core->mac[RFCTL] = val;
1866}
1867
1868static void
1869e1000e_calc_per_desc_buf_size(E1000ECore *core)
1870{
1871    int i;
1872    core->rx_desc_buf_size = 0;
1873
1874    for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1875        core->rx_desc_buf_size += core->rxbuf_sizes[i];
1876    }
1877}
1878
1879static void
1880e1000e_parse_rxbufsize(E1000ECore *core)
1881{
1882    uint32_t rctl = core->mac[RCTL];
1883
1884    memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1885
1886    if (rctl & E1000_RCTL_DTYP_MASK) {
1887        uint32_t bsize;
1888
1889        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1890        core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1891
1892        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1893        core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1894
1895        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1896        core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1897
1898        bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1899        core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1900    } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1901        int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1902        core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1903    } else {
1904        core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1905    }
1906
1907    trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1908                                    core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1909
1910    e1000e_calc_per_desc_buf_size(core);
1911}
1912
1913static void
1914e1000e_calc_rxdesclen(E1000ECore *core)
1915{
1916    if (e1000e_rx_use_legacy_descriptor(core)) {
1917        core->rx_desc_len = sizeof(struct e1000_rx_desc);
1918    } else {
1919        if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1920            core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1921        } else {
1922            core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1923        }
1924    }
1925    trace_e1000e_rx_desc_len(core->rx_desc_len);
1926}
1927
1928static void
1929e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1930{
1931    core->mac[RCTL] = val;
1932    trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1933
1934    if (val & E1000_RCTL_EN) {
1935        e1000e_parse_rxbufsize(core);
1936        e1000e_calc_rxdesclen(core);
1937        core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1938                                E1000_RING_DESC_LEN_SHIFT;
1939
1940        e1000e_start_recv(core);
1941    }
1942}
1943
1944static
1945void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1946(E1000ECore *, int, uint16_t) = {
1947    [0] = {
1948        [PHY_CTRL]     = e1000e_set_phy_ctrl,
1949        [PHY_PAGE]     = e1000e_set_phy_page,
1950        [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1951    }
1952};
1953
1954static inline void
1955e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1956{
1957    trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1958    core->mac[IMS] &= ~bits;
1959}
1960
1961static inline bool
1962e1000e_postpone_interrupt(bool *interrupt_pending,
1963                           E1000IntrDelayTimer *timer)
1964{
1965    if (timer->running) {
1966        trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1967
1968        *interrupt_pending = true;
1969        return true;
1970    }
1971
1972    if (timer->core->mac[timer->delay_reg] != 0) {
1973        e1000e_intrmgr_rearm_timer(timer);
1974    }
1975
1976    return false;
1977}
1978
1979static inline bool
1980e1000e_itr_should_postpone(E1000ECore *core)
1981{
1982    return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1983}
1984
1985static inline bool
1986e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1987{
1988    return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1989                                     &core->eitr[idx]);
1990}
1991
1992static void
1993e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1994{
1995    uint32_t effective_eiac;
1996
1997    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1998        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1999        if (vec < E1000E_MSIX_VEC_NUM) {
2000            if (!e1000e_eitr_should_postpone(core, vec)) {
2001                trace_e1000e_irq_msix_notify_vec(vec);
2002                msix_notify(core->owner, vec);
2003            }
2004        } else {
2005            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2006        }
2007    } else {
2008        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2009    }
2010
2011    if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2012        trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2013        core->mac[IAM] &= ~cause;
2014    }
2015
2016    trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2017
2018    effective_eiac = core->mac[EIAC] & cause;
2019
2020    core->mac[ICR] &= ~effective_eiac;
2021    core->msi_causes_pending &= ~effective_eiac;
2022
2023    if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2024        core->mac[IMS] &= ~effective_eiac;
2025    }
2026}
2027
2028static void
2029e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2030{
2031    if (causes & E1000_ICR_RXQ0) {
2032        e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2033                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2034    }
2035
2036    if (causes & E1000_ICR_RXQ1) {
2037        e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2038                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2039    }
2040
2041    if (causes & E1000_ICR_TXQ0) {
2042        e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2043                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2044    }
2045
2046    if (causes & E1000_ICR_TXQ1) {
2047        e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2048                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2049    }
2050
2051    if (causes & E1000_ICR_OTHER) {
2052        e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2053                               E1000_IVAR_OTHER(core->mac[IVAR]));
2054    }
2055}
2056
2057static void
2058e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2059{
2060    if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2061        uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2062        if (vec < E1000E_MSIX_VEC_NUM) {
2063            trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2064            msix_clr_pending(core->owner, vec);
2065        } else {
2066            trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2067        }
2068    } else {
2069        trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2070    }
2071}
2072
2073static void
2074e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2075{
2076    if (causes & E1000_ICR_RXQ0) {
2077        e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2078                              E1000_IVAR_RXQ0(core->mac[IVAR]));
2079    }
2080
2081    if (causes & E1000_ICR_RXQ1) {
2082        e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2083                              E1000_IVAR_RXQ1(core->mac[IVAR]));
2084    }
2085
2086    if (causes & E1000_ICR_TXQ0) {
2087        e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2088                              E1000_IVAR_TXQ0(core->mac[IVAR]));
2089    }
2090
2091    if (causes & E1000_ICR_TXQ1) {
2092        e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2093                              E1000_IVAR_TXQ1(core->mac[IVAR]));
2094    }
2095
2096    if (causes & E1000_ICR_OTHER) {
2097        e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2098                              E1000_IVAR_OTHER(core->mac[IVAR]));
2099    }
2100}
2101
2102static inline void
2103e1000e_fix_icr_asserted(E1000ECore *core)
2104{
2105    core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2106    if (core->mac[ICR]) {
2107        core->mac[ICR] |= E1000_ICR_ASSERTED;
2108    }
2109
2110    trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2111}
2112
2113static void
2114e1000e_send_msi(E1000ECore *core, bool msix)
2115{
2116    uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2117
2118    core->msi_causes_pending &= causes;
2119    causes ^= core->msi_causes_pending;
2120    if (causes == 0) {
2121        return;
2122    }
2123    core->msi_causes_pending |= causes;
2124
2125    if (msix) {
2126        e1000e_msix_notify(core, causes);
2127    } else {
2128        if (!e1000e_itr_should_postpone(core)) {
2129            trace_e1000e_irq_msi_notify(causes);
2130            msi_notify(core->owner, 0);
2131        }
2132    }
2133}
2134
2135static void
2136e1000e_update_interrupt_state(E1000ECore *core)
2137{
2138    bool interrupts_pending;
2139    bool is_msix = msix_enabled(core->owner);
2140
2141    /* Set ICR[OTHER] for MSI-X */
2142    if (is_msix) {
2143        if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2144            core->mac[ICR] |= E1000_ICR_OTHER;
2145            trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2146        }
2147    }
2148
2149    e1000e_fix_icr_asserted(core);
2150
2151    /*
2152     * Make sure ICR and ICS registers have the same value.
2153     * The spec says that the ICS register is write-only.  However in practice,
2154     * on real hardware ICS is readable, and for reads it has the same value as
2155     * ICR (except that ICS does not have the clear on read behaviour of ICR).
2156     *
2157     * The VxWorks PRO/1000 driver uses this behaviour.
2158     */
2159    core->mac[ICS] = core->mac[ICR];
2160
2161    interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2162    if (!interrupts_pending) {
2163        core->msi_causes_pending = 0;
2164    }
2165
2166    trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2167                                        core->mac[ICR], core->mac[IMS]);
2168
2169    if (is_msix || msi_enabled(core->owner)) {
2170        if (interrupts_pending) {
2171            e1000e_send_msi(core, is_msix);
2172        }
2173    } else {
2174        if (interrupts_pending) {
2175            if (!e1000e_itr_should_postpone(core)) {
2176                e1000e_raise_legacy_irq(core);
2177            }
2178        } else {
2179            e1000e_lower_legacy_irq(core);
2180        }
2181    }
2182}
2183
2184static void
2185e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2186{
2187    trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2188
2189    val |= e1000e_intmgr_collect_delayed_causes(core);
2190    core->mac[ICR] |= val;
2191
2192    trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2193
2194    e1000e_update_interrupt_state(core);
2195}
2196
2197static inline void
2198e1000e_autoneg_timer(void *opaque)
2199{
2200    E1000ECore *core = opaque;
2201    if (!qemu_get_queue(core->owner_nic)->link_down) {
2202        e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2203        e1000e_start_recv(core);
2204
2205        e1000e_update_flowctl_status(core);
2206        /* signal link status change to the guest */
2207        e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2208    }
2209}
2210
2211static inline uint16_t
2212e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2213{
2214    uint16_t index = (addr & 0x1ffff) >> 2;
2215    return index + (mac_reg_access[index] & 0xfffe);
2216}
2217
2218static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2219    [0] = {
2220        [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2221        [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2222        [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2223        [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2224        [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2225        [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2226        [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2227        [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2228        [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2229        [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2230        [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2231        [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2232        [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2233
2234        [PHY_COPPER_CTRL1]      = PHY_RW,
2235        [PHY_COPPER_STAT1]      = PHY_R,
2236        [PHY_COPPER_CTRL3]      = PHY_RW,
2237        [PHY_RX_ERR_CNTR]       = PHY_R,
2238        [PHY_OEM_BITS]          = PHY_RW,
2239        [PHY_BIAS_1]            = PHY_RW,
2240        [PHY_BIAS_2]            = PHY_RW,
2241        [PHY_COPPER_INT_ENABLE] = PHY_RW,
2242        [PHY_COPPER_STAT2]      = PHY_R,
2243        [PHY_COPPER_CTRL2]      = PHY_RW
2244    },
2245    [2] = {
2246        [PHY_MAC_CTRL1]         = PHY_RW,
2247        [PHY_MAC_INT_ENABLE]    = PHY_RW,
2248        [PHY_MAC_STAT]          = PHY_R,
2249        [PHY_MAC_CTRL2]         = PHY_RW
2250    },
2251    [3] = {
2252        [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2253        [PHY_LED_03_POL_CTRL]   = PHY_RW,
2254        [PHY_LED_TIMER_CTRL]    = PHY_RW,
2255        [PHY_LED_45_CTRL]       = PHY_RW
2256    },
2257    [5] = {
2258        [PHY_1000T_SKEW]        = PHY_R,
2259        [PHY_1000T_SWAP]        = PHY_R
2260    },
2261    [6] = {
2262        [PHY_CRC_COUNTERS]      = PHY_R
2263    }
2264};
2265
2266static bool
2267e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2268                         char cap, uint8_t *page)
2269{
2270    *page =
2271        (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2272                                                    : core->phy[0][PHY_PAGE];
2273
2274    if (*page >= E1000E_PHY_PAGES) {
2275        return false;
2276    }
2277
2278    return e1000e_phy_regcap[*page][addr] & cap;
2279}
2280
2281static void
2282e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2283                     uint32_t addr, uint16_t data)
2284{
2285    assert(page < E1000E_PHY_PAGES);
2286    assert(addr < E1000E_PHY_PAGE_SIZE);
2287
2288    if (e1000e_phyreg_writeops[page][addr]) {
2289        e1000e_phyreg_writeops[page][addr](core, addr, data);
2290    } else {
2291        core->phy[page][addr] = data;
2292    }
2293}
2294
2295static void
2296e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2297{
2298    uint32_t data = val & E1000_MDIC_DATA_MASK;
2299    uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2300    uint8_t page;
2301
2302    if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2303        val = core->mac[MDIC] | E1000_MDIC_ERROR;
2304    } else if (val & E1000_MDIC_OP_READ) {
2305        if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2306            trace_e1000e_core_mdic_read_unhandled(page, addr);
2307            val |= E1000_MDIC_ERROR;
2308        } else {
2309            val = (val ^ data) | core->phy[page][addr];
2310            trace_e1000e_core_mdic_read(page, addr, val);
2311        }
2312    } else if (val & E1000_MDIC_OP_WRITE) {
2313        if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2314            trace_e1000e_core_mdic_write_unhandled(page, addr);
2315            val |= E1000_MDIC_ERROR;
2316        } else {
2317            trace_e1000e_core_mdic_write(page, addr, data);
2318            e1000e_phy_reg_write(core, page, addr, data);
2319        }
2320    }
2321    core->mac[MDIC] = val | E1000_MDIC_READY;
2322
2323    if (val & E1000_MDIC_INT_EN) {
2324        e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2325    }
2326}
2327
2328static void
2329e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2330{
2331    core->mac[index] = val & 0xffff;
2332    trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2333    e1000e_start_recv(core);
2334}
2335
2336static void
2337e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2338{
2339    if ((val & E1000_STATUS_PHYRA) == 0) {
2340        core->mac[index] &= ~E1000_STATUS_PHYRA;
2341    }
2342}
2343
2344static void
2345e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2346{
2347    trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2348                                     !!(val & E1000_CTRL_EXT_SPD_BYPS));
2349
2350    /* Zero self-clearing bits */
2351    val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2352    core->mac[CTRL_EXT] = val;
2353}
2354
2355static void
2356e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2357{
2358    int i;
2359
2360    core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2361
2362    if (!msix_enabled(core->owner)) {
2363        return;
2364    }
2365
2366    for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2367        if (core->mac[PBACLR] & BIT(i)) {
2368            msix_clr_pending(core->owner, i);
2369        }
2370    }
2371}
2372
2373static void
2374e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2375{
2376    core->mac[FCRTH] = val & 0xFFF8;
2377}
2378
2379static void
2380e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2381{
2382    core->mac[FCRTL] = val & 0x8000FFF8;
2383}
2384
2385static inline void
2386e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2387{
2388    core->mac[index] = val & 0xffff;
2389}
2390
2391static void
2392e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2393{
2394    core->mac[index] = val & 0xfff;
2395}
2396
2397static void
2398e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2399{
2400    core->mac[VET] = val & 0xffff;
2401    trace_e1000e_vlan_vet(core->mac[VET]);
2402}
2403
2404static void
2405e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2406{
2407    core->mac[index] = val & E1000_XDLEN_MASK;
2408}
2409
2410static void
2411e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2412{
2413    core->mac[index] = val & E1000_XDBAL_MASK;
2414}
2415
2416static void
2417e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2418{
2419    E1000E_TxRing txr;
2420    core->mac[index] = val;
2421
2422    if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2423        e1000e_tx_ring_init(core, &txr, 0);
2424        e1000e_start_xmit(core, &txr);
2425    }
2426
2427    if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2428        e1000e_tx_ring_init(core, &txr, 1);
2429        e1000e_start_xmit(core, &txr);
2430    }
2431}
2432
2433static void
2434e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2435{
2436    E1000E_TxRing txr;
2437    int qidx = e1000e_mq_queue_idx(TDT, index);
2438    uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2439
2440    core->mac[index] = val & 0xffff;
2441
2442    if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2443        e1000e_tx_ring_init(core, &txr, qidx);
2444        e1000e_start_xmit(core, &txr);
2445    }
2446}
2447
2448static void
2449e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2450{
2451    trace_e1000e_irq_write_ics(val);
2452    e1000e_set_interrupt_cause(core, val);
2453}
2454
2455static void
2456e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2457{
2458    uint32_t icr = 0;
2459    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2460        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2461        trace_e1000e_irq_icr_process_iame();
2462        e1000e_clear_ims_bits(core, core->mac[IAM]);
2463    }
2464
2465    icr = core->mac[ICR] & ~val;
2466    /* Windows driver expects that the "receive overrun" bit and other
2467     * ones to be cleared when the "Other" bit (#24) is cleared.
2468     */
2469    icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2470    trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2471    core->mac[ICR] = icr;
2472    e1000e_update_interrupt_state(core);
2473}
2474
2475static void
2476e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2477{
2478    trace_e1000e_irq_ims_clear_set_imc(val);
2479    e1000e_clear_ims_bits(core, val);
2480    e1000e_update_interrupt_state(core);
2481}
2482
2483static void
2484e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2485{
2486    static const uint32_t ims_ext_mask =
2487        E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2488        E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2489        E1000_IMS_OTHER;
2490
2491    static const uint32_t ims_valid_mask =
2492        E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2493        E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2494        E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2495        E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2496        E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2497        E1000_IMS_OTHER;
2498
2499    uint32_t valid_val = val & ims_valid_mask;
2500
2501    trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2502    core->mac[IMS] |= valid_val;
2503
2504    if ((valid_val & ims_ext_mask) &&
2505        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2506        msix_enabled(core->owner)) {
2507        e1000e_msix_clear(core, valid_val);
2508    }
2509
2510    if ((valid_val == ims_valid_mask) &&
2511        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2512        trace_e1000e_irq_fire_all_timers(val);
2513        e1000e_intrmgr_fire_all_timers(core);
2514    }
2515
2516    e1000e_update_interrupt_state(core);
2517}
2518
2519static void
2520e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2521{
2522    e1000e_set_16bit(core, index, val);
2523
2524    if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2525        trace_e1000e_irq_rdtr_fpd_running();
2526        e1000e_intrmgr_fire_delayed_interrupts(core);
2527    } else {
2528        trace_e1000e_irq_rdtr_fpd_not_running();
2529    }
2530}
2531
2532static void
2533e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2534{
2535    e1000e_set_16bit(core, index, val);
2536
2537    if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2538        trace_e1000e_irq_tidv_fpd_running();
2539        e1000e_intrmgr_fire_delayed_interrupts(core);
2540    } else {
2541        trace_e1000e_irq_tidv_fpd_not_running();
2542    }
2543}
2544
2545static uint32_t
2546e1000e_mac_readreg(E1000ECore *core, int index)
2547{
2548    return core->mac[index];
2549}
2550
2551static uint32_t
2552e1000e_mac_ics_read(E1000ECore *core, int index)
2553{
2554    trace_e1000e_irq_read_ics(core->mac[ICS]);
2555    return core->mac[ICS];
2556}
2557
2558static uint32_t
2559e1000e_mac_ims_read(E1000ECore *core, int index)
2560{
2561    trace_e1000e_irq_read_ims(core->mac[IMS]);
2562    return core->mac[IMS];
2563}
2564
2565#define E1000E_LOW_BITS_READ_FUNC(num)                      \
2566    static uint32_t                                         \
2567    e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2568    {                                                       \
2569        return core->mac[index] & (BIT(num) - 1);           \
2570    }                                                       \
2571
2572#define E1000E_LOW_BITS_READ(num)                           \
2573    e1000e_mac_low##num##_read
2574
2575E1000E_LOW_BITS_READ_FUNC(4);
2576E1000E_LOW_BITS_READ_FUNC(6);
2577E1000E_LOW_BITS_READ_FUNC(11);
2578E1000E_LOW_BITS_READ_FUNC(13);
2579E1000E_LOW_BITS_READ_FUNC(16);
2580
2581static uint32_t
2582e1000e_mac_swsm_read(E1000ECore *core, int index)
2583{
2584    uint32_t val = core->mac[SWSM];
2585    core->mac[SWSM] = val | 1;
2586    return val;
2587}
2588
2589static uint32_t
2590e1000e_mac_itr_read(E1000ECore *core, int index)
2591{
2592    return core->itr_guest_value;
2593}
2594
2595static uint32_t
2596e1000e_mac_eitr_read(E1000ECore *core, int index)
2597{
2598    return core->eitr_guest_value[index - EITR];
2599}
2600
2601static uint32_t
2602e1000e_mac_icr_read(E1000ECore *core, int index)
2603{
2604    uint32_t ret = core->mac[ICR];
2605    trace_e1000e_irq_icr_read_entry(ret);
2606
2607    if (core->mac[IMS] == 0) {
2608        trace_e1000e_irq_icr_clear_zero_ims();
2609        core->mac[ICR] = 0;
2610    }
2611
2612    if (!msix_enabled(core->owner)) {
2613        trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2614        core->mac[ICR] = 0;
2615    }
2616
2617    if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2618        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2619        trace_e1000e_irq_icr_clear_iame();
2620        core->mac[ICR] = 0;
2621        trace_e1000e_irq_icr_process_iame();
2622        e1000e_clear_ims_bits(core, core->mac[IAM]);
2623    }
2624
2625    trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2626    e1000e_update_interrupt_state(core);
2627    return ret;
2628}
2629
2630static uint32_t
2631e1000e_mac_read_clr4(E1000ECore *core, int index)
2632{
2633    uint32_t ret = core->mac[index];
2634
2635    core->mac[index] = 0;
2636    return ret;
2637}
2638
2639static uint32_t
2640e1000e_mac_read_clr8(E1000ECore *core, int index)
2641{
2642    uint32_t ret = core->mac[index];
2643
2644    core->mac[index] = 0;
2645    core->mac[index - 1] = 0;
2646    return ret;
2647}
2648
2649static uint32_t
2650e1000e_get_ctrl(E1000ECore *core, int index)
2651{
2652    uint32_t val = core->mac[CTRL];
2653
2654    trace_e1000e_link_read_params(
2655        !!(val & E1000_CTRL_ASDE),
2656        (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2657        !!(val & E1000_CTRL_FRCSPD),
2658        !!(val & E1000_CTRL_FRCDPX),
2659        !!(val & E1000_CTRL_RFCE),
2660        !!(val & E1000_CTRL_TFCE));
2661
2662    return val;
2663}
2664
2665static uint32_t
2666e1000e_get_status(E1000ECore *core, int index)
2667{
2668    uint32_t res = core->mac[STATUS];
2669
2670    if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2671        res |= E1000_STATUS_GIO_MASTER_ENABLE;
2672    }
2673
2674    if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2675        res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2676    } else {
2677        res |= E1000_STATUS_FD;
2678    }
2679
2680    if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2681        (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2682        switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2683        case E1000_CTRL_SPD_10:
2684            res |= E1000_STATUS_SPEED_10;
2685            break;
2686        case E1000_CTRL_SPD_100:
2687            res |= E1000_STATUS_SPEED_100;
2688            break;
2689        case E1000_CTRL_SPD_1000:
2690        default:
2691            res |= E1000_STATUS_SPEED_1000;
2692            break;
2693        }
2694    } else {
2695        res |= E1000_STATUS_SPEED_1000;
2696    }
2697
2698    trace_e1000e_link_status(
2699        !!(res & E1000_STATUS_LU),
2700        !!(res & E1000_STATUS_FD),
2701        (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2702        (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2703
2704    return res;
2705}
2706
2707static uint32_t
2708e1000e_get_tarc(E1000ECore *core, int index)
2709{
2710    return core->mac[index] & ((BIT(11) - 1) |
2711                                BIT(27)      |
2712                                BIT(28)      |
2713                                BIT(29)      |
2714                                BIT(30));
2715}
2716
2717static void
2718e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2719{
2720    core->mac[index] = val;
2721}
2722
2723static void
2724e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2725{
2726    uint32_t macaddr[2];
2727
2728    core->mac[index] = val;
2729
2730    macaddr[0] = cpu_to_le32(core->mac[RA]);
2731    macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2732    qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2733        (uint8_t *) macaddr);
2734
2735    trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2736}
2737
2738static void
2739e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2740{
2741    static const uint32_t ro_bits = E1000_EECD_PRES          |
2742                                    E1000_EECD_AUTO_RD       |
2743                                    E1000_EECD_SIZE_EX_MASK;
2744
2745    core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2746}
2747
2748static void
2749e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2750{
2751    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2752    uint32_t flags = 0;
2753    uint32_t data = 0;
2754
2755    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2756        data = core->eeprom[addr];
2757        flags = E1000_EERW_DONE;
2758    }
2759
2760    core->mac[EERD] = flags                           |
2761                      (addr << E1000_EERW_ADDR_SHIFT) |
2762                      (data << E1000_EERW_DATA_SHIFT);
2763}
2764
2765static void
2766e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2767{
2768    uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2769    uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2770    uint32_t flags = 0;
2771
2772    if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2773        core->eeprom[addr] = data;
2774        flags = E1000_EERW_DONE;
2775    }
2776
2777    core->mac[EERD] = flags                           |
2778                      (addr << E1000_EERW_ADDR_SHIFT) |
2779                      (data << E1000_EERW_DATA_SHIFT);
2780}
2781
2782static void
2783e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2784{
2785    core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2786}
2787
2788static void
2789e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2790{
2791    uint32_t interval = val & 0xffff;
2792
2793    trace_e1000e_irq_itr_set(val);
2794
2795    core->itr_guest_value = interval;
2796    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2797}
2798
2799static void
2800e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2801{
2802    uint32_t interval = val & 0xffff;
2803    uint32_t eitr_num = index - EITR;
2804
2805    trace_e1000e_irq_eitr_set(eitr_num, val);
2806
2807    core->eitr_guest_value[eitr_num] = interval;
2808    core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2809}
2810
2811static void
2812e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2813{
2814    if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2815
2816        if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2817            qemu_log_mask(LOG_GUEST_ERROR,
2818                          "e1000e: PSRCTL.BSIZE0 cannot be zero");
2819            return;
2820        }
2821
2822        if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2823            qemu_log_mask(LOG_GUEST_ERROR,
2824                          "e1000e: PSRCTL.BSIZE1 cannot be zero");
2825            return;
2826        }
2827    }
2828
2829    core->mac[PSRCTL] = val;
2830}
2831
2832static void
2833e1000e_update_rx_offloads(E1000ECore *core)
2834{
2835    int cso_state = e1000e_rx_l4_cso_enabled(core);
2836
2837    trace_e1000e_rx_set_cso(cso_state);
2838
2839    if (core->has_vnet) {
2840        qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2841                         cso_state, 0, 0, 0, 0);
2842    }
2843}
2844
2845static void
2846e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2847{
2848    core->mac[RXCSUM] = val;
2849    e1000e_update_rx_offloads(core);
2850}
2851
2852static void
2853e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2854{
2855    uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2856    core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2857}
2858
2859#define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2860typedef uint32_t (*readops)(E1000ECore *, int);
2861static const readops e1000e_macreg_readops[] = {
2862    e1000e_getreg(PBA),
2863    e1000e_getreg(WUFC),
2864    e1000e_getreg(MANC),
2865    e1000e_getreg(TOTL),
2866    e1000e_getreg(RDT0),
2867    e1000e_getreg(RDBAH0),
2868    e1000e_getreg(TDBAL1),
2869    e1000e_getreg(RDLEN0),
2870    e1000e_getreg(RDH1),
2871    e1000e_getreg(LATECOL),
2872    e1000e_getreg(SEQEC),
2873    e1000e_getreg(XONTXC),
2874    e1000e_getreg(WUS),
2875    e1000e_getreg(GORCL),
2876    e1000e_getreg(MGTPRC),
2877    e1000e_getreg(EERD),
2878    e1000e_getreg(EIAC),
2879    e1000e_getreg(PSRCTL),
2880    e1000e_getreg(MANC2H),
2881    e1000e_getreg(RXCSUM),
2882    e1000e_getreg(GSCL_3),
2883    e1000e_getreg(GSCN_2),
2884    e1000e_getreg(RSRPD),
2885    e1000e_getreg(RDBAL1),
2886    e1000e_getreg(FCAH),
2887    e1000e_getreg(FCRTH),
2888    e1000e_getreg(FLOP),
2889    e1000e_getreg(FLASHT),
2890    e1000e_getreg(RXSTMPH),
2891    e1000e_getreg(TXSTMPL),
2892    e1000e_getreg(TIMADJL),
2893    e1000e_getreg(TXDCTL),
2894    e1000e_getreg(RDH0),
2895    e1000e_getreg(TDT1),
2896    e1000e_getreg(TNCRS),
2897    e1000e_getreg(RJC),
2898    e1000e_getreg(IAM),
2899    e1000e_getreg(GSCL_2),
2900    e1000e_getreg(RDBAH1),
2901    e1000e_getreg(FLSWDATA),
2902    e1000e_getreg(RXSATRH),
2903    e1000e_getreg(TIPG),
2904    e1000e_getreg(FLMNGCTL),
2905    e1000e_getreg(FLMNGCNT),
2906    e1000e_getreg(TSYNCTXCTL),
2907    e1000e_getreg(EXTCNF_SIZE),
2908    e1000e_getreg(EXTCNF_CTRL),
2909    e1000e_getreg(EEMNGDATA),
2910    e1000e_getreg(CTRL_EXT),
2911    e1000e_getreg(SYSTIMH),
2912    e1000e_getreg(EEMNGCTL),
2913    e1000e_getreg(FLMNGDATA),
2914    e1000e_getreg(TSYNCRXCTL),
2915    e1000e_getreg(TDH),
2916    e1000e_getreg(LEDCTL),
2917    e1000e_getreg(TCTL),
2918    e1000e_getreg(TDBAL),
2919    e1000e_getreg(TDLEN),
2920    e1000e_getreg(TDH1),
2921    e1000e_getreg(RADV),
2922    e1000e_getreg(ECOL),
2923    e1000e_getreg(DC),
2924    e1000e_getreg(RLEC),
2925    e1000e_getreg(XOFFTXC),
2926    e1000e_getreg(RFC),
2927    e1000e_getreg(RNBC),
2928    e1000e_getreg(MGTPTC),
2929    e1000e_getreg(TIMINCA),
2930    e1000e_getreg(RXCFGL),
2931    e1000e_getreg(MFUTP01),
2932    e1000e_getreg(FACTPS),
2933    e1000e_getreg(GSCL_1),
2934    e1000e_getreg(GSCN_0),
2935    e1000e_getreg(GCR2),
2936    e1000e_getreg(RDT1),
2937    e1000e_getreg(PBACLR),
2938    e1000e_getreg(FCTTV),
2939    e1000e_getreg(EEWR),
2940    e1000e_getreg(FLSWCTL),
2941    e1000e_getreg(RXDCTL1),
2942    e1000e_getreg(RXSATRL),
2943    e1000e_getreg(SYSTIML),
2944    e1000e_getreg(RXUDP),
2945    e1000e_getreg(TORL),
2946    e1000e_getreg(TDLEN1),
2947    e1000e_getreg(MCC),
2948    e1000e_getreg(WUC),
2949    e1000e_getreg(EECD),
2950    e1000e_getreg(MFUTP23),
2951    e1000e_getreg(RAID),
2952    e1000e_getreg(FCRTV),
2953    e1000e_getreg(TXDCTL1),
2954    e1000e_getreg(RCTL),
2955    e1000e_getreg(TDT),
2956    e1000e_getreg(MDIC),
2957    e1000e_getreg(FCRUC),
2958    e1000e_getreg(VET),
2959    e1000e_getreg(RDBAL0),
2960    e1000e_getreg(TDBAH1),
2961    e1000e_getreg(RDTR),
2962    e1000e_getreg(SCC),
2963    e1000e_getreg(COLC),
2964    e1000e_getreg(CEXTERR),
2965    e1000e_getreg(XOFFRXC),
2966    e1000e_getreg(IPAV),
2967    e1000e_getreg(GOTCL),
2968    e1000e_getreg(MGTPDC),
2969    e1000e_getreg(GCR),
2970    e1000e_getreg(IVAR),
2971    e1000e_getreg(POEMB),
2972    e1000e_getreg(MFVAL),
2973    e1000e_getreg(FUNCTAG),
2974    e1000e_getreg(GSCL_4),
2975    e1000e_getreg(GSCN_3),
2976    e1000e_getreg(MRQC),
2977    e1000e_getreg(RDLEN1),
2978    e1000e_getreg(FCT),
2979    e1000e_getreg(FLA),
2980    e1000e_getreg(FLOL),
2981    e1000e_getreg(RXDCTL),
2982    e1000e_getreg(RXSTMPL),
2983    e1000e_getreg(TXSTMPH),
2984    e1000e_getreg(TIMADJH),
2985    e1000e_getreg(FCRTL),
2986    e1000e_getreg(TDBAH),
2987    e1000e_getreg(TADV),
2988    e1000e_getreg(XONRXC),
2989    e1000e_getreg(TSCTFC),
2990    e1000e_getreg(RFCTL),
2991    e1000e_getreg(GSCN_1),
2992    e1000e_getreg(FCAL),
2993    e1000e_getreg(FLSWCNT),
2994
2995    [TOTH]    = e1000e_mac_read_clr8,
2996    [GOTCH]   = e1000e_mac_read_clr8,
2997    [PRC64]   = e1000e_mac_read_clr4,
2998    [PRC255]  = e1000e_mac_read_clr4,
2999    [PRC1023] = e1000e_mac_read_clr4,
3000    [PTC64]   = e1000e_mac_read_clr4,
3001    [PTC255]  = e1000e_mac_read_clr4,
3002    [PTC1023] = e1000e_mac_read_clr4,
3003    [GPRC]    = e1000e_mac_read_clr4,
3004    [TPT]     = e1000e_mac_read_clr4,
3005    [RUC]     = e1000e_mac_read_clr4,
3006    [BPRC]    = e1000e_mac_read_clr4,
3007    [MPTC]    = e1000e_mac_read_clr4,
3008    [IAC]     = e1000e_mac_read_clr4,
3009    [ICR]     = e1000e_mac_icr_read,
3010    [RDFH]    = E1000E_LOW_BITS_READ(13),
3011    [RDFHS]   = E1000E_LOW_BITS_READ(13),
3012    [RDFPC]   = E1000E_LOW_BITS_READ(13),
3013    [TDFH]    = E1000E_LOW_BITS_READ(13),
3014    [TDFHS]   = E1000E_LOW_BITS_READ(13),
3015    [STATUS]  = e1000e_get_status,
3016    [TARC0]   = e1000e_get_tarc,
3017    [PBS]     = E1000E_LOW_BITS_READ(6),
3018    [ICS]     = e1000e_mac_ics_read,
3019    [AIT]     = E1000E_LOW_BITS_READ(16),
3020    [TORH]    = e1000e_mac_read_clr8,
3021    [GORCH]   = e1000e_mac_read_clr8,
3022    [PRC127]  = e1000e_mac_read_clr4,
3023    [PRC511]  = e1000e_mac_read_clr4,
3024    [PRC1522] = e1000e_mac_read_clr4,
3025    [PTC127]  = e1000e_mac_read_clr4,
3026    [PTC511]  = e1000e_mac_read_clr4,
3027    [PTC1522] = e1000e_mac_read_clr4,
3028    [GPTC]    = e1000e_mac_read_clr4,
3029    [TPR]     = e1000e_mac_read_clr4,
3030    [ROC]     = e1000e_mac_read_clr4,
3031    [MPRC]    = e1000e_mac_read_clr4,
3032    [BPTC]    = e1000e_mac_read_clr4,
3033    [TSCTC]   = e1000e_mac_read_clr4,
3034    [ITR]     = e1000e_mac_itr_read,
3035    [RDFT]    = E1000E_LOW_BITS_READ(13),
3036    [RDFTS]   = E1000E_LOW_BITS_READ(13),
3037    [TDFPC]   = E1000E_LOW_BITS_READ(13),
3038    [TDFT]    = E1000E_LOW_BITS_READ(13),
3039    [TDFTS]   = E1000E_LOW_BITS_READ(13),
3040    [CTRL]    = e1000e_get_ctrl,
3041    [TARC1]   = e1000e_get_tarc,
3042    [SWSM]    = e1000e_mac_swsm_read,
3043    [IMS]     = e1000e_mac_ims_read,
3044
3045    [CRCERRS ... MPC]      = e1000e_mac_readreg,
3046    [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3047    [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3048    [RA ... RA + 31]       = e1000e_mac_readreg,
3049    [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3050    [MTA ... MTA + 127]    = e1000e_mac_readreg,
3051    [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3052    [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3053    [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3054    [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3055    [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3056    [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3057    [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3058    [RETA ... RETA + 31]   = e1000e_mac_readreg,
3059    [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3060    [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3061    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3062};
3063enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3064
3065#define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3066typedef void (*writeops)(E1000ECore *, int, uint32_t);
3067static const writeops e1000e_macreg_writeops[] = {
3068    e1000e_putreg(PBA),
3069    e1000e_putreg(SWSM),
3070    e1000e_putreg(WUFC),
3071    e1000e_putreg(RDBAH1),
3072    e1000e_putreg(TDBAH),
3073    e1000e_putreg(TXDCTL),
3074    e1000e_putreg(RDBAH0),
3075    e1000e_putreg(LEDCTL),
3076    e1000e_putreg(FCAL),
3077    e1000e_putreg(FCRUC),
3078    e1000e_putreg(AIT),
3079    e1000e_putreg(TDFH),
3080    e1000e_putreg(TDFT),
3081    e1000e_putreg(TDFHS),
3082    e1000e_putreg(TDFTS),
3083    e1000e_putreg(TDFPC),
3084    e1000e_putreg(WUC),
3085    e1000e_putreg(WUS),
3086    e1000e_putreg(RDFH),
3087    e1000e_putreg(RDFT),
3088    e1000e_putreg(RDFHS),
3089    e1000e_putreg(RDFTS),
3090    e1000e_putreg(RDFPC),
3091    e1000e_putreg(IPAV),
3092    e1000e_putreg(TDBAH1),
3093    e1000e_putreg(TIMINCA),
3094    e1000e_putreg(IAM),
3095    e1000e_putreg(EIAC),
3096    e1000e_putreg(IVAR),
3097    e1000e_putreg(TARC0),
3098    e1000e_putreg(TARC1),
3099    e1000e_putreg(FLSWDATA),
3100    e1000e_putreg(POEMB),
3101    e1000e_putreg(PBS),
3102    e1000e_putreg(MFUTP01),
3103    e1000e_putreg(MFUTP23),
3104    e1000e_putreg(MANC),
3105    e1000e_putreg(MANC2H),
3106    e1000e_putreg(MFVAL),
3107    e1000e_putreg(EXTCNF_CTRL),
3108    e1000e_putreg(FACTPS),
3109    e1000e_putreg(FUNCTAG),
3110    e1000e_putreg(GSCL_1),
3111    e1000e_putreg(GSCL_2),
3112    e1000e_putreg(GSCL_3),
3113    e1000e_putreg(GSCL_4),
3114    e1000e_putreg(GSCN_0),
3115    e1000e_putreg(GSCN_1),
3116    e1000e_putreg(GSCN_2),
3117    e1000e_putreg(GSCN_3),
3118    e1000e_putreg(GCR2),
3119    e1000e_putreg(MRQC),
3120    e1000e_putreg(FLOP),
3121    e1000e_putreg(FLOL),
3122    e1000e_putreg(FLSWCTL),
3123    e1000e_putreg(FLSWCNT),
3124    e1000e_putreg(FLA),
3125    e1000e_putreg(RXDCTL1),
3126    e1000e_putreg(TXDCTL1),
3127    e1000e_putreg(TIPG),
3128    e1000e_putreg(RXSTMPH),
3129    e1000e_putreg(RXSTMPL),
3130    e1000e_putreg(RXSATRL),
3131    e1000e_putreg(RXSATRH),
3132    e1000e_putreg(TXSTMPL),
3133    e1000e_putreg(TXSTMPH),
3134    e1000e_putreg(SYSTIML),
3135    e1000e_putreg(SYSTIMH),
3136    e1000e_putreg(TIMADJL),
3137    e1000e_putreg(TIMADJH),
3138    e1000e_putreg(RXUDP),
3139    e1000e_putreg(RXCFGL),
3140    e1000e_putreg(TSYNCRXCTL),
3141    e1000e_putreg(TSYNCTXCTL),
3142    e1000e_putreg(EXTCNF_SIZE),
3143    e1000e_putreg(EEMNGCTL),
3144    e1000e_putreg(RA),
3145
3146    [TDH1]     = e1000e_set_16bit,
3147    [TDT1]     = e1000e_set_tdt,
3148    [TCTL]     = e1000e_set_tctl,
3149    [TDT]      = e1000e_set_tdt,
3150    [MDIC]     = e1000e_set_mdic,
3151    [ICS]      = e1000e_set_ics,
3152    [TDH]      = e1000e_set_16bit,
3153    [RDH0]     = e1000e_set_16bit,
3154    [RDT0]     = e1000e_set_rdt,
3155    [IMC]      = e1000e_set_imc,
3156    [IMS]      = e1000e_set_ims,
3157    [ICR]      = e1000e_set_icr,
3158    [EECD]     = e1000e_set_eecd,
3159    [RCTL]     = e1000e_set_rx_control,
3160    [CTRL]     = e1000e_set_ctrl,
3161    [RDTR]     = e1000e_set_rdtr,
3162    [RADV]     = e1000e_set_16bit,
3163    [TADV]     = e1000e_set_16bit,
3164    [ITR]      = e1000e_set_itr,
3165    [EERD]     = e1000e_set_eerd,
3166    [GCR]      = e1000e_set_gcr,
3167    [PSRCTL]   = e1000e_set_psrctl,
3168    [RXCSUM]   = e1000e_set_rxcsum,
3169    [RAID]     = e1000e_set_16bit,
3170    [RSRPD]    = e1000e_set_12bit,
3171    [TIDV]     = e1000e_set_tidv,
3172    [TDLEN1]   = e1000e_set_dlen,
3173    [TDLEN]    = e1000e_set_dlen,
3174    [RDLEN0]   = e1000e_set_dlen,
3175    [RDLEN1]   = e1000e_set_dlen,
3176    [TDBAL]    = e1000e_set_dbal,
3177    [TDBAL1]   = e1000e_set_dbal,
3178    [RDBAL0]   = e1000e_set_dbal,
3179    [RDBAL1]   = e1000e_set_dbal,
3180    [RDH1]     = e1000e_set_16bit,
3181    [RDT1]     = e1000e_set_rdt,
3182    [STATUS]   = e1000e_set_status,
3183    [PBACLR]   = e1000e_set_pbaclr,
3184    [CTRL_EXT] = e1000e_set_ctrlext,
3185    [FCAH]     = e1000e_set_16bit,
3186    [FCT]      = e1000e_set_16bit,
3187    [FCTTV]    = e1000e_set_16bit,
3188    [FCRTV]    = e1000e_set_16bit,
3189    [FCRTH]    = e1000e_set_fcrth,
3190    [FCRTL]    = e1000e_set_fcrtl,
3191    [VET]      = e1000e_set_vet,
3192    [RXDCTL]   = e1000e_set_rxdctl,
3193    [FLASHT]   = e1000e_set_16bit,
3194    [EEWR]     = e1000e_set_eewr,
3195    [CTRL_DUP] = e1000e_set_ctrl,
3196    [RFCTL]    = e1000e_set_rfctl,
3197    [RA + 1]   = e1000e_mac_setmacaddr,
3198
3199    [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3200    [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3201    [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3202    [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3203    [MTA ... MTA + 127]      = e1000e_mac_writereg,
3204    [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3205    [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3206    [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3207    [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3208    [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3209    [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3210    [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3211    [RETA ... RETA + 31]     = e1000e_mac_writereg,
3212    [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3213    [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3214    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3215};
3216enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3217
3218enum { MAC_ACCESS_PARTIAL = 1 };
3219
3220/* The array below combines alias offsets of the index values for the
3221 * MAC registers that have aliases, with the indication of not fully
3222 * implemented registers (lowest bit). This combination is possible
3223 * because all of the offsets are even. */
3224static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3225    /* Alias index offsets */
3226    [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3227    [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3228    [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3229    [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3230    [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3231    [RA_A ... RA_A + 31]      = 0x14f0,
3232    [VFTA_A ... VFTA_A + 127] = 0x1400,
3233    [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3234    [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3235    /* Access options */
3236    [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3237    [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3238    [RDFPC] = MAC_ACCESS_PARTIAL,
3239    [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3240    [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3241    [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3242    [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3243    [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3244    [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3245    [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3246    [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3247    [TXDCTL1] = MAC_ACCESS_PARTIAL,
3248    [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3249};
3250
3251void
3252e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3253{
3254    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3255
3256    if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3257        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3258            trace_e1000e_wrn_regs_write_trivial(index << 2);
3259        }
3260        trace_e1000e_core_write(index << 2, size, val);
3261        e1000e_macreg_writeops[index](core, index, val);
3262    } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3263        trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3264    } else {
3265        trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3266    }
3267}
3268
3269uint64_t
3270e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3271{
3272    uint64_t val;
3273    uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3274
3275    if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3276        if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3277            trace_e1000e_wrn_regs_read_trivial(index << 2);
3278        }
3279        val = e1000e_macreg_readops[index](core, index);
3280        trace_e1000e_core_read(index << 2, size, val);
3281        return val;
3282    } else {
3283        trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3284    }
3285    return 0;
3286}
3287
3288static inline void
3289e1000e_autoneg_pause(E1000ECore *core)
3290{
3291    timer_del(core->autoneg_timer);
3292}
3293
3294static void
3295e1000e_autoneg_resume(E1000ECore *core)
3296{
3297    if (e1000e_have_autoneg(core) &&
3298        !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3299        qemu_get_queue(core->owner_nic)->link_down = false;
3300        timer_mod(core->autoneg_timer,
3301                  qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3302    }
3303}
3304
3305static void
3306e1000e_vm_state_change(void *opaque, bool running, RunState state)
3307{
3308    E1000ECore *core = opaque;
3309
3310    if (running) {
3311        trace_e1000e_vm_state_running();
3312        e1000e_intrmgr_resume(core);
3313        e1000e_autoneg_resume(core);
3314    } else {
3315        trace_e1000e_vm_state_stopped();
3316        e1000e_autoneg_pause(core);
3317        e1000e_intrmgr_pause(core);
3318    }
3319}
3320
3321void
3322e1000e_core_pci_realize(E1000ECore     *core,
3323                        const uint16_t *eeprom_templ,
3324                        uint32_t        eeprom_size,
3325                        const uint8_t  *macaddr)
3326{
3327    int i;
3328
3329    core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3330                                       e1000e_autoneg_timer, core);
3331    e1000e_intrmgr_pci_realize(core);
3332
3333    core->vmstate =
3334        qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3335
3336    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3337        net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3338                        E1000E_MAX_TX_FRAGS, core->has_vnet);
3339    }
3340
3341    net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3342
3343    e1000x_core_prepare_eeprom(core->eeprom,
3344                               eeprom_templ,
3345                               eeprom_size,
3346                               PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3347                               macaddr);
3348    e1000e_update_rx_offloads(core);
3349}
3350
3351void
3352e1000e_core_pci_uninit(E1000ECore *core)
3353{
3354    int i;
3355
3356    timer_free(core->autoneg_timer);
3357
3358    e1000e_intrmgr_pci_unint(core);
3359
3360    qemu_del_vm_change_state_handler(core->vmstate);
3361
3362    for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3363        net_tx_pkt_reset(core->tx[i].tx_pkt);
3364        net_tx_pkt_uninit(core->tx[i].tx_pkt);
3365    }
3366
3367    net_rx_pkt_uninit(core->rx_pkt);
3368}
3369
3370static const uint16_t
3371e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3372    [0] = {
3373        [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3374                       MII_CR_FULL_DUPLEX       |
3375                       MII_CR_AUTO_NEG_EN,
3376
3377        [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3378                       MII_SR_LINK_STATUS       |
3379                       MII_SR_AUTONEG_CAPS      |
3380                       MII_SR_PREAMBLE_SUPPRESS |
3381                       MII_SR_EXTENDED_STATUS   |
3382                       MII_SR_10T_HD_CAPS       |
3383                       MII_SR_10T_FD_CAPS       |
3384                       MII_SR_100X_HD_CAPS      |
3385                       MII_SR_100X_FD_CAPS,
3386
3387        [PHY_ID1]               = 0x141,
3388        [PHY_ID2]               = E1000_PHY_ID2_82574x,
3389        [PHY_AUTONEG_ADV]       = 0xde1,
3390        [PHY_LP_ABILITY]        = 0x7e0,
3391        [PHY_AUTONEG_EXP]       = BIT(2),
3392        [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3393        [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3394        [PHY_1000T_STATUS]      = 0x3c00,
3395        [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3396
3397        [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3398                                  BIT(12) | BIT(13),
3399        [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3400    },
3401    [2] = {
3402        [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3403        [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3404    },
3405    [3] = {
3406        [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3407    }
3408};
3409
3410static const uint32_t e1000e_mac_reg_init[] = {
3411    [PBA]           =     0x00140014,
3412    [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3413    [EXTCNF_CTRL]   = BIT(3),
3414    [EEMNGCTL]      = BIT(31),
3415    [FLASHT]        = 0x2,
3416    [FLSWCTL]       = BIT(30) | BIT(31),
3417    [FLOL]          = BIT(0),
3418    [RXDCTL]        = BIT(16),
3419    [RXDCTL1]       = BIT(16),
3420    [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3421    [RXCFGL]        = 0x88F7,
3422    [RXUDP]         = 0x319,
3423    [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3424                      E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3425                      E1000_CTRL_ADVD3WUC,
3426    [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3427    [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3428                      (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3429                      (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3430    [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3431    [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3432    [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3433    [EERD]          = E1000_EERW_DONE,
3434    [EEWR]          = E1000_EERW_DONE,
3435    [GCR]           = E1000_L0S_ADJUST |
3436                      E1000_L1_ENTRY_LATENCY_MSB |
3437                      E1000_L1_ENTRY_LATENCY_LSB,
3438    [TDFH]          = 0x600,
3439    [TDFT]          = 0x600,
3440    [TDFHS]         = 0x600,
3441    [TDFTS]         = 0x600,
3442    [POEMB]         = 0x30D,
3443    [PBS]           = 0x028,
3444    [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3445    [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3446    [SWSM]          = 1,
3447    [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3448    [ITR]           = E1000E_MIN_XITR,
3449    [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3450};
3451
3452void
3453e1000e_core_reset(E1000ECore *core)
3454{
3455    int i;
3456
3457    timer_del(core->autoneg_timer);
3458
3459    e1000e_intrmgr_reset(core);
3460
3461    memset(core->phy, 0, sizeof core->phy);
3462    memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3463    memset(core->mac, 0, sizeof core->mac);
3464    memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3465
3466    core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3467
3468    if (qemu_get_queue(core->owner_nic)->link_down) {
3469        e1000e_link_down(core);
3470    }
3471
3472    e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3473
3474    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3475        net_tx_pkt_reset(core->tx[i].tx_pkt);
3476        memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3477        core->tx[i].skip_cp = false;
3478    }
3479}
3480
3481void e1000e_core_pre_save(E1000ECore *core)
3482{
3483    int i;
3484    NetClientState *nc = qemu_get_queue(core->owner_nic);
3485
3486    /*
3487    * If link is down and auto-negotiation is supported and ongoing,
3488    * complete auto-negotiation immediately. This allows us to look
3489    * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3490    */
3491    if (nc->link_down && e1000e_have_autoneg(core)) {
3492        core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3493        e1000e_update_flowctl_status(core);
3494    }
3495
3496    for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3497        if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3498            core->tx[i].skip_cp = true;
3499        }
3500    }
3501}
3502
3503int
3504e1000e_core_post_load(E1000ECore *core)
3505{
3506    NetClientState *nc = qemu_get_queue(core->owner_nic);
3507
3508    /* nc.link_down can't be migrated, so infer link_down according
3509     * to link status bit in core.mac[STATUS].
3510     */
3511    nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3512
3513    return 0;
3514}
3515