qemu/hw/nvme/ctrl.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
  13 *
  14 *  https://nvmexpress.org/developers/nvme-specification/
  15 *
  16 *
  17 * Notes on coding style
  18 * ---------------------
  19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
  20 * NVMe subsystem use thes format from the NVMe specifications in the comments
  21 * (i.e. 'h' suffix instead of '0x' prefix).
  22 *
  23 * Usage
  24 * -----
  25 * See docs/system/nvme.rst for extensive documentation.
  26 *
  27 * Add options:
  28 *      -drive file=<file>,if=none,id=<drive_id>
  29 *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
  30 *      -device nvme,serial=<serial>,id=<bus_name>, \
  31 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  32 *              [pmrdev=<mem_backend_file_id>,] \
  33 *              max_ioqpairs=<N[optional]>, \
  34 *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
  35 *              mdts=<N[optional]>,vsl=<N[optional]>, \
  36 *              zoned.zasl=<N[optional]>, \
  37 *              zoned.auto_transition=<on|off[optional]>, \
  38 *              sriov_max_vfs=<N[optional]> \
  39 *              sriov_vq_flexible=<N[optional]> \
  40 *              sriov_vi_flexible=<N[optional]> \
  41 *              sriov_max_vi_per_vf=<N[optional]> \
  42 *              sriov_max_vq_per_vf=<N[optional]> \
  43 *              subsys=<subsys_id>
  44 *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
  45 *              zoned=<true|false[optional]>, \
  46 *              subsys=<subsys_id>,detached=<true|false[optional]>
  47 *
  48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
  50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
  51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
  52 *
  53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
  54 * For example:
  55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
  56 *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
  57 *
  58 * The PMR will use BAR 4/5 exclusively.
  59 *
  60 * To place controller(s) and namespace(s) to a subsystem, then provide
  61 * nvme-subsys device as above.
  62 *
  63 * nvme subsystem device parameters
  64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  65 * - `nqn`
  66 *   This parameter provides the `<nqn_id>` part of the string
  67 *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
  68 *   of subsystem controllers. Note that `<nqn_id>` should be unique per
  69 *   subsystem, but this is not enforced by QEMU. If not specified, it will
  70 *   default to the value of the `id` parameter (`<subsys_id>`).
  71 *
  72 * nvme device parameters
  73 * ~~~~~~~~~~~~~~~~~~~~~~
  74 * - `subsys`
  75 *   Specifying this parameter attaches the controller to the subsystem and
  76 *   the SUBNQN field in the controller will report the NQN of the subsystem
  77 *   device. This also enables multi controller capability represented in
  78 *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
  79 *   Namespace Sharing Capabilities).
  80 *
  81 * - `aerl`
  82 *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
  83 *   of concurrently outstanding Asynchronous Event Request commands support
  84 *   by the controller. This is a 0's based value.
  85 *
  86 * - `aer_max_queued`
  87 *   This is the maximum number of events that the device will enqueue for
  88 *   completion when there are no outstanding AERs. When the maximum number of
  89 *   enqueued events are reached, subsequent events will be dropped.
  90 *
  91 * - `mdts`
  92 *   Indicates the maximum data transfer size for a command that transfers data
  93 *   between host-accessible memory and the controller. The value is specified
  94 *   as a power of two (2^n) and is in units of the minimum memory page size
  95 *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
  96 *
  97 * - `vsl`
  98 *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
  99 *   this value is specified as a power of two (2^n) and is in units of the
 100 *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
 101 *   KiB).
 102 *
 103 * - `zoned.zasl`
 104 *   Indicates the maximum data transfer size for the Zone Append command. Like
 105 *   `mdts`, the value is specified as a power of two (2^n) and is in units of
 106 *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
 107 *   defaulting to the value of `mdts`).
 108 *
 109 * - `zoned.auto_transition`
 110 *   Indicates if zones in zone state implicitly opened can be automatically
 111 *   transitioned to zone state closed for resource management purposes.
 112 *   Defaults to 'on'.
 113 *
 114 * - `sriov_max_vfs`
 115 *   Indicates the maximum number of PCIe virtual functions supported
 116 *   by the controller. The default value is 0. Specifying a non-zero value
 117 *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
 118 *   Virtual function controllers will not report SR-IOV capability.
 119 *
 120 *   NOTE: Single Root I/O Virtualization support is experimental.
 121 *   All the related parameters may be subject to change.
 122 *
 123 * - `sriov_vq_flexible`
 124 *   Indicates the total number of flexible queue resources assignable to all
 125 *   the secondary controllers. Implicitly sets the number of primary
 126 *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
 127 *
 128 * - `sriov_vi_flexible`
 129 *   Indicates the total number of flexible interrupt resources assignable to
 130 *   all the secondary controllers. Implicitly sets the number of primary
 131 *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
 132 *
 133 * - `sriov_max_vi_per_vf`
 134 *   Indicates the maximum number of virtual interrupt resources assignable
 135 *   to a secondary controller. The default 0 resolves to
 136 *   `(sriov_vi_flexible / sriov_max_vfs)`.
 137 *
 138 * - `sriov_max_vq_per_vf`
 139 *   Indicates the maximum number of virtual queue resources assignable to
 140 *   a secondary controller. The default 0 resolves to
 141 *   `(sriov_vq_flexible / sriov_max_vfs)`.
 142 *
 143 * nvme namespace device parameters
 144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 145 * - `shared`
 146 *   When the parent nvme device (as defined explicitly by the 'bus' parameter
 147 *   or implicitly by the most recently defined NvmeBus) is linked to an
 148 *   nvme-subsys device, the namespace will be attached to all controllers in
 149 *   the subsystem. If set to 'off' (the default), the namespace will remain a
 150 *   private namespace and may only be attached to a single controller at a
 151 *   time.
 152 *
 153 * - `detached`
 154 *   This parameter is only valid together with the `subsys` parameter. If left
 155 *   at the default value (`false/off`), the namespace will be attached to all
 156 *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
 157 *   namespace will be available in the subsystem but not attached to any
 158 *   controllers.
 159 *
 160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
 161 * In this case, the following namespace properties are available to configure
 162 * zoned operation:
 163 *     zoned.zone_size=<zone size in bytes, default: 128MiB>
 164 *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
 165 *
 166 *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
 167 *         The value 0 (default) forces zone capacity to be the same as zone
 168 *         size. The value of this property may not exceed zone size.
 169 *
 170 *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
 171 *         This value needs to be specified in 64B units. If it is zero,
 172 *         namespace(s) will not support zone descriptor extensions.
 173 *
 174 *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
 175 *         The default value means there is no limit to the number of
 176 *         concurrently active zones.
 177 *
 178 *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
 179 *         The default value means there is no limit to the number of
 180 *         concurrently open zones.
 181 *
 182 *     zoned.cross_read=<enable RAZB, default: false>
 183 *         Setting this property to true enables Read Across Zone Boundaries.
 184 */
 185
 186#include "qemu/osdep.h"
 187#include "qemu/cutils.h"
 188#include "qemu/error-report.h"
 189#include "qemu/log.h"
 190#include "qemu/units.h"
 191#include "qemu/range.h"
 192#include "qapi/error.h"
 193#include "qapi/visitor.h"
 194#include "sysemu/sysemu.h"
 195#include "sysemu/block-backend.h"
 196#include "sysemu/hostmem.h"
 197#include "hw/pci/msix.h"
 198#include "hw/pci/pcie_sriov.h"
 199#include "migration/vmstate.h"
 200
 201#include "nvme.h"
 202#include "dif.h"
 203#include "trace.h"
 204
 205#define NVME_MAX_IOQPAIRS 0xffff
 206#define NVME_DB_SIZE  4
 207#define NVME_SPEC_VER 0x00010400
 208#define NVME_CMB_BIR 2
 209#define NVME_PMR_BIR 4
 210#define NVME_TEMPERATURE 0x143
 211#define NVME_TEMPERATURE_WARNING 0x157
 212#define NVME_TEMPERATURE_CRITICAL 0x175
 213#define NVME_NUM_FW_SLOTS 1
 214#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
 215#define NVME_MAX_VFS 127
 216#define NVME_VF_RES_GRANULARITY 1
 217#define NVME_VF_OFFSET 0x1
 218#define NVME_VF_STRIDE 1
 219
 220#define NVME_GUEST_ERR(trace, fmt, ...) \
 221    do { \
 222        (trace_##trace)(__VA_ARGS__); \
 223        qemu_log_mask(LOG_GUEST_ERROR, #trace \
 224            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
 225    } while (0)
 226
 227static const bool nvme_feature_support[NVME_FID_MAX] = {
 228    [NVME_ARBITRATION]              = true,
 229    [NVME_POWER_MANAGEMENT]         = true,
 230    [NVME_TEMPERATURE_THRESHOLD]    = true,
 231    [NVME_ERROR_RECOVERY]           = true,
 232    [NVME_VOLATILE_WRITE_CACHE]     = true,
 233    [NVME_NUMBER_OF_QUEUES]         = true,
 234    [NVME_INTERRUPT_COALESCING]     = true,
 235    [NVME_INTERRUPT_VECTOR_CONF]    = true,
 236    [NVME_WRITE_ATOMICITY]          = true,
 237    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 238    [NVME_TIMESTAMP]                = true,
 239    [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
 240    [NVME_COMMAND_SET_PROFILE]      = true,
 241};
 242
 243static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 244    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 245    [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 246    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 247    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 248    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 249    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 250    [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
 251    [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
 252};
 253
 254static const uint32_t nvme_cse_acs[256] = {
 255    [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
 256    [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
 257    [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
 258    [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
 259    [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
 260    [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
 261    [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
 262    [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 263    [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 264    [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
 265    [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
 266    [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
 267    [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
 268    [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 269};
 270
 271static const uint32_t nvme_cse_iocs_none[256];
 272
 273static const uint32_t nvme_cse_iocs_nvm[256] = {
 274    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 275    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 276    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 277    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 278    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 279    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 280    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 281    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 282};
 283
 284static const uint32_t nvme_cse_iocs_zoned[256] = {
 285    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 286    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 287    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 288    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 289    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 290    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 291    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 292    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 293    [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 294    [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 295    [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
 296};
 297
 298static void nvme_process_sq(void *opaque);
 299static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
 300
 301static uint16_t nvme_sqid(NvmeRequest *req)
 302{
 303    return le16_to_cpu(req->sq->sqid);
 304}
 305
 306static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
 307                                   NvmeZoneState state)
 308{
 309    if (QTAILQ_IN_USE(zone, entry)) {
 310        switch (nvme_get_zone_state(zone)) {
 311        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 312            QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
 313            break;
 314        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 315            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 316            break;
 317        case NVME_ZONE_STATE_CLOSED:
 318            QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
 319            break;
 320        case NVME_ZONE_STATE_FULL:
 321            QTAILQ_REMOVE(&ns->full_zones, zone, entry);
 322        default:
 323            ;
 324        }
 325    }
 326
 327    nvme_set_zone_state(zone, state);
 328
 329    switch (state) {
 330    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 331        QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
 332        break;
 333    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 334        QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
 335        break;
 336    case NVME_ZONE_STATE_CLOSED:
 337        QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
 338        break;
 339    case NVME_ZONE_STATE_FULL:
 340        QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
 341    case NVME_ZONE_STATE_READ_ONLY:
 342        break;
 343    default:
 344        zone->d.za = 0;
 345    }
 346}
 347
 348static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
 349                                         uint32_t opn, uint32_t zrwa)
 350{
 351    if (ns->params.max_active_zones != 0 &&
 352        ns->nr_active_zones + act > ns->params.max_active_zones) {
 353        trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
 354        return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
 355    }
 356
 357    if (ns->params.max_open_zones != 0 &&
 358        ns->nr_open_zones + opn > ns->params.max_open_zones) {
 359        trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
 360        return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
 361    }
 362
 363    if (zrwa > ns->zns.numzrwa) {
 364        return NVME_NOZRWA | NVME_DNR;
 365    }
 366
 367    return NVME_SUCCESS;
 368}
 369
 370/*
 371 * Check if we can open a zone without exceeding open/active limits.
 372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
 373 */
 374static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
 375{
 376    return nvme_zns_check_resources(ns, act, opn, 0);
 377}
 378
 379static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 380{
 381    hwaddr hi, lo;
 382
 383    if (!n->cmb.cmse) {
 384        return false;
 385    }
 386
 387    lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 388    hi = lo + int128_get64(n->cmb.mem.size);
 389
 390    return addr >= lo && addr < hi;
 391}
 392
 393static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 394{
 395    hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 396    return &n->cmb.buf[addr - base];
 397}
 398
 399static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
 400{
 401    hwaddr hi;
 402
 403    if (!n->pmr.cmse) {
 404        return false;
 405    }
 406
 407    hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
 408
 409    return addr >= n->pmr.cba && addr < hi;
 410}
 411
 412static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
 413{
 414    return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
 415}
 416
 417static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
 418{
 419    hwaddr hi, lo;
 420
 421    /*
 422     * The purpose of this check is to guard against invalid "local" access to
 423     * the iomem (i.e. controller registers). Thus, we check against the range
 424     * covered by the 'bar0' MemoryRegion since that is currently composed of
 425     * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
 426     * that if the device model is ever changed to allow the CMB to be located
 427     * in BAR0 as well, then this must be changed.
 428     */
 429    lo = n->bar0.addr;
 430    hi = lo + int128_get64(n->bar0.size);
 431
 432    return addr >= lo && addr < hi;
 433}
 434
 435static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 436{
 437    hwaddr hi = addr + size - 1;
 438    if (hi < addr) {
 439        return 1;
 440    }
 441
 442    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 443        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 444        return 0;
 445    }
 446
 447    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 448        memcpy(buf, nvme_addr_to_pmr(n, addr), size);
 449        return 0;
 450    }
 451
 452    return pci_dma_read(&n->parent_obj, addr, buf, size);
 453}
 454
 455static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
 456{
 457    hwaddr hi = addr + size - 1;
 458    if (hi < addr) {
 459        return 1;
 460    }
 461
 462    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 463        memcpy(nvme_addr_to_cmb(n, addr), buf, size);
 464        return 0;
 465    }
 466
 467    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 468        memcpy(nvme_addr_to_pmr(n, addr), buf, size);
 469        return 0;
 470    }
 471
 472    return pci_dma_write(&n->parent_obj, addr, buf, size);
 473}
 474
 475static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 476{
 477    return nsid &&
 478        (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
 479}
 480
 481static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 482{
 483    return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 484}
 485
 486static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 487{
 488    return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 489}
 490
 491static void nvme_inc_cq_tail(NvmeCQueue *cq)
 492{
 493    cq->tail++;
 494    if (cq->tail >= cq->size) {
 495        cq->tail = 0;
 496        cq->phase = !cq->phase;
 497    }
 498}
 499
 500static void nvme_inc_sq_head(NvmeSQueue *sq)
 501{
 502    sq->head = (sq->head + 1) % sq->size;
 503}
 504
 505static uint8_t nvme_cq_full(NvmeCQueue *cq)
 506{
 507    return (cq->tail + 1) % cq->size == cq->head;
 508}
 509
 510static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 511{
 512    return sq->head == sq->tail;
 513}
 514
 515static void nvme_irq_check(NvmeCtrl *n)
 516{
 517    uint32_t intms = ldl_le_p(&n->bar.intms);
 518
 519    if (msix_enabled(&(n->parent_obj))) {
 520        return;
 521    }
 522    if (~intms & n->irq_status) {
 523        pci_irq_assert(&n->parent_obj);
 524    } else {
 525        pci_irq_deassert(&n->parent_obj);
 526    }
 527}
 528
 529static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 530{
 531    if (cq->irq_enabled) {
 532        if (msix_enabled(&(n->parent_obj))) {
 533            trace_pci_nvme_irq_msix(cq->vector);
 534            msix_notify(&(n->parent_obj), cq->vector);
 535        } else {
 536            trace_pci_nvme_irq_pin();
 537            assert(cq->vector < 32);
 538            n->irq_status |= 1 << cq->vector;
 539            nvme_irq_check(n);
 540        }
 541    } else {
 542        trace_pci_nvme_irq_masked();
 543    }
 544}
 545
 546static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 547{
 548    if (cq->irq_enabled) {
 549        if (msix_enabled(&(n->parent_obj))) {
 550            return;
 551        } else {
 552            assert(cq->vector < 32);
 553            if (!n->cq_pending) {
 554                n->irq_status &= ~(1 << cq->vector);
 555            }
 556            nvme_irq_check(n);
 557        }
 558    }
 559}
 560
 561static void nvme_req_clear(NvmeRequest *req)
 562{
 563    req->ns = NULL;
 564    req->opaque = NULL;
 565    req->aiocb = NULL;
 566    memset(&req->cqe, 0x0, sizeof(req->cqe));
 567    req->status = NVME_SUCCESS;
 568}
 569
 570static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
 571{
 572    if (dma) {
 573        pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
 574        sg->flags = NVME_SG_DMA;
 575    } else {
 576        qemu_iovec_init(&sg->iov, 0);
 577    }
 578
 579    sg->flags |= NVME_SG_ALLOC;
 580}
 581
 582static inline void nvme_sg_unmap(NvmeSg *sg)
 583{
 584    if (!(sg->flags & NVME_SG_ALLOC)) {
 585        return;
 586    }
 587
 588    if (sg->flags & NVME_SG_DMA) {
 589        qemu_sglist_destroy(&sg->qsg);
 590    } else {
 591        qemu_iovec_destroy(&sg->iov);
 592    }
 593
 594    memset(sg, 0x0, sizeof(*sg));
 595}
 596
 597/*
 598 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
 599 * holds both data and metadata. This function splits the data and metadata
 600 * into two separate QSG/IOVs.
 601 */
 602static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
 603                          NvmeSg *mdata)
 604{
 605    NvmeSg *dst = data;
 606    uint32_t trans_len, count = ns->lbasz;
 607    uint64_t offset = 0;
 608    bool dma = sg->flags & NVME_SG_DMA;
 609    size_t sge_len;
 610    size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
 611    int sg_idx = 0;
 612
 613    assert(sg->flags & NVME_SG_ALLOC);
 614
 615    while (sg_len) {
 616        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 617
 618        trans_len = MIN(sg_len, count);
 619        trans_len = MIN(trans_len, sge_len - offset);
 620
 621        if (dst) {
 622            if (dma) {
 623                qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
 624                                trans_len);
 625            } else {
 626                qemu_iovec_add(&dst->iov,
 627                               sg->iov.iov[sg_idx].iov_base + offset,
 628                               trans_len);
 629            }
 630        }
 631
 632        sg_len -= trans_len;
 633        count -= trans_len;
 634        offset += trans_len;
 635
 636        if (count == 0) {
 637            dst = (dst == data) ? mdata : data;
 638            count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
 639        }
 640
 641        if (sge_len == offset) {
 642            offset = 0;
 643            sg_idx++;
 644        }
 645    }
 646}
 647
 648static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 649                                  size_t len)
 650{
 651    if (!len) {
 652        return NVME_SUCCESS;
 653    }
 654
 655    trace_pci_nvme_map_addr_cmb(addr, len);
 656
 657    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 658        return NVME_DATA_TRAS_ERROR;
 659    }
 660
 661    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 662
 663    return NVME_SUCCESS;
 664}
 665
 666static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 667                                  size_t len)
 668{
 669    if (!len) {
 670        return NVME_SUCCESS;
 671    }
 672
 673    if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
 674        return NVME_DATA_TRAS_ERROR;
 675    }
 676
 677    qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
 678
 679    return NVME_SUCCESS;
 680}
 681
 682static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
 683{
 684    bool cmb = false, pmr = false;
 685
 686    if (!len) {
 687        return NVME_SUCCESS;
 688    }
 689
 690    trace_pci_nvme_map_addr(addr, len);
 691
 692    if (nvme_addr_is_iomem(n, addr)) {
 693        return NVME_DATA_TRAS_ERROR;
 694    }
 695
 696    if (nvme_addr_is_cmb(n, addr)) {
 697        cmb = true;
 698    } else if (nvme_addr_is_pmr(n, addr)) {
 699        pmr = true;
 700    }
 701
 702    if (cmb || pmr) {
 703        if (sg->flags & NVME_SG_DMA) {
 704            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 705        }
 706
 707        if (sg->iov.niov + 1 > IOV_MAX) {
 708            goto max_mappings_exceeded;
 709        }
 710
 711        if (cmb) {
 712            return nvme_map_addr_cmb(n, &sg->iov, addr, len);
 713        } else {
 714            return nvme_map_addr_pmr(n, &sg->iov, addr, len);
 715        }
 716    }
 717
 718    if (!(sg->flags & NVME_SG_DMA)) {
 719        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 720    }
 721
 722    if (sg->qsg.nsg + 1 > IOV_MAX) {
 723        goto max_mappings_exceeded;
 724    }
 725
 726    qemu_sglist_add(&sg->qsg, addr, len);
 727
 728    return NVME_SUCCESS;
 729
 730max_mappings_exceeded:
 731    NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
 732                   "number of mappings exceed 1024");
 733    return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
 734}
 735
 736static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
 737{
 738    return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
 739}
 740
 741static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
 742                             uint64_t prp2, uint32_t len)
 743{
 744    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 745    trans_len = MIN(len, trans_len);
 746    int num_prps = (len >> n->page_bits) + 1;
 747    uint16_t status;
 748    int ret;
 749
 750    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 751
 752    nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
 753
 754    status = nvme_map_addr(n, sg, prp1, trans_len);
 755    if (status) {
 756        goto unmap;
 757    }
 758
 759    len -= trans_len;
 760    if (len) {
 761        if (len > n->page_size) {
 762            uint64_t prp_list[n->max_prp_ents];
 763            uint32_t nents, prp_trans;
 764            int i = 0;
 765
 766            /*
 767             * The first PRP list entry, pointed to by PRP2 may contain offset.
 768             * Hence, we need to calculate the number of entries in based on
 769             * that offset.
 770             */
 771            nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
 772            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 773            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 774            if (ret) {
 775                trace_pci_nvme_err_addr_read(prp2);
 776                status = NVME_DATA_TRAS_ERROR;
 777                goto unmap;
 778            }
 779            while (len != 0) {
 780                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 781
 782                if (i == nents - 1 && len > n->page_size) {
 783                    if (unlikely(prp_ent & (n->page_size - 1))) {
 784                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 785                        status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 786                        goto unmap;
 787                    }
 788
 789                    i = 0;
 790                    nents = (len + n->page_size - 1) >> n->page_bits;
 791                    nents = MIN(nents, n->max_prp_ents);
 792                    prp_trans = nents * sizeof(uint64_t);
 793                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 794                                         prp_trans);
 795                    if (ret) {
 796                        trace_pci_nvme_err_addr_read(prp_ent);
 797                        status = NVME_DATA_TRAS_ERROR;
 798                        goto unmap;
 799                    }
 800                    prp_ent = le64_to_cpu(prp_list[i]);
 801                }
 802
 803                if (unlikely(prp_ent & (n->page_size - 1))) {
 804                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 805                    status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 806                    goto unmap;
 807                }
 808
 809                trans_len = MIN(len, n->page_size);
 810                status = nvme_map_addr(n, sg, prp_ent, trans_len);
 811                if (status) {
 812                    goto unmap;
 813                }
 814
 815                len -= trans_len;
 816                i++;
 817            }
 818        } else {
 819            if (unlikely(prp2 & (n->page_size - 1))) {
 820                trace_pci_nvme_err_invalid_prp2_align(prp2);
 821                status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 822                goto unmap;
 823            }
 824            status = nvme_map_addr(n, sg, prp2, len);
 825            if (status) {
 826                goto unmap;
 827            }
 828        }
 829    }
 830
 831    return NVME_SUCCESS;
 832
 833unmap:
 834    nvme_sg_unmap(sg);
 835    return status;
 836}
 837
 838/*
 839 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 840 * number of bytes mapped in len.
 841 */
 842static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
 843                                  NvmeSglDescriptor *segment, uint64_t nsgld,
 844                                  size_t *len, NvmeCmd *cmd)
 845{
 846    dma_addr_t addr, trans_len;
 847    uint32_t dlen;
 848    uint16_t status;
 849
 850    for (int i = 0; i < nsgld; i++) {
 851        uint8_t type = NVME_SGL_TYPE(segment[i].type);
 852
 853        switch (type) {
 854        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 855            break;
 856        case NVME_SGL_DESCR_TYPE_SEGMENT:
 857        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 858            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 859        default:
 860            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 861        }
 862
 863        dlen = le32_to_cpu(segment[i].len);
 864
 865        if (!dlen) {
 866            continue;
 867        }
 868
 869        if (*len == 0) {
 870            /*
 871             * All data has been mapped, but the SGL contains additional
 872             * segments and/or descriptors. The controller might accept
 873             * ignoring the rest of the SGL.
 874             */
 875            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
 876            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
 877                break;
 878            }
 879
 880            trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
 881            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 882        }
 883
 884        trans_len = MIN(*len, dlen);
 885
 886        addr = le64_to_cpu(segment[i].addr);
 887
 888        if (UINT64_MAX - addr < dlen) {
 889            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 890        }
 891
 892        status = nvme_map_addr(n, sg, addr, trans_len);
 893        if (status) {
 894            return status;
 895        }
 896
 897        *len -= trans_len;
 898    }
 899
 900    return NVME_SUCCESS;
 901}
 902
 903static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
 904                             size_t len, NvmeCmd *cmd)
 905{
 906    /*
 907     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
 908     * dynamically allocating a potentially huge SGL. The spec allows the SGL
 909     * to be larger (as in number of bytes required to describe the SGL
 910     * descriptors and segment chain) than the command transfer size, so it is
 911     * not bounded by MDTS.
 912     */
 913    const int SEG_CHUNK_SIZE = 256;
 914
 915    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
 916    uint64_t nsgld;
 917    uint32_t seg_len;
 918    uint16_t status;
 919    hwaddr addr;
 920    int ret;
 921
 922    sgld = &sgl;
 923    addr = le64_to_cpu(sgl.addr);
 924
 925    trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
 926
 927    nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
 928
 929    /*
 930     * If the entire transfer can be described with a single data block it can
 931     * be mapped directly.
 932     */
 933    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 934        status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
 935        if (status) {
 936            goto unmap;
 937        }
 938
 939        goto out;
 940    }
 941
 942    for (;;) {
 943        switch (NVME_SGL_TYPE(sgld->type)) {
 944        case NVME_SGL_DESCR_TYPE_SEGMENT:
 945        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 946            break;
 947        default:
 948            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 949        }
 950
 951        seg_len = le32_to_cpu(sgld->len);
 952
 953        /* check the length of the (Last) Segment descriptor */
 954        if (!seg_len || seg_len & 0xf) {
 955            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 956        }
 957
 958        if (UINT64_MAX - addr < seg_len) {
 959            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 960        }
 961
 962        nsgld = seg_len / sizeof(NvmeSglDescriptor);
 963
 964        while (nsgld > SEG_CHUNK_SIZE) {
 965            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
 966                trace_pci_nvme_err_addr_read(addr);
 967                status = NVME_DATA_TRAS_ERROR;
 968                goto unmap;
 969            }
 970
 971            status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
 972                                       &len, cmd);
 973            if (status) {
 974                goto unmap;
 975            }
 976
 977            nsgld -= SEG_CHUNK_SIZE;
 978            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
 979        }
 980
 981        ret = nvme_addr_read(n, addr, segment, nsgld *
 982                             sizeof(NvmeSglDescriptor));
 983        if (ret) {
 984            trace_pci_nvme_err_addr_read(addr);
 985            status = NVME_DATA_TRAS_ERROR;
 986            goto unmap;
 987        }
 988
 989        last_sgld = &segment[nsgld - 1];
 990
 991        /*
 992         * If the segment ends with a Data Block, then we are done.
 993         */
 994        if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 995            status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
 996            if (status) {
 997                goto unmap;
 998            }
 999
1000            goto out;
1001        }
1002
1003        /*
1004         * If the last descriptor was not a Data Block, then the current
1005         * segment must not be a Last Segment.
1006         */
1007        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009            goto unmap;
1010        }
1011
1012        sgld = last_sgld;
1013        addr = le64_to_cpu(sgld->addr);
1014
1015        /*
1016         * Do not map the last descriptor; it will be a Segment or Last Segment
1017         * descriptor and is handled by the next iteration.
1018         */
1019        status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020        if (status) {
1021            goto unmap;
1022        }
1023    }
1024
1025out:
1026    /* if there is any residual left in len, the SGL was too short */
1027    if (len) {
1028        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029        goto unmap;
1030    }
1031
1032    return NVME_SUCCESS;
1033
1034unmap:
1035    nvme_sg_unmap(sg);
1036    return status;
1037}
1038
1039uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040                       NvmeCmd *cmd)
1041{
1042    uint64_t prp1, prp2;
1043
1044    switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045    case NVME_PSDT_PRP:
1046        prp1 = le64_to_cpu(cmd->dptr.prp1);
1047        prp2 = le64_to_cpu(cmd->dptr.prp2);
1048
1049        return nvme_map_prp(n, sg, prp1, prp2, len);
1050    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051    case NVME_PSDT_SGL_MPTR_SGL:
1052        return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053    default:
1054        return NVME_INVALID_FIELD;
1055    }
1056}
1057
1058static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059                              NvmeCmd *cmd)
1060{
1061    int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062    hwaddr mptr = le64_to_cpu(cmd->mptr);
1063    uint16_t status;
1064
1065    if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066        NvmeSglDescriptor sgl;
1067
1068        if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069            return NVME_DATA_TRAS_ERROR;
1070        }
1071
1072        status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073        if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074            status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075        }
1076
1077        return status;
1078    }
1079
1080    nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081    status = nvme_map_addr(n, sg, mptr, len);
1082    if (status) {
1083        nvme_sg_unmap(sg);
1084    }
1085
1086    return status;
1087}
1088
1089static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090{
1091    NvmeNamespace *ns = req->ns;
1092    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095    size_t len = nvme_l2b(ns, nlb);
1096    uint16_t status;
1097
1098    if (nvme_ns_ext(ns) &&
1099        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100        NvmeSg sg;
1101
1102        len += nvme_m2b(ns, nlb);
1103
1104        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105        if (status) {
1106            return status;
1107        }
1108
1109        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110        nvme_sg_split(&sg, ns, &req->sg, NULL);
1111        nvme_sg_unmap(&sg);
1112
1113        return NVME_SUCCESS;
1114    }
1115
1116    return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117}
1118
1119static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120{
1121    NvmeNamespace *ns = req->ns;
1122    size_t len = nvme_m2b(ns, nlb);
1123    uint16_t status;
1124
1125    if (nvme_ns_ext(ns)) {
1126        NvmeSg sg;
1127
1128        len += nvme_l2b(ns, nlb);
1129
1130        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131        if (status) {
1132            return status;
1133        }
1134
1135        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136        nvme_sg_split(&sg, ns, NULL, &req->sg);
1137        nvme_sg_unmap(&sg);
1138
1139        return NVME_SUCCESS;
1140    }
1141
1142    return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143}
1144
1145static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146                                    uint32_t len, uint32_t bytes,
1147                                    int32_t skip_bytes, int64_t offset,
1148                                    NvmeTxDirection dir)
1149{
1150    hwaddr addr;
1151    uint32_t trans_len, count = bytes;
1152    bool dma = sg->flags & NVME_SG_DMA;
1153    int64_t sge_len;
1154    int sg_idx = 0;
1155    int ret;
1156
1157    assert(sg->flags & NVME_SG_ALLOC);
1158
1159    while (len) {
1160        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161
1162        if (sge_len - offset < 0) {
1163            offset -= sge_len;
1164            sg_idx++;
1165            continue;
1166        }
1167
1168        if (sge_len == offset) {
1169            offset = 0;
1170            sg_idx++;
1171            continue;
1172        }
1173
1174        trans_len = MIN(len, count);
1175        trans_len = MIN(trans_len, sge_len - offset);
1176
1177        if (dma) {
1178            addr = sg->qsg.sg[sg_idx].base + offset;
1179        } else {
1180            addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181        }
1182
1183        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184            ret = nvme_addr_read(n, addr, ptr, trans_len);
1185        } else {
1186            ret = nvme_addr_write(n, addr, ptr, trans_len);
1187        }
1188
1189        if (ret) {
1190            return NVME_DATA_TRAS_ERROR;
1191        }
1192
1193        ptr += trans_len;
1194        len -= trans_len;
1195        count -= trans_len;
1196        offset += trans_len;
1197
1198        if (count == 0) {
1199            count = bytes;
1200            offset += skip_bytes;
1201        }
1202    }
1203
1204    return NVME_SUCCESS;
1205}
1206
1207static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208                        NvmeTxDirection dir)
1209{
1210    assert(sg->flags & NVME_SG_ALLOC);
1211
1212    if (sg->flags & NVME_SG_DMA) {
1213        const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214        dma_addr_t residual;
1215
1216        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217            dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218        } else {
1219            dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220        }
1221
1222        if (unlikely(residual)) {
1223            trace_pci_nvme_err_invalid_dma();
1224            return NVME_INVALID_FIELD | NVME_DNR;
1225        }
1226    } else {
1227        size_t bytes;
1228
1229        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230            bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231        } else {
1232            bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233        }
1234
1235        if (unlikely(bytes != len)) {
1236            trace_pci_nvme_err_invalid_dma();
1237            return NVME_INVALID_FIELD | NVME_DNR;
1238        }
1239    }
1240
1241    return NVME_SUCCESS;
1242}
1243
1244static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245                                NvmeRequest *req)
1246{
1247    uint16_t status;
1248
1249    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250    if (status) {
1251        return status;
1252    }
1253
1254    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255}
1256
1257static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258                                NvmeRequest *req)
1259{
1260    uint16_t status;
1261
1262    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263    if (status) {
1264        return status;
1265    }
1266
1267    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268}
1269
1270uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271                          NvmeTxDirection dir, NvmeRequest *req)
1272{
1273    NvmeNamespace *ns = req->ns;
1274    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277
1278    if (nvme_ns_ext(ns) &&
1279        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281                                   ns->lbaf.ms, 0, dir);
1282    }
1283
1284    return nvme_tx(n, &req->sg, ptr, len, dir);
1285}
1286
1287uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288                           NvmeTxDirection dir, NvmeRequest *req)
1289{
1290    NvmeNamespace *ns = req->ns;
1291    uint16_t status;
1292
1293    if (nvme_ns_ext(ns)) {
1294        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295                                   ns->lbasz, ns->lbasz, dir);
1296    }
1297
1298    nvme_sg_unmap(&req->sg);
1299
1300    status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301    if (status) {
1302        return status;
1303    }
1304
1305    return nvme_tx(n, &req->sg, ptr, len, dir);
1306}
1307
1308static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309                                 BlockCompletionFunc *cb, NvmeRequest *req)
1310{
1311    assert(req->sg.flags & NVME_SG_ALLOC);
1312
1313    if (req->sg.flags & NVME_SG_DMA) {
1314        req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315                                  cb, req);
1316    } else {
1317        req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318    }
1319}
1320
1321static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322                                  BlockCompletionFunc *cb, NvmeRequest *req)
1323{
1324    assert(req->sg.flags & NVME_SG_ALLOC);
1325
1326    if (req->sg.flags & NVME_SG_DMA) {
1327        req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328                                   cb, req);
1329    } else {
1330        req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331    }
1332}
1333
1334static void nvme_update_cq_head(NvmeCQueue *cq)
1335{
1336    pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337            sizeof(cq->head));
1338    trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339}
1340
1341static void nvme_post_cqes(void *opaque)
1342{
1343    NvmeCQueue *cq = opaque;
1344    NvmeCtrl *n = cq->ctrl;
1345    NvmeRequest *req, *next;
1346    bool pending = cq->head != cq->tail;
1347    int ret;
1348
1349    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350        NvmeSQueue *sq;
1351        hwaddr addr;
1352
1353        if (n->dbbuf_enabled) {
1354            nvme_update_cq_head(cq);
1355        }
1356
1357        if (nvme_cq_full(cq)) {
1358            break;
1359        }
1360
1361        sq = req->sq;
1362        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363        req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364        req->cqe.sq_head = cpu_to_le16(sq->head);
1365        addr = cq->dma_addr + cq->tail * n->cqe_size;
1366        ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367                            sizeof(req->cqe));
1368        if (ret) {
1369            trace_pci_nvme_err_addr_write(addr);
1370            trace_pci_nvme_err_cfs();
1371            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372            break;
1373        }
1374        QTAILQ_REMOVE(&cq->req_list, req, entry);
1375        nvme_inc_cq_tail(cq);
1376        nvme_sg_unmap(&req->sg);
1377        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378    }
1379    if (cq->tail != cq->head) {
1380        if (cq->irq_enabled && !pending) {
1381            n->cq_pending++;
1382        }
1383
1384        nvme_irq_assert(n, cq);
1385    }
1386}
1387
1388static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389{
1390    assert(cq->cqid == req->sq->cqid);
1391    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392                                          le32_to_cpu(req->cqe.result),
1393                                          le32_to_cpu(req->cqe.dw1),
1394                                          req->status);
1395
1396    if (req->status) {
1397        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398                                      req->status, req->cmd.opcode);
1399    }
1400
1401    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403
1404    if (req->sq->ioeventfd_enabled) {
1405        /* Post CQE directly since we are in main loop thread */
1406        nvme_post_cqes(cq);
1407    } else {
1408        /* Schedule the timer to post CQE later since we are in vcpu thread */
1409        timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1410    }
1411}
1412
1413static void nvme_process_aers(void *opaque)
1414{
1415    NvmeCtrl *n = opaque;
1416    NvmeAsyncEvent *event, *next;
1417
1418    trace_pci_nvme_process_aers(n->aer_queued);
1419
1420    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1421        NvmeRequest *req;
1422        NvmeAerResult *result;
1423
1424        /* can't post cqe if there is nothing to complete */
1425        if (!n->outstanding_aers) {
1426            trace_pci_nvme_no_outstanding_aers();
1427            break;
1428        }
1429
1430        /* ignore if masked (cqe posted, but event not cleared) */
1431        if (n->aer_mask & (1 << event->result.event_type)) {
1432            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1433            continue;
1434        }
1435
1436        QTAILQ_REMOVE(&n->aer_queue, event, entry);
1437        n->aer_queued--;
1438
1439        n->aer_mask |= 1 << event->result.event_type;
1440        n->outstanding_aers--;
1441
1442        req = n->aer_reqs[n->outstanding_aers];
1443
1444        result = (NvmeAerResult *) &req->cqe.result;
1445        result->event_type = event->result.event_type;
1446        result->event_info = event->result.event_info;
1447        result->log_page = event->result.log_page;
1448        g_free(event);
1449
1450        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1451                                    result->log_page);
1452
1453        nvme_enqueue_req_completion(&n->admin_cq, req);
1454    }
1455}
1456
1457static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1458                               uint8_t event_info, uint8_t log_page)
1459{
1460    NvmeAsyncEvent *event;
1461
1462    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1463
1464    if (n->aer_queued == n->params.aer_max_queued) {
1465        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1466        return;
1467    }
1468
1469    event = g_new(NvmeAsyncEvent, 1);
1470    event->result = (NvmeAerResult) {
1471        .event_type = event_type,
1472        .event_info = event_info,
1473        .log_page   = log_page,
1474    };
1475
1476    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1477    n->aer_queued++;
1478
1479    nvme_process_aers(n);
1480}
1481
1482static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1483{
1484    uint8_t aer_info;
1485
1486    /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1487    if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1488        return;
1489    }
1490
1491    switch (event) {
1492    case NVME_SMART_SPARE:
1493        aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1494        break;
1495    case NVME_SMART_TEMPERATURE:
1496        aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1497        break;
1498    case NVME_SMART_RELIABILITY:
1499    case NVME_SMART_MEDIA_READ_ONLY:
1500    case NVME_SMART_FAILED_VOLATILE_MEDIA:
1501    case NVME_SMART_PMR_UNRELIABLE:
1502        aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1503        break;
1504    default:
1505        return;
1506    }
1507
1508    nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1509}
1510
1511static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1512{
1513    n->aer_mask &= ~(1 << event_type);
1514    if (!QTAILQ_EMPTY(&n->aer_queue)) {
1515        nvme_process_aers(n);
1516    }
1517}
1518
1519static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1520{
1521    uint8_t mdts = n->params.mdts;
1522
1523    if (mdts && len > n->page_size << mdts) {
1524        trace_pci_nvme_err_mdts(len);
1525        return NVME_INVALID_FIELD | NVME_DNR;
1526    }
1527
1528    return NVME_SUCCESS;
1529}
1530
1531static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1532                                         uint32_t nlb)
1533{
1534    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1535
1536    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1537        trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1538        return NVME_LBA_RANGE | NVME_DNR;
1539    }
1540
1541    return NVME_SUCCESS;
1542}
1543
1544static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1545                                 uint32_t nlb, int flags)
1546{
1547    BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1548
1549    int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1550    int64_t offset = nvme_l2b(ns, slba);
1551    int ret;
1552
1553    /*
1554     * `pnum` holds the number of bytes after offset that shares the same
1555     * allocation status as the byte at offset. If `pnum` is different from
1556     * `bytes`, we should check the allocation status of the next range and
1557     * continue this until all bytes have been checked.
1558     */
1559    do {
1560        bytes -= pnum;
1561
1562        ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1563        if (ret < 0) {
1564            return ret;
1565        }
1566
1567
1568        trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1569                                    !!(ret & BDRV_BLOCK_ZERO));
1570
1571        if (!(ret & flags)) {
1572            return 1;
1573        }
1574
1575        offset += pnum;
1576    } while (pnum != bytes);
1577
1578    return 0;
1579}
1580
1581static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1582                                 uint32_t nlb)
1583{
1584    int ret;
1585    Error *err = NULL;
1586
1587    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1588    if (ret) {
1589        if (ret < 0) {
1590            error_setg_errno(&err, -ret, "unable to get block status");
1591            error_report_err(err);
1592
1593            return NVME_INTERNAL_DEV_ERROR;
1594        }
1595
1596        return NVME_DULB;
1597    }
1598
1599    return NVME_SUCCESS;
1600}
1601
1602static void nvme_aio_err(NvmeRequest *req, int ret)
1603{
1604    uint16_t status = NVME_SUCCESS;
1605    Error *local_err = NULL;
1606
1607    switch (req->cmd.opcode) {
1608    case NVME_CMD_READ:
1609        status = NVME_UNRECOVERED_READ;
1610        break;
1611    case NVME_CMD_FLUSH:
1612    case NVME_CMD_WRITE:
1613    case NVME_CMD_WRITE_ZEROES:
1614    case NVME_CMD_ZONE_APPEND:
1615        status = NVME_WRITE_FAULT;
1616        break;
1617    default:
1618        status = NVME_INTERNAL_DEV_ERROR;
1619        break;
1620    }
1621
1622    trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1623
1624    error_setg_errno(&local_err, -ret, "aio failed");
1625    error_report_err(local_err);
1626
1627    /*
1628     * Set the command status code to the first encountered error but allow a
1629     * subsequent Internal Device Error to trump it.
1630     */
1631    if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1632        return;
1633    }
1634
1635    req->status = status;
1636}
1637
1638static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1639{
1640    return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1641                                    slba / ns->zone_size;
1642}
1643
1644static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1645{
1646    uint32_t zone_idx = nvme_zone_idx(ns, slba);
1647
1648    if (zone_idx >= ns->num_zones) {
1649        return NULL;
1650    }
1651
1652    return &ns->zone_array[zone_idx];
1653}
1654
1655static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1656{
1657    uint64_t zslba = zone->d.zslba;
1658
1659    switch (nvme_get_zone_state(zone)) {
1660    case NVME_ZONE_STATE_EMPTY:
1661    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1662    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1663    case NVME_ZONE_STATE_CLOSED:
1664        return NVME_SUCCESS;
1665    case NVME_ZONE_STATE_FULL:
1666        trace_pci_nvme_err_zone_is_full(zslba);
1667        return NVME_ZONE_FULL;
1668    case NVME_ZONE_STATE_OFFLINE:
1669        trace_pci_nvme_err_zone_is_offline(zslba);
1670        return NVME_ZONE_OFFLINE;
1671    case NVME_ZONE_STATE_READ_ONLY:
1672        trace_pci_nvme_err_zone_is_read_only(zslba);
1673        return NVME_ZONE_READ_ONLY;
1674    default:
1675        assert(false);
1676    }
1677
1678    return NVME_INTERNAL_DEV_ERROR;
1679}
1680
1681static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1682                                      uint64_t slba, uint32_t nlb)
1683{
1684    uint64_t zcap = nvme_zone_wr_boundary(zone);
1685    uint16_t status;
1686
1687    status = nvme_check_zone_state_for_write(zone);
1688    if (status) {
1689        return status;
1690    }
1691
1692    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1693        uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1694
1695        if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1696            trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1697            return NVME_ZONE_INVALID_WRITE;
1698        }
1699    } else {
1700        if (unlikely(slba != zone->w_ptr)) {
1701            trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1702                                               zone->w_ptr);
1703            return NVME_ZONE_INVALID_WRITE;
1704        }
1705    }
1706
1707    if (unlikely((slba + nlb) > zcap)) {
1708        trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1709        return NVME_ZONE_BOUNDARY_ERROR;
1710    }
1711
1712    return NVME_SUCCESS;
1713}
1714
1715static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1716{
1717    switch (nvme_get_zone_state(zone)) {
1718    case NVME_ZONE_STATE_EMPTY:
1719    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1720    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1721    case NVME_ZONE_STATE_FULL:
1722    case NVME_ZONE_STATE_CLOSED:
1723    case NVME_ZONE_STATE_READ_ONLY:
1724        return NVME_SUCCESS;
1725    case NVME_ZONE_STATE_OFFLINE:
1726        trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1727        return NVME_ZONE_OFFLINE;
1728    default:
1729        assert(false);
1730    }
1731
1732    return NVME_INTERNAL_DEV_ERROR;
1733}
1734
1735static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1736                                     uint32_t nlb)
1737{
1738    NvmeZone *zone;
1739    uint64_t bndry, end;
1740    uint16_t status;
1741
1742    zone = nvme_get_zone_by_slba(ns, slba);
1743    assert(zone);
1744
1745    bndry = nvme_zone_rd_boundary(ns, zone);
1746    end = slba + nlb;
1747
1748    status = nvme_check_zone_state_for_read(zone);
1749    if (status) {
1750        ;
1751    } else if (unlikely(end > bndry)) {
1752        if (!ns->params.cross_zone_read) {
1753            status = NVME_ZONE_BOUNDARY_ERROR;
1754        } else {
1755            /*
1756             * Read across zone boundary - check that all subsequent
1757             * zones that are being read have an appropriate state.
1758             */
1759            do {
1760                zone++;
1761                status = nvme_check_zone_state_for_read(zone);
1762                if (status) {
1763                    break;
1764                }
1765            } while (end > nvme_zone_rd_boundary(ns, zone));
1766        }
1767    }
1768
1769    return status;
1770}
1771
1772static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1773{
1774    switch (nvme_get_zone_state(zone)) {
1775    case NVME_ZONE_STATE_FULL:
1776        return NVME_SUCCESS;
1777
1778    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1779    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1780        nvme_aor_dec_open(ns);
1781        /* fallthrough */
1782    case NVME_ZONE_STATE_CLOSED:
1783        nvme_aor_dec_active(ns);
1784
1785        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1786            zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1787            if (ns->params.numzrwa) {
1788                ns->zns.numzrwa++;
1789            }
1790        }
1791
1792        /* fallthrough */
1793    case NVME_ZONE_STATE_EMPTY:
1794        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1795        return NVME_SUCCESS;
1796
1797    default:
1798        return NVME_ZONE_INVAL_TRANSITION;
1799    }
1800}
1801
1802static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1803{
1804    switch (nvme_get_zone_state(zone)) {
1805    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1806    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1807        nvme_aor_dec_open(ns);
1808        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1809        /* fall through */
1810    case NVME_ZONE_STATE_CLOSED:
1811        return NVME_SUCCESS;
1812
1813    default:
1814        return NVME_ZONE_INVAL_TRANSITION;
1815    }
1816}
1817
1818static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1819{
1820    switch (nvme_get_zone_state(zone)) {
1821    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1822    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1823        nvme_aor_dec_open(ns);
1824        /* fallthrough */
1825    case NVME_ZONE_STATE_CLOSED:
1826        nvme_aor_dec_active(ns);
1827
1828        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1829            if (ns->params.numzrwa) {
1830                ns->zns.numzrwa++;
1831            }
1832        }
1833
1834        /* fallthrough */
1835    case NVME_ZONE_STATE_FULL:
1836        zone->w_ptr = zone->d.zslba;
1837        zone->d.wp = zone->w_ptr;
1838        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1839        /* fallthrough */
1840    case NVME_ZONE_STATE_EMPTY:
1841        return NVME_SUCCESS;
1842
1843    default:
1844        return NVME_ZONE_INVAL_TRANSITION;
1845    }
1846}
1847
1848static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1849{
1850    NvmeZone *zone;
1851
1852    if (ns->params.max_open_zones &&
1853        ns->nr_open_zones == ns->params.max_open_zones) {
1854        zone = QTAILQ_FIRST(&ns->imp_open_zones);
1855        if (zone) {
1856            /*
1857             * Automatically close this implicitly open zone.
1858             */
1859            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1860            nvme_zrm_close(ns, zone);
1861        }
1862    }
1863}
1864
1865enum {
1866    NVME_ZRM_AUTO = 1 << 0,
1867    NVME_ZRM_ZRWA = 1 << 1,
1868};
1869
1870static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1871                                    NvmeZone *zone, int flags)
1872{
1873    int act = 0;
1874    uint16_t status;
1875
1876    switch (nvme_get_zone_state(zone)) {
1877    case NVME_ZONE_STATE_EMPTY:
1878        act = 1;
1879
1880        /* fallthrough */
1881
1882    case NVME_ZONE_STATE_CLOSED:
1883        if (n->params.auto_transition_zones) {
1884            nvme_zrm_auto_transition_zone(ns);
1885        }
1886        status = nvme_zns_check_resources(ns, act, 1,
1887                                          (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1888        if (status) {
1889            return status;
1890        }
1891
1892        if (act) {
1893            nvme_aor_inc_active(ns);
1894        }
1895
1896        nvme_aor_inc_open(ns);
1897
1898        if (flags & NVME_ZRM_AUTO) {
1899            nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1900            return NVME_SUCCESS;
1901        }
1902
1903        /* fallthrough */
1904
1905    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1906        if (flags & NVME_ZRM_AUTO) {
1907            return NVME_SUCCESS;
1908        }
1909
1910        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1911
1912        /* fallthrough */
1913
1914    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1915        if (flags & NVME_ZRM_ZRWA) {
1916            ns->zns.numzrwa--;
1917
1918            zone->d.za |= NVME_ZA_ZRWA_VALID;
1919        }
1920
1921        return NVME_SUCCESS;
1922
1923    default:
1924        return NVME_ZONE_INVAL_TRANSITION;
1925    }
1926}
1927
1928static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1929                                     NvmeZone *zone)
1930{
1931    return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1932}
1933
1934static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1935                                 uint32_t nlb)
1936{
1937    zone->d.wp += nlb;
1938
1939    if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1940        nvme_zrm_finish(ns, zone);
1941    }
1942}
1943
1944static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1945                                           uint32_t nlbc)
1946{
1947    uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1948
1949    nlbc = nzrwafgs * ns->zns.zrwafg;
1950
1951    trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1952
1953    zone->w_ptr += nlbc;
1954
1955    nvme_advance_zone_wp(ns, zone, nlbc);
1956}
1957
1958static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1959{
1960    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1961    NvmeZone *zone;
1962    uint64_t slba;
1963    uint32_t nlb;
1964
1965    slba = le64_to_cpu(rw->slba);
1966    nlb = le16_to_cpu(rw->nlb) + 1;
1967    zone = nvme_get_zone_by_slba(ns, slba);
1968    assert(zone);
1969
1970    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1971        uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1972        uint64_t elba = slba + nlb - 1;
1973
1974        if (elba > ezrwa) {
1975            nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1976        }
1977
1978        return;
1979    }
1980
1981    nvme_advance_zone_wp(ns, zone, nlb);
1982}
1983
1984static inline bool nvme_is_write(NvmeRequest *req)
1985{
1986    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1987
1988    return rw->opcode == NVME_CMD_WRITE ||
1989           rw->opcode == NVME_CMD_ZONE_APPEND ||
1990           rw->opcode == NVME_CMD_WRITE_ZEROES;
1991}
1992
1993static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1994{
1995    return qemu_get_aio_context();
1996}
1997
1998static void nvme_misc_cb(void *opaque, int ret)
1999{
2000    NvmeRequest *req = opaque;
2001
2002    trace_pci_nvme_misc_cb(nvme_cid(req));
2003
2004    if (ret) {
2005        nvme_aio_err(req, ret);
2006    }
2007
2008    nvme_enqueue_req_completion(nvme_cq(req), req);
2009}
2010
2011void nvme_rw_complete_cb(void *opaque, int ret)
2012{
2013    NvmeRequest *req = opaque;
2014    NvmeNamespace *ns = req->ns;
2015    BlockBackend *blk = ns->blkconf.blk;
2016    BlockAcctCookie *acct = &req->acct;
2017    BlockAcctStats *stats = blk_get_stats(blk);
2018
2019    trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2020
2021    if (ret) {
2022        block_acct_failed(stats, acct);
2023        nvme_aio_err(req, ret);
2024    } else {
2025        block_acct_done(stats, acct);
2026    }
2027
2028    if (ns->params.zoned && nvme_is_write(req)) {
2029        nvme_finalize_zoned_write(ns, req);
2030    }
2031
2032    nvme_enqueue_req_completion(nvme_cq(req), req);
2033}
2034
2035static void nvme_rw_cb(void *opaque, int ret)
2036{
2037    NvmeRequest *req = opaque;
2038    NvmeNamespace *ns = req->ns;
2039
2040    BlockBackend *blk = ns->blkconf.blk;
2041
2042    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2043
2044    if (ret) {
2045        goto out;
2046    }
2047
2048    if (ns->lbaf.ms) {
2049        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2050        uint64_t slba = le64_to_cpu(rw->slba);
2051        uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2052        uint64_t offset = nvme_moff(ns, slba);
2053
2054        if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2055            size_t mlen = nvme_m2b(ns, nlb);
2056
2057            req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2058                                               BDRV_REQ_MAY_UNMAP,
2059                                               nvme_rw_complete_cb, req);
2060            return;
2061        }
2062
2063        if (nvme_ns_ext(ns) || req->cmd.mptr) {
2064            uint16_t status;
2065
2066            nvme_sg_unmap(&req->sg);
2067            status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2068            if (status) {
2069                ret = -EFAULT;
2070                goto out;
2071            }
2072
2073            if (req->cmd.opcode == NVME_CMD_READ) {
2074                return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2075            }
2076
2077            return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2078        }
2079    }
2080
2081out:
2082    nvme_rw_complete_cb(req, ret);
2083}
2084
2085static void nvme_verify_cb(void *opaque, int ret)
2086{
2087    NvmeBounceContext *ctx = opaque;
2088    NvmeRequest *req = ctx->req;
2089    NvmeNamespace *ns = req->ns;
2090    BlockBackend *blk = ns->blkconf.blk;
2091    BlockAcctCookie *acct = &req->acct;
2092    BlockAcctStats *stats = blk_get_stats(blk);
2093    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2094    uint64_t slba = le64_to_cpu(rw->slba);
2095    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2096    uint16_t apptag = le16_to_cpu(rw->apptag);
2097    uint16_t appmask = le16_to_cpu(rw->appmask);
2098    uint64_t reftag = le32_to_cpu(rw->reftag);
2099    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2100    uint16_t status;
2101
2102    reftag |= cdw3 << 32;
2103
2104    trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2105
2106    if (ret) {
2107        block_acct_failed(stats, acct);
2108        nvme_aio_err(req, ret);
2109        goto out;
2110    }
2111
2112    block_acct_done(stats, acct);
2113
2114    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2115        status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2116                                       ctx->mdata.iov.size, slba);
2117        if (status) {
2118            req->status = status;
2119            goto out;
2120        }
2121
2122        req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2123                                     ctx->mdata.bounce, ctx->mdata.iov.size,
2124                                     prinfo, slba, apptag, appmask, &reftag);
2125    }
2126
2127out:
2128    qemu_iovec_destroy(&ctx->data.iov);
2129    g_free(ctx->data.bounce);
2130
2131    qemu_iovec_destroy(&ctx->mdata.iov);
2132    g_free(ctx->mdata.bounce);
2133
2134    g_free(ctx);
2135
2136    nvme_enqueue_req_completion(nvme_cq(req), req);
2137}
2138
2139
2140static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2141{
2142    NvmeBounceContext *ctx = opaque;
2143    NvmeRequest *req = ctx->req;
2144    NvmeNamespace *ns = req->ns;
2145    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2146    uint64_t slba = le64_to_cpu(rw->slba);
2147    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2148    size_t mlen = nvme_m2b(ns, nlb);
2149    uint64_t offset = nvme_moff(ns, slba);
2150    BlockBackend *blk = ns->blkconf.blk;
2151
2152    trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2153
2154    if (ret) {
2155        goto out;
2156    }
2157
2158    ctx->mdata.bounce = g_malloc(mlen);
2159
2160    qemu_iovec_reset(&ctx->mdata.iov);
2161    qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2162
2163    req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2164                                nvme_verify_cb, ctx);
2165    return;
2166
2167out:
2168    nvme_verify_cb(ctx, ret);
2169}
2170
2171struct nvme_compare_ctx {
2172    struct {
2173        QEMUIOVector iov;
2174        uint8_t *bounce;
2175    } data;
2176
2177    struct {
2178        QEMUIOVector iov;
2179        uint8_t *bounce;
2180    } mdata;
2181};
2182
2183static void nvme_compare_mdata_cb(void *opaque, int ret)
2184{
2185    NvmeRequest *req = opaque;
2186    NvmeNamespace *ns = req->ns;
2187    NvmeCtrl *n = nvme_ctrl(req);
2188    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2189    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2190    uint16_t apptag = le16_to_cpu(rw->apptag);
2191    uint16_t appmask = le16_to_cpu(rw->appmask);
2192    uint64_t reftag = le32_to_cpu(rw->reftag);
2193    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2194    struct nvme_compare_ctx *ctx = req->opaque;
2195    g_autofree uint8_t *buf = NULL;
2196    BlockBackend *blk = ns->blkconf.blk;
2197    BlockAcctCookie *acct = &req->acct;
2198    BlockAcctStats *stats = blk_get_stats(blk);
2199    uint16_t status = NVME_SUCCESS;
2200
2201    reftag |= cdw3 << 32;
2202
2203    trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2204
2205    if (ret) {
2206        block_acct_failed(stats, acct);
2207        nvme_aio_err(req, ret);
2208        goto out;
2209    }
2210
2211    buf = g_malloc(ctx->mdata.iov.size);
2212
2213    status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2214                               NVME_TX_DIRECTION_TO_DEVICE, req);
2215    if (status) {
2216        req->status = status;
2217        goto out;
2218    }
2219
2220    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2221        uint64_t slba = le64_to_cpu(rw->slba);
2222        uint8_t *bufp;
2223        uint8_t *mbufp = ctx->mdata.bounce;
2224        uint8_t *end = mbufp + ctx->mdata.iov.size;
2225        int16_t pil = 0;
2226
2227        status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2228                                ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2229                                slba, apptag, appmask, &reftag);
2230        if (status) {
2231            req->status = status;
2232            goto out;
2233        }
2234
2235        /*
2236         * When formatted with protection information, do not compare the DIF
2237         * tuple.
2238         */
2239        if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2240            pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2241        }
2242
2243        for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2244            if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2245                req->status = NVME_CMP_FAILURE;
2246                goto out;
2247            }
2248        }
2249
2250        goto out;
2251    }
2252
2253    if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2254        req->status = NVME_CMP_FAILURE;
2255        goto out;
2256    }
2257
2258    block_acct_done(stats, acct);
2259
2260out:
2261    qemu_iovec_destroy(&ctx->data.iov);
2262    g_free(ctx->data.bounce);
2263
2264    qemu_iovec_destroy(&ctx->mdata.iov);
2265    g_free(ctx->mdata.bounce);
2266
2267    g_free(ctx);
2268
2269    nvme_enqueue_req_completion(nvme_cq(req), req);
2270}
2271
2272static void nvme_compare_data_cb(void *opaque, int ret)
2273{
2274    NvmeRequest *req = opaque;
2275    NvmeCtrl *n = nvme_ctrl(req);
2276    NvmeNamespace *ns = req->ns;
2277    BlockBackend *blk = ns->blkconf.blk;
2278    BlockAcctCookie *acct = &req->acct;
2279    BlockAcctStats *stats = blk_get_stats(blk);
2280
2281    struct nvme_compare_ctx *ctx = req->opaque;
2282    g_autofree uint8_t *buf = NULL;
2283    uint16_t status;
2284
2285    trace_pci_nvme_compare_data_cb(nvme_cid(req));
2286
2287    if (ret) {
2288        block_acct_failed(stats, acct);
2289        nvme_aio_err(req, ret);
2290        goto out;
2291    }
2292
2293    buf = g_malloc(ctx->data.iov.size);
2294
2295    status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2296                              NVME_TX_DIRECTION_TO_DEVICE, req);
2297    if (status) {
2298        req->status = status;
2299        goto out;
2300    }
2301
2302    if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2303        req->status = NVME_CMP_FAILURE;
2304        goto out;
2305    }
2306
2307    if (ns->lbaf.ms) {
2308        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2309        uint64_t slba = le64_to_cpu(rw->slba);
2310        uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2311        size_t mlen = nvme_m2b(ns, nlb);
2312        uint64_t offset = nvme_moff(ns, slba);
2313
2314        ctx->mdata.bounce = g_malloc(mlen);
2315
2316        qemu_iovec_init(&ctx->mdata.iov, 1);
2317        qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2318
2319        req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2320                                    nvme_compare_mdata_cb, req);
2321        return;
2322    }
2323
2324    block_acct_done(stats, acct);
2325
2326out:
2327    qemu_iovec_destroy(&ctx->data.iov);
2328    g_free(ctx->data.bounce);
2329    g_free(ctx);
2330
2331    nvme_enqueue_req_completion(nvme_cq(req), req);
2332}
2333
2334typedef struct NvmeDSMAIOCB {
2335    BlockAIOCB common;
2336    BlockAIOCB *aiocb;
2337    NvmeRequest *req;
2338    QEMUBH *bh;
2339    int ret;
2340
2341    NvmeDsmRange *range;
2342    unsigned int nr;
2343    unsigned int idx;
2344} NvmeDSMAIOCB;
2345
2346static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2347{
2348    NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2349
2350    /* break nvme_dsm_cb loop */
2351    iocb->idx = iocb->nr;
2352    iocb->ret = -ECANCELED;
2353
2354    if (iocb->aiocb) {
2355        blk_aio_cancel_async(iocb->aiocb);
2356        iocb->aiocb = NULL;
2357    } else {
2358        /*
2359         * We only reach this if nvme_dsm_cancel() has already been called or
2360         * the command ran to completion and nvme_dsm_bh is scheduled to run.
2361         */
2362        assert(iocb->idx == iocb->nr);
2363    }
2364}
2365
2366static const AIOCBInfo nvme_dsm_aiocb_info = {
2367    .aiocb_size   = sizeof(NvmeDSMAIOCB),
2368    .cancel_async = nvme_dsm_cancel,
2369};
2370
2371static void nvme_dsm_bh(void *opaque)
2372{
2373    NvmeDSMAIOCB *iocb = opaque;
2374
2375    iocb->common.cb(iocb->common.opaque, iocb->ret);
2376
2377    qemu_bh_delete(iocb->bh);
2378    iocb->bh = NULL;
2379    qemu_aio_unref(iocb);
2380}
2381
2382static void nvme_dsm_cb(void *opaque, int ret);
2383
2384static void nvme_dsm_md_cb(void *opaque, int ret)
2385{
2386    NvmeDSMAIOCB *iocb = opaque;
2387    NvmeRequest *req = iocb->req;
2388    NvmeNamespace *ns = req->ns;
2389    NvmeDsmRange *range;
2390    uint64_t slba;
2391    uint32_t nlb;
2392
2393    if (ret < 0) {
2394        iocb->ret = ret;
2395        goto done;
2396    }
2397
2398    if (!ns->lbaf.ms) {
2399        nvme_dsm_cb(iocb, 0);
2400        return;
2401    }
2402
2403    range = &iocb->range[iocb->idx - 1];
2404    slba = le64_to_cpu(range->slba);
2405    nlb = le32_to_cpu(range->nlb);
2406
2407    /*
2408     * Check that all block were discarded (zeroed); otherwise we do not zero
2409     * the metadata.
2410     */
2411
2412    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2413    if (ret) {
2414        if (ret < 0) {
2415            iocb->ret = ret;
2416            goto done;
2417        }
2418
2419        nvme_dsm_cb(iocb, 0);
2420        return;
2421    }
2422
2423    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2424                                        nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2425                                        nvme_dsm_cb, iocb);
2426    return;
2427
2428done:
2429    iocb->aiocb = NULL;
2430    qemu_bh_schedule(iocb->bh);
2431}
2432
2433static void nvme_dsm_cb(void *opaque, int ret)
2434{
2435    NvmeDSMAIOCB *iocb = opaque;
2436    NvmeRequest *req = iocb->req;
2437    NvmeCtrl *n = nvme_ctrl(req);
2438    NvmeNamespace *ns = req->ns;
2439    NvmeDsmRange *range;
2440    uint64_t slba;
2441    uint32_t nlb;
2442
2443    if (ret < 0) {
2444        iocb->ret = ret;
2445        goto done;
2446    }
2447
2448next:
2449    if (iocb->idx == iocb->nr) {
2450        goto done;
2451    }
2452
2453    range = &iocb->range[iocb->idx++];
2454    slba = le64_to_cpu(range->slba);
2455    nlb = le32_to_cpu(range->nlb);
2456
2457    trace_pci_nvme_dsm_deallocate(slba, nlb);
2458
2459    if (nlb > n->dmrsl) {
2460        trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2461        goto next;
2462    }
2463
2464    if (nvme_check_bounds(ns, slba, nlb)) {
2465        trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2466                                             ns->id_ns.nsze);
2467        goto next;
2468    }
2469
2470    iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2471                                   nvme_l2b(ns, nlb),
2472                                   nvme_dsm_md_cb, iocb);
2473    return;
2474
2475done:
2476    iocb->aiocb = NULL;
2477    qemu_bh_schedule(iocb->bh);
2478}
2479
2480static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2481{
2482    NvmeNamespace *ns = req->ns;
2483    NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2484    uint32_t attr = le32_to_cpu(dsm->attributes);
2485    uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2486    uint16_t status = NVME_SUCCESS;
2487
2488    trace_pci_nvme_dsm(nr, attr);
2489
2490    if (attr & NVME_DSMGMT_AD) {
2491        NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2492                                         nvme_misc_cb, req);
2493
2494        iocb->req = req;
2495        iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2496        iocb->ret = 0;
2497        iocb->range = g_new(NvmeDsmRange, nr);
2498        iocb->nr = nr;
2499        iocb->idx = 0;
2500
2501        status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2502                          req);
2503        if (status) {
2504            return status;
2505        }
2506
2507        req->aiocb = &iocb->common;
2508        nvme_dsm_cb(iocb, 0);
2509
2510        return NVME_NO_COMPLETE;
2511    }
2512
2513    return status;
2514}
2515
2516static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2517{
2518    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2519    NvmeNamespace *ns = req->ns;
2520    BlockBackend *blk = ns->blkconf.blk;
2521    uint64_t slba = le64_to_cpu(rw->slba);
2522    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2523    size_t len = nvme_l2b(ns, nlb);
2524    int64_t offset = nvme_l2b(ns, slba);
2525    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2526    uint32_t reftag = le32_to_cpu(rw->reftag);
2527    NvmeBounceContext *ctx = NULL;
2528    uint16_t status;
2529
2530    trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2531
2532    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2533        status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2534        if (status) {
2535            return status;
2536        }
2537
2538        if (prinfo & NVME_PRINFO_PRACT) {
2539            return NVME_INVALID_PROT_INFO | NVME_DNR;
2540        }
2541    }
2542
2543    if (len > n->page_size << n->params.vsl) {
2544        return NVME_INVALID_FIELD | NVME_DNR;
2545    }
2546
2547    status = nvme_check_bounds(ns, slba, nlb);
2548    if (status) {
2549        return status;
2550    }
2551
2552    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2553        status = nvme_check_dulbe(ns, slba, nlb);
2554        if (status) {
2555            return status;
2556        }
2557    }
2558
2559    ctx = g_new0(NvmeBounceContext, 1);
2560    ctx->req = req;
2561
2562    ctx->data.bounce = g_malloc(len);
2563
2564    qemu_iovec_init(&ctx->data.iov, 1);
2565    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2566
2567    block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2568                     BLOCK_ACCT_READ);
2569
2570    req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2571                                nvme_verify_mdata_in_cb, ctx);
2572    return NVME_NO_COMPLETE;
2573}
2574
2575typedef struct NvmeCopyAIOCB {
2576    BlockAIOCB common;
2577    BlockAIOCB *aiocb;
2578    NvmeRequest *req;
2579    QEMUBH *bh;
2580    int ret;
2581
2582    void *ranges;
2583    unsigned int format;
2584    int nr;
2585    int idx;
2586
2587    uint8_t *bounce;
2588    QEMUIOVector iov;
2589    struct {
2590        BlockAcctCookie read;
2591        BlockAcctCookie write;
2592    } acct;
2593
2594    uint64_t reftag;
2595    uint64_t slba;
2596
2597    NvmeZone *zone;
2598} NvmeCopyAIOCB;
2599
2600static void nvme_copy_cancel(BlockAIOCB *aiocb)
2601{
2602    NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2603
2604    iocb->ret = -ECANCELED;
2605
2606    if (iocb->aiocb) {
2607        blk_aio_cancel_async(iocb->aiocb);
2608        iocb->aiocb = NULL;
2609    }
2610}
2611
2612static const AIOCBInfo nvme_copy_aiocb_info = {
2613    .aiocb_size   = sizeof(NvmeCopyAIOCB),
2614    .cancel_async = nvme_copy_cancel,
2615};
2616
2617static void nvme_copy_bh(void *opaque)
2618{
2619    NvmeCopyAIOCB *iocb = opaque;
2620    NvmeRequest *req = iocb->req;
2621    NvmeNamespace *ns = req->ns;
2622    BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2623
2624    if (iocb->idx != iocb->nr) {
2625        req->cqe.result = cpu_to_le32(iocb->idx);
2626    }
2627
2628    qemu_iovec_destroy(&iocb->iov);
2629    g_free(iocb->bounce);
2630
2631    qemu_bh_delete(iocb->bh);
2632    iocb->bh = NULL;
2633
2634    if (iocb->ret < 0) {
2635        block_acct_failed(stats, &iocb->acct.read);
2636        block_acct_failed(stats, &iocb->acct.write);
2637    } else {
2638        block_acct_done(stats, &iocb->acct.read);
2639        block_acct_done(stats, &iocb->acct.write);
2640    }
2641
2642    iocb->common.cb(iocb->common.opaque, iocb->ret);
2643    qemu_aio_unref(iocb);
2644}
2645
2646static void nvme_copy_cb(void *opaque, int ret);
2647
2648static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2649                                                 uint64_t *slba, uint32_t *nlb,
2650                                                 uint16_t *apptag,
2651                                                 uint16_t *appmask,
2652                                                 uint64_t *reftag)
2653{
2654    NvmeCopySourceRangeFormat0 *_ranges = ranges;
2655
2656    if (slba) {
2657        *slba = le64_to_cpu(_ranges[idx].slba);
2658    }
2659
2660    if (nlb) {
2661        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2662    }
2663
2664    if (apptag) {
2665        *apptag = le16_to_cpu(_ranges[idx].apptag);
2666    }
2667
2668    if (appmask) {
2669        *appmask = le16_to_cpu(_ranges[idx].appmask);
2670    }
2671
2672    if (reftag) {
2673        *reftag = le32_to_cpu(_ranges[idx].reftag);
2674    }
2675}
2676
2677static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2678                                                 uint64_t *slba, uint32_t *nlb,
2679                                                 uint16_t *apptag,
2680                                                 uint16_t *appmask,
2681                                                 uint64_t *reftag)
2682{
2683    NvmeCopySourceRangeFormat1 *_ranges = ranges;
2684
2685    if (slba) {
2686        *slba = le64_to_cpu(_ranges[idx].slba);
2687    }
2688
2689    if (nlb) {
2690        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2691    }
2692
2693    if (apptag) {
2694        *apptag = le16_to_cpu(_ranges[idx].apptag);
2695    }
2696
2697    if (appmask) {
2698        *appmask = le16_to_cpu(_ranges[idx].appmask);
2699    }
2700
2701    if (reftag) {
2702        *reftag = 0;
2703
2704        *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2705        *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2706        *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2707        *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2708        *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2709        *reftag |= (uint64_t)_ranges[idx].sr[9];
2710    }
2711}
2712
2713static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2714                                         uint64_t *slba, uint32_t *nlb,
2715                                         uint16_t *apptag, uint16_t *appmask,
2716                                         uint64_t *reftag)
2717{
2718    switch (format) {
2719    case NVME_COPY_FORMAT_0:
2720        nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2721                                             appmask, reftag);
2722        break;
2723
2724    case NVME_COPY_FORMAT_1:
2725        nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2726                                             appmask, reftag);
2727        break;
2728
2729    default:
2730        abort();
2731    }
2732}
2733
2734static void nvme_copy_out_completed_cb(void *opaque, int ret)
2735{
2736    NvmeCopyAIOCB *iocb = opaque;
2737    NvmeRequest *req = iocb->req;
2738    NvmeNamespace *ns = req->ns;
2739    uint32_t nlb;
2740
2741    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2742                                 &nlb, NULL, NULL, NULL);
2743
2744    if (ret < 0) {
2745        iocb->ret = ret;
2746        goto out;
2747    } else if (iocb->ret < 0) {
2748        goto out;
2749    }
2750
2751    if (ns->params.zoned) {
2752        nvme_advance_zone_wp(ns, iocb->zone, nlb);
2753    }
2754
2755    iocb->idx++;
2756    iocb->slba += nlb;
2757out:
2758    nvme_copy_cb(iocb, iocb->ret);
2759}
2760
2761static void nvme_copy_out_cb(void *opaque, int ret)
2762{
2763    NvmeCopyAIOCB *iocb = opaque;
2764    NvmeRequest *req = iocb->req;
2765    NvmeNamespace *ns = req->ns;
2766    uint32_t nlb;
2767    size_t mlen;
2768    uint8_t *mbounce;
2769
2770    if (ret < 0) {
2771        iocb->ret = ret;
2772        goto out;
2773    } else if (iocb->ret < 0) {
2774        goto out;
2775    }
2776
2777    if (!ns->lbaf.ms) {
2778        nvme_copy_out_completed_cb(iocb, 0);
2779        return;
2780    }
2781
2782    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2783                                 &nlb, NULL, NULL, NULL);
2784
2785    mlen = nvme_m2b(ns, nlb);
2786    mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2787
2788    qemu_iovec_reset(&iocb->iov);
2789    qemu_iovec_add(&iocb->iov, mbounce, mlen);
2790
2791    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2792                                  &iocb->iov, 0, nvme_copy_out_completed_cb,
2793                                  iocb);
2794
2795    return;
2796
2797out:
2798    nvme_copy_cb(iocb, ret);
2799}
2800
2801static void nvme_copy_in_completed_cb(void *opaque, int ret)
2802{
2803    NvmeCopyAIOCB *iocb = opaque;
2804    NvmeRequest *req = iocb->req;
2805    NvmeNamespace *ns = req->ns;
2806    uint32_t nlb;
2807    uint64_t slba;
2808    uint16_t apptag, appmask;
2809    uint64_t reftag;
2810    size_t len;
2811    uint16_t status;
2812
2813    if (ret < 0) {
2814        iocb->ret = ret;
2815        goto out;
2816    } else if (iocb->ret < 0) {
2817        goto out;
2818    }
2819
2820    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2821                                 &nlb, &apptag, &appmask, &reftag);
2822    len = nvme_l2b(ns, nlb);
2823
2824    trace_pci_nvme_copy_out(iocb->slba, nlb);
2825
2826    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2827        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2828
2829        uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2830        uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2831
2832        size_t mlen = nvme_m2b(ns, nlb);
2833        uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2834
2835        status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2836        if (status) {
2837            goto invalid;
2838        }
2839        status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2840                                slba, apptag, appmask, &reftag);
2841        if (status) {
2842            goto invalid;
2843        }
2844
2845        apptag = le16_to_cpu(copy->apptag);
2846        appmask = le16_to_cpu(copy->appmask);
2847
2848        if (prinfow & NVME_PRINFO_PRACT) {
2849            status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2850            if (status) {
2851                goto invalid;
2852            }
2853
2854            nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2855                                        apptag, &iocb->reftag);
2856        } else {
2857            status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2858                                    prinfow, iocb->slba, apptag, appmask,
2859                                    &iocb->reftag);
2860            if (status) {
2861                goto invalid;
2862            }
2863        }
2864    }
2865
2866    status = nvme_check_bounds(ns, iocb->slba, nlb);
2867    if (status) {
2868        goto invalid;
2869    }
2870
2871    if (ns->params.zoned) {
2872        status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2873        if (status) {
2874            goto invalid;
2875        }
2876
2877        if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2878            iocb->zone->w_ptr += nlb;
2879        }
2880    }
2881
2882    qemu_iovec_reset(&iocb->iov);
2883    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2884
2885    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2886                                  &iocb->iov, 0, nvme_copy_out_cb, iocb);
2887
2888    return;
2889
2890invalid:
2891    req->status = status;
2892    iocb->aiocb = NULL;
2893    if (iocb->bh) {
2894        qemu_bh_schedule(iocb->bh);
2895    }
2896
2897    return;
2898
2899out:
2900    nvme_copy_cb(iocb, ret);
2901}
2902
2903static void nvme_copy_in_cb(void *opaque, int ret)
2904{
2905    NvmeCopyAIOCB *iocb = opaque;
2906    NvmeRequest *req = iocb->req;
2907    NvmeNamespace *ns = req->ns;
2908    uint64_t slba;
2909    uint32_t nlb;
2910
2911    if (ret < 0) {
2912        iocb->ret = ret;
2913        goto out;
2914    } else if (iocb->ret < 0) {
2915        goto out;
2916    }
2917
2918    if (!ns->lbaf.ms) {
2919        nvme_copy_in_completed_cb(iocb, 0);
2920        return;
2921    }
2922
2923    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2924                                 &nlb, NULL, NULL, NULL);
2925
2926    qemu_iovec_reset(&iocb->iov);
2927    qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2928                   nvme_m2b(ns, nlb));
2929
2930    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2931                                 &iocb->iov, 0, nvme_copy_in_completed_cb,
2932                                 iocb);
2933    return;
2934
2935out:
2936    nvme_copy_cb(iocb, iocb->ret);
2937}
2938
2939static void nvme_copy_cb(void *opaque, int ret)
2940{
2941    NvmeCopyAIOCB *iocb = opaque;
2942    NvmeRequest *req = iocb->req;
2943    NvmeNamespace *ns = req->ns;
2944    uint64_t slba;
2945    uint32_t nlb;
2946    size_t len;
2947    uint16_t status;
2948
2949    if (ret < 0) {
2950        iocb->ret = ret;
2951        goto done;
2952    } else if (iocb->ret < 0) {
2953        goto done;
2954    }
2955
2956    if (iocb->idx == iocb->nr) {
2957        goto done;
2958    }
2959
2960    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2961                                 &nlb, NULL, NULL, NULL);
2962    len = nvme_l2b(ns, nlb);
2963
2964    trace_pci_nvme_copy_source_range(slba, nlb);
2965
2966    if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2967        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2968        goto invalid;
2969    }
2970
2971    status = nvme_check_bounds(ns, slba, nlb);
2972    if (status) {
2973        goto invalid;
2974    }
2975
2976    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2977        status = nvme_check_dulbe(ns, slba, nlb);
2978        if (status) {
2979            goto invalid;
2980        }
2981    }
2982
2983    if (ns->params.zoned) {
2984        status = nvme_check_zone_read(ns, slba, nlb);
2985        if (status) {
2986            goto invalid;
2987        }
2988    }
2989
2990    qemu_iovec_reset(&iocb->iov);
2991    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2992
2993    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2994                                 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2995    return;
2996
2997invalid:
2998    req->status = status;
2999done:
3000    iocb->aiocb = NULL;
3001    if (iocb->bh) {
3002        qemu_bh_schedule(iocb->bh);
3003    }
3004}
3005
3006
3007static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3008{
3009    NvmeNamespace *ns = req->ns;
3010    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3011    NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3012                                      nvme_misc_cb, req);
3013    uint16_t nr = copy->nr + 1;
3014    uint8_t format = copy->control[0] & 0xf;
3015    uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3016    uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3017    size_t len = sizeof(NvmeCopySourceRangeFormat0);
3018
3019    uint16_t status;
3020
3021    trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3022
3023    iocb->ranges = NULL;
3024    iocb->zone = NULL;
3025
3026    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3027        ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3028        status = NVME_INVALID_FIELD | NVME_DNR;
3029        goto invalid;
3030    }
3031
3032    if (!(n->id_ctrl.ocfs & (1 << format))) {
3033        trace_pci_nvme_err_copy_invalid_format(format);
3034        status = NVME_INVALID_FIELD | NVME_DNR;
3035        goto invalid;
3036    }
3037
3038    if (nr > ns->id_ns.msrc + 1) {
3039        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3040        goto invalid;
3041    }
3042
3043    if (ns->pif && format != 0x1) {
3044        status = NVME_INVALID_FORMAT | NVME_DNR;
3045        goto invalid;
3046    }
3047
3048    if (ns->pif) {
3049        len = sizeof(NvmeCopySourceRangeFormat1);
3050    }
3051
3052    iocb->format = format;
3053    iocb->ranges = g_malloc_n(nr, len);
3054    status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3055    if (status) {
3056        goto invalid;
3057    }
3058
3059    iocb->slba = le64_to_cpu(copy->sdlba);
3060
3061    if (ns->params.zoned) {
3062        iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3063        if (!iocb->zone) {
3064            status = NVME_LBA_RANGE | NVME_DNR;
3065            goto invalid;
3066        }
3067
3068        status = nvme_zrm_auto(n, ns, iocb->zone);
3069        if (status) {
3070            goto invalid;
3071        }
3072    }
3073
3074    iocb->req = req;
3075    iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3076    iocb->ret = 0;
3077    iocb->nr = nr;
3078    iocb->idx = 0;
3079    iocb->reftag = le32_to_cpu(copy->reftag);
3080    iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3081    iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3082                              ns->lbasz + ns->lbaf.ms);
3083
3084    qemu_iovec_init(&iocb->iov, 1);
3085
3086    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3087                     BLOCK_ACCT_READ);
3088    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3089                     BLOCK_ACCT_WRITE);
3090
3091    req->aiocb = &iocb->common;
3092    nvme_copy_cb(iocb, 0);
3093
3094    return NVME_NO_COMPLETE;
3095
3096invalid:
3097    g_free(iocb->ranges);
3098    qemu_aio_unref(iocb);
3099    return status;
3100}
3101
3102static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3103{
3104    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3105    NvmeNamespace *ns = req->ns;
3106    BlockBackend *blk = ns->blkconf.blk;
3107    uint64_t slba = le64_to_cpu(rw->slba);
3108    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3109    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3110    size_t data_len = nvme_l2b(ns, nlb);
3111    size_t len = data_len;
3112    int64_t offset = nvme_l2b(ns, slba);
3113    struct nvme_compare_ctx *ctx = NULL;
3114    uint16_t status;
3115
3116    trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3117
3118    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3119        return NVME_INVALID_PROT_INFO | NVME_DNR;
3120    }
3121
3122    if (nvme_ns_ext(ns)) {
3123        len += nvme_m2b(ns, nlb);
3124    }
3125
3126    status = nvme_check_mdts(n, len);
3127    if (status) {
3128        return status;
3129    }
3130
3131    status = nvme_check_bounds(ns, slba, nlb);
3132    if (status) {
3133        return status;
3134    }
3135
3136    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3137        status = nvme_check_dulbe(ns, slba, nlb);
3138        if (status) {
3139            return status;
3140        }
3141    }
3142
3143    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3144    if (status) {
3145        return status;
3146    }
3147
3148    ctx = g_new(struct nvme_compare_ctx, 1);
3149    ctx->data.bounce = g_malloc(data_len);
3150
3151    req->opaque = ctx;
3152
3153    qemu_iovec_init(&ctx->data.iov, 1);
3154    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3155
3156    block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3157                     BLOCK_ACCT_READ);
3158    req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3159                                nvme_compare_data_cb, req);
3160
3161    return NVME_NO_COMPLETE;
3162}
3163
3164typedef struct NvmeFlushAIOCB {
3165    BlockAIOCB common;
3166    BlockAIOCB *aiocb;
3167    NvmeRequest *req;
3168    QEMUBH *bh;
3169    int ret;
3170
3171    NvmeNamespace *ns;
3172    uint32_t nsid;
3173    bool broadcast;
3174} NvmeFlushAIOCB;
3175
3176static void nvme_flush_cancel(BlockAIOCB *acb)
3177{
3178    NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3179
3180    iocb->ret = -ECANCELED;
3181
3182    if (iocb->aiocb) {
3183        blk_aio_cancel_async(iocb->aiocb);
3184    }
3185}
3186
3187static const AIOCBInfo nvme_flush_aiocb_info = {
3188    .aiocb_size = sizeof(NvmeFlushAIOCB),
3189    .cancel_async = nvme_flush_cancel,
3190    .get_aio_context = nvme_get_aio_context,
3191};
3192
3193static void nvme_flush_ns_cb(void *opaque, int ret)
3194{
3195    NvmeFlushAIOCB *iocb = opaque;
3196    NvmeNamespace *ns = iocb->ns;
3197
3198    if (ret < 0) {
3199        iocb->ret = ret;
3200        goto out;
3201    } else if (iocb->ret < 0) {
3202        goto out;
3203    }
3204
3205    if (ns) {
3206        trace_pci_nvme_flush_ns(iocb->nsid);
3207
3208        iocb->ns = NULL;
3209        iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3210        return;
3211    }
3212
3213out:
3214    iocb->aiocb = NULL;
3215    qemu_bh_schedule(iocb->bh);
3216}
3217
3218static void nvme_flush_bh(void *opaque)
3219{
3220    NvmeFlushAIOCB *iocb = opaque;
3221    NvmeRequest *req = iocb->req;
3222    NvmeCtrl *n = nvme_ctrl(req);
3223    int i;
3224
3225    if (iocb->ret < 0) {
3226        goto done;
3227    }
3228
3229    if (iocb->broadcast) {
3230        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3231            iocb->ns = nvme_ns(n, i);
3232            if (iocb->ns) {
3233                iocb->nsid = i;
3234                break;
3235            }
3236        }
3237    }
3238
3239    if (!iocb->ns) {
3240        goto done;
3241    }
3242
3243    nvme_flush_ns_cb(iocb, 0);
3244    return;
3245
3246done:
3247    qemu_bh_delete(iocb->bh);
3248    iocb->bh = NULL;
3249
3250    iocb->common.cb(iocb->common.opaque, iocb->ret);
3251
3252    qemu_aio_unref(iocb);
3253
3254    return;
3255}
3256
3257static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3258{
3259    NvmeFlushAIOCB *iocb;
3260    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3261    uint16_t status;
3262
3263    iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3264
3265    iocb->req = req;
3266    iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3267    iocb->ret = 0;
3268    iocb->ns = NULL;
3269    iocb->nsid = 0;
3270    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3271
3272    if (!iocb->broadcast) {
3273        if (!nvme_nsid_valid(n, nsid)) {
3274            status = NVME_INVALID_NSID | NVME_DNR;
3275            goto out;
3276        }
3277
3278        iocb->ns = nvme_ns(n, nsid);
3279        if (!iocb->ns) {
3280            status = NVME_INVALID_FIELD | NVME_DNR;
3281            goto out;
3282        }
3283
3284        iocb->nsid = nsid;
3285    }
3286
3287    req->aiocb = &iocb->common;
3288    qemu_bh_schedule(iocb->bh);
3289
3290    return NVME_NO_COMPLETE;
3291
3292out:
3293    qemu_bh_delete(iocb->bh);
3294    iocb->bh = NULL;
3295    qemu_aio_unref(iocb);
3296
3297    return status;
3298}
3299
3300static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3301{
3302    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3303    NvmeNamespace *ns = req->ns;
3304    uint64_t slba = le64_to_cpu(rw->slba);
3305    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3306    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3307    uint64_t data_size = nvme_l2b(ns, nlb);
3308    uint64_t mapped_size = data_size;
3309    uint64_t data_offset;
3310    BlockBackend *blk = ns->blkconf.blk;
3311    uint16_t status;
3312
3313    if (nvme_ns_ext(ns)) {
3314        mapped_size += nvme_m2b(ns, nlb);
3315
3316        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3317            bool pract = prinfo & NVME_PRINFO_PRACT;
3318
3319            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3320                mapped_size = data_size;
3321            }
3322        }
3323    }
3324
3325    trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3326
3327    status = nvme_check_mdts(n, mapped_size);
3328    if (status) {
3329        goto invalid;
3330    }
3331
3332    status = nvme_check_bounds(ns, slba, nlb);
3333    if (status) {
3334        goto invalid;
3335    }
3336
3337    if (ns->params.zoned) {
3338        status = nvme_check_zone_read(ns, slba, nlb);
3339        if (status) {
3340            trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3341            goto invalid;
3342        }
3343    }
3344
3345    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3346        status = nvme_check_dulbe(ns, slba, nlb);
3347        if (status) {
3348            goto invalid;
3349        }
3350    }
3351
3352    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3353        return nvme_dif_rw(n, req);
3354    }
3355
3356    status = nvme_map_data(n, nlb, req);
3357    if (status) {
3358        goto invalid;
3359    }
3360
3361    data_offset = nvme_l2b(ns, slba);
3362
3363    block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3364                     BLOCK_ACCT_READ);
3365    nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3366    return NVME_NO_COMPLETE;
3367
3368invalid:
3369    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3370    return status | NVME_DNR;
3371}
3372
3373static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3374                              bool wrz)
3375{
3376    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3377    NvmeNamespace *ns = req->ns;
3378    uint64_t slba = le64_to_cpu(rw->slba);
3379    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3380    uint16_t ctrl = le16_to_cpu(rw->control);
3381    uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3382    uint64_t data_size = nvme_l2b(ns, nlb);
3383    uint64_t mapped_size = data_size;
3384    uint64_t data_offset;
3385    NvmeZone *zone;
3386    NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3387    BlockBackend *blk = ns->blkconf.blk;
3388    uint16_t status;
3389
3390    if (nvme_ns_ext(ns)) {
3391        mapped_size += nvme_m2b(ns, nlb);
3392
3393        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3394            bool pract = prinfo & NVME_PRINFO_PRACT;
3395
3396            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3397                mapped_size -= nvme_m2b(ns, nlb);
3398            }
3399        }
3400    }
3401
3402    trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3403                         nvme_nsid(ns), nlb, mapped_size, slba);
3404
3405    if (!wrz) {
3406        status = nvme_check_mdts(n, mapped_size);
3407        if (status) {
3408            goto invalid;
3409        }
3410    }
3411
3412    status = nvme_check_bounds(ns, slba, nlb);
3413    if (status) {
3414        goto invalid;
3415    }
3416
3417    if (ns->params.zoned) {
3418        zone = nvme_get_zone_by_slba(ns, slba);
3419        assert(zone);
3420
3421        if (append) {
3422            bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3423
3424            if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3425                return NVME_INVALID_ZONE_OP | NVME_DNR;
3426            }
3427
3428            if (unlikely(slba != zone->d.zslba)) {
3429                trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3430                status = NVME_INVALID_FIELD;
3431                goto invalid;
3432            }
3433
3434            if (n->params.zasl &&
3435                data_size > (uint64_t)n->page_size << n->params.zasl) {
3436                trace_pci_nvme_err_zasl(data_size);
3437                return NVME_INVALID_FIELD | NVME_DNR;
3438            }
3439
3440            slba = zone->w_ptr;
3441            rw->slba = cpu_to_le64(slba);
3442            res->slba = cpu_to_le64(slba);
3443
3444            switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3445            case NVME_ID_NS_DPS_TYPE_1:
3446                if (!piremap) {
3447                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3448                }
3449
3450                /* fallthrough */
3451
3452            case NVME_ID_NS_DPS_TYPE_2:
3453                if (piremap) {
3454                    uint32_t reftag = le32_to_cpu(rw->reftag);
3455                    rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3456                }
3457
3458                break;
3459
3460            case NVME_ID_NS_DPS_TYPE_3:
3461                if (piremap) {
3462                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3463                }
3464
3465                break;
3466            }
3467        }
3468
3469        status = nvme_check_zone_write(ns, zone, slba, nlb);
3470        if (status) {
3471            goto invalid;
3472        }
3473
3474        status = nvme_zrm_auto(n, ns, zone);
3475        if (status) {
3476            goto invalid;
3477        }
3478
3479        if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3480            zone->w_ptr += nlb;
3481        }
3482    }
3483
3484    data_offset = nvme_l2b(ns, slba);
3485
3486    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3487        return nvme_dif_rw(n, req);
3488    }
3489
3490    if (!wrz) {
3491        status = nvme_map_data(n, nlb, req);
3492        if (status) {
3493            goto invalid;
3494        }
3495
3496        block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3497                         BLOCK_ACCT_WRITE);
3498        nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3499    } else {
3500        req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3501                                           BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3502                                           req);
3503    }
3504
3505    return NVME_NO_COMPLETE;
3506
3507invalid:
3508    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3509    return status | NVME_DNR;
3510}
3511
3512static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3513{
3514    return nvme_do_write(n, req, false, false);
3515}
3516
3517static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3518{
3519    return nvme_do_write(n, req, false, true);
3520}
3521
3522static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3523{
3524    return nvme_do_write(n, req, true, false);
3525}
3526
3527static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3528                                            uint64_t *slba, uint32_t *zone_idx)
3529{
3530    uint32_t dw10 = le32_to_cpu(c->cdw10);
3531    uint32_t dw11 = le32_to_cpu(c->cdw11);
3532
3533    if (!ns->params.zoned) {
3534        trace_pci_nvme_err_invalid_opc(c->opcode);
3535        return NVME_INVALID_OPCODE | NVME_DNR;
3536    }
3537
3538    *slba = ((uint64_t)dw11) << 32 | dw10;
3539    if (unlikely(*slba >= ns->id_ns.nsze)) {
3540        trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3541        *slba = 0;
3542        return NVME_LBA_RANGE | NVME_DNR;
3543    }
3544
3545    *zone_idx = nvme_zone_idx(ns, *slba);
3546    assert(*zone_idx < ns->num_zones);
3547
3548    return NVME_SUCCESS;
3549}
3550
3551typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3552                                 NvmeRequest *);
3553
3554enum NvmeZoneProcessingMask {
3555    NVME_PROC_CURRENT_ZONE    = 0,
3556    NVME_PROC_OPENED_ZONES    = 1 << 0,
3557    NVME_PROC_CLOSED_ZONES    = 1 << 1,
3558    NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3559    NVME_PROC_FULL_ZONES      = 1 << 3,
3560};
3561
3562static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3563                               NvmeZoneState state, NvmeRequest *req)
3564{
3565    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3566    int flags = 0;
3567
3568    if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3569        uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3570
3571        if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3572            return NVME_INVALID_ZONE_OP | NVME_DNR;
3573        }
3574
3575        if (zone->w_ptr % ns->zns.zrwafg) {
3576            return NVME_NOZRWA | NVME_DNR;
3577        }
3578
3579        flags = NVME_ZRM_ZRWA;
3580    }
3581
3582    return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3583}
3584
3585static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3586                                NvmeZoneState state, NvmeRequest *req)
3587{
3588    return nvme_zrm_close(ns, zone);
3589}
3590
3591static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3592                                 NvmeZoneState state, NvmeRequest *req)
3593{
3594    return nvme_zrm_finish(ns, zone);
3595}
3596
3597static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3598                                  NvmeZoneState state, NvmeRequest *req)
3599{
3600    switch (state) {
3601    case NVME_ZONE_STATE_READ_ONLY:
3602        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3603        /* fall through */
3604    case NVME_ZONE_STATE_OFFLINE:
3605        return NVME_SUCCESS;
3606    default:
3607        return NVME_ZONE_INVAL_TRANSITION;
3608    }
3609}
3610
3611static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3612{
3613    uint16_t status;
3614    uint8_t state = nvme_get_zone_state(zone);
3615
3616    if (state == NVME_ZONE_STATE_EMPTY) {
3617        status = nvme_aor_check(ns, 1, 0);
3618        if (status) {
3619            return status;
3620        }
3621        nvme_aor_inc_active(ns);
3622        zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3623        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3624        return NVME_SUCCESS;
3625    }
3626
3627    return NVME_ZONE_INVAL_TRANSITION;
3628}
3629
3630static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3631                                    enum NvmeZoneProcessingMask proc_mask,
3632                                    op_handler_t op_hndlr, NvmeRequest *req)
3633{
3634    uint16_t status = NVME_SUCCESS;
3635    NvmeZoneState zs = nvme_get_zone_state(zone);
3636    bool proc_zone;
3637
3638    switch (zs) {
3639    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3640    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3641        proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3642        break;
3643    case NVME_ZONE_STATE_CLOSED:
3644        proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3645        break;
3646    case NVME_ZONE_STATE_READ_ONLY:
3647        proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3648        break;
3649    case NVME_ZONE_STATE_FULL:
3650        proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3651        break;
3652    default:
3653        proc_zone = false;
3654    }
3655
3656    if (proc_zone) {
3657        status = op_hndlr(ns, zone, zs, req);
3658    }
3659
3660    return status;
3661}
3662
3663static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3664                                enum NvmeZoneProcessingMask proc_mask,
3665                                op_handler_t op_hndlr, NvmeRequest *req)
3666{
3667    NvmeZone *next;
3668    uint16_t status = NVME_SUCCESS;
3669    int i;
3670
3671    if (!proc_mask) {
3672        status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3673    } else {
3674        if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3675            QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3676                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3677                                             req);
3678                if (status && status != NVME_NO_COMPLETE) {
3679                    goto out;
3680                }
3681            }
3682        }
3683        if (proc_mask & NVME_PROC_OPENED_ZONES) {
3684            QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3685                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3686                                             req);
3687                if (status && status != NVME_NO_COMPLETE) {
3688                    goto out;
3689                }
3690            }
3691
3692            QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3693                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3694                                             req);
3695                if (status && status != NVME_NO_COMPLETE) {
3696                    goto out;
3697                }
3698            }
3699        }
3700        if (proc_mask & NVME_PROC_FULL_ZONES) {
3701            QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3702                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3703                                             req);
3704                if (status && status != NVME_NO_COMPLETE) {
3705                    goto out;
3706                }
3707            }
3708        }
3709
3710        if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3711            for (i = 0; i < ns->num_zones; i++, zone++) {
3712                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3713                                             req);
3714                if (status && status != NVME_NO_COMPLETE) {
3715                    goto out;
3716                }
3717            }
3718        }
3719    }
3720
3721out:
3722    return status;
3723}
3724
3725typedef struct NvmeZoneResetAIOCB {
3726    BlockAIOCB common;
3727    BlockAIOCB *aiocb;
3728    NvmeRequest *req;
3729    QEMUBH *bh;
3730    int ret;
3731
3732    bool all;
3733    int idx;
3734    NvmeZone *zone;
3735} NvmeZoneResetAIOCB;
3736
3737static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3738{
3739    NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3740    NvmeRequest *req = iocb->req;
3741    NvmeNamespace *ns = req->ns;
3742
3743    iocb->idx = ns->num_zones;
3744
3745    iocb->ret = -ECANCELED;
3746
3747    if (iocb->aiocb) {
3748        blk_aio_cancel_async(iocb->aiocb);
3749        iocb->aiocb = NULL;
3750    }
3751}
3752
3753static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3754    .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3755    .cancel_async = nvme_zone_reset_cancel,
3756};
3757
3758static void nvme_zone_reset_bh(void *opaque)
3759{
3760    NvmeZoneResetAIOCB *iocb = opaque;
3761
3762    iocb->common.cb(iocb->common.opaque, iocb->ret);
3763
3764    qemu_bh_delete(iocb->bh);
3765    iocb->bh = NULL;
3766    qemu_aio_unref(iocb);
3767}
3768
3769static void nvme_zone_reset_cb(void *opaque, int ret);
3770
3771static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3772{
3773    NvmeZoneResetAIOCB *iocb = opaque;
3774    NvmeRequest *req = iocb->req;
3775    NvmeNamespace *ns = req->ns;
3776    int64_t moff;
3777    int count;
3778
3779    if (ret < 0) {
3780        nvme_zone_reset_cb(iocb, ret);
3781        return;
3782    }
3783
3784    if (!ns->lbaf.ms) {
3785        nvme_zone_reset_cb(iocb, 0);
3786        return;
3787    }
3788
3789    moff = nvme_moff(ns, iocb->zone->d.zslba);
3790    count = nvme_m2b(ns, ns->zone_size);
3791
3792    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3793                                        BDRV_REQ_MAY_UNMAP,
3794                                        nvme_zone_reset_cb, iocb);
3795    return;
3796}
3797
3798static void nvme_zone_reset_cb(void *opaque, int ret)
3799{
3800    NvmeZoneResetAIOCB *iocb = opaque;
3801    NvmeRequest *req = iocb->req;
3802    NvmeNamespace *ns = req->ns;
3803
3804    if (ret < 0) {
3805        iocb->ret = ret;
3806        goto done;
3807    }
3808
3809    if (iocb->zone) {
3810        nvme_zrm_reset(ns, iocb->zone);
3811
3812        if (!iocb->all) {
3813            goto done;
3814        }
3815    }
3816
3817    while (iocb->idx < ns->num_zones) {
3818        NvmeZone *zone = &ns->zone_array[iocb->idx++];
3819
3820        switch (nvme_get_zone_state(zone)) {
3821        case NVME_ZONE_STATE_EMPTY:
3822            if (!iocb->all) {
3823                goto done;
3824            }
3825
3826            continue;
3827
3828        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3829        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3830        case NVME_ZONE_STATE_CLOSED:
3831        case NVME_ZONE_STATE_FULL:
3832            iocb->zone = zone;
3833            break;
3834
3835        default:
3836            continue;
3837        }
3838
3839        trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3840
3841        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3842                                            nvme_l2b(ns, zone->d.zslba),
3843                                            nvme_l2b(ns, ns->zone_size),
3844                                            BDRV_REQ_MAY_UNMAP,
3845                                            nvme_zone_reset_epilogue_cb,
3846                                            iocb);
3847        return;
3848    }
3849
3850done:
3851    iocb->aiocb = NULL;
3852    if (iocb->bh) {
3853        qemu_bh_schedule(iocb->bh);
3854    }
3855}
3856
3857static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3858                                               uint64_t elba, NvmeRequest *req)
3859{
3860    NvmeNamespace *ns = req->ns;
3861    uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3862    uint64_t wp = zone->d.wp;
3863    uint32_t nlb = elba - wp + 1;
3864    uint16_t status;
3865
3866
3867    if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3868        return NVME_INVALID_ZONE_OP | NVME_DNR;
3869    }
3870
3871    if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3872        return NVME_INVALID_FIELD | NVME_DNR;
3873    }
3874
3875    if (elba < wp || elba > wp + ns->zns.zrwas) {
3876        return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3877    }
3878
3879    if (nlb % ns->zns.zrwafg) {
3880        return NVME_INVALID_FIELD | NVME_DNR;
3881    }
3882
3883    status = nvme_zrm_auto(n, ns, zone);
3884    if (status) {
3885        return status;
3886    }
3887
3888    zone->w_ptr += nlb;
3889
3890    nvme_advance_zone_wp(ns, zone, nlb);
3891
3892    return NVME_SUCCESS;
3893}
3894
3895static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3896{
3897    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3898    NvmeNamespace *ns = req->ns;
3899    NvmeZone *zone;
3900    NvmeZoneResetAIOCB *iocb;
3901    uint8_t *zd_ext;
3902    uint64_t slba = 0;
3903    uint32_t zone_idx = 0;
3904    uint16_t status;
3905    uint8_t action = cmd->zsa;
3906    bool all;
3907    enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3908
3909    all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3910
3911    req->status = NVME_SUCCESS;
3912
3913    if (!all) {
3914        status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3915        if (status) {
3916            return status;
3917        }
3918    }
3919
3920    zone = &ns->zone_array[zone_idx];
3921    if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3922        trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3923        return NVME_INVALID_FIELD | NVME_DNR;
3924    }
3925
3926    switch (action) {
3927
3928    case NVME_ZONE_ACTION_OPEN:
3929        if (all) {
3930            proc_mask = NVME_PROC_CLOSED_ZONES;
3931        }
3932        trace_pci_nvme_open_zone(slba, zone_idx, all);
3933        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3934        break;
3935
3936    case NVME_ZONE_ACTION_CLOSE:
3937        if (all) {
3938            proc_mask = NVME_PROC_OPENED_ZONES;
3939        }
3940        trace_pci_nvme_close_zone(slba, zone_idx, all);
3941        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3942        break;
3943
3944    case NVME_ZONE_ACTION_FINISH:
3945        if (all) {
3946            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3947        }
3948        trace_pci_nvme_finish_zone(slba, zone_idx, all);
3949        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3950        break;
3951
3952    case NVME_ZONE_ACTION_RESET:
3953        trace_pci_nvme_reset_zone(slba, zone_idx, all);
3954
3955        iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3956                           nvme_misc_cb, req);
3957
3958        iocb->req = req;
3959        iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3960        iocb->ret = 0;
3961        iocb->all = all;
3962        iocb->idx = zone_idx;
3963        iocb->zone = NULL;
3964
3965        req->aiocb = &iocb->common;
3966        nvme_zone_reset_cb(iocb, 0);
3967
3968        return NVME_NO_COMPLETE;
3969
3970    case NVME_ZONE_ACTION_OFFLINE:
3971        if (all) {
3972            proc_mask = NVME_PROC_READ_ONLY_ZONES;
3973        }
3974        trace_pci_nvme_offline_zone(slba, zone_idx, all);
3975        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3976        break;
3977
3978    case NVME_ZONE_ACTION_SET_ZD_EXT:
3979        trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3980        if (all || !ns->params.zd_extension_size) {
3981            return NVME_INVALID_FIELD | NVME_DNR;
3982        }
3983        zd_ext = nvme_get_zd_extension(ns, zone_idx);
3984        status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3985        if (status) {
3986            trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3987            return status;
3988        }
3989
3990        status = nvme_set_zd_ext(ns, zone);
3991        if (status == NVME_SUCCESS) {
3992            trace_pci_nvme_zd_extension_set(zone_idx);
3993            return status;
3994        }
3995        break;
3996
3997    case NVME_ZONE_ACTION_ZRWA_FLUSH:
3998        if (all) {
3999            return NVME_INVALID_FIELD | NVME_DNR;
4000        }
4001
4002        return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4003
4004    default:
4005        trace_pci_nvme_err_invalid_mgmt_action(action);
4006        status = NVME_INVALID_FIELD;
4007    }
4008
4009    if (status == NVME_ZONE_INVAL_TRANSITION) {
4010        trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4011                                                         zone->d.za);
4012    }
4013    if (status) {
4014        status |= NVME_DNR;
4015    }
4016
4017    return status;
4018}
4019
4020static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4021{
4022    NvmeZoneState zs = nvme_get_zone_state(zl);
4023
4024    switch (zafs) {
4025    case NVME_ZONE_REPORT_ALL:
4026        return true;
4027    case NVME_ZONE_REPORT_EMPTY:
4028        return zs == NVME_ZONE_STATE_EMPTY;
4029    case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4030        return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4031    case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4032        return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4033    case NVME_ZONE_REPORT_CLOSED:
4034        return zs == NVME_ZONE_STATE_CLOSED;
4035    case NVME_ZONE_REPORT_FULL:
4036        return zs == NVME_ZONE_STATE_FULL;
4037    case NVME_ZONE_REPORT_READ_ONLY:
4038        return zs == NVME_ZONE_STATE_READ_ONLY;
4039    case NVME_ZONE_REPORT_OFFLINE:
4040        return zs == NVME_ZONE_STATE_OFFLINE;
4041    default:
4042        return false;
4043    }
4044}
4045
4046static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4047{
4048    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4049    NvmeNamespace *ns = req->ns;
4050    /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4051    uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4052    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4053    uint32_t zone_idx, zra, zrasf, partial;
4054    uint64_t max_zones, nr_zones = 0;
4055    uint16_t status;
4056    uint64_t slba;
4057    NvmeZoneDescr *z;
4058    NvmeZone *zone;
4059    NvmeZoneReportHeader *header;
4060    void *buf, *buf_p;
4061    size_t zone_entry_sz;
4062    int i;
4063
4064    req->status = NVME_SUCCESS;
4065
4066    status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4067    if (status) {
4068        return status;
4069    }
4070
4071    zra = dw13 & 0xff;
4072    if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4073        return NVME_INVALID_FIELD | NVME_DNR;
4074    }
4075    if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4076        return NVME_INVALID_FIELD | NVME_DNR;
4077    }
4078
4079    zrasf = (dw13 >> 8) & 0xff;
4080    if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4081        return NVME_INVALID_FIELD | NVME_DNR;
4082    }
4083
4084    if (data_size < sizeof(NvmeZoneReportHeader)) {
4085        return NVME_INVALID_FIELD | NVME_DNR;
4086    }
4087
4088    status = nvme_check_mdts(n, data_size);
4089    if (status) {
4090        return status;
4091    }
4092
4093    partial = (dw13 >> 16) & 0x01;
4094
4095    zone_entry_sz = sizeof(NvmeZoneDescr);
4096    if (zra == NVME_ZONE_REPORT_EXTENDED) {
4097        zone_entry_sz += ns->params.zd_extension_size;
4098    }
4099
4100    max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4101    buf = g_malloc0(data_size);
4102
4103    zone = &ns->zone_array[zone_idx];
4104    for (i = zone_idx; i < ns->num_zones; i++) {
4105        if (partial && nr_zones >= max_zones) {
4106            break;
4107        }
4108        if (nvme_zone_matches_filter(zrasf, zone++)) {
4109            nr_zones++;
4110        }
4111    }
4112    header = (NvmeZoneReportHeader *)buf;
4113    header->nr_zones = cpu_to_le64(nr_zones);
4114
4115    buf_p = buf + sizeof(NvmeZoneReportHeader);
4116    for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4117        zone = &ns->zone_array[zone_idx];
4118        if (nvme_zone_matches_filter(zrasf, zone)) {
4119            z = (NvmeZoneDescr *)buf_p;
4120            buf_p += sizeof(NvmeZoneDescr);
4121
4122            z->zt = zone->d.zt;
4123            z->zs = zone->d.zs;
4124            z->zcap = cpu_to_le64(zone->d.zcap);
4125            z->zslba = cpu_to_le64(zone->d.zslba);
4126            z->za = zone->d.za;
4127
4128            if (nvme_wp_is_valid(zone)) {
4129                z->wp = cpu_to_le64(zone->d.wp);
4130            } else {
4131                z->wp = cpu_to_le64(~0ULL);
4132            }
4133
4134            if (zra == NVME_ZONE_REPORT_EXTENDED) {
4135                if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4136                    memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4137                           ns->params.zd_extension_size);
4138                }
4139                buf_p += ns->params.zd_extension_size;
4140            }
4141
4142            max_zones--;
4143        }
4144    }
4145
4146    status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4147
4148    g_free(buf);
4149
4150    return status;
4151}
4152
4153static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4154{
4155    NvmeNamespace *ns;
4156    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4157
4158    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4159                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4160
4161    if (!nvme_nsid_valid(n, nsid)) {
4162        return NVME_INVALID_NSID | NVME_DNR;
4163    }
4164
4165    /*
4166     * In the base NVM command set, Flush may apply to all namespaces
4167     * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4168     * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4169     *
4170     * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4171     * opcode with a specific command since we cannot determine a unique I/O
4172     * command set. Opcode 0h could have any other meaning than something
4173     * equivalent to flushing and say it DOES have completely different
4174     * semantics in some other command set - does an NSID of FFFFFFFFh then
4175     * mean "for all namespaces, apply whatever command set specific command
4176     * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4177     * whatever command that uses the 0h opcode if, and only if, it allows NSID
4178     * to be FFFFFFFFh"?
4179     *
4180     * Anyway (and luckily), for now, we do not care about this since the
4181     * device only supports namespace types that includes the NVM Flush command
4182     * (NVM and Zoned), so always do an NVM Flush.
4183     */
4184    if (req->cmd.opcode == NVME_CMD_FLUSH) {
4185        return nvme_flush(n, req);
4186    }
4187
4188    ns = nvme_ns(n, nsid);
4189    if (unlikely(!ns)) {
4190        return NVME_INVALID_FIELD | NVME_DNR;
4191    }
4192
4193    if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4194        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4195        return NVME_INVALID_OPCODE | NVME_DNR;
4196    }
4197
4198    if (ns->status) {
4199        return ns->status;
4200    }
4201
4202    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4203        return NVME_INVALID_FIELD;
4204    }
4205
4206    req->ns = ns;
4207
4208    switch (req->cmd.opcode) {
4209    case NVME_CMD_WRITE_ZEROES:
4210        return nvme_write_zeroes(n, req);
4211    case NVME_CMD_ZONE_APPEND:
4212        return nvme_zone_append(n, req);
4213    case NVME_CMD_WRITE:
4214        return nvme_write(n, req);
4215    case NVME_CMD_READ:
4216        return nvme_read(n, req);
4217    case NVME_CMD_COMPARE:
4218        return nvme_compare(n, req);
4219    case NVME_CMD_DSM:
4220        return nvme_dsm(n, req);
4221    case NVME_CMD_VERIFY:
4222        return nvme_verify(n, req);
4223    case NVME_CMD_COPY:
4224        return nvme_copy(n, req);
4225    case NVME_CMD_ZONE_MGMT_SEND:
4226        return nvme_zone_mgmt_send(n, req);
4227    case NVME_CMD_ZONE_MGMT_RECV:
4228        return nvme_zone_mgmt_recv(n, req);
4229    default:
4230        assert(false);
4231    }
4232
4233    return NVME_INVALID_OPCODE | NVME_DNR;
4234}
4235
4236static void nvme_cq_notifier(EventNotifier *e)
4237{
4238    NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4239    NvmeCtrl *n = cq->ctrl;
4240
4241    if (!event_notifier_test_and_clear(e)) {
4242        return;
4243    }
4244
4245    nvme_update_cq_head(cq);
4246
4247    if (cq->tail == cq->head) {
4248        if (cq->irq_enabled) {
4249            n->cq_pending--;
4250        }
4251
4252        nvme_irq_deassert(n, cq);
4253    }
4254
4255    nvme_post_cqes(cq);
4256}
4257
4258static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4259{
4260    NvmeCtrl *n = cq->ctrl;
4261    uint16_t offset = (cq->cqid << 3) + (1 << 2);
4262    int ret;
4263
4264    ret = event_notifier_init(&cq->notifier, 0);
4265    if (ret < 0) {
4266        return ret;
4267    }
4268
4269    event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4270    memory_region_add_eventfd(&n->iomem,
4271                              0x1000 + offset, 4, false, 0, &cq->notifier);
4272
4273    return 0;
4274}
4275
4276static void nvme_sq_notifier(EventNotifier *e)
4277{
4278    NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4279
4280    if (!event_notifier_test_and_clear(e)) {
4281        return;
4282    }
4283
4284    nvme_process_sq(sq);
4285}
4286
4287static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4288{
4289    NvmeCtrl *n = sq->ctrl;
4290    uint16_t offset = sq->sqid << 3;
4291    int ret;
4292
4293    ret = event_notifier_init(&sq->notifier, 0);
4294    if (ret < 0) {
4295        return ret;
4296    }
4297
4298    event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4299    memory_region_add_eventfd(&n->iomem,
4300                              0x1000 + offset, 4, false, 0, &sq->notifier);
4301
4302    return 0;
4303}
4304
4305static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4306{
4307    uint16_t offset = sq->sqid << 3;
4308
4309    n->sq[sq->sqid] = NULL;
4310    timer_free(sq->timer);
4311    if (sq->ioeventfd_enabled) {
4312        memory_region_del_eventfd(&n->iomem,
4313                                  0x1000 + offset, 4, false, 0, &sq->notifier);
4314        event_notifier_set_handler(&sq->notifier, NULL);
4315        event_notifier_cleanup(&sq->notifier);
4316    }
4317    g_free(sq->io_req);
4318    if (sq->sqid) {
4319        g_free(sq);
4320    }
4321}
4322
4323static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4324{
4325    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4326    NvmeRequest *r, *next;
4327    NvmeSQueue *sq;
4328    NvmeCQueue *cq;
4329    uint16_t qid = le16_to_cpu(c->qid);
4330
4331    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4332        trace_pci_nvme_err_invalid_del_sq(qid);
4333        return NVME_INVALID_QID | NVME_DNR;
4334    }
4335
4336    trace_pci_nvme_del_sq(qid);
4337
4338    sq = n->sq[qid];
4339    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4340        r = QTAILQ_FIRST(&sq->out_req_list);
4341        assert(r->aiocb);
4342        blk_aio_cancel(r->aiocb);
4343    }
4344
4345    assert(QTAILQ_EMPTY(&sq->out_req_list));
4346
4347    if (!nvme_check_cqid(n, sq->cqid)) {
4348        cq = n->cq[sq->cqid];
4349        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4350
4351        nvme_post_cqes(cq);
4352        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4353            if (r->sq == sq) {
4354                QTAILQ_REMOVE(&cq->req_list, r, entry);
4355                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4356            }
4357        }
4358    }
4359
4360    nvme_free_sq(sq, n);
4361    return NVME_SUCCESS;
4362}
4363
4364static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4365                         uint16_t sqid, uint16_t cqid, uint16_t size)
4366{
4367    int i;
4368    NvmeCQueue *cq;
4369
4370    sq->ctrl = n;
4371    sq->dma_addr = dma_addr;
4372    sq->sqid = sqid;
4373    sq->size = size;
4374    sq->cqid = cqid;
4375    sq->head = sq->tail = 0;
4376    sq->io_req = g_new0(NvmeRequest, sq->size);
4377
4378    QTAILQ_INIT(&sq->req_list);
4379    QTAILQ_INIT(&sq->out_req_list);
4380    for (i = 0; i < sq->size; i++) {
4381        sq->io_req[i].sq = sq;
4382        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4383    }
4384    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4385
4386    if (n->dbbuf_enabled) {
4387        sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4388        sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4389
4390        if (n->params.ioeventfd && sq->sqid != 0) {
4391            if (!nvme_init_sq_ioeventfd(sq)) {
4392                sq->ioeventfd_enabled = true;
4393            }
4394        }
4395    }
4396
4397    assert(n->cq[cqid]);
4398    cq = n->cq[cqid];
4399    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4400    n->sq[sqid] = sq;
4401}
4402
4403static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4404{
4405    NvmeSQueue *sq;
4406    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4407
4408    uint16_t cqid = le16_to_cpu(c->cqid);
4409    uint16_t sqid = le16_to_cpu(c->sqid);
4410    uint16_t qsize = le16_to_cpu(c->qsize);
4411    uint16_t qflags = le16_to_cpu(c->sq_flags);
4412    uint64_t prp1 = le64_to_cpu(c->prp1);
4413
4414    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4415
4416    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4417        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4418        return NVME_INVALID_CQID | NVME_DNR;
4419    }
4420    if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4421        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4422        return NVME_INVALID_QID | NVME_DNR;
4423    }
4424    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4425        trace_pci_nvme_err_invalid_create_sq_size(qsize);
4426        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4427    }
4428    if (unlikely(prp1 & (n->page_size - 1))) {
4429        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4430        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4431    }
4432    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4433        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4434        return NVME_INVALID_FIELD | NVME_DNR;
4435    }
4436    sq = g_malloc0(sizeof(*sq));
4437    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4438    return NVME_SUCCESS;
4439}
4440
4441struct nvme_stats {
4442    uint64_t units_read;
4443    uint64_t units_written;
4444    uint64_t read_commands;
4445    uint64_t write_commands;
4446};
4447
4448static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4449{
4450    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4451
4452    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4453    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4454    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4455    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4456}
4457
4458static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4459                                uint64_t off, NvmeRequest *req)
4460{
4461    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4462    struct nvme_stats stats = { 0 };
4463    NvmeSmartLog smart = { 0 };
4464    uint32_t trans_len;
4465    NvmeNamespace *ns;
4466    time_t current_ms;
4467
4468    if (off >= sizeof(smart)) {
4469        return NVME_INVALID_FIELD | NVME_DNR;
4470    }
4471
4472    if (nsid != 0xffffffff) {
4473        ns = nvme_ns(n, nsid);
4474        if (!ns) {
4475            return NVME_INVALID_NSID | NVME_DNR;
4476        }
4477        nvme_set_blk_stats(ns, &stats);
4478    } else {
4479        int i;
4480
4481        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4482            ns = nvme_ns(n, i);
4483            if (!ns) {
4484                continue;
4485            }
4486            nvme_set_blk_stats(ns, &stats);
4487        }
4488    }
4489
4490    trans_len = MIN(sizeof(smart) - off, buf_len);
4491    smart.critical_warning = n->smart_critical_warning;
4492
4493    smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4494                                                        1000));
4495    smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4496                                                           1000));
4497    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4498    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4499
4500    smart.temperature = cpu_to_le16(n->temperature);
4501
4502    if ((n->temperature >= n->features.temp_thresh_hi) ||
4503        (n->temperature <= n->features.temp_thresh_low)) {
4504        smart.critical_warning |= NVME_SMART_TEMPERATURE;
4505    }
4506
4507    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4508    smart.power_on_hours[0] =
4509        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4510
4511    if (!rae) {
4512        nvme_clear_events(n, NVME_AER_TYPE_SMART);
4513    }
4514
4515    return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4516}
4517
4518static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4519                                 NvmeRequest *req)
4520{
4521    uint32_t trans_len;
4522    NvmeFwSlotInfoLog fw_log = {
4523        .afi = 0x1,
4524    };
4525
4526    if (off >= sizeof(fw_log)) {
4527        return NVME_INVALID_FIELD | NVME_DNR;
4528    }
4529
4530    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4531    trans_len = MIN(sizeof(fw_log) - off, buf_len);
4532
4533    return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4534}
4535
4536static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4537                                uint64_t off, NvmeRequest *req)
4538{
4539    uint32_t trans_len;
4540    NvmeErrorLog errlog;
4541
4542    if (off >= sizeof(errlog)) {
4543        return NVME_INVALID_FIELD | NVME_DNR;
4544    }
4545
4546    if (!rae) {
4547        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4548    }
4549
4550    memset(&errlog, 0x0, sizeof(errlog));
4551    trans_len = MIN(sizeof(errlog) - off, buf_len);
4552
4553    return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4554}
4555
4556static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4557                                    uint64_t off, NvmeRequest *req)
4558{
4559    uint32_t nslist[1024];
4560    uint32_t trans_len;
4561    int i = 0;
4562    uint32_t nsid;
4563
4564    if (off >= sizeof(nslist)) {
4565        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4566        return NVME_INVALID_FIELD | NVME_DNR;
4567    }
4568
4569    memset(nslist, 0x0, sizeof(nslist));
4570    trans_len = MIN(sizeof(nslist) - off, buf_len);
4571
4572    while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4573            NVME_CHANGED_NSID_SIZE) {
4574        /*
4575         * If more than 1024 namespaces, the first entry in the log page should
4576         * be set to FFFFFFFFh and the others to 0 as spec.
4577         */
4578        if (i == ARRAY_SIZE(nslist)) {
4579            memset(nslist, 0x0, sizeof(nslist));
4580            nslist[0] = 0xffffffff;
4581            break;
4582        }
4583
4584        nslist[i++] = nsid;
4585        clear_bit(nsid, n->changed_nsids);
4586    }
4587
4588    /*
4589     * Remove all the remaining list entries in case returns directly due to
4590     * more than 1024 namespaces.
4591     */
4592    if (nslist[0] == 0xffffffff) {
4593        bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4594    }
4595
4596    if (!rae) {
4597        nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4598    }
4599
4600    return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4601}
4602
4603static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4604                                 uint64_t off, NvmeRequest *req)
4605{
4606    NvmeEffectsLog log = {};
4607    const uint32_t *src_iocs = NULL;
4608    uint32_t trans_len;
4609
4610    if (off >= sizeof(log)) {
4611        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4612        return NVME_INVALID_FIELD | NVME_DNR;
4613    }
4614
4615    switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4616    case NVME_CC_CSS_NVM:
4617        src_iocs = nvme_cse_iocs_nvm;
4618        /* fall through */
4619    case NVME_CC_CSS_ADMIN_ONLY:
4620        break;
4621    case NVME_CC_CSS_CSI:
4622        switch (csi) {
4623        case NVME_CSI_NVM:
4624            src_iocs = nvme_cse_iocs_nvm;
4625            break;
4626        case NVME_CSI_ZONED:
4627            src_iocs = nvme_cse_iocs_zoned;
4628            break;
4629        }
4630    }
4631
4632    memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4633
4634    if (src_iocs) {
4635        memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4636    }
4637
4638    trans_len = MIN(sizeof(log) - off, buf_len);
4639
4640    return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4641}
4642
4643static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4644{
4645    NvmeCmd *cmd = &req->cmd;
4646
4647    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4648    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4649    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4650    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4651    uint8_t  lid = dw10 & 0xff;
4652    uint8_t  lsp = (dw10 >> 8) & 0xf;
4653    uint8_t  rae = (dw10 >> 15) & 0x1;
4654    uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4655    uint32_t numdl, numdu;
4656    uint64_t off, lpol, lpou;
4657    size_t   len;
4658    uint16_t status;
4659
4660    numdl = (dw10 >> 16);
4661    numdu = (dw11 & 0xffff);
4662    lpol = dw12;
4663    lpou = dw13;
4664
4665    len = (((numdu << 16) | numdl) + 1) << 2;
4666    off = (lpou << 32ULL) | lpol;
4667
4668    if (off & 0x3) {
4669        return NVME_INVALID_FIELD | NVME_DNR;
4670    }
4671
4672    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4673
4674    status = nvme_check_mdts(n, len);
4675    if (status) {
4676        return status;
4677    }
4678
4679    switch (lid) {
4680    case NVME_LOG_ERROR_INFO:
4681        return nvme_error_info(n, rae, len, off, req);
4682    case NVME_LOG_SMART_INFO:
4683        return nvme_smart_info(n, rae, len, off, req);
4684    case NVME_LOG_FW_SLOT_INFO:
4685        return nvme_fw_log_info(n, len, off, req);
4686    case NVME_LOG_CHANGED_NSLIST:
4687        return nvme_changed_nslist(n, rae, len, off, req);
4688    case NVME_LOG_CMD_EFFECTS:
4689        return nvme_cmd_effects(n, csi, len, off, req);
4690    default:
4691        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4692        return NVME_INVALID_FIELD | NVME_DNR;
4693    }
4694}
4695
4696static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4697{
4698    uint16_t offset = (cq->cqid << 3) + (1 << 2);
4699
4700    n->cq[cq->cqid] = NULL;
4701    timer_free(cq->timer);
4702    if (cq->ioeventfd_enabled) {
4703        memory_region_del_eventfd(&n->iomem,
4704                                  0x1000 + offset, 4, false, 0, &cq->notifier);
4705        event_notifier_set_handler(&cq->notifier, NULL);
4706        event_notifier_cleanup(&cq->notifier);
4707    }
4708    if (msix_enabled(&n->parent_obj)) {
4709        msix_vector_unuse(&n->parent_obj, cq->vector);
4710    }
4711    if (cq->cqid) {
4712        g_free(cq);
4713    }
4714}
4715
4716static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4717{
4718    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4719    NvmeCQueue *cq;
4720    uint16_t qid = le16_to_cpu(c->qid);
4721
4722    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4723        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4724        return NVME_INVALID_CQID | NVME_DNR;
4725    }
4726
4727    cq = n->cq[qid];
4728    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4729        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4730        return NVME_INVALID_QUEUE_DEL;
4731    }
4732
4733    if (cq->irq_enabled && cq->tail != cq->head) {
4734        n->cq_pending--;
4735    }
4736
4737    nvme_irq_deassert(n, cq);
4738    trace_pci_nvme_del_cq(qid);
4739    nvme_free_cq(cq, n);
4740    return NVME_SUCCESS;
4741}
4742
4743static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4744                         uint16_t cqid, uint16_t vector, uint16_t size,
4745                         uint16_t irq_enabled)
4746{
4747    int ret;
4748
4749    if (msix_enabled(&n->parent_obj)) {
4750        ret = msix_vector_use(&n->parent_obj, vector);
4751        assert(ret == 0);
4752    }
4753    cq->ctrl = n;
4754    cq->cqid = cqid;
4755    cq->size = size;
4756    cq->dma_addr = dma_addr;
4757    cq->phase = 1;
4758    cq->irq_enabled = irq_enabled;
4759    cq->vector = vector;
4760    cq->head = cq->tail = 0;
4761    QTAILQ_INIT(&cq->req_list);
4762    QTAILQ_INIT(&cq->sq_list);
4763    if (n->dbbuf_enabled) {
4764        cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4765        cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4766
4767        if (n->params.ioeventfd && cqid != 0) {
4768            if (!nvme_init_cq_ioeventfd(cq)) {
4769                cq->ioeventfd_enabled = true;
4770            }
4771        }
4772    }
4773    n->cq[cqid] = cq;
4774    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4775}
4776
4777static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4778{
4779    NvmeCQueue *cq;
4780    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4781    uint16_t cqid = le16_to_cpu(c->cqid);
4782    uint16_t vector = le16_to_cpu(c->irq_vector);
4783    uint16_t qsize = le16_to_cpu(c->qsize);
4784    uint16_t qflags = le16_to_cpu(c->cq_flags);
4785    uint64_t prp1 = le64_to_cpu(c->prp1);
4786
4787    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4788                             NVME_CQ_FLAGS_IEN(qflags) != 0);
4789
4790    if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4791        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4792        return NVME_INVALID_QID | NVME_DNR;
4793    }
4794    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4795        trace_pci_nvme_err_invalid_create_cq_size(qsize);
4796        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4797    }
4798    if (unlikely(prp1 & (n->page_size - 1))) {
4799        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4800        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4801    }
4802    if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4803        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4804        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4805    }
4806    if (unlikely(vector >= n->conf_msix_qsize)) {
4807        trace_pci_nvme_err_invalid_create_cq_vector(vector);
4808        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4809    }
4810    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4811        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4812        return NVME_INVALID_FIELD | NVME_DNR;
4813    }
4814
4815    cq = g_malloc0(sizeof(*cq));
4816    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4817                 NVME_CQ_FLAGS_IEN(qflags));
4818
4819    /*
4820     * It is only required to set qs_created when creating a completion queue;
4821     * creating a submission queue without a matching completion queue will
4822     * fail.
4823     */
4824    n->qs_created = true;
4825    return NVME_SUCCESS;
4826}
4827
4828static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4829{
4830    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4831
4832    return nvme_c2h(n, id, sizeof(id), req);
4833}
4834
4835static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4836{
4837    trace_pci_nvme_identify_ctrl();
4838
4839    return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4840}
4841
4842static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4843{
4844    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4845    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4846    NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4847
4848    trace_pci_nvme_identify_ctrl_csi(c->csi);
4849
4850    switch (c->csi) {
4851    case NVME_CSI_NVM:
4852        id_nvm->vsl = n->params.vsl;
4853        id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4854        break;
4855
4856    case NVME_CSI_ZONED:
4857        ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4858        break;
4859
4860    default:
4861        return NVME_INVALID_FIELD | NVME_DNR;
4862    }
4863
4864    return nvme_c2h(n, id, sizeof(id), req);
4865}
4866
4867static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4868{
4869    NvmeNamespace *ns;
4870    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4871    uint32_t nsid = le32_to_cpu(c->nsid);
4872
4873    trace_pci_nvme_identify_ns(nsid);
4874
4875    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4876        return NVME_INVALID_NSID | NVME_DNR;
4877    }
4878
4879    ns = nvme_ns(n, nsid);
4880    if (unlikely(!ns)) {
4881        if (!active) {
4882            ns = nvme_subsys_ns(n->subsys, nsid);
4883            if (!ns) {
4884                return nvme_rpt_empty_id_struct(n, req);
4885            }
4886        } else {
4887            return nvme_rpt_empty_id_struct(n, req);
4888        }
4889    }
4890
4891    if (active || ns->csi == NVME_CSI_NVM) {
4892        return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4893    }
4894
4895    return NVME_INVALID_CMD_SET | NVME_DNR;
4896}
4897
4898static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4899                                        bool attached)
4900{
4901    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4902    uint32_t nsid = le32_to_cpu(c->nsid);
4903    uint16_t min_id = le16_to_cpu(c->ctrlid);
4904    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4905    uint16_t *ids = &list[1];
4906    NvmeNamespace *ns;
4907    NvmeCtrl *ctrl;
4908    int cntlid, nr_ids = 0;
4909
4910    trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4911
4912    if (!n->subsys) {
4913        return NVME_INVALID_FIELD | NVME_DNR;
4914    }
4915
4916    if (attached) {
4917        if (nsid == NVME_NSID_BROADCAST) {
4918            return NVME_INVALID_FIELD | NVME_DNR;
4919        }
4920
4921        ns = nvme_subsys_ns(n->subsys, nsid);
4922        if (!ns) {
4923            return NVME_INVALID_FIELD | NVME_DNR;
4924        }
4925    }
4926
4927    for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4928        ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4929        if (!ctrl) {
4930            continue;
4931        }
4932
4933        if (attached && !nvme_ns(ctrl, nsid)) {
4934            continue;
4935        }
4936
4937        ids[nr_ids++] = cntlid;
4938    }
4939
4940    list[0] = nr_ids;
4941
4942    return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4943}
4944
4945static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4946{
4947    trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4948
4949    return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4950                    sizeof(NvmePriCtrlCap), req);
4951}
4952
4953static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4954{
4955    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4956    uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4957    uint16_t min_id = le16_to_cpu(c->ctrlid);
4958    uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4959    NvmeSecCtrlList list = {0};
4960    uint8_t i;
4961
4962    for (i = 0; i < num_sec_ctrl; i++) {
4963        if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4964            list.numcntl = num_sec_ctrl - i;
4965            memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4966                   list.numcntl * sizeof(NvmeSecCtrlEntry));
4967            break;
4968        }
4969    }
4970
4971    trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4972
4973    return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4974}
4975
4976static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4977                                     bool active)
4978{
4979    NvmeNamespace *ns;
4980    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4981    uint32_t nsid = le32_to_cpu(c->nsid);
4982
4983    trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4984
4985    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4986        return NVME_INVALID_NSID | NVME_DNR;
4987    }
4988
4989    ns = nvme_ns(n, nsid);
4990    if (unlikely(!ns)) {
4991        if (!active) {
4992            ns = nvme_subsys_ns(n->subsys, nsid);
4993            if (!ns) {
4994                return nvme_rpt_empty_id_struct(n, req);
4995            }
4996        } else {
4997            return nvme_rpt_empty_id_struct(n, req);
4998        }
4999    }
5000
5001    if (c->csi == NVME_CSI_NVM) {
5002        return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5003                        req);
5004    } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5005        return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5006                        req);
5007    }
5008
5009    return NVME_INVALID_FIELD | NVME_DNR;
5010}
5011
5012static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5013                                     bool active)
5014{
5015    NvmeNamespace *ns;
5016    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5017    uint32_t min_nsid = le32_to_cpu(c->nsid);
5018    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5019    static const int data_len = sizeof(list);
5020    uint32_t *list_ptr = (uint32_t *)list;
5021    int i, j = 0;
5022
5023    trace_pci_nvme_identify_nslist(min_nsid);
5024
5025    /*
5026     * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5027     * since the Active Namespace ID List should return namespaces with ids
5028     * *higher* than the NSID specified in the command. This is also specified
5029     * in the spec (NVM Express v1.3d, Section 5.15.4).
5030     */
5031    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5032        return NVME_INVALID_NSID | NVME_DNR;
5033    }
5034
5035    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5036        ns = nvme_ns(n, i);
5037        if (!ns) {
5038            if (!active) {
5039                ns = nvme_subsys_ns(n->subsys, i);
5040                if (!ns) {
5041                    continue;
5042                }
5043            } else {
5044                continue;
5045            }
5046        }
5047        if (ns->params.nsid <= min_nsid) {
5048            continue;
5049        }
5050        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5051        if (j == data_len / sizeof(uint32_t)) {
5052            break;
5053        }
5054    }
5055
5056    return nvme_c2h(n, list, data_len, req);
5057}
5058
5059static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5060                                         bool active)
5061{
5062    NvmeNamespace *ns;
5063    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5064    uint32_t min_nsid = le32_to_cpu(c->nsid);
5065    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5066    static const int data_len = sizeof(list);
5067    uint32_t *list_ptr = (uint32_t *)list;
5068    int i, j = 0;
5069
5070    trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5071
5072    /*
5073     * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5074     */
5075    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5076        return NVME_INVALID_NSID | NVME_DNR;
5077    }
5078
5079    if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5080        return NVME_INVALID_FIELD | NVME_DNR;
5081    }
5082
5083    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5084        ns = nvme_ns(n, i);
5085        if (!ns) {
5086            if (!active) {
5087                ns = nvme_subsys_ns(n->subsys, i);
5088                if (!ns) {
5089                    continue;
5090                }
5091            } else {
5092                continue;
5093            }
5094        }
5095        if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5096            continue;
5097        }
5098        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5099        if (j == data_len / sizeof(uint32_t)) {
5100            break;
5101        }
5102    }
5103
5104    return nvme_c2h(n, list, data_len, req);
5105}
5106
5107static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5108{
5109    NvmeNamespace *ns;
5110    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5111    uint32_t nsid = le32_to_cpu(c->nsid);
5112    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5113    uint8_t *pos = list;
5114    struct {
5115        NvmeIdNsDescr hdr;
5116        uint8_t v[NVME_NIDL_UUID];
5117    } QEMU_PACKED uuid = {};
5118    struct {
5119        NvmeIdNsDescr hdr;
5120        uint64_t v;
5121    } QEMU_PACKED eui64 = {};
5122    struct {
5123        NvmeIdNsDescr hdr;
5124        uint8_t v;
5125    } QEMU_PACKED csi = {};
5126
5127    trace_pci_nvme_identify_ns_descr_list(nsid);
5128
5129    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5130        return NVME_INVALID_NSID | NVME_DNR;
5131    }
5132
5133    ns = nvme_ns(n, nsid);
5134    if (unlikely(!ns)) {
5135        return NVME_INVALID_FIELD | NVME_DNR;
5136    }
5137
5138    if (!qemu_uuid_is_null(&ns->params.uuid)) {
5139        uuid.hdr.nidt = NVME_NIDT_UUID;
5140        uuid.hdr.nidl = NVME_NIDL_UUID;
5141        memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5142        memcpy(pos, &uuid, sizeof(uuid));
5143        pos += sizeof(uuid);
5144    }
5145
5146    if (ns->params.eui64) {
5147        eui64.hdr.nidt = NVME_NIDT_EUI64;
5148        eui64.hdr.nidl = NVME_NIDL_EUI64;
5149        eui64.v = cpu_to_be64(ns->params.eui64);
5150        memcpy(pos, &eui64, sizeof(eui64));
5151        pos += sizeof(eui64);
5152    }
5153
5154    csi.hdr.nidt = NVME_NIDT_CSI;
5155    csi.hdr.nidl = NVME_NIDL_CSI;
5156    csi.v = ns->csi;
5157    memcpy(pos, &csi, sizeof(csi));
5158    pos += sizeof(csi);
5159
5160    return nvme_c2h(n, list, sizeof(list), req);
5161}
5162
5163static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5164{
5165    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5166    static const int data_len = sizeof(list);
5167
5168    trace_pci_nvme_identify_cmd_set();
5169
5170    NVME_SET_CSI(*list, NVME_CSI_NVM);
5171    NVME_SET_CSI(*list, NVME_CSI_ZONED);
5172
5173    return nvme_c2h(n, list, data_len, req);
5174}
5175
5176static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5177{
5178    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5179
5180    trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5181                            c->csi);
5182
5183    switch (c->cns) {
5184    case NVME_ID_CNS_NS:
5185        return nvme_identify_ns(n, req, true);
5186    case NVME_ID_CNS_NS_PRESENT:
5187        return nvme_identify_ns(n, req, false);
5188    case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5189        return nvme_identify_ctrl_list(n, req, true);
5190    case NVME_ID_CNS_CTRL_LIST:
5191        return nvme_identify_ctrl_list(n, req, false);
5192    case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5193        return nvme_identify_pri_ctrl_cap(n, req);
5194    case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5195        return nvme_identify_sec_ctrl_list(n, req);
5196    case NVME_ID_CNS_CS_NS:
5197        return nvme_identify_ns_csi(n, req, true);
5198    case NVME_ID_CNS_CS_NS_PRESENT:
5199        return nvme_identify_ns_csi(n, req, false);
5200    case NVME_ID_CNS_CTRL:
5201        return nvme_identify_ctrl(n, req);
5202    case NVME_ID_CNS_CS_CTRL:
5203        return nvme_identify_ctrl_csi(n, req);
5204    case NVME_ID_CNS_NS_ACTIVE_LIST:
5205        return nvme_identify_nslist(n, req, true);
5206    case NVME_ID_CNS_NS_PRESENT_LIST:
5207        return nvme_identify_nslist(n, req, false);
5208    case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5209        return nvme_identify_nslist_csi(n, req, true);
5210    case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5211        return nvme_identify_nslist_csi(n, req, false);
5212    case NVME_ID_CNS_NS_DESCR_LIST:
5213        return nvme_identify_ns_descr_list(n, req);
5214    case NVME_ID_CNS_IO_COMMAND_SET:
5215        return nvme_identify_cmd_set(n, req);
5216    default:
5217        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5218        return NVME_INVALID_FIELD | NVME_DNR;
5219    }
5220}
5221
5222static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5223{
5224    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5225
5226    req->cqe.result = 1;
5227    if (nvme_check_sqid(n, sqid)) {
5228        return NVME_INVALID_FIELD | NVME_DNR;
5229    }
5230
5231    return NVME_SUCCESS;
5232}
5233
5234static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5235{
5236    trace_pci_nvme_setfeat_timestamp(ts);
5237
5238    n->host_timestamp = le64_to_cpu(ts);
5239    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5240}
5241
5242static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5243{
5244    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5245    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5246
5247    union nvme_timestamp {
5248        struct {
5249            uint64_t timestamp:48;
5250            uint64_t sync:1;
5251            uint64_t origin:3;
5252            uint64_t rsvd1:12;
5253        };
5254        uint64_t all;
5255    };
5256
5257    union nvme_timestamp ts;
5258    ts.all = 0;
5259    ts.timestamp = n->host_timestamp + elapsed_time;
5260
5261    /* If the host timestamp is non-zero, set the timestamp origin */
5262    ts.origin = n->host_timestamp ? 0x01 : 0x00;
5263
5264    trace_pci_nvme_getfeat_timestamp(ts.all);
5265
5266    return cpu_to_le64(ts.all);
5267}
5268
5269static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5270{
5271    uint64_t timestamp = nvme_get_timestamp(n);
5272
5273    return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5274}
5275
5276static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5277{
5278    NvmeCmd *cmd = &req->cmd;
5279    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5280    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5281    uint32_t nsid = le32_to_cpu(cmd->nsid);
5282    uint32_t result;
5283    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5284    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5285    uint16_t iv;
5286    NvmeNamespace *ns;
5287    int i;
5288
5289    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5290        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5291    };
5292
5293    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5294
5295    if (!nvme_feature_support[fid]) {
5296        return NVME_INVALID_FIELD | NVME_DNR;
5297    }
5298
5299    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5300        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5301            /*
5302             * The Reservation Notification Mask and Reservation Persistence
5303             * features require a status code of Invalid Field in Command when
5304             * NSID is FFFFFFFFh. Since the device does not support those
5305             * features we can always return Invalid Namespace or Format as we
5306             * should do for all other features.
5307             */
5308            return NVME_INVALID_NSID | NVME_DNR;
5309        }
5310
5311        if (!nvme_ns(n, nsid)) {
5312            return NVME_INVALID_FIELD | NVME_DNR;
5313        }
5314    }
5315
5316    switch (sel) {
5317    case NVME_GETFEAT_SELECT_CURRENT:
5318        break;
5319    case NVME_GETFEAT_SELECT_SAVED:
5320        /* no features are saveable by the controller; fallthrough */
5321    case NVME_GETFEAT_SELECT_DEFAULT:
5322        goto defaults;
5323    case NVME_GETFEAT_SELECT_CAP:
5324        result = nvme_feature_cap[fid];
5325        goto out;
5326    }
5327
5328    switch (fid) {
5329    case NVME_TEMPERATURE_THRESHOLD:
5330        result = 0;
5331
5332        /*
5333         * The controller only implements the Composite Temperature sensor, so
5334         * return 0 for all other sensors.
5335         */
5336        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5337            goto out;
5338        }
5339
5340        switch (NVME_TEMP_THSEL(dw11)) {
5341        case NVME_TEMP_THSEL_OVER:
5342            result = n->features.temp_thresh_hi;
5343            goto out;
5344        case NVME_TEMP_THSEL_UNDER:
5345            result = n->features.temp_thresh_low;
5346            goto out;
5347        }
5348
5349        return NVME_INVALID_FIELD | NVME_DNR;
5350    case NVME_ERROR_RECOVERY:
5351        if (!nvme_nsid_valid(n, nsid)) {
5352            return NVME_INVALID_NSID | NVME_DNR;
5353        }
5354
5355        ns = nvme_ns(n, nsid);
5356        if (unlikely(!ns)) {
5357            return NVME_INVALID_FIELD | NVME_DNR;
5358        }
5359
5360        result = ns->features.err_rec;
5361        goto out;
5362    case NVME_VOLATILE_WRITE_CACHE:
5363        result = 0;
5364        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5365            ns = nvme_ns(n, i);
5366            if (!ns) {
5367                continue;
5368            }
5369
5370            result = blk_enable_write_cache(ns->blkconf.blk);
5371            if (result) {
5372                break;
5373            }
5374        }
5375        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5376        goto out;
5377    case NVME_ASYNCHRONOUS_EVENT_CONF:
5378        result = n->features.async_config;
5379        goto out;
5380    case NVME_TIMESTAMP:
5381        return nvme_get_feature_timestamp(n, req);
5382    case NVME_HOST_BEHAVIOR_SUPPORT:
5383        return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5384                        sizeof(n->features.hbs), req);
5385    default:
5386        break;
5387    }
5388
5389defaults:
5390    switch (fid) {
5391    case NVME_TEMPERATURE_THRESHOLD:
5392        result = 0;
5393
5394        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5395            break;
5396        }
5397
5398        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5399            result = NVME_TEMPERATURE_WARNING;
5400        }
5401
5402        break;
5403    case NVME_NUMBER_OF_QUEUES:
5404        result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5405        trace_pci_nvme_getfeat_numq(result);
5406        break;
5407    case NVME_INTERRUPT_VECTOR_CONF:
5408        iv = dw11 & 0xffff;
5409        if (iv >= n->conf_ioqpairs + 1) {
5410            return NVME_INVALID_FIELD | NVME_DNR;
5411        }
5412
5413        result = iv;
5414        if (iv == n->admin_cq.vector) {
5415            result |= NVME_INTVC_NOCOALESCING;
5416        }
5417        break;
5418    default:
5419        result = nvme_feature_default[fid];
5420        break;
5421    }
5422
5423out:
5424    req->cqe.result = cpu_to_le32(result);
5425    return NVME_SUCCESS;
5426}
5427
5428static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5429{
5430    uint16_t ret;
5431    uint64_t timestamp;
5432
5433    ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5434    if (ret) {
5435        return ret;
5436    }
5437
5438    nvme_set_timestamp(n, timestamp);
5439
5440    return NVME_SUCCESS;
5441}
5442
5443static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5444{
5445    NvmeNamespace *ns = NULL;
5446
5447    NvmeCmd *cmd = &req->cmd;
5448    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5449    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5450    uint32_t nsid = le32_to_cpu(cmd->nsid);
5451    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5452    uint8_t save = NVME_SETFEAT_SAVE(dw10);
5453    uint16_t status;
5454    int i;
5455
5456    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5457
5458    if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5459        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5460    }
5461
5462    if (!nvme_feature_support[fid]) {
5463        return NVME_INVALID_FIELD | NVME_DNR;
5464    }
5465
5466    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5467        if (nsid != NVME_NSID_BROADCAST) {
5468            if (!nvme_nsid_valid(n, nsid)) {
5469                return NVME_INVALID_NSID | NVME_DNR;
5470            }
5471
5472            ns = nvme_ns(n, nsid);
5473            if (unlikely(!ns)) {
5474                return NVME_INVALID_FIELD | NVME_DNR;
5475            }
5476        }
5477    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5478        if (!nvme_nsid_valid(n, nsid)) {
5479            return NVME_INVALID_NSID | NVME_DNR;
5480        }
5481
5482        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5483    }
5484
5485    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5486        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5487    }
5488
5489    switch (fid) {
5490    case NVME_TEMPERATURE_THRESHOLD:
5491        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5492            break;
5493        }
5494
5495        switch (NVME_TEMP_THSEL(dw11)) {
5496        case NVME_TEMP_THSEL_OVER:
5497            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5498            break;
5499        case NVME_TEMP_THSEL_UNDER:
5500            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5501            break;
5502        default:
5503            return NVME_INVALID_FIELD | NVME_DNR;
5504        }
5505
5506        if ((n->temperature >= n->features.temp_thresh_hi) ||
5507            (n->temperature <= n->features.temp_thresh_low)) {
5508            nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5509        }
5510
5511        break;
5512    case NVME_ERROR_RECOVERY:
5513        if (nsid == NVME_NSID_BROADCAST) {
5514            for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5515                ns = nvme_ns(n, i);
5516
5517                if (!ns) {
5518                    continue;
5519                }
5520
5521                if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5522                    ns->features.err_rec = dw11;
5523                }
5524            }
5525
5526            break;
5527        }
5528
5529        assert(ns);
5530        if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5531            ns->features.err_rec = dw11;
5532        }
5533        break;
5534    case NVME_VOLATILE_WRITE_CACHE:
5535        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5536            ns = nvme_ns(n, i);
5537            if (!ns) {
5538                continue;
5539            }
5540
5541            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5542                blk_flush(ns->blkconf.blk);
5543            }
5544
5545            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5546        }
5547
5548        break;
5549
5550    case NVME_NUMBER_OF_QUEUES:
5551        if (n->qs_created) {
5552            return NVME_CMD_SEQ_ERROR | NVME_DNR;
5553        }
5554
5555        /*
5556         * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5557         * and NSQR.
5558         */
5559        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5560            return NVME_INVALID_FIELD | NVME_DNR;
5561        }
5562
5563        trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5564                                    ((dw11 >> 16) & 0xffff) + 1,
5565                                    n->conf_ioqpairs,
5566                                    n->conf_ioqpairs);
5567        req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5568                                      ((n->conf_ioqpairs - 1) << 16));
5569        break;
5570    case NVME_ASYNCHRONOUS_EVENT_CONF:
5571        n->features.async_config = dw11;
5572        break;
5573    case NVME_TIMESTAMP:
5574        return nvme_set_feature_timestamp(n, req);
5575    case NVME_HOST_BEHAVIOR_SUPPORT:
5576        status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5577                          sizeof(n->features.hbs), req);
5578        if (status) {
5579            return status;
5580        }
5581
5582        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5583            ns = nvme_ns(n, i);
5584
5585            if (!ns) {
5586                continue;
5587            }
5588
5589            ns->id_ns.nlbaf = ns->nlbaf - 1;
5590            if (!n->features.hbs.lbafee) {
5591                ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5592            }
5593        }
5594
5595        return status;
5596    case NVME_COMMAND_SET_PROFILE:
5597        if (dw11 & 0x1ff) {
5598            trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5599            return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5600        }
5601        break;
5602    default:
5603        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5604    }
5605    return NVME_SUCCESS;
5606}
5607
5608static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5609{
5610    trace_pci_nvme_aer(nvme_cid(req));
5611
5612    if (n->outstanding_aers > n->params.aerl) {
5613        trace_pci_nvme_aer_aerl_exceeded();
5614        return NVME_AER_LIMIT_EXCEEDED;
5615    }
5616
5617    n->aer_reqs[n->outstanding_aers] = req;
5618    n->outstanding_aers++;
5619
5620    if (!QTAILQ_EMPTY(&n->aer_queue)) {
5621        nvme_process_aers(n);
5622    }
5623
5624    return NVME_NO_COMPLETE;
5625}
5626
5627static void nvme_update_dmrsl(NvmeCtrl *n)
5628{
5629    int nsid;
5630
5631    for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5632        NvmeNamespace *ns = nvme_ns(n, nsid);
5633        if (!ns) {
5634            continue;
5635        }
5636
5637        n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5638                                BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5639    }
5640}
5641
5642static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5643{
5644    uint32_t cc = ldl_le_p(&n->bar.cc);
5645
5646    ns->iocs = nvme_cse_iocs_none;
5647    switch (ns->csi) {
5648    case NVME_CSI_NVM:
5649        if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5650            ns->iocs = nvme_cse_iocs_nvm;
5651        }
5652        break;
5653    case NVME_CSI_ZONED:
5654        if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5655            ns->iocs = nvme_cse_iocs_zoned;
5656        } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5657            ns->iocs = nvme_cse_iocs_nvm;
5658        }
5659        break;
5660    }
5661}
5662
5663static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5664{
5665    NvmeNamespace *ns;
5666    NvmeCtrl *ctrl;
5667    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5668    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5669    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5670    uint8_t sel = dw10 & 0xf;
5671    uint16_t *nr_ids = &list[0];
5672    uint16_t *ids = &list[1];
5673    uint16_t ret;
5674    int i;
5675
5676    trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5677
5678    if (!nvme_nsid_valid(n, nsid)) {
5679        return NVME_INVALID_NSID | NVME_DNR;
5680    }
5681
5682    ns = nvme_subsys_ns(n->subsys, nsid);
5683    if (!ns) {
5684        return NVME_INVALID_FIELD | NVME_DNR;
5685    }
5686
5687    ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5688    if (ret) {
5689        return ret;
5690    }
5691
5692    if (!*nr_ids) {
5693        return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5694    }
5695
5696    *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5697    for (i = 0; i < *nr_ids; i++) {
5698        ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5699        if (!ctrl) {
5700            return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5701        }
5702
5703        switch (sel) {
5704        case NVME_NS_ATTACHMENT_ATTACH:
5705            if (nvme_ns(ctrl, nsid)) {
5706                return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5707            }
5708
5709            if (ns->attached && !ns->params.shared) {
5710                return NVME_NS_PRIVATE | NVME_DNR;
5711            }
5712
5713            nvme_attach_ns(ctrl, ns);
5714            nvme_select_iocs_ns(ctrl, ns);
5715
5716            break;
5717
5718        case NVME_NS_ATTACHMENT_DETACH:
5719            if (!nvme_ns(ctrl, nsid)) {
5720                return NVME_NS_NOT_ATTACHED | NVME_DNR;
5721            }
5722
5723            ctrl->namespaces[nsid] = NULL;
5724            ns->attached--;
5725
5726            nvme_update_dmrsl(ctrl);
5727
5728            break;
5729
5730        default:
5731            return NVME_INVALID_FIELD | NVME_DNR;
5732        }
5733
5734        /*
5735         * Add namespace id to the changed namespace id list for event clearing
5736         * via Get Log Page command.
5737         */
5738        if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5739            nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5740                               NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5741                               NVME_LOG_CHANGED_NSLIST);
5742        }
5743    }
5744
5745    return NVME_SUCCESS;
5746}
5747
5748typedef struct NvmeFormatAIOCB {
5749    BlockAIOCB common;
5750    BlockAIOCB *aiocb;
5751    QEMUBH *bh;
5752    NvmeRequest *req;
5753    int ret;
5754
5755    NvmeNamespace *ns;
5756    uint32_t nsid;
5757    bool broadcast;
5758    int64_t offset;
5759
5760    uint8_t lbaf;
5761    uint8_t mset;
5762    uint8_t pi;
5763    uint8_t pil;
5764} NvmeFormatAIOCB;
5765
5766static void nvme_format_bh(void *opaque);
5767
5768static void nvme_format_cancel(BlockAIOCB *aiocb)
5769{
5770    NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5771
5772    if (iocb->aiocb) {
5773        blk_aio_cancel_async(iocb->aiocb);
5774    }
5775}
5776
5777static const AIOCBInfo nvme_format_aiocb_info = {
5778    .aiocb_size = sizeof(NvmeFormatAIOCB),
5779    .cancel_async = nvme_format_cancel,
5780    .get_aio_context = nvme_get_aio_context,
5781};
5782
5783static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5784                            uint8_t pi, uint8_t pil)
5785{
5786    uint8_t lbafl = lbaf & 0xf;
5787    uint8_t lbafu = lbaf >> 4;
5788
5789    trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5790
5791    ns->id_ns.dps = (pil << 3) | pi;
5792    ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5793
5794    nvme_ns_init_format(ns);
5795}
5796
5797static void nvme_format_ns_cb(void *opaque, int ret)
5798{
5799    NvmeFormatAIOCB *iocb = opaque;
5800    NvmeNamespace *ns = iocb->ns;
5801    int bytes;
5802
5803    if (ret < 0) {
5804        iocb->ret = ret;
5805        goto done;
5806    }
5807
5808    assert(ns);
5809
5810    if (iocb->offset < ns->size) {
5811        bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5812
5813        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5814                                            bytes, BDRV_REQ_MAY_UNMAP,
5815                                            nvme_format_ns_cb, iocb);
5816
5817        iocb->offset += bytes;
5818        return;
5819    }
5820
5821    nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5822    ns->status = 0x0;
5823    iocb->ns = NULL;
5824    iocb->offset = 0;
5825
5826done:
5827    iocb->aiocb = NULL;
5828    qemu_bh_schedule(iocb->bh);
5829}
5830
5831static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5832{
5833    if (ns->params.zoned) {
5834        return NVME_INVALID_FORMAT | NVME_DNR;
5835    }
5836
5837    if (lbaf > ns->id_ns.nlbaf) {
5838        return NVME_INVALID_FORMAT | NVME_DNR;
5839    }
5840
5841    if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5842        return NVME_INVALID_FORMAT | NVME_DNR;
5843    }
5844
5845    if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5846        return NVME_INVALID_FIELD | NVME_DNR;
5847    }
5848
5849    return NVME_SUCCESS;
5850}
5851
5852static void nvme_format_bh(void *opaque)
5853{
5854    NvmeFormatAIOCB *iocb = opaque;
5855    NvmeRequest *req = iocb->req;
5856    NvmeCtrl *n = nvme_ctrl(req);
5857    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5858    uint8_t lbaf = dw10 & 0xf;
5859    uint8_t pi = (dw10 >> 5) & 0x7;
5860    uint16_t status;
5861    int i;
5862
5863    if (iocb->ret < 0) {
5864        goto done;
5865    }
5866
5867    if (iocb->broadcast) {
5868        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5869            iocb->ns = nvme_ns(n, i);
5870            if (iocb->ns) {
5871                iocb->nsid = i;
5872                break;
5873            }
5874        }
5875    }
5876
5877    if (!iocb->ns) {
5878        goto done;
5879    }
5880
5881    status = nvme_format_check(iocb->ns, lbaf, pi);
5882    if (status) {
5883        req->status = status;
5884        goto done;
5885    }
5886
5887    iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5888    nvme_format_ns_cb(iocb, 0);
5889    return;
5890
5891done:
5892    qemu_bh_delete(iocb->bh);
5893    iocb->bh = NULL;
5894
5895    iocb->common.cb(iocb->common.opaque, iocb->ret);
5896
5897    qemu_aio_unref(iocb);
5898}
5899
5900static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5901{
5902    NvmeFormatAIOCB *iocb;
5903    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5904    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5905    uint8_t lbaf = dw10 & 0xf;
5906    uint8_t mset = (dw10 >> 4) & 0x1;
5907    uint8_t pi = (dw10 >> 5) & 0x7;
5908    uint8_t pil = (dw10 >> 8) & 0x1;
5909    uint8_t lbafu = (dw10 >> 12) & 0x3;
5910    uint16_t status;
5911
5912    iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5913
5914    iocb->req = req;
5915    iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5916    iocb->ret = 0;
5917    iocb->ns = NULL;
5918    iocb->nsid = 0;
5919    iocb->lbaf = lbaf;
5920    iocb->mset = mset;
5921    iocb->pi = pi;
5922    iocb->pil = pil;
5923    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5924    iocb->offset = 0;
5925
5926    if (n->features.hbs.lbafee) {
5927        iocb->lbaf |= lbafu << 4;
5928    }
5929
5930    if (!iocb->broadcast) {
5931        if (!nvme_nsid_valid(n, nsid)) {
5932            status = NVME_INVALID_NSID | NVME_DNR;
5933            goto out;
5934        }
5935
5936        iocb->ns = nvme_ns(n, nsid);
5937        if (!iocb->ns) {
5938            status = NVME_INVALID_FIELD | NVME_DNR;
5939            goto out;
5940        }
5941    }
5942
5943    req->aiocb = &iocb->common;
5944    qemu_bh_schedule(iocb->bh);
5945
5946    return NVME_NO_COMPLETE;
5947
5948out:
5949    qemu_bh_delete(iocb->bh);
5950    iocb->bh = NULL;
5951    qemu_aio_unref(iocb);
5952    return status;
5953}
5954
5955static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5956                                  int *num_prim, int *num_sec)
5957{
5958    *num_total = le32_to_cpu(rt ?
5959                             n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5960    *num_prim = le16_to_cpu(rt ?
5961                            n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5962    *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5963}
5964
5965static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5966                                             uint16_t cntlid, uint8_t rt,
5967                                             int nr)
5968{
5969    int num_total, num_prim, num_sec;
5970
5971    if (cntlid != n->cntlid) {
5972        return NVME_INVALID_CTRL_ID | NVME_DNR;
5973    }
5974
5975    nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5976
5977    if (nr > num_total) {
5978        return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5979    }
5980
5981    if (nr > num_total - num_sec) {
5982        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5983    }
5984
5985    if (rt) {
5986        n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5987    } else {
5988        n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5989    }
5990
5991    req->cqe.result = cpu_to_le32(nr);
5992    return req->status;
5993}
5994
5995static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5996                                 uint8_t rt, int nr)
5997{
5998    int prev_nr, prev_total;
5999
6000    if (rt) {
6001        prev_nr = le16_to_cpu(sctrl->nvi);
6002        prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6003        sctrl->nvi = cpu_to_le16(nr);
6004        n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6005    } else {
6006        prev_nr = le16_to_cpu(sctrl->nvq);
6007        prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6008        sctrl->nvq = cpu_to_le16(nr);
6009        n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6010    }
6011}
6012
6013static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6014                                            uint16_t cntlid, uint8_t rt, int nr)
6015{
6016    int num_total, num_prim, num_sec, num_free, diff, limit;
6017    NvmeSecCtrlEntry *sctrl;
6018
6019    sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6020    if (!sctrl) {
6021        return NVME_INVALID_CTRL_ID | NVME_DNR;
6022    }
6023
6024    if (sctrl->scs) {
6025        return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6026    }
6027
6028    limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6029    if (nr > limit) {
6030        return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6031    }
6032
6033    nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6034    num_free = num_total - num_prim - num_sec;
6035    diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6036
6037    if (diff > num_free) {
6038        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6039    }
6040
6041    nvme_update_virt_res(n, sctrl, rt, nr);
6042    req->cqe.result = cpu_to_le32(nr);
6043
6044    return req->status;
6045}
6046
6047static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6048{
6049    NvmeCtrl *sn = NULL;
6050    NvmeSecCtrlEntry *sctrl;
6051    int vf_index;
6052
6053    sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6054    if (!sctrl) {
6055        return NVME_INVALID_CTRL_ID | NVME_DNR;
6056    }
6057
6058    if (!pci_is_vf(&n->parent_obj)) {
6059        vf_index = le16_to_cpu(sctrl->vfn) - 1;
6060        sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
6061    }
6062
6063    if (online) {
6064        if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6065            return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6066        }
6067
6068        if (!sctrl->scs) {
6069            sctrl->scs = 0x1;
6070            nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6071        }
6072    } else {
6073        nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6074        nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6075
6076        if (sctrl->scs) {
6077            sctrl->scs = 0x0;
6078            if (sn) {
6079                nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6080            }
6081        }
6082    }
6083
6084    return NVME_SUCCESS;
6085}
6086
6087static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6088{
6089    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6090    uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6091    uint8_t act = dw10 & 0xf;
6092    uint8_t rt = (dw10 >> 8) & 0x7;
6093    uint16_t cntlid = (dw10 >> 16) & 0xffff;
6094    int nr = dw11 & 0xffff;
6095
6096    trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6097
6098    if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6099        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6100    }
6101
6102    switch (act) {
6103    case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6104        return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6105    case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6106        return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6107    case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6108        return nvme_virt_set_state(n, cntlid, true);
6109    case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6110        return nvme_virt_set_state(n, cntlid, false);
6111    default:
6112        return NVME_INVALID_FIELD | NVME_DNR;
6113    }
6114}
6115
6116static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6117{
6118    uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6119    uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6120    int i;
6121
6122    /* Address should be page aligned */
6123    if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6124        return NVME_INVALID_FIELD | NVME_DNR;
6125    }
6126
6127    /* Save shadow buffer base addr for use during queue creation */
6128    n->dbbuf_dbs = dbs_addr;
6129    n->dbbuf_eis = eis_addr;
6130    n->dbbuf_enabled = true;
6131
6132    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6133        NvmeSQueue *sq = n->sq[i];
6134        NvmeCQueue *cq = n->cq[i];
6135
6136        if (sq) {
6137            /*
6138             * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6139             * nvme_process_db() uses this hard-coded way to calculate
6140             * doorbell offsets. Be consistent with that here.
6141             */
6142            sq->db_addr = dbs_addr + (i << 3);
6143            sq->ei_addr = eis_addr + (i << 3);
6144            pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6145                    sizeof(sq->tail));
6146
6147            if (n->params.ioeventfd && sq->sqid != 0) {
6148                if (!nvme_init_sq_ioeventfd(sq)) {
6149                    sq->ioeventfd_enabled = true;
6150                }
6151            }
6152        }
6153
6154        if (cq) {
6155            /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6156            cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6157            cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6158            pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6159                    sizeof(cq->head));
6160
6161            if (n->params.ioeventfd && cq->cqid != 0) {
6162                if (!nvme_init_cq_ioeventfd(cq)) {
6163                    cq->ioeventfd_enabled = true;
6164                }
6165            }
6166        }
6167    }
6168
6169    trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6170
6171    return NVME_SUCCESS;
6172}
6173
6174static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6175{
6176    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6177                             nvme_adm_opc_str(req->cmd.opcode));
6178
6179    if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6180        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6181        return NVME_INVALID_OPCODE | NVME_DNR;
6182    }
6183
6184    /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6185    if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6186        return NVME_INVALID_FIELD | NVME_DNR;
6187    }
6188
6189    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6190        return NVME_INVALID_FIELD;
6191    }
6192
6193    switch (req->cmd.opcode) {
6194    case NVME_ADM_CMD_DELETE_SQ:
6195        return nvme_del_sq(n, req);
6196    case NVME_ADM_CMD_CREATE_SQ:
6197        return nvme_create_sq(n, req);
6198    case NVME_ADM_CMD_GET_LOG_PAGE:
6199        return nvme_get_log(n, req);
6200    case NVME_ADM_CMD_DELETE_CQ:
6201        return nvme_del_cq(n, req);
6202    case NVME_ADM_CMD_CREATE_CQ:
6203        return nvme_create_cq(n, req);
6204    case NVME_ADM_CMD_IDENTIFY:
6205        return nvme_identify(n, req);
6206    case NVME_ADM_CMD_ABORT:
6207        return nvme_abort(n, req);
6208    case NVME_ADM_CMD_SET_FEATURES:
6209        return nvme_set_feature(n, req);
6210    case NVME_ADM_CMD_GET_FEATURES:
6211        return nvme_get_feature(n, req);
6212    case NVME_ADM_CMD_ASYNC_EV_REQ:
6213        return nvme_aer(n, req);
6214    case NVME_ADM_CMD_NS_ATTACHMENT:
6215        return nvme_ns_attachment(n, req);
6216    case NVME_ADM_CMD_VIRT_MNGMT:
6217        return nvme_virt_mngmt(n, req);
6218    case NVME_ADM_CMD_DBBUF_CONFIG:
6219        return nvme_dbbuf_config(n, req);
6220    case NVME_ADM_CMD_FORMAT_NVM:
6221        return nvme_format(n, req);
6222    default:
6223        assert(false);
6224    }
6225
6226    return NVME_INVALID_OPCODE | NVME_DNR;
6227}
6228
6229static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6230{
6231    pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6232                  sizeof(sq->tail));
6233    trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6234}
6235
6236static void nvme_update_sq_tail(NvmeSQueue *sq)
6237{
6238    pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6239                 sizeof(sq->tail));
6240    trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6241}
6242
6243static void nvme_process_sq(void *opaque)
6244{
6245    NvmeSQueue *sq = opaque;
6246    NvmeCtrl *n = sq->ctrl;
6247    NvmeCQueue *cq = n->cq[sq->cqid];
6248
6249    uint16_t status;
6250    hwaddr addr;
6251    NvmeCmd cmd;
6252    NvmeRequest *req;
6253
6254    if (n->dbbuf_enabled) {
6255        nvme_update_sq_tail(sq);
6256    }
6257
6258    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6259        addr = sq->dma_addr + sq->head * n->sqe_size;
6260        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6261            trace_pci_nvme_err_addr_read(addr);
6262            trace_pci_nvme_err_cfs();
6263            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6264            break;
6265        }
6266        nvme_inc_sq_head(sq);
6267
6268        req = QTAILQ_FIRST(&sq->req_list);
6269        QTAILQ_REMOVE(&sq->req_list, req, entry);
6270        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6271        nvme_req_clear(req);
6272        req->cqe.cid = cmd.cid;
6273        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6274
6275        status = sq->sqid ? nvme_io_cmd(n, req) :
6276            nvme_admin_cmd(n, req);
6277        if (status != NVME_NO_COMPLETE) {
6278            req->status = status;
6279            nvme_enqueue_req_completion(cq, req);
6280        }
6281
6282        if (n->dbbuf_enabled) {
6283            nvme_update_sq_eventidx(sq);
6284            nvme_update_sq_tail(sq);
6285        }
6286    }
6287}
6288
6289static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6290{
6291    uint8_t *config;
6292
6293    if (!msix_present(pci_dev)) {
6294        return;
6295    }
6296
6297    assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6298
6299    config = pci_dev->config + pci_dev->msix_cap;
6300    pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6301                         table_size - 1);
6302}
6303
6304static void nvme_activate_virt_res(NvmeCtrl *n)
6305{
6306    PCIDevice *pci_dev = &n->parent_obj;
6307    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6308    NvmeSecCtrlEntry *sctrl;
6309
6310    /* -1 to account for the admin queue */
6311    if (pci_is_vf(pci_dev)) {
6312        sctrl = nvme_sctrl(n);
6313        cap->vqprt = sctrl->nvq;
6314        cap->viprt = sctrl->nvi;
6315        n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6316        n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6317    } else {
6318        cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6319        cap->virfap = n->next_pri_ctrl_cap.virfap;
6320        n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6321                           le16_to_cpu(cap->vqrfap) - 1;
6322        n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6323                             le16_to_cpu(cap->virfap);
6324    }
6325}
6326
6327static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6328{
6329    PCIDevice *pci_dev = &n->parent_obj;
6330    NvmeSecCtrlEntry *sctrl;
6331    NvmeNamespace *ns;
6332    int i;
6333
6334    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6335        ns = nvme_ns(n, i);
6336        if (!ns) {
6337            continue;
6338        }
6339
6340        nvme_ns_drain(ns);
6341    }
6342
6343    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6344        if (n->sq[i] != NULL) {
6345            nvme_free_sq(n->sq[i], n);
6346        }
6347    }
6348    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6349        if (n->cq[i] != NULL) {
6350            nvme_free_cq(n->cq[i], n);
6351        }
6352    }
6353
6354    while (!QTAILQ_EMPTY(&n->aer_queue)) {
6355        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6356        QTAILQ_REMOVE(&n->aer_queue, event, entry);
6357        g_free(event);
6358    }
6359
6360    if (n->params.sriov_max_vfs) {
6361        if (!pci_is_vf(pci_dev)) {
6362            for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6363                sctrl = &n->sec_ctrl_list.sec[i];
6364                nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6365            }
6366
6367            if (rst != NVME_RESET_CONTROLLER) {
6368                pcie_sriov_pf_disable_vfs(pci_dev);
6369            }
6370        }
6371
6372        if (rst != NVME_RESET_CONTROLLER) {
6373            nvme_activate_virt_res(n);
6374        }
6375    }
6376
6377    n->aer_queued = 0;
6378    n->aer_mask = 0;
6379    n->outstanding_aers = 0;
6380    n->qs_created = false;
6381
6382    nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6383
6384    if (pci_is_vf(pci_dev)) {
6385        sctrl = nvme_sctrl(n);
6386
6387        stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6388    } else {
6389        stl_le_p(&n->bar.csts, 0);
6390    }
6391
6392    stl_le_p(&n->bar.intms, 0);
6393    stl_le_p(&n->bar.intmc, 0);
6394    stl_le_p(&n->bar.cc, 0);
6395
6396    n->dbbuf_dbs = 0;
6397    n->dbbuf_eis = 0;
6398    n->dbbuf_enabled = false;
6399}
6400
6401static void nvme_ctrl_shutdown(NvmeCtrl *n)
6402{
6403    NvmeNamespace *ns;
6404    int i;
6405
6406    if (n->pmr.dev) {
6407        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6408    }
6409
6410    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6411        ns = nvme_ns(n, i);
6412        if (!ns) {
6413            continue;
6414        }
6415
6416        nvme_ns_shutdown(ns);
6417    }
6418}
6419
6420static void nvme_select_iocs(NvmeCtrl *n)
6421{
6422    NvmeNamespace *ns;
6423    int i;
6424
6425    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6426        ns = nvme_ns(n, i);
6427        if (!ns) {
6428            continue;
6429        }
6430
6431        nvme_select_iocs_ns(n, ns);
6432    }
6433}
6434
6435static int nvme_start_ctrl(NvmeCtrl *n)
6436{
6437    uint64_t cap = ldq_le_p(&n->bar.cap);
6438    uint32_t cc = ldl_le_p(&n->bar.cc);
6439    uint32_t aqa = ldl_le_p(&n->bar.aqa);
6440    uint64_t asq = ldq_le_p(&n->bar.asq);
6441    uint64_t acq = ldq_le_p(&n->bar.acq);
6442    uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6443    uint32_t page_size = 1 << page_bits;
6444    NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6445
6446    if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6447        trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6448                                                le16_to_cpu(sctrl->nvq),
6449                                                sctrl->scs ? "ONLINE" :
6450                                                             "OFFLINE");
6451        return -1;
6452    }
6453    if (unlikely(n->cq[0])) {
6454        trace_pci_nvme_err_startfail_cq();
6455        return -1;
6456    }
6457    if (unlikely(n->sq[0])) {
6458        trace_pci_nvme_err_startfail_sq();
6459        return -1;
6460    }
6461    if (unlikely(asq & (page_size - 1))) {
6462        trace_pci_nvme_err_startfail_asq_misaligned(asq);
6463        return -1;
6464    }
6465    if (unlikely(acq & (page_size - 1))) {
6466        trace_pci_nvme_err_startfail_acq_misaligned(acq);
6467        return -1;
6468    }
6469    if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6470        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6471        return -1;
6472    }
6473    if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6474        trace_pci_nvme_err_startfail_page_too_small(
6475                    NVME_CC_MPS(cc),
6476                    NVME_CAP_MPSMIN(cap));
6477        return -1;
6478    }
6479    if (unlikely(NVME_CC_MPS(cc) >
6480                 NVME_CAP_MPSMAX(cap))) {
6481        trace_pci_nvme_err_startfail_page_too_large(
6482                    NVME_CC_MPS(cc),
6483                    NVME_CAP_MPSMAX(cap));
6484        return -1;
6485    }
6486    if (unlikely(NVME_CC_IOCQES(cc) <
6487                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6488        trace_pci_nvme_err_startfail_cqent_too_small(
6489                    NVME_CC_IOCQES(cc),
6490                    NVME_CTRL_CQES_MIN(cap));
6491        return -1;
6492    }
6493    if (unlikely(NVME_CC_IOCQES(cc) >
6494                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6495        trace_pci_nvme_err_startfail_cqent_too_large(
6496                    NVME_CC_IOCQES(cc),
6497                    NVME_CTRL_CQES_MAX(cap));
6498        return -1;
6499    }
6500    if (unlikely(NVME_CC_IOSQES(cc) <
6501                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6502        trace_pci_nvme_err_startfail_sqent_too_small(
6503                    NVME_CC_IOSQES(cc),
6504                    NVME_CTRL_SQES_MIN(cap));
6505        return -1;
6506    }
6507    if (unlikely(NVME_CC_IOSQES(cc) >
6508                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6509        trace_pci_nvme_err_startfail_sqent_too_large(
6510                    NVME_CC_IOSQES(cc),
6511                    NVME_CTRL_SQES_MAX(cap));
6512        return -1;
6513    }
6514    if (unlikely(!NVME_AQA_ASQS(aqa))) {
6515        trace_pci_nvme_err_startfail_asqent_sz_zero();
6516        return -1;
6517    }
6518    if (unlikely(!NVME_AQA_ACQS(aqa))) {
6519        trace_pci_nvme_err_startfail_acqent_sz_zero();
6520        return -1;
6521    }
6522
6523    n->page_bits = page_bits;
6524    n->page_size = page_size;
6525    n->max_prp_ents = n->page_size / sizeof(uint64_t);
6526    n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6527    n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6528    nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6529    nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6530
6531    nvme_set_timestamp(n, 0ULL);
6532
6533    nvme_select_iocs(n);
6534
6535    return 0;
6536}
6537
6538static void nvme_cmb_enable_regs(NvmeCtrl *n)
6539{
6540    uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6541    uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6542
6543    NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6544    NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6545    NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6546    stl_le_p(&n->bar.cmbloc, cmbloc);
6547
6548    NVME_CMBSZ_SET_SQS(cmbsz, 1);
6549    NVME_CMBSZ_SET_CQS(cmbsz, 0);
6550    NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6551    NVME_CMBSZ_SET_RDS(cmbsz, 1);
6552    NVME_CMBSZ_SET_WDS(cmbsz, 1);
6553    NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6554    NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6555    stl_le_p(&n->bar.cmbsz, cmbsz);
6556}
6557
6558static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6559                           unsigned size)
6560{
6561    uint64_t cap = ldq_le_p(&n->bar.cap);
6562    uint32_t cc = ldl_le_p(&n->bar.cc);
6563    uint32_t intms = ldl_le_p(&n->bar.intms);
6564    uint32_t csts = ldl_le_p(&n->bar.csts);
6565    uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6566
6567    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6568        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6569                       "MMIO write not 32-bit aligned,"
6570                       " offset=0x%"PRIx64"", offset);
6571        /* should be ignored, fall through for now */
6572    }
6573
6574    if (unlikely(size < sizeof(uint32_t))) {
6575        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6576                       "MMIO write smaller than 32-bits,"
6577                       " offset=0x%"PRIx64", size=%u",
6578                       offset, size);
6579        /* should be ignored, fall through for now */
6580    }
6581
6582    switch (offset) {
6583    case NVME_REG_INTMS:
6584        if (unlikely(msix_enabled(&(n->parent_obj)))) {
6585            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6586                           "undefined access to interrupt mask set"
6587                           " when MSI-X is enabled");
6588            /* should be ignored, fall through for now */
6589        }
6590        intms |= data;
6591        stl_le_p(&n->bar.intms, intms);
6592        n->bar.intmc = n->bar.intms;
6593        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6594        nvme_irq_check(n);
6595        break;
6596    case NVME_REG_INTMC:
6597        if (unlikely(msix_enabled(&(n->parent_obj)))) {
6598            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6599                           "undefined access to interrupt mask clr"
6600                           " when MSI-X is enabled");
6601            /* should be ignored, fall through for now */
6602        }
6603        intms &= ~data;
6604        stl_le_p(&n->bar.intms, intms);
6605        n->bar.intmc = n->bar.intms;
6606        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6607        nvme_irq_check(n);
6608        break;
6609    case NVME_REG_CC:
6610        stl_le_p(&n->bar.cc, data);
6611
6612        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6613
6614        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6615            trace_pci_nvme_mmio_shutdown_set();
6616            nvme_ctrl_shutdown(n);
6617            csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6618            csts |= NVME_CSTS_SHST_COMPLETE;
6619        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6620            trace_pci_nvme_mmio_shutdown_cleared();
6621            csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6622        }
6623
6624        if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6625            if (unlikely(nvme_start_ctrl(n))) {
6626                trace_pci_nvme_err_startfail();
6627                csts = NVME_CSTS_FAILED;
6628            } else {
6629                trace_pci_nvme_mmio_start_success();
6630                csts = NVME_CSTS_READY;
6631            }
6632        } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6633            trace_pci_nvme_mmio_stopped();
6634            nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6635
6636            break;
6637        }
6638
6639        stl_le_p(&n->bar.csts, csts);
6640
6641        break;
6642    case NVME_REG_CSTS:
6643        if (data & (1 << 4)) {
6644            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6645                           "attempted to W1C CSTS.NSSRO"
6646                           " but CAP.NSSRS is zero (not supported)");
6647        } else if (data != 0) {
6648            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6649                           "attempted to set a read only bit"
6650                           " of controller status");
6651        }
6652        break;
6653    case NVME_REG_NSSR:
6654        if (data == 0x4e564d65) {
6655            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6656        } else {
6657            /* The spec says that writes of other values have no effect */
6658            return;
6659        }
6660        break;
6661    case NVME_REG_AQA:
6662        stl_le_p(&n->bar.aqa, data);
6663        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6664        break;
6665    case NVME_REG_ASQ:
6666        stn_le_p(&n->bar.asq, size, data);
6667        trace_pci_nvme_mmio_asqaddr(data);
6668        break;
6669    case NVME_REG_ASQ + 4:
6670        stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6671        trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6672        break;
6673    case NVME_REG_ACQ:
6674        trace_pci_nvme_mmio_acqaddr(data);
6675        stn_le_p(&n->bar.acq, size, data);
6676        break;
6677    case NVME_REG_ACQ + 4:
6678        stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6679        trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6680        break;
6681    case NVME_REG_CMBLOC:
6682        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6683                       "invalid write to reserved CMBLOC"
6684                       " when CMBSZ is zero, ignored");
6685        return;
6686    case NVME_REG_CMBSZ:
6687        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6688                       "invalid write to read only CMBSZ, ignored");
6689        return;
6690    case NVME_REG_CMBMSC:
6691        if (!NVME_CAP_CMBS(cap)) {
6692            return;
6693        }
6694
6695        stn_le_p(&n->bar.cmbmsc, size, data);
6696        n->cmb.cmse = false;
6697
6698        if (NVME_CMBMSC_CRE(data)) {
6699            nvme_cmb_enable_regs(n);
6700
6701            if (NVME_CMBMSC_CMSE(data)) {
6702                uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6703                hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6704                if (cba + int128_get64(n->cmb.mem.size) < cba) {
6705                    uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6706                    NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6707                    stl_le_p(&n->bar.cmbsts, cmbsts);
6708                    return;
6709                }
6710
6711                n->cmb.cba = cba;
6712                n->cmb.cmse = true;
6713            }
6714        } else {
6715            n->bar.cmbsz = 0;
6716            n->bar.cmbloc = 0;
6717        }
6718
6719        return;
6720    case NVME_REG_CMBMSC + 4:
6721        stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6722        return;
6723
6724    case NVME_REG_PMRCAP:
6725        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6726                       "invalid write to PMRCAP register, ignored");
6727        return;
6728    case NVME_REG_PMRCTL:
6729        if (!NVME_CAP_PMRS(cap)) {
6730            return;
6731        }
6732
6733        stl_le_p(&n->bar.pmrctl, data);
6734        if (NVME_PMRCTL_EN(data)) {
6735            memory_region_set_enabled(&n->pmr.dev->mr, true);
6736            pmrsts = 0;
6737        } else {
6738            memory_region_set_enabled(&n->pmr.dev->mr, false);
6739            NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6740            n->pmr.cmse = false;
6741        }
6742        stl_le_p(&n->bar.pmrsts, pmrsts);
6743        return;
6744    case NVME_REG_PMRSTS:
6745        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6746                       "invalid write to PMRSTS register, ignored");
6747        return;
6748    case NVME_REG_PMREBS:
6749        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6750                       "invalid write to PMREBS register, ignored");
6751        return;
6752    case NVME_REG_PMRSWTP:
6753        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6754                       "invalid write to PMRSWTP register, ignored");
6755        return;
6756    case NVME_REG_PMRMSCL:
6757        if (!NVME_CAP_PMRS(cap)) {
6758            return;
6759        }
6760
6761        stl_le_p(&n->bar.pmrmscl, data);
6762        n->pmr.cmse = false;
6763
6764        if (NVME_PMRMSCL_CMSE(data)) {
6765            uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6766            hwaddr cba = pmrmscu << 32 |
6767                (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6768            if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6769                NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6770                stl_le_p(&n->bar.pmrsts, pmrsts);
6771                return;
6772            }
6773
6774            n->pmr.cmse = true;
6775            n->pmr.cba = cba;
6776        }
6777
6778        return;
6779    case NVME_REG_PMRMSCU:
6780        if (!NVME_CAP_PMRS(cap)) {
6781            return;
6782        }
6783
6784        stl_le_p(&n->bar.pmrmscu, data);
6785        return;
6786    default:
6787        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6788                       "invalid MMIO write,"
6789                       " offset=0x%"PRIx64", data=%"PRIx64"",
6790                       offset, data);
6791        break;
6792    }
6793}
6794
6795static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6796{
6797    NvmeCtrl *n = (NvmeCtrl *)opaque;
6798    uint8_t *ptr = (uint8_t *)&n->bar;
6799
6800    trace_pci_nvme_mmio_read(addr, size);
6801
6802    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6803        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6804                       "MMIO read not 32-bit aligned,"
6805                       " offset=0x%"PRIx64"", addr);
6806        /* should RAZ, fall through for now */
6807    } else if (unlikely(size < sizeof(uint32_t))) {
6808        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6809                       "MMIO read smaller than 32-bits,"
6810                       " offset=0x%"PRIx64"", addr);
6811        /* should RAZ, fall through for now */
6812    }
6813
6814    if (addr > sizeof(n->bar) - size) {
6815        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6816                       "MMIO read beyond last register,"
6817                       " offset=0x%"PRIx64", returning 0", addr);
6818
6819        return 0;
6820    }
6821
6822    if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6823        addr != NVME_REG_CSTS) {
6824        trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6825        return 0;
6826    }
6827
6828    /*
6829     * When PMRWBM bit 1 is set then read from
6830     * from PMRSTS should ensure prior writes
6831     * made it to persistent media
6832     */
6833    if (addr == NVME_REG_PMRSTS &&
6834        (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6835        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6836    }
6837
6838    return ldn_le_p(ptr + addr, size);
6839}
6840
6841static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6842{
6843    uint32_t qid;
6844
6845    if (unlikely(addr & ((1 << 2) - 1))) {
6846        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6847                       "doorbell write not 32-bit aligned,"
6848                       " offset=0x%"PRIx64", ignoring", addr);
6849        return;
6850    }
6851
6852    if (((addr - 0x1000) >> 2) & 1) {
6853        /* Completion queue doorbell write */
6854
6855        uint16_t new_head = val & 0xffff;
6856        int start_sqs;
6857        NvmeCQueue *cq;
6858
6859        qid = (addr - (0x1000 + (1 << 2))) >> 3;
6860        if (unlikely(nvme_check_cqid(n, qid))) {
6861            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6862                           "completion queue doorbell write"
6863                           " for nonexistent queue,"
6864                           " sqid=%"PRIu32", ignoring", qid);
6865
6866            /*
6867             * NVM Express v1.3d, Section 4.1 state: "If host software writes
6868             * an invalid value to the Submission Queue Tail Doorbell or
6869             * Completion Queue Head Doorbell regiter and an Asynchronous Event
6870             * Request command is outstanding, then an asynchronous event is
6871             * posted to the Admin Completion Queue with a status code of
6872             * Invalid Doorbell Write Value."
6873             *
6874             * Also note that the spec includes the "Invalid Doorbell Register"
6875             * status code, but nowhere does it specify when to use it.
6876             * However, it seems reasonable to use it here in a similar
6877             * fashion.
6878             */
6879            if (n->outstanding_aers) {
6880                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6881                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6882                                   NVME_LOG_ERROR_INFO);
6883            }
6884
6885            return;
6886        }
6887
6888        cq = n->cq[qid];
6889        if (unlikely(new_head >= cq->size)) {
6890            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6891                           "completion queue doorbell write value"
6892                           " beyond queue size, sqid=%"PRIu32","
6893                           " new_head=%"PRIu16", ignoring",
6894                           qid, new_head);
6895
6896            if (n->outstanding_aers) {
6897                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6898                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6899                                   NVME_LOG_ERROR_INFO);
6900            }
6901
6902            return;
6903        }
6904
6905        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6906
6907        start_sqs = nvme_cq_full(cq) ? 1 : 0;
6908        cq->head = new_head;
6909        if (!qid && n->dbbuf_enabled) {
6910            pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6911                          sizeof(cq->head));
6912        }
6913        if (start_sqs) {
6914            NvmeSQueue *sq;
6915            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6916                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6917            }
6918            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6919        }
6920
6921        if (cq->tail == cq->head) {
6922            if (cq->irq_enabled) {
6923                n->cq_pending--;
6924            }
6925
6926            nvme_irq_deassert(n, cq);
6927        }
6928    } else {
6929        /* Submission queue doorbell write */
6930
6931        uint16_t new_tail = val & 0xffff;
6932        NvmeSQueue *sq;
6933
6934        qid = (addr - 0x1000) >> 3;
6935        if (unlikely(nvme_check_sqid(n, qid))) {
6936            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6937                           "submission queue doorbell write"
6938                           " for nonexistent queue,"
6939                           " sqid=%"PRIu32", ignoring", qid);
6940
6941            if (n->outstanding_aers) {
6942                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6943                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6944                                   NVME_LOG_ERROR_INFO);
6945            }
6946
6947            return;
6948        }
6949
6950        sq = n->sq[qid];
6951        if (unlikely(new_tail >= sq->size)) {
6952            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6953                           "submission queue doorbell write value"
6954                           " beyond queue size, sqid=%"PRIu32","
6955                           " new_tail=%"PRIu16", ignoring",
6956                           qid, new_tail);
6957
6958            if (n->outstanding_aers) {
6959                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6960                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6961                                   NVME_LOG_ERROR_INFO);
6962            }
6963
6964            return;
6965        }
6966
6967        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6968
6969        sq->tail = new_tail;
6970        if (!qid && n->dbbuf_enabled) {
6971            /*
6972             * The spec states "the host shall also update the controller's
6973             * corresponding doorbell property to match the value of that entry
6974             * in the Shadow Doorbell buffer."
6975             *
6976             * Since this context is currently a VM trap, we can safely enforce
6977             * the requirement from the device side in case the host is
6978             * misbehaving.
6979             *
6980             * Note, we shouldn't have to do this, but various drivers
6981             * including ones that run on Linux, are not updating Admin Queues,
6982             * so we can't trust reading it for an appropriate sq tail.
6983             */
6984            pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6985                          sizeof(sq->tail));
6986        }
6987        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6988    }
6989}
6990
6991static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6992                            unsigned size)
6993{
6994    NvmeCtrl *n = (NvmeCtrl *)opaque;
6995
6996    trace_pci_nvme_mmio_write(addr, data, size);
6997
6998    if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6999        addr != NVME_REG_CSTS) {
7000        trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7001        return;
7002    }
7003
7004    if (addr < sizeof(n->bar)) {
7005        nvme_write_bar(n, addr, data, size);
7006    } else {
7007        nvme_process_db(n, addr, data);
7008    }
7009}
7010
7011static const MemoryRegionOps nvme_mmio_ops = {
7012    .read = nvme_mmio_read,
7013    .write = nvme_mmio_write,
7014    .endianness = DEVICE_LITTLE_ENDIAN,
7015    .impl = {
7016        .min_access_size = 2,
7017        .max_access_size = 8,
7018    },
7019};
7020
7021static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7022                           unsigned size)
7023{
7024    NvmeCtrl *n = (NvmeCtrl *)opaque;
7025    stn_le_p(&n->cmb.buf[addr], size, data);
7026}
7027
7028static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7029{
7030    NvmeCtrl *n = (NvmeCtrl *)opaque;
7031    return ldn_le_p(&n->cmb.buf[addr], size);
7032}
7033
7034static const MemoryRegionOps nvme_cmb_ops = {
7035    .read = nvme_cmb_read,
7036    .write = nvme_cmb_write,
7037    .endianness = DEVICE_LITTLE_ENDIAN,
7038    .impl = {
7039        .min_access_size = 1,
7040        .max_access_size = 8,
7041    },
7042};
7043
7044static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
7045{
7046    NvmeParams *params = &n->params;
7047
7048    if (params->num_queues) {
7049        warn_report("num_queues is deprecated; please use max_ioqpairs "
7050                    "instead");
7051
7052        params->max_ioqpairs = params->num_queues - 1;
7053    }
7054
7055    if (n->namespace.blkconf.blk && n->subsys) {
7056        error_setg(errp, "subsystem support is unavailable with legacy "
7057                   "namespace ('drive' property)");
7058        return;
7059    }
7060
7061    if (params->max_ioqpairs < 1 ||
7062        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7063        error_setg(errp, "max_ioqpairs must be between 1 and %d",
7064                   NVME_MAX_IOQPAIRS);
7065        return;
7066    }
7067
7068    if (params->msix_qsize < 1 ||
7069        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7070        error_setg(errp, "msix_qsize must be between 1 and %d",
7071                   PCI_MSIX_FLAGS_QSIZE + 1);
7072        return;
7073    }
7074
7075    if (!params->serial) {
7076        error_setg(errp, "serial property not set");
7077        return;
7078    }
7079
7080    if (n->pmr.dev) {
7081        if (host_memory_backend_is_mapped(n->pmr.dev)) {
7082            error_setg(errp, "can't use already busy memdev: %s",
7083                       object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7084            return;
7085        }
7086
7087        if (!is_power_of_2(n->pmr.dev->size)) {
7088            error_setg(errp, "pmr backend size needs to be power of 2 in size");
7089            return;
7090        }
7091
7092        host_memory_backend_set_mapped(n->pmr.dev, true);
7093    }
7094
7095    if (n->params.zasl > n->params.mdts) {
7096        error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7097                   "than or equal to mdts (Maximum Data Transfer Size)");
7098        return;
7099    }
7100
7101    if (!n->params.vsl) {
7102        error_setg(errp, "vsl must be non-zero");
7103        return;
7104    }
7105
7106    if (params->sriov_max_vfs) {
7107        if (!n->subsys) {
7108            error_setg(errp, "subsystem is required for the use of SR-IOV");
7109            return;
7110        }
7111
7112        if (params->sriov_max_vfs > NVME_MAX_VFS) {
7113            error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7114                       NVME_MAX_VFS);
7115            return;
7116        }
7117
7118        if (params->cmb_size_mb) {
7119            error_setg(errp, "CMB is not supported with SR-IOV");
7120            return;
7121        }
7122
7123        if (n->pmr.dev) {
7124            error_setg(errp, "PMR is not supported with SR-IOV");
7125            return;
7126        }
7127
7128        if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7129            error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7130                       " must be set for the use of SR-IOV");
7131            return;
7132        }
7133
7134        if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7135            error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7136                       " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7137            return;
7138        }
7139
7140        if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7141            error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7142                       " greater than or equal to 2");
7143            return;
7144        }
7145
7146        if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7147            error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7148                       " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7149            return;
7150        }
7151
7152        if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7153            error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7154                       " greater than or equal to 1");
7155            return;
7156        }
7157
7158        if (params->sriov_max_vi_per_vf &&
7159            (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7160            error_setg(errp, "sriov_max_vi_per_vf must meet:"
7161                       " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7162                       " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7163            return;
7164        }
7165
7166        if (params->sriov_max_vq_per_vf &&
7167            (params->sriov_max_vq_per_vf < 2 ||
7168             (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7169            error_setg(errp, "sriov_max_vq_per_vf must meet:"
7170                       " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7171                       " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7172            return;
7173        }
7174    }
7175}
7176
7177static void nvme_init_state(NvmeCtrl *n)
7178{
7179    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7180    NvmeSecCtrlList *list = &n->sec_ctrl_list;
7181    NvmeSecCtrlEntry *sctrl;
7182    uint8_t max_vfs;
7183    int i;
7184
7185    if (pci_is_vf(&n->parent_obj)) {
7186        sctrl = nvme_sctrl(n);
7187        max_vfs = 0;
7188        n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7189        n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7190    } else {
7191        max_vfs = n->params.sriov_max_vfs;
7192        n->conf_ioqpairs = n->params.max_ioqpairs;
7193        n->conf_msix_qsize = n->params.msix_qsize;
7194    }
7195
7196    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7197    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7198    n->temperature = NVME_TEMPERATURE;
7199    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7200    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7201    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7202    QTAILQ_INIT(&n->aer_queue);
7203
7204    list->numcntl = cpu_to_le16(max_vfs);
7205    for (i = 0; i < max_vfs; i++) {
7206        sctrl = &list->sec[i];
7207        sctrl->pcid = cpu_to_le16(n->cntlid);
7208        sctrl->vfn = cpu_to_le16(i + 1);
7209    }
7210
7211    cap->cntlid = cpu_to_le16(n->cntlid);
7212    cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7213
7214    if (pci_is_vf(&n->parent_obj)) {
7215        cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7216    } else {
7217        cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7218                                 n->params.sriov_vq_flexible);
7219        cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7220        cap->vqrfap = cap->vqfrt;
7221        cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7222        cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7223                        cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7224                        cap->vqfrt / MAX(max_vfs, 1);
7225    }
7226
7227    if (pci_is_vf(&n->parent_obj)) {
7228        cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7229    } else {
7230        cap->viprt = cpu_to_le16(n->params.msix_qsize -
7231                                 n->params.sriov_vi_flexible);
7232        cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7233        cap->virfap = cap->vifrt;
7234        cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7235        cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7236                        cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7237                        cap->vifrt / MAX(max_vfs, 1);
7238    }
7239}
7240
7241static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7242{
7243    uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7244    uint64_t cap = ldq_le_p(&n->bar.cap);
7245
7246    n->cmb.buf = g_malloc0(cmb_size);
7247    memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7248                          "nvme-cmb", cmb_size);
7249    pci_register_bar(pci_dev, NVME_CMB_BIR,
7250                     PCI_BASE_ADDRESS_SPACE_MEMORY |
7251                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
7252                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7253
7254    NVME_CAP_SET_CMBS(cap, 1);
7255    stq_le_p(&n->bar.cap, cap);
7256
7257    if (n->params.legacy_cmb) {
7258        nvme_cmb_enable_regs(n);
7259        n->cmb.cmse = true;
7260    }
7261}
7262
7263static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7264{
7265    uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7266
7267    NVME_PMRCAP_SET_RDS(pmrcap, 1);
7268    NVME_PMRCAP_SET_WDS(pmrcap, 1);
7269    NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7270    /* Turn on bit 1 support */
7271    NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7272    NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7273    stl_le_p(&n->bar.pmrcap, pmrcap);
7274
7275    pci_register_bar(pci_dev, NVME_PMR_BIR,
7276                     PCI_BASE_ADDRESS_SPACE_MEMORY |
7277                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
7278                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7279
7280    memory_region_set_enabled(&n->pmr.dev->mr, false);
7281}
7282
7283static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7284                              unsigned *msix_table_offset,
7285                              unsigned *msix_pba_offset)
7286{
7287    uint64_t bar_size, msix_table_size, msix_pba_size;
7288
7289    bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7290    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7291
7292    if (msix_table_offset) {
7293        *msix_table_offset = bar_size;
7294    }
7295
7296    msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7297    bar_size += msix_table_size;
7298    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7299
7300    if (msix_pba_offset) {
7301        *msix_pba_offset = bar_size;
7302    }
7303
7304    msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7305    bar_size += msix_pba_size;
7306
7307    bar_size = pow2ceil(bar_size);
7308    return bar_size;
7309}
7310
7311static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7312{
7313    uint16_t vf_dev_id = n->params.use_intel_id ?
7314                         PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7315    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7316    uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7317                                      le16_to_cpu(cap->vifrsm),
7318                                      NULL, NULL);
7319
7320    pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7321                       n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7322                       NVME_VF_OFFSET, NVME_VF_STRIDE);
7323
7324    pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7325                              PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7326}
7327
7328static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7329{
7330    Error *err = NULL;
7331    int ret;
7332
7333    ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7334                             PCI_PM_SIZEOF, &err);
7335    if (err) {
7336        error_report_err(err);
7337        return ret;
7338    }
7339
7340    pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7341                 PCI_PM_CAP_VER_1_2);
7342    pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7343                 PCI_PM_CTRL_NO_SOFT_RESET);
7344    pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7345                 PCI_PM_CTRL_STATE_MASK);
7346
7347    return 0;
7348}
7349
7350static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7351{
7352    uint8_t *pci_conf = pci_dev->config;
7353    uint64_t bar_size;
7354    unsigned msix_table_offset, msix_pba_offset;
7355    int ret;
7356
7357    Error *err = NULL;
7358
7359    pci_conf[PCI_INTERRUPT_PIN] = 1;
7360    pci_config_set_prog_interface(pci_conf, 0x2);
7361
7362    if (n->params.use_intel_id) {
7363        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7364        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7365    } else {
7366        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7367        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7368    }
7369
7370    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7371    nvme_add_pm_capability(pci_dev, 0x60);
7372    pcie_endpoint_cap_init(pci_dev, 0x80);
7373    pcie_cap_flr_init(pci_dev);
7374    if (n->params.sriov_max_vfs) {
7375        pcie_ari_init(pci_dev, 0x100, 1);
7376    }
7377
7378    /* add one to max_ioqpairs to account for the admin queue pair */
7379    bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7380                             &msix_table_offset, &msix_pba_offset);
7381
7382    memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7383    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7384                          msix_table_offset);
7385    memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7386
7387    if (pci_is_vf(pci_dev)) {
7388        pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7389    } else {
7390        pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7391                         PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7392    }
7393    ret = msix_init(pci_dev, n->params.msix_qsize,
7394                    &n->bar0, 0, msix_table_offset,
7395                    &n->bar0, 0, msix_pba_offset, 0, &err);
7396    if (ret < 0) {
7397        if (ret == -ENOTSUP) {
7398            warn_report_err(err);
7399        } else {
7400            error_propagate(errp, err);
7401            return ret;
7402        }
7403    }
7404
7405    nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7406
7407    if (n->params.cmb_size_mb) {
7408        nvme_init_cmb(n, pci_dev);
7409    }
7410
7411    if (n->pmr.dev) {
7412        nvme_init_pmr(n, pci_dev);
7413    }
7414
7415    if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7416        nvme_init_sriov(n, pci_dev, 0x120);
7417    }
7418
7419    return 0;
7420}
7421
7422static void nvme_init_subnqn(NvmeCtrl *n)
7423{
7424    NvmeSubsystem *subsys = n->subsys;
7425    NvmeIdCtrl *id = &n->id_ctrl;
7426
7427    if (!subsys) {
7428        snprintf((char *)id->subnqn, sizeof(id->subnqn),
7429                 "nqn.2019-08.org.qemu:%s", n->params.serial);
7430    } else {
7431        pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7432    }
7433}
7434
7435static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7436{
7437    NvmeIdCtrl *id = &n->id_ctrl;
7438    uint8_t *pci_conf = pci_dev->config;
7439    uint64_t cap = ldq_le_p(&n->bar.cap);
7440    NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7441
7442    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7443    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7444    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7445    strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7446    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7447
7448    id->cntlid = cpu_to_le16(n->cntlid);
7449
7450    id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7451    id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7452
7453    id->rab = 6;
7454
7455    if (n->params.use_intel_id) {
7456        id->ieee[0] = 0xb3;
7457        id->ieee[1] = 0x02;
7458        id->ieee[2] = 0x00;
7459    } else {
7460        id->ieee[0] = 0x00;
7461        id->ieee[1] = 0x54;
7462        id->ieee[2] = 0x52;
7463    }
7464
7465    id->mdts = n->params.mdts;
7466    id->ver = cpu_to_le32(NVME_SPEC_VER);
7467    id->oacs =
7468        cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7469    id->cntrltype = 0x1;
7470
7471    /*
7472     * Because the controller always completes the Abort command immediately,
7473     * there can never be more than one concurrently executing Abort command,
7474     * so this value is never used for anything. Note that there can easily be
7475     * many Abort commands in the queues, but they are not considered
7476     * "executing" until processed by nvme_abort.
7477     *
7478     * The specification recommends a value of 3 for Abort Command Limit (four
7479     * concurrently outstanding Abort commands), so lets use that though it is
7480     * inconsequential.
7481     */
7482    id->acl = 3;
7483    id->aerl = n->params.aerl;
7484    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7485    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7486
7487    /* recommended default value (~70 C) */
7488    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7489    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7490
7491    id->sqes = (0x6 << 4) | 0x6;
7492    id->cqes = (0x4 << 4) | 0x4;
7493    id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7494    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7495                           NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7496                           NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7497
7498    /*
7499     * NOTE: If this device ever supports a command set that does NOT use 0x0
7500     * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7501     * should probably be removed.
7502     *
7503     * See comment in nvme_io_cmd.
7504     */
7505    id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7506
7507    id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7508    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7509
7510    nvme_init_subnqn(n);
7511
7512    id->psd[0].mp = cpu_to_le16(0x9c4);
7513    id->psd[0].enlat = cpu_to_le32(0x10);
7514    id->psd[0].exlat = cpu_to_le32(0x4);
7515
7516    if (n->subsys) {
7517        id->cmic |= NVME_CMIC_MULTI_CTRL;
7518    }
7519
7520    NVME_CAP_SET_MQES(cap, 0x7ff);
7521    NVME_CAP_SET_CQR(cap, 1);
7522    NVME_CAP_SET_TO(cap, 0xf);
7523    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7524    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7525    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7526    NVME_CAP_SET_MPSMAX(cap, 4);
7527    NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7528    NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7529    stq_le_p(&n->bar.cap, cap);
7530
7531    stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7532    n->bar.intmc = n->bar.intms = 0;
7533
7534    if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7535        stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7536    }
7537}
7538
7539static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7540{
7541    int cntlid;
7542
7543    if (!n->subsys) {
7544        return 0;
7545    }
7546
7547    cntlid = nvme_subsys_register_ctrl(n, errp);
7548    if (cntlid < 0) {
7549        return -1;
7550    }
7551
7552    n->cntlid = cntlid;
7553
7554    return 0;
7555}
7556
7557void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7558{
7559    uint32_t nsid = ns->params.nsid;
7560    assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7561
7562    n->namespaces[nsid] = ns;
7563    ns->attached++;
7564
7565    n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7566                            BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7567}
7568
7569static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7570{
7571    NvmeCtrl *n = NVME(pci_dev);
7572    NvmeNamespace *ns;
7573    Error *local_err = NULL;
7574    NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7575
7576    if (pci_is_vf(pci_dev)) {
7577        /*
7578         * VFs derive settings from the parent. PF's lifespan exceeds
7579         * that of VF's, so it's safe to share params.serial.
7580         */
7581        memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7582        n->subsys = pn->subsys;
7583    }
7584
7585    nvme_check_constraints(n, &local_err);
7586    if (local_err) {
7587        error_propagate(errp, local_err);
7588        return;
7589    }
7590
7591    qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7592              &pci_dev->qdev, n->parent_obj.qdev.id);
7593
7594    if (nvme_init_subsys(n, errp)) {
7595        error_propagate(errp, local_err);
7596        return;
7597    }
7598    nvme_init_state(n);
7599    if (nvme_init_pci(n, pci_dev, errp)) {
7600        return;
7601    }
7602    nvme_init_ctrl(n, pci_dev);
7603
7604    /* setup a namespace if the controller drive property was given */
7605    if (n->namespace.blkconf.blk) {
7606        ns = &n->namespace;
7607        ns->params.nsid = 1;
7608
7609        if (nvme_ns_setup(ns, errp)) {
7610            return;
7611        }
7612
7613        nvme_attach_ns(n, ns);
7614    }
7615}
7616
7617static void nvme_exit(PCIDevice *pci_dev)
7618{
7619    NvmeCtrl *n = NVME(pci_dev);
7620    NvmeNamespace *ns;
7621    int i;
7622
7623    nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7624
7625    if (n->subsys) {
7626        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7627            ns = nvme_ns(n, i);
7628            if (ns) {
7629                ns->attached--;
7630            }
7631        }
7632
7633        nvme_subsys_unregister_ctrl(n->subsys, n);
7634    }
7635
7636    g_free(n->cq);
7637    g_free(n->sq);
7638    g_free(n->aer_reqs);
7639
7640    if (n->params.cmb_size_mb) {
7641        g_free(n->cmb.buf);
7642    }
7643
7644    if (n->pmr.dev) {
7645        host_memory_backend_set_mapped(n->pmr.dev, false);
7646    }
7647
7648    if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7649        pcie_sriov_pf_exit(pci_dev);
7650    }
7651
7652    msix_uninit(pci_dev, &n->bar0, &n->bar0);
7653    memory_region_del_subregion(&n->bar0, &n->iomem);
7654}
7655
7656static Property nvme_props[] = {
7657    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7658    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7659                     HostMemoryBackend *),
7660    DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7661                     NvmeSubsystem *),
7662    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7663    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7664    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7665    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7666    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7667    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7668    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7669    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7670    DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7671    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7672    DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7673    DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7674    DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7675    DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7676                     params.auto_transition_zones, true),
7677    DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7678    DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7679                       params.sriov_vq_flexible, 0),
7680    DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7681                       params.sriov_vi_flexible, 0),
7682    DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7683                      params.sriov_max_vi_per_vf, 0),
7684    DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7685                      params.sriov_max_vq_per_vf, 0),
7686    DEFINE_PROP_END_OF_LIST(),
7687};
7688
7689static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7690                                   void *opaque, Error **errp)
7691{
7692    NvmeCtrl *n = NVME(obj);
7693    uint8_t value = n->smart_critical_warning;
7694
7695    visit_type_uint8(v, name, &value, errp);
7696}
7697
7698static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7699                                   void *opaque, Error **errp)
7700{
7701    NvmeCtrl *n = NVME(obj);
7702    uint8_t value, old_value, cap = 0, index, event;
7703
7704    if (!visit_type_uint8(v, name, &value, errp)) {
7705        return;
7706    }
7707
7708    cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7709          | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7710    if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7711        cap |= NVME_SMART_PMR_UNRELIABLE;
7712    }
7713
7714    if ((value & cap) != value) {
7715        error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7716                   value & ~cap);
7717        return;
7718    }
7719
7720    old_value = n->smart_critical_warning;
7721    n->smart_critical_warning = value;
7722
7723    /* only inject new bits of smart critical warning */
7724    for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7725        event = 1 << index;
7726        if (value & ~old_value & event)
7727            nvme_smart_event(n, event);
7728    }
7729}
7730
7731static void nvme_pci_reset(DeviceState *qdev)
7732{
7733    PCIDevice *pci_dev = PCI_DEVICE(qdev);
7734    NvmeCtrl *n = NVME(pci_dev);
7735
7736    trace_pci_nvme_pci_reset();
7737    nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7738}
7739
7740static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7741                                      uint32_t val, int len)
7742{
7743    NvmeCtrl *n = NVME(dev);
7744    NvmeSecCtrlEntry *sctrl;
7745    uint16_t sriov_cap = dev->exp.sriov_cap;
7746    uint32_t off = address - sriov_cap;
7747    int i, num_vfs;
7748
7749    if (!sriov_cap) {
7750        return;
7751    }
7752
7753    if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7754        if (!(val & PCI_SRIOV_CTRL_VFE)) {
7755            num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7756            for (i = 0; i < num_vfs; i++) {
7757                sctrl = &n->sec_ctrl_list.sec[i];
7758                nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7759            }
7760        }
7761    }
7762}
7763
7764static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7765                                  uint32_t val, int len)
7766{
7767    nvme_sriov_pre_write_ctrl(dev, address, val, len);
7768    pci_default_write_config(dev, address, val, len);
7769    pcie_cap_flr_write_config(dev, address, val, len);
7770}
7771
7772static const VMStateDescription nvme_vmstate = {
7773    .name = "nvme",
7774    .unmigratable = 1,
7775};
7776
7777static void nvme_class_init(ObjectClass *oc, void *data)
7778{
7779    DeviceClass *dc = DEVICE_CLASS(oc);
7780    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7781
7782    pc->realize = nvme_realize;
7783    pc->config_write = nvme_pci_write_config;
7784    pc->exit = nvme_exit;
7785    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7786    pc->revision = 2;
7787
7788    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7789    dc->desc = "Non-Volatile Memory Express";
7790    device_class_set_props(dc, nvme_props);
7791    dc->vmsd = &nvme_vmstate;
7792    dc->reset = nvme_pci_reset;
7793}
7794
7795static void nvme_instance_init(Object *obj)
7796{
7797    NvmeCtrl *n = NVME(obj);
7798
7799    device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7800                                  "bootindex", "/namespace@1,0",
7801                                  DEVICE(obj));
7802
7803    object_property_add(obj, "smart_critical_warning", "uint8",
7804                        nvme_get_smart_warning,
7805                        nvme_set_smart_warning, NULL, NULL);
7806}
7807
7808static const TypeInfo nvme_info = {
7809    .name          = TYPE_NVME,
7810    .parent        = TYPE_PCI_DEVICE,
7811    .instance_size = sizeof(NvmeCtrl),
7812    .instance_init = nvme_instance_init,
7813    .class_init    = nvme_class_init,
7814    .interfaces = (InterfaceInfo[]) {
7815        { INTERFACE_PCIE_DEVICE },
7816        { }
7817    },
7818};
7819
7820static const TypeInfo nvme_bus_info = {
7821    .name = TYPE_NVME_BUS,
7822    .parent = TYPE_BUS,
7823    .instance_size = sizeof(NvmeBus),
7824};
7825
7826static void nvme_register_types(void)
7827{
7828    type_register_static(&nvme_info);
7829    type_register_static(&nvme_bus_info);
7830}
7831
7832type_init(nvme_register_types)
7833