qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/datadir.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/dma.h"
  29#include "sysemu/reset.h"
  30#include "hw/boards.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/qdev-properties.h"
  33#include "hw/sysbus.h"
  34#include "migration/qemu-file-types.h"
  35#include "migration/vmstate.h"
  36#include "trace.h"
  37#include "qemu/error-report.h"
  38#include "qemu/option.h"
  39#include "qemu/config-file.h"
  40#include "qemu/cutils.h"
  41#include "qapi/error.h"
  42#include "hw/acpi/aml-build.h"
  43#include "hw/pci/pci_bus.h"
  44
  45#define FW_CFG_FILE_SLOTS_DFLT 0x20
  46
  47/* FW_CFG_VERSION bits */
  48#define FW_CFG_VERSION      0x01
  49#define FW_CFG_VERSION_DMA  0x02
  50
  51/* FW_CFG_DMA_CONTROL bits */
  52#define FW_CFG_DMA_CTL_ERROR   0x01
  53#define FW_CFG_DMA_CTL_READ    0x02
  54#define FW_CFG_DMA_CTL_SKIP    0x04
  55#define FW_CFG_DMA_CTL_SELECT  0x08
  56#define FW_CFG_DMA_CTL_WRITE   0x10
  57
  58#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  59
  60struct FWCfgEntry {
  61    uint32_t len;
  62    bool allow_write;
  63    uint8_t *data;
  64    void *callback_opaque;
  65    FWCfgCallback select_cb;
  66    FWCfgWriteCallback write_cb;
  67};
  68
  69/**
  70 * key_name:
  71 *
  72 * @key: The uint16 selector key.
  73 *
  74 * Returns: The stringified name if the selector refers to a well-known
  75 *          numerically defined item, or NULL on key lookup failure.
  76 */
  77static const char *key_name(uint16_t key)
  78{
  79    static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
  80        [FW_CFG_SIGNATURE] = "signature",
  81        [FW_CFG_ID] = "id",
  82        [FW_CFG_UUID] = "uuid",
  83        [FW_CFG_RAM_SIZE] = "ram_size",
  84        [FW_CFG_NOGRAPHIC] = "nographic",
  85        [FW_CFG_NB_CPUS] = "nb_cpus",
  86        [FW_CFG_MACHINE_ID] = "machine_id",
  87        [FW_CFG_KERNEL_ADDR] = "kernel_addr",
  88        [FW_CFG_KERNEL_SIZE] = "kernel_size",
  89        [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
  90        [FW_CFG_INITRD_ADDR] = "initrd_addr",
  91        [FW_CFG_INITRD_SIZE] = "initdr_size",
  92        [FW_CFG_BOOT_DEVICE] = "boot_device",
  93        [FW_CFG_NUMA] = "numa",
  94        [FW_CFG_BOOT_MENU] = "boot_menu",
  95        [FW_CFG_MAX_CPUS] = "max_cpus",
  96        [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
  97        [FW_CFG_KERNEL_DATA] = "kernel_data",
  98        [FW_CFG_INITRD_DATA] = "initrd_data",
  99        [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
 100        [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
 101        [FW_CFG_CMDLINE_DATA] = "cmdline_data",
 102        [FW_CFG_SETUP_ADDR] = "setup_addr",
 103        [FW_CFG_SETUP_SIZE] = "setup_size",
 104        [FW_CFG_SETUP_DATA] = "setup_data",
 105        [FW_CFG_FILE_DIR] = "file_dir",
 106    };
 107
 108    if (key & FW_CFG_ARCH_LOCAL) {
 109        return fw_cfg_arch_key_name(key);
 110    }
 111    if (key < FW_CFG_FILE_FIRST) {
 112        return fw_cfg_wellknown_keys[key];
 113    }
 114
 115    return NULL;
 116}
 117
 118static inline const char *trace_key_name(uint16_t key)
 119{
 120    const char *name = key_name(key);
 121
 122    return name ? name : "unknown";
 123}
 124
 125#define JPG_FILE 0
 126#define BMP_FILE 1
 127
 128static char *read_splashfile(char *filename, gsize *file_sizep,
 129                             int *file_typep)
 130{
 131    GError *err = NULL;
 132    gchar *content;
 133    int file_type;
 134    unsigned int filehead;
 135    int bmp_bpp;
 136
 137    if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
 138        error_report("failed to read splash file '%s': %s",
 139                     filename, err->message);
 140        g_error_free(err);
 141        return NULL;
 142    }
 143
 144    /* check file size */
 145    if (*file_sizep < 30) {
 146        goto error;
 147    }
 148
 149    /* check magic ID */
 150    filehead = lduw_le_p(content);
 151    if (filehead == 0xd8ff) {
 152        file_type = JPG_FILE;
 153    } else if (filehead == 0x4d42) {
 154        file_type = BMP_FILE;
 155    } else {
 156        goto error;
 157    }
 158
 159    /* check BMP bpp */
 160    if (file_type == BMP_FILE) {
 161        bmp_bpp = lduw_le_p(&content[28]);
 162        if (bmp_bpp != 24) {
 163            goto error;
 164        }
 165    }
 166
 167    /* return values */
 168    *file_typep = file_type;
 169
 170    return content;
 171
 172error:
 173    error_report("splash file '%s' format not recognized; must be JPEG "
 174                 "or 24 bit BMP", filename);
 175    g_free(content);
 176    return NULL;
 177}
 178
 179static void fw_cfg_bootsplash(FWCfgState *s)
 180{
 181    char *filename, *file_data;
 182    gsize file_size;
 183    int file_type;
 184
 185    /* insert splash time if user configurated */
 186    if (current_machine->boot_config.has_splash_time) {
 187        int64_t bst_val = current_machine->boot_config.splash_time;
 188        uint16_t bst_le16;
 189
 190        /* validate the input */
 191        if (bst_val < 0 || bst_val > 0xffff) {
 192            error_report("splash-time is invalid,"
 193                         "it should be a value between 0 and 65535");
 194            exit(1);
 195        }
 196        /* use little endian format */
 197        bst_le16 = cpu_to_le16(bst_val);
 198        fw_cfg_add_file(s, "etc/boot-menu-wait",
 199                        g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
 200    }
 201
 202    /* insert splash file if user configurated */
 203    if (current_machine->boot_config.has_splash) {
 204        const char *boot_splash_filename = current_machine->boot_config.splash;
 205        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 206        if (filename == NULL) {
 207            error_report("failed to find file '%s'", boot_splash_filename);
 208            return;
 209        }
 210
 211        /* loading file data */
 212        file_data = read_splashfile(filename, &file_size, &file_type);
 213        if (file_data == NULL) {
 214            g_free(filename);
 215            return;
 216        }
 217        g_free(boot_splash_filedata);
 218        boot_splash_filedata = (uint8_t *)file_data;
 219
 220        /* insert data */
 221        if (file_type == JPG_FILE) {
 222            fw_cfg_add_file(s, "bootsplash.jpg",
 223                            boot_splash_filedata, file_size);
 224        } else {
 225            fw_cfg_add_file(s, "bootsplash.bmp",
 226                            boot_splash_filedata, file_size);
 227        }
 228        g_free(filename);
 229    }
 230}
 231
 232static void fw_cfg_reboot(FWCfgState *s)
 233{
 234    uint64_t rt_val = -1;
 235    uint32_t rt_le32;
 236
 237    if (current_machine->boot_config.has_reboot_timeout) {
 238        rt_val = current_machine->boot_config.reboot_timeout;
 239
 240        /* validate the input */
 241        if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
 242            error_report("reboot timeout is invalid,"
 243                         "it should be a value between -1 and 65535");
 244            exit(1);
 245        }
 246    }
 247
 248    rt_le32 = cpu_to_le32(rt_val);
 249    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
 250}
 251
 252static void fw_cfg_write(FWCfgState *s, uint8_t value)
 253{
 254    /* nothing, write support removed in QEMU v2.4+ */
 255}
 256
 257static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 258{
 259    return s->file_slots;
 260}
 261
 262/* Note: this function returns an exclusive limit. */
 263static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 264{
 265    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 266}
 267
 268static int fw_cfg_select(FWCfgState *s, uint16_t key)
 269{
 270    int arch, ret;
 271    FWCfgEntry *e;
 272
 273    s->cur_offset = 0;
 274    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 275        s->cur_entry = FW_CFG_INVALID;
 276        ret = 0;
 277    } else {
 278        s->cur_entry = key;
 279        ret = 1;
 280        /* entry successfully selected, now run callback if present */
 281        arch = !!(key & FW_CFG_ARCH_LOCAL);
 282        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 283        if (e->select_cb) {
 284            e->select_cb(e->callback_opaque);
 285        }
 286    }
 287
 288    trace_fw_cfg_select(s, key, trace_key_name(key), ret);
 289    return ret;
 290}
 291
 292static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 293{
 294    FWCfgState *s = opaque;
 295    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 296    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 297                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 298    uint64_t value = 0;
 299
 300    assert(size > 0 && size <= sizeof(value));
 301    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 302        /* The least significant 'size' bytes of the return value are
 303         * expected to contain a string preserving portion of the item
 304         * data, padded with zeros on the right in case we run out early.
 305         * In technical terms, we're composing the host-endian representation
 306         * of the big endian interpretation of the fw_cfg string.
 307         */
 308        do {
 309            value = (value << 8) | e->data[s->cur_offset++];
 310        } while (--size && s->cur_offset < e->len);
 311        /* If size is still not zero, we *did* run out early, so continue
 312         * left-shifting, to add the appropriate number of padding zeros
 313         * on the right.
 314         */
 315        value <<= 8 * size;
 316    }
 317
 318    trace_fw_cfg_read(s, value);
 319    return value;
 320}
 321
 322static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 323                                  uint64_t value, unsigned size)
 324{
 325    FWCfgState *s = opaque;
 326    unsigned i = size;
 327
 328    do {
 329        fw_cfg_write(s, value >> (8 * --i));
 330    } while (i);
 331}
 332
 333static void fw_cfg_dma_transfer(FWCfgState *s)
 334{
 335    dma_addr_t len;
 336    FWCfgDmaAccess dma;
 337    int arch;
 338    FWCfgEntry *e;
 339    int read = 0, write = 0;
 340    dma_addr_t dma_addr;
 341
 342    /* Reset the address before the next access */
 343    dma_addr = s->dma_addr;
 344    s->dma_addr = 0;
 345
 346    if (dma_memory_read(s->dma_as, dma_addr,
 347                        &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
 348        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 349                   FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
 350        return;
 351    }
 352
 353    dma.address = be64_to_cpu(dma.address);
 354    dma.length = be32_to_cpu(dma.length);
 355    dma.control = be32_to_cpu(dma.control);
 356
 357    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 358        fw_cfg_select(s, dma.control >> 16);
 359    }
 360
 361    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 362    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 363        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 364
 365    if (dma.control & FW_CFG_DMA_CTL_READ) {
 366        read = 1;
 367        write = 0;
 368    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 369        read = 0;
 370        write = 1;
 371    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 372        read = 0;
 373        write = 0;
 374    } else {
 375        dma.length = 0;
 376    }
 377
 378    dma.control = 0;
 379
 380    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 381        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 382                                s->cur_offset >= e->len) {
 383            len = dma.length;
 384
 385            /* If the access is not a read access, it will be a skip access,
 386             * tested before.
 387             */
 388            if (read) {
 389                if (dma_memory_set(s->dma_as, dma.address, 0, len,
 390                                   MEMTXATTRS_UNSPECIFIED)) {
 391                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 392                }
 393            }
 394            if (write) {
 395                dma.control |= FW_CFG_DMA_CTL_ERROR;
 396            }
 397        } else {
 398            if (dma.length <= (e->len - s->cur_offset)) {
 399                len = dma.length;
 400            } else {
 401                len = (e->len - s->cur_offset);
 402            }
 403
 404            /* If the access is not a read access, it will be a skip access,
 405             * tested before.
 406             */
 407            if (read) {
 408                if (dma_memory_write(s->dma_as, dma.address,
 409                                     &e->data[s->cur_offset], len,
 410                                     MEMTXATTRS_UNSPECIFIED)) {
 411                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 412                }
 413            }
 414            if (write) {
 415                if (!e->allow_write ||
 416                    len != dma.length ||
 417                    dma_memory_read(s->dma_as, dma.address,
 418                                    &e->data[s->cur_offset], len,
 419                                    MEMTXATTRS_UNSPECIFIED)) {
 420                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 421                } else if (e->write_cb) {
 422                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 423                }
 424            }
 425
 426            s->cur_offset += len;
 427        }
 428
 429        dma.address += len;
 430        dma.length  -= len;
 431
 432    }
 433
 434    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 435                dma.control, MEMTXATTRS_UNSPECIFIED);
 436
 437    trace_fw_cfg_read(s, 0);
 438}
 439
 440static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 441                                    unsigned size)
 442{
 443    /* Return a signature value (and handle various read sizes) */
 444    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 445}
 446
 447static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 448                                 uint64_t value, unsigned size)
 449{
 450    FWCfgState *s = opaque;
 451
 452    if (size == 4) {
 453        if (addr == 0) {
 454            /* FWCfgDmaAccess high address */
 455            s->dma_addr = value << 32;
 456        } else if (addr == 4) {
 457            /* FWCfgDmaAccess low address */
 458            s->dma_addr |= value;
 459            fw_cfg_dma_transfer(s);
 460        }
 461    } else if (size == 8 && addr == 0) {
 462        s->dma_addr = value;
 463        fw_cfg_dma_transfer(s);
 464    }
 465}
 466
 467static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 468                                 unsigned size, bool is_write,
 469                                 MemTxAttrs attrs)
 470{
 471    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 472                         (size == 8 && addr == 0));
 473}
 474
 475static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 476                                  unsigned size, bool is_write,
 477                                  MemTxAttrs attrs)
 478{
 479    return addr == 0;
 480}
 481
 482static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 483{
 484    return 0;
 485}
 486
 487static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 488                                 uint64_t value, unsigned size)
 489{
 490    fw_cfg_select(opaque, (uint16_t)value);
 491}
 492
 493static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 494                                 unsigned size, bool is_write,
 495                                 MemTxAttrs attrs)
 496{
 497    return is_write && size == 2;
 498}
 499
 500static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 501                              uint64_t value, unsigned size)
 502{
 503    switch (size) {
 504    case 1:
 505        fw_cfg_write(opaque, (uint8_t)value);
 506        break;
 507    case 2:
 508        fw_cfg_select(opaque, (uint16_t)value);
 509        break;
 510    }
 511}
 512
 513static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 514                              unsigned size, bool is_write,
 515                              MemTxAttrs attrs)
 516{
 517    return (size == 1) || (is_write && size == 2);
 518}
 519
 520static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 521    .read = fw_cfg_ctl_mem_read,
 522    .write = fw_cfg_ctl_mem_write,
 523    .endianness = DEVICE_BIG_ENDIAN,
 524    .valid.accepts = fw_cfg_ctl_mem_valid,
 525};
 526
 527static const MemoryRegionOps fw_cfg_data_mem_ops = {
 528    .read = fw_cfg_data_read,
 529    .write = fw_cfg_data_mem_write,
 530    .endianness = DEVICE_BIG_ENDIAN,
 531    .valid = {
 532        .min_access_size = 1,
 533        .max_access_size = 1,
 534        .accepts = fw_cfg_data_mem_valid,
 535    },
 536};
 537
 538static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 539    .read = fw_cfg_data_read,
 540    .write = fw_cfg_comb_write,
 541    .endianness = DEVICE_LITTLE_ENDIAN,
 542    .valid.accepts = fw_cfg_comb_valid,
 543};
 544
 545static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 546    .read = fw_cfg_dma_mem_read,
 547    .write = fw_cfg_dma_mem_write,
 548    .endianness = DEVICE_BIG_ENDIAN,
 549    .valid.accepts = fw_cfg_dma_mem_valid,
 550    .valid.max_access_size = 8,
 551    .impl.max_access_size = 8,
 552};
 553
 554static void fw_cfg_reset(DeviceState *d)
 555{
 556    FWCfgState *s = FW_CFG(d);
 557
 558    /* we never register a read callback for FW_CFG_SIGNATURE */
 559    fw_cfg_select(s, FW_CFG_SIGNATURE);
 560}
 561
 562/* Save restore 32 bit int as uint16_t
 563   This is a Big hack, but it is how the old state did it.
 564   Or we broke compatibility in the state, or we can't use struct tm
 565 */
 566
 567static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 568                                const VMStateField *field)
 569{
 570    uint32_t *v = pv;
 571    *v = qemu_get_be16(f);
 572    return 0;
 573}
 574
 575static int put_unused(QEMUFile *f, void *pv, size_t size,
 576                      const VMStateField *field, JSONWriter *vmdesc)
 577{
 578    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 579    fprintf(stderr, "This functions shouldn't be called.\n");
 580
 581    return 0;
 582}
 583
 584static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 585    .name = "int32_as_uint16",
 586    .get  = get_uint32_as_uint16,
 587    .put  = put_unused,
 588};
 589
 590#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 591    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 592
 593
 594static bool is_version_1(void *opaque, int version_id)
 595{
 596    return version_id == 1;
 597}
 598
 599bool fw_cfg_dma_enabled(void *opaque)
 600{
 601    FWCfgState *s = opaque;
 602
 603    return s->dma_enabled;
 604}
 605
 606static bool fw_cfg_acpi_mr_restore(void *opaque)
 607{
 608    FWCfgState *s = opaque;
 609    bool mr_aligned;
 610
 611    mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
 612                 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
 613                 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
 614    return s->acpi_mr_restore && !mr_aligned;
 615}
 616
 617static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
 618{
 619    MemoryRegion *mr;
 620    ram_addr_t offset;
 621    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 622    void *ptr;
 623
 624    key &= FW_CFG_ENTRY_MASK;
 625    assert(key < fw_cfg_max_entry(s));
 626
 627    ptr = s->entries[arch][key].data;
 628    mr = memory_region_from_host(ptr, &offset);
 629
 630    memory_region_ram_resize(mr, size, &error_abort);
 631}
 632
 633static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
 634{
 635    FWCfgState *s = opaque;
 636    int i, index;
 637
 638    assert(s->files);
 639
 640    index = be32_to_cpu(s->files->count);
 641
 642    for (i = 0; i < index; i++) {
 643        if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
 644            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
 645        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
 646            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
 647        } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
 648            fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
 649        }
 650    }
 651
 652    return 0;
 653}
 654
 655static const VMStateDescription vmstate_fw_cfg_dma = {
 656    .name = "fw_cfg/dma",
 657    .needed = fw_cfg_dma_enabled,
 658    .fields = (VMStateField[]) {
 659        VMSTATE_UINT64(dma_addr, FWCfgState),
 660        VMSTATE_END_OF_LIST()
 661    },
 662};
 663
 664static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
 665    .name = "fw_cfg/acpi_mr",
 666    .version_id = 1,
 667    .minimum_version_id = 1,
 668    .needed = fw_cfg_acpi_mr_restore,
 669    .post_load = fw_cfg_acpi_mr_restore_post_load,
 670    .fields = (VMStateField[]) {
 671        VMSTATE_UINT64(table_mr_size, FWCfgState),
 672        VMSTATE_UINT64(linker_mr_size, FWCfgState),
 673        VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
 674        VMSTATE_END_OF_LIST()
 675    },
 676};
 677
 678static const VMStateDescription vmstate_fw_cfg = {
 679    .name = "fw_cfg",
 680    .version_id = 2,
 681    .minimum_version_id = 1,
 682    .fields = (VMStateField[]) {
 683        VMSTATE_UINT16(cur_entry, FWCfgState),
 684        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 685        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 686        VMSTATE_END_OF_LIST()
 687    },
 688    .subsections = (const VMStateDescription*[]) {
 689        &vmstate_fw_cfg_dma,
 690        &vmstate_fw_cfg_acpi_mr,
 691        NULL,
 692    }
 693};
 694
 695static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 696                                      FWCfgCallback select_cb,
 697                                      FWCfgWriteCallback write_cb,
 698                                      void *callback_opaque,
 699                                      void *data, size_t len,
 700                                      bool read_only)
 701{
 702    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 703
 704    key &= FW_CFG_ENTRY_MASK;
 705
 706    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 707    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 708
 709    s->entries[arch][key].data = data;
 710    s->entries[arch][key].len = (uint32_t)len;
 711    s->entries[arch][key].select_cb = select_cb;
 712    s->entries[arch][key].write_cb = write_cb;
 713    s->entries[arch][key].callback_opaque = callback_opaque;
 714    s->entries[arch][key].allow_write = !read_only;
 715}
 716
 717static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 718                                              void *data, size_t len)
 719{
 720    void *ptr;
 721    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 722
 723    key &= FW_CFG_ENTRY_MASK;
 724
 725    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 726
 727    /* return the old data to the function caller, avoid memory leak */
 728    ptr = s->entries[arch][key].data;
 729    s->entries[arch][key].data = data;
 730    s->entries[arch][key].len = len;
 731    s->entries[arch][key].callback_opaque = NULL;
 732    s->entries[arch][key].allow_write = false;
 733
 734    return ptr;
 735}
 736
 737void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 738{
 739    trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
 740    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 741}
 742
 743void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 744{
 745    size_t sz = strlen(value) + 1;
 746
 747    trace_fw_cfg_add_string(key, trace_key_name(key), value);
 748    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 749}
 750
 751void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
 752{
 753    size_t sz = strlen(value) + 1;
 754    char *old;
 755
 756    old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
 757    g_free(old);
 758}
 759
 760void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 761{
 762    uint16_t *copy;
 763
 764    copy = g_malloc(sizeof(value));
 765    *copy = cpu_to_le16(value);
 766    trace_fw_cfg_add_i16(key, trace_key_name(key), value);
 767    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 768}
 769
 770void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 771{
 772    uint16_t *copy, *old;
 773
 774    copy = g_malloc(sizeof(value));
 775    *copy = cpu_to_le16(value);
 776    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 777    g_free(old);
 778}
 779
 780void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 781{
 782    uint32_t *copy;
 783
 784    copy = g_malloc(sizeof(value));
 785    *copy = cpu_to_le32(value);
 786    trace_fw_cfg_add_i32(key, trace_key_name(key), value);
 787    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 788}
 789
 790void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
 791{
 792    uint32_t *copy, *old;
 793
 794    copy = g_malloc(sizeof(value));
 795    *copy = cpu_to_le32(value);
 796    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 797    g_free(old);
 798}
 799
 800void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 801{
 802    uint64_t *copy;
 803
 804    copy = g_malloc(sizeof(value));
 805    *copy = cpu_to_le64(value);
 806    trace_fw_cfg_add_i64(key, trace_key_name(key), value);
 807    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 808}
 809
 810void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
 811{
 812    uint64_t *copy, *old;
 813
 814    copy = g_malloc(sizeof(value));
 815    *copy = cpu_to_le64(value);
 816    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 817    g_free(old);
 818}
 819
 820void fw_cfg_set_order_override(FWCfgState *s, int order)
 821{
 822    assert(s->fw_cfg_order_override == 0);
 823    s->fw_cfg_order_override = order;
 824}
 825
 826void fw_cfg_reset_order_override(FWCfgState *s)
 827{
 828    assert(s->fw_cfg_order_override != 0);
 829    s->fw_cfg_order_override = 0;
 830}
 831
 832/*
 833 * This is the legacy order list.  For legacy systems, files are in
 834 * the fw_cfg in the order defined below, by the "order" value.  Note
 835 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 836 * specific area, but there may be more than one and they occur in the
 837 * order that the user specifies them on the command line.  Those are
 838 * handled in a special manner, using the order override above.
 839 *
 840 * For non-legacy, the files are sorted by filename to avoid this kind
 841 * of complexity in the future.
 842 *
 843 * This is only for x86, other arches don't implement versioning so
 844 * they won't set legacy mode.
 845 */
 846static struct {
 847    const char *name;
 848    int order;
 849} fw_cfg_order[] = {
 850    { "etc/boot-menu-wait", 10 },
 851    { "bootsplash.jpg", 11 },
 852    { "bootsplash.bmp", 12 },
 853    { "etc/boot-fail-wait", 15 },
 854    { "etc/smbios/smbios-tables", 20 },
 855    { "etc/smbios/smbios-anchor", 30 },
 856    { "etc/e820", 40 },
 857    { "etc/reserved-memory-end", 50 },
 858    { "genroms/kvmvapic.bin", 55 },
 859    { "genroms/linuxboot.bin", 60 },
 860    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 861    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 862    { "etc/system-states", 90 },
 863    { }, /* User ROMs come here, 100. */
 864    { }, /* Device FW comes here, 110. */
 865    { "etc/extra-pci-roots", 120 },
 866    { "etc/acpi/tables", 130 },
 867    { "etc/table-loader", 140 },
 868    { "etc/tpm/log", 150 },
 869    { "etc/acpi/rsdp", 160 },
 870    { "bootorder", 170 },
 871    { "etc/msr_feature_control", 180 },
 872
 873#define FW_CFG_ORDER_OVERRIDE_LAST 200
 874};
 875
 876/*
 877 * Any sub-page size update to these table MRs will be lost during migration,
 878 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
 879 * In order to avoid the inconsistency in sizes save them seperately and
 880 * migrate over in vmstate post_load().
 881 */
 882static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
 883{
 884    if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
 885        s->table_mr_size = len;
 886    } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
 887        s->linker_mr_size = len;
 888    } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
 889        s->rsdp_mr_size = len;
 890    }
 891}
 892
 893static int get_fw_cfg_order(FWCfgState *s, const char *name)
 894{
 895    int i;
 896
 897    if (s->fw_cfg_order_override > 0) {
 898        return s->fw_cfg_order_override;
 899    }
 900
 901    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 902        if (fw_cfg_order[i].name == NULL) {
 903            continue;
 904        }
 905
 906        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 907            return fw_cfg_order[i].order;
 908        }
 909    }
 910
 911    /* Stick unknown stuff at the end. */
 912    warn_report("Unknown firmware file in legacy mode: %s", name);
 913    return FW_CFG_ORDER_OVERRIDE_LAST;
 914}
 915
 916void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 917                              FWCfgCallback select_cb,
 918                              FWCfgWriteCallback write_cb,
 919                              void *callback_opaque,
 920                              void *data, size_t len, bool read_only)
 921{
 922    int i, index, count;
 923    size_t dsize;
 924    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 925    int order = 0;
 926
 927    if (!s->files) {
 928        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 929        s->files = g_malloc0(dsize);
 930        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 931    }
 932
 933    count = be32_to_cpu(s->files->count);
 934    assert(count < fw_cfg_file_slots(s));
 935
 936    /* Find the insertion point. */
 937    if (mc->legacy_fw_cfg_order) {
 938        /*
 939         * Sort by order. For files with the same order, we keep them
 940         * in the sequence in which they were added.
 941         */
 942        order = get_fw_cfg_order(s, filename);
 943        for (index = count;
 944             index > 0 && order < s->entry_order[index - 1];
 945             index--);
 946    } else {
 947        /* Sort by file name. */
 948        for (index = count;
 949             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 950             index--);
 951    }
 952
 953    /*
 954     * Move all the entries from the index point and after down one
 955     * to create a slot for the new entry.  Because calculations are
 956     * being done with the index, make it so that "i" is the current
 957     * index and "i - 1" is the one being copied from, thus the
 958     * unusual start and end in the for statement.
 959     */
 960    for (i = count; i > index; i--) {
 961        s->files->f[i] = s->files->f[i - 1];
 962        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 963        s->entries[0][FW_CFG_FILE_FIRST + i] =
 964            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 965        s->entry_order[i] = s->entry_order[i - 1];
 966    }
 967
 968    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 969    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 970
 971    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 972    for (i = 0; i <= count; i++) {
 973        if (i != index &&
 974            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 975            error_report("duplicate fw_cfg file name: %s",
 976                         s->files->f[index].name);
 977            exit(1);
 978        }
 979    }
 980
 981    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 982                              select_cb, write_cb,
 983                              callback_opaque, data, len,
 984                              read_only);
 985
 986    s->files->f[index].size   = cpu_to_be32(len);
 987    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 988    s->entry_order[index] = order;
 989    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 990
 991    s->files->count = cpu_to_be32(count+1);
 992    fw_cfg_acpi_mr_save(s, filename, len);
 993}
 994
 995void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 996                     void *data, size_t len)
 997{
 998    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 999}
1000
1001void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1002                        void *data, size_t len)
1003{
1004    int i, index;
1005    void *ptr = NULL;
1006
1007    assert(s->files);
1008
1009    index = be32_to_cpu(s->files->count);
1010
1011    for (i = 0; i < index; i++) {
1012        if (strcmp(filename, s->files->f[i].name) == 0) {
1013            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1014                                           data, len);
1015            s->files->f[i].size   = cpu_to_be32(len);
1016            fw_cfg_acpi_mr_save(s, filename, len);
1017            return ptr;
1018        }
1019    }
1020
1021    assert(index < fw_cfg_file_slots(s));
1022
1023    /* add new one */
1024    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1025    return NULL;
1026}
1027
1028bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1029                               const char *gen_id, Error **errp)
1030{
1031    FWCfgDataGeneratorClass *klass;
1032    GByteArray *array;
1033    Object *obj;
1034    gsize size;
1035
1036    obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1037    if (!obj) {
1038        error_setg(errp, "Cannot find object ID '%s'", gen_id);
1039        return false;
1040    }
1041    if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1042        error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1043                   gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1044        return false;
1045    }
1046    klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1047    array = klass->get_data(obj, errp);
1048    if (!array) {
1049        return false;
1050    }
1051    size = array->len;
1052    fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1053
1054    return true;
1055}
1056
1057void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1058{
1059    int extra_hosts = 0;
1060
1061    if (!bus) {
1062        return;
1063    }
1064
1065    QLIST_FOREACH(bus, &bus->child, sibling) {
1066        /* look for expander root buses */
1067        if (pci_bus_is_root(bus)) {
1068            extra_hosts++;
1069        }
1070    }
1071
1072    if (extra_hosts && s) {
1073        uint64_t *val = g_malloc(sizeof(*val));
1074        *val = cpu_to_le64(extra_hosts);
1075        fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1076    }
1077}
1078
1079static void fw_cfg_machine_reset(void *opaque)
1080{
1081    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1082    FWCfgState *s = opaque;
1083    void *ptr;
1084    size_t len;
1085    char *buf;
1086
1087    buf = get_boot_devices_list(&len);
1088    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1089    g_free(ptr);
1090
1091    if (!mc->legacy_fw_cfg_order) {
1092        buf = get_boot_devices_lchs_list(&len);
1093        ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1094        g_free(ptr);
1095    }
1096}
1097
1098static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1099{
1100    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1101    qemu_register_reset(fw_cfg_machine_reset, s);
1102}
1103
1104static Property fw_cfg_properties[] = {
1105    DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1106    DEFINE_PROP_END_OF_LIST(),
1107};
1108
1109static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1110{
1111    FWCfgState *s = FW_CFG(dev);
1112    MachineState *machine = MACHINE(qdev_get_machine());
1113    uint32_t version = FW_CFG_VERSION;
1114
1115    if (!fw_cfg_find()) {
1116        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1117        return;
1118    }
1119
1120    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1121    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1122    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1123    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1124    fw_cfg_bootsplash(s);
1125    fw_cfg_reboot(s);
1126
1127    if (s->dma_enabled) {
1128        version |= FW_CFG_VERSION_DMA;
1129    }
1130
1131    fw_cfg_add_i32(s, FW_CFG_ID, version);
1132
1133    s->machine_ready.notify = fw_cfg_machine_ready;
1134    qemu_add_machine_init_done_notifier(&s->machine_ready);
1135}
1136
1137FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1138                                AddressSpace *dma_as)
1139{
1140    DeviceState *dev;
1141    SysBusDevice *sbd;
1142    FWCfgIoState *ios;
1143    FWCfgState *s;
1144    bool dma_requested = dma_iobase && dma_as;
1145
1146    dev = qdev_new(TYPE_FW_CFG_IO);
1147    if (!dma_requested) {
1148        qdev_prop_set_bit(dev, "dma_enabled", false);
1149    }
1150
1151    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1152                              OBJECT(dev));
1153
1154    sbd = SYS_BUS_DEVICE(dev);
1155    sysbus_realize_and_unref(sbd, &error_fatal);
1156    ios = FW_CFG_IO(dev);
1157    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1158
1159    s = FW_CFG(dev);
1160
1161    if (s->dma_enabled) {
1162        /* 64 bits for the address field */
1163        s->dma_as = dma_as;
1164        s->dma_addr = 0;
1165        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1166    }
1167
1168    return s;
1169}
1170
1171FWCfgState *fw_cfg_init_io(uint32_t iobase)
1172{
1173    return fw_cfg_init_io_dma(iobase, 0, NULL);
1174}
1175
1176FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1177                                 hwaddr data_addr, uint32_t data_width,
1178                                 hwaddr dma_addr, AddressSpace *dma_as)
1179{
1180    DeviceState *dev;
1181    SysBusDevice *sbd;
1182    FWCfgState *s;
1183    bool dma_requested = dma_addr && dma_as;
1184
1185    dev = qdev_new(TYPE_FW_CFG_MEM);
1186    qdev_prop_set_uint32(dev, "data_width", data_width);
1187    if (!dma_requested) {
1188        qdev_prop_set_bit(dev, "dma_enabled", false);
1189    }
1190
1191    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1192                              OBJECT(dev));
1193
1194    sbd = SYS_BUS_DEVICE(dev);
1195    sysbus_realize_and_unref(sbd, &error_fatal);
1196    sysbus_mmio_map(sbd, 0, ctl_addr);
1197    sysbus_mmio_map(sbd, 1, data_addr);
1198
1199    s = FW_CFG(dev);
1200
1201    if (s->dma_enabled) {
1202        s->dma_as = dma_as;
1203        s->dma_addr = 0;
1204        sysbus_mmio_map(sbd, 2, dma_addr);
1205    }
1206
1207    return s;
1208}
1209
1210FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1211{
1212    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1213                                fw_cfg_data_mem_ops.valid.max_access_size,
1214                                0, NULL);
1215}
1216
1217
1218FWCfgState *fw_cfg_find(void)
1219{
1220    /* Returns NULL unless there is exactly one fw_cfg device */
1221    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1222}
1223
1224
1225static void fw_cfg_class_init(ObjectClass *klass, void *data)
1226{
1227    DeviceClass *dc = DEVICE_CLASS(klass);
1228
1229    dc->reset = fw_cfg_reset;
1230    dc->vmsd = &vmstate_fw_cfg;
1231
1232    device_class_set_props(dc, fw_cfg_properties);
1233}
1234
1235static const TypeInfo fw_cfg_info = {
1236    .name          = TYPE_FW_CFG,
1237    .parent        = TYPE_SYS_BUS_DEVICE,
1238    .abstract      = true,
1239    .instance_size = sizeof(FWCfgState),
1240    .class_init    = fw_cfg_class_init,
1241};
1242
1243static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1244{
1245    uint16_t file_slots_max;
1246
1247    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1248        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1249                   FW_CFG_FILE_SLOTS_MIN);
1250        return;
1251    }
1252
1253    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1254     * that we permit. The actual (exclusive) value coming from the
1255     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1256    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1257    if (fw_cfg_file_slots(s) > file_slots_max) {
1258        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1259                   file_slots_max);
1260        return;
1261    }
1262
1263    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1264    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1265    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1266}
1267
1268static Property fw_cfg_io_properties[] = {
1269    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1270                     true),
1271    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1272                       FW_CFG_FILE_SLOTS_DFLT),
1273    DEFINE_PROP_END_OF_LIST(),
1274};
1275
1276static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1277{
1278    ERRP_GUARD();
1279    FWCfgIoState *s = FW_CFG_IO(dev);
1280
1281    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1282    if (*errp) {
1283        return;
1284    }
1285
1286    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1287     * with half of the 16-bit control register. Hence, the total size
1288     * of the i/o region used is FW_CFG_CTL_SIZE */
1289    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1290                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1291
1292    if (FW_CFG(s)->dma_enabled) {
1293        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1294                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1295                              sizeof(dma_addr_t));
1296    }
1297
1298    fw_cfg_common_realize(dev, errp);
1299}
1300
1301static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1302{
1303    DeviceClass *dc = DEVICE_CLASS(klass);
1304
1305    dc->realize = fw_cfg_io_realize;
1306    device_class_set_props(dc, fw_cfg_io_properties);
1307}
1308
1309static const TypeInfo fw_cfg_io_info = {
1310    .name          = TYPE_FW_CFG_IO,
1311    .parent        = TYPE_FW_CFG,
1312    .instance_size = sizeof(FWCfgIoState),
1313    .class_init    = fw_cfg_io_class_init,
1314};
1315
1316
1317static Property fw_cfg_mem_properties[] = {
1318    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1319    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1320                     true),
1321    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1322                       FW_CFG_FILE_SLOTS_DFLT),
1323    DEFINE_PROP_END_OF_LIST(),
1324};
1325
1326static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1327{
1328    ERRP_GUARD();
1329    FWCfgMemState *s = FW_CFG_MEM(dev);
1330    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1331    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1332
1333    fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1334    if (*errp) {
1335        return;
1336    }
1337
1338    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1339                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1340    sysbus_init_mmio(sbd, &s->ctl_iomem);
1341
1342    if (s->data_width > data_ops->valid.max_access_size) {
1343        s->wide_data_ops = *data_ops;
1344
1345        s->wide_data_ops.valid.max_access_size = s->data_width;
1346        s->wide_data_ops.impl.max_access_size  = s->data_width;
1347        data_ops = &s->wide_data_ops;
1348    }
1349    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1350                          "fwcfg.data", data_ops->valid.max_access_size);
1351    sysbus_init_mmio(sbd, &s->data_iomem);
1352
1353    if (FW_CFG(s)->dma_enabled) {
1354        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1355                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1356                              sizeof(dma_addr_t));
1357        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1358    }
1359
1360    fw_cfg_common_realize(dev, errp);
1361}
1362
1363static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1364{
1365    DeviceClass *dc = DEVICE_CLASS(klass);
1366
1367    dc->realize = fw_cfg_mem_realize;
1368    device_class_set_props(dc, fw_cfg_mem_properties);
1369}
1370
1371static const TypeInfo fw_cfg_mem_info = {
1372    .name          = TYPE_FW_CFG_MEM,
1373    .parent        = TYPE_FW_CFG,
1374    .instance_size = sizeof(FWCfgMemState),
1375    .class_init    = fw_cfg_mem_class_init,
1376};
1377
1378static void fw_cfg_register_types(void)
1379{
1380    type_register_static(&fw_cfg_info);
1381    type_register_static(&fw_cfg_io_info);
1382    type_register_static(&fw_cfg_mem_info);
1383}
1384
1385type_init(fw_cfg_register_types)
1386