qemu/hw/pci-host/pnv_phb4.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
   3 *
   4 * Copyright (c) 2018-2020, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9#include "qemu/osdep.h"
  10#include "qemu/log.h"
  11#include "qapi/visitor.h"
  12#include "qapi/error.h"
  13#include "monitor/monitor.h"
  14#include "target/ppc/cpu.h"
  15#include "hw/pci-host/pnv_phb4_regs.h"
  16#include "hw/pci-host/pnv_phb4.h"
  17#include "hw/pci/pcie_host.h"
  18#include "hw/pci/pcie_port.h"
  19#include "hw/ppc/pnv.h"
  20#include "hw/ppc/pnv_xscom.h"
  21#include "hw/irq.h"
  22#include "hw/qdev-properties.h"
  23#include "qom/object.h"
  24#include "trace.h"
  25
  26#define phb_error(phb, fmt, ...)                                        \
  27    qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n",            \
  28                  (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
  29
  30#define phb_pec_error(pec, fmt, ...)                                    \
  31    qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n",        \
  32                  (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
  33
  34static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
  35{
  36    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
  37    uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
  38    uint8_t bus, devfn;
  39
  40    if (!(addr >> 63)) {
  41        return NULL;
  42    }
  43    bus = (addr >> 52) & 0xff;
  44    devfn = (addr >> 44) & 0xff;
  45
  46    /* We don't access the root complex this way */
  47    if (bus == 0 && devfn == 0) {
  48        return NULL;
  49    }
  50    return pci_find_device(pci->bus, bus, devfn);
  51}
  52
  53/*
  54 * The CONFIG_DATA register expects little endian accesses, but as the
  55 * region is big endian, we have to swap the value.
  56 */
  57static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
  58                                  unsigned size, uint64_t val)
  59{
  60    uint32_t cfg_addr, limit;
  61    PCIDevice *pdev;
  62
  63    pdev = pnv_phb4_find_cfg_dev(phb);
  64    if (!pdev) {
  65        return;
  66    }
  67    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
  68    cfg_addr |= off;
  69    limit = pci_config_size(pdev);
  70    if (limit <= cfg_addr) {
  71        /*
  72         * conventional pci device can be behind pcie-to-pci bridge.
  73         * 256 <= addr < 4K has no effects.
  74         */
  75        return;
  76    }
  77    switch (size) {
  78    case 1:
  79        break;
  80    case 2:
  81        val = bswap16(val);
  82        break;
  83    case 4:
  84        val = bswap32(val);
  85        break;
  86    default:
  87        g_assert_not_reached();
  88    }
  89    pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
  90}
  91
  92static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
  93                                     unsigned size)
  94{
  95    uint32_t cfg_addr, limit;
  96    PCIDevice *pdev;
  97    uint64_t val;
  98
  99    pdev = pnv_phb4_find_cfg_dev(phb);
 100    if (!pdev) {
 101        return ~0ull;
 102    }
 103    cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
 104    cfg_addr |= off;
 105    limit = pci_config_size(pdev);
 106    if (limit <= cfg_addr) {
 107        /*
 108         * conventional pci device can be behind pcie-to-pci bridge.
 109         * 256 <= addr < 4K has no effects.
 110         */
 111        return ~0ull;
 112    }
 113    val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
 114    switch (size) {
 115    case 1:
 116        return val;
 117    case 2:
 118        return bswap16(val);
 119    case 4:
 120        return bswap32(val);
 121    default:
 122        g_assert_not_reached();
 123    }
 124}
 125
 126/*
 127 * Root complex register accesses are memory mapped.
 128 */
 129static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
 130                                     unsigned size, uint64_t val)
 131{
 132    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 133    PCIDevice *pdev;
 134
 135    if (size != 4) {
 136        phb_error(phb, "rc_config_write invalid size %d\n", size);
 137        return;
 138    }
 139
 140    pdev = pci_find_device(pci->bus, 0, 0);
 141    if (!pdev) {
 142        phb_error(phb, "rc_config_write device not found\n");
 143        return;
 144    }
 145
 146    pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
 147                                 bswap32(val), 4);
 148}
 149
 150static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
 151                                        unsigned size)
 152{
 153    PCIHostState *pci = PCI_HOST_BRIDGE(phb);
 154    PCIDevice *pdev;
 155    uint64_t val;
 156
 157    if (size != 4) {
 158        phb_error(phb, "rc_config_read invalid size %d\n", size);
 159        return ~0ull;
 160    }
 161
 162    pdev = pci_find_device(pci->bus, 0, 0);
 163    if (!pdev) {
 164        phb_error(phb, "rc_config_read device not found\n");
 165        return ~0ull;
 166    }
 167
 168    val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
 169    return bswap32(val);
 170}
 171
 172static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
 173{
 174    uint64_t base, start, size, mbe0, mbe1;
 175    MemoryRegion *parent;
 176    char name[64];
 177
 178    /* Unmap first */
 179    if (memory_region_is_mapped(&phb->mr_mmio[index])) {
 180        /* Should we destroy it in RCU friendly way... ? */
 181        memory_region_del_subregion(phb->mr_mmio[index].container,
 182                                    &phb->mr_mmio[index]);
 183    }
 184
 185    /* Get table entry */
 186    mbe0 = phb->ioda_MBT[(index << 1)];
 187    mbe1 = phb->ioda_MBT[(index << 1) + 1];
 188
 189    if (!(mbe0 & IODA3_MBT0_ENABLE)) {
 190        return;
 191    }
 192
 193    /* Grab geometry from registers */
 194    base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
 195    size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
 196    size |= 0xff00000000000000ull;
 197    size = ~size + 1;
 198
 199    /* Calculate PCI side start address based on M32/M64 window type */
 200    if (mbe0 & IODA3_MBT0_TYPE_M32) {
 201        start = phb->regs[PHB_M32_START_ADDR >> 3];
 202        if ((start + size) > 0x100000000ull) {
 203            phb_error(phb, "M32 set beyond 4GB boundary !");
 204            size = 0x100000000 - start;
 205        }
 206    } else {
 207        start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
 208    }
 209
 210    /* TODO: Figure out how to implemet/decode AOMASK */
 211
 212    /* Check if it matches an enabled MMIO region in the PEC stack */
 213    if (memory_region_is_mapped(&phb->mmbar0) &&
 214        base >= phb->mmio0_base &&
 215        (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
 216        parent = &phb->mmbar0;
 217        base -= phb->mmio0_base;
 218    } else if (memory_region_is_mapped(&phb->mmbar1) &&
 219        base >= phb->mmio1_base &&
 220        (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
 221        parent = &phb->mmbar1;
 222        base -= phb->mmio1_base;
 223    } else {
 224        phb_error(phb, "PHB MBAR %d out of parent bounds", index);
 225        return;
 226    }
 227
 228    /* Create alias (better name ?) */
 229    snprintf(name, sizeof(name), "phb4-mbar%d", index);
 230    memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
 231                             &phb->pci_mmio, start, size);
 232    memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
 233}
 234
 235static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
 236{
 237    uint64_t i;
 238    uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
 239        PNV_PHB4_MIN_MMIO_WINDOWS;
 240
 241    for (i = 0; i < num_windows; i++) {
 242        pnv_phb4_check_mbt(phb, i);
 243    }
 244}
 245
 246static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
 247                                      unsigned *out_table, unsigned *out_idx)
 248{
 249    uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 250    unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
 251    unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
 252    unsigned int mask;
 253    uint64_t *tptr = NULL;
 254
 255    switch (table) {
 256    case IODA3_TBL_LIST:
 257        tptr = phb->ioda_LIST;
 258        mask = 7;
 259        break;
 260    case IODA3_TBL_MIST:
 261        tptr = phb->ioda_MIST;
 262        mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
 263        mask -= 1;
 264        break;
 265    case IODA3_TBL_RCAM:
 266        mask = phb->big_phb ? 127 : 63;
 267        break;
 268    case IODA3_TBL_MRT:
 269        mask = phb->big_phb ? 15 : 7;
 270        break;
 271    case IODA3_TBL_PESTA:
 272    case IODA3_TBL_PESTB:
 273        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 274        mask -= 1;
 275        break;
 276    case IODA3_TBL_TVT:
 277        tptr = phb->ioda_TVT;
 278        mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
 279        mask -= 1;
 280        break;
 281    case IODA3_TBL_TCR:
 282    case IODA3_TBL_TDR:
 283        mask = phb->big_phb ? 1023 : 511;
 284        break;
 285    case IODA3_TBL_MBT:
 286        tptr = phb->ioda_MBT;
 287        mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
 288        mask -= 1;
 289        break;
 290    case IODA3_TBL_MDT:
 291        tptr = phb->ioda_MDT;
 292        mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
 293        mask -= 1;
 294        break;
 295    case IODA3_TBL_PEEV:
 296        tptr = phb->ioda_PEEV;
 297        mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
 298        mask -= 1;
 299        break;
 300    default:
 301        phb_error(phb, "invalid IODA table %d", table);
 302        return NULL;
 303    }
 304    index &= mask;
 305    if (out_idx) {
 306        *out_idx = index;
 307    }
 308    if (out_table) {
 309        *out_table = table;
 310    }
 311    if (tptr) {
 312        tptr += index;
 313    }
 314    if (adreg & PHB_IODA_AD_AUTOINC) {
 315        index = (index + 1) & mask;
 316        adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
 317    }
 318
 319    phb->regs[PHB_IODA_ADDR >> 3] = adreg;
 320    return tptr;
 321}
 322
 323static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
 324{
 325    unsigned table, idx;
 326    uint64_t *tptr;
 327
 328    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 329    if (!tptr) {
 330        /* Special PESTA case */
 331        if (table == IODA3_TBL_PESTA) {
 332            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
 333        } else if (table == IODA3_TBL_PESTB) {
 334            return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
 335        }
 336        /* Return 0 on unsupported tables, not ff's */
 337        return 0;
 338    }
 339    return *tptr;
 340}
 341
 342static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
 343{
 344    unsigned table, idx;
 345    uint64_t *tptr;
 346
 347    tptr = pnv_phb4_ioda_access(phb, &table, &idx);
 348    if (!tptr) {
 349        /* Special PESTA case */
 350        if (table == IODA3_TBL_PESTA) {
 351            phb->ioda_PEST_AB[idx] &= ~1;
 352            phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
 353        } else if (table == IODA3_TBL_PESTB) {
 354            phb->ioda_PEST_AB[idx] &= ~2;
 355            phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
 356        }
 357        return;
 358    }
 359
 360    /* Handle side effects */
 361    switch (table) {
 362    case IODA3_TBL_LIST:
 363        break;
 364    case IODA3_TBL_MIST: {
 365        /* Special mask for MIST partial write */
 366        uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
 367        uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
 368        uint64_t v = *tptr;
 369        if (mmask == 0) {
 370            mmask = 0xf;
 371        }
 372        if (mmask & 8) {
 373            v &= 0x0000ffffffffffffull;
 374            v |= 0xcfff000000000000ull & val;
 375        }
 376        if (mmask & 4) {
 377            v &= 0xffff0000ffffffffull;
 378            v |= 0x0000cfff00000000ull & val;
 379        }
 380        if (mmask & 2) {
 381            v &= 0xffffffff0000ffffull;
 382            v |= 0x00000000cfff0000ull & val;
 383        }
 384        if (mmask & 1) {
 385            v &= 0xffffffffffff0000ull;
 386            v |= 0x000000000000cfffull & val;
 387        }
 388        *tptr = v;
 389        break;
 390    }
 391    case IODA3_TBL_MBT:
 392        *tptr = val;
 393
 394        /* Copy accross the valid bit to the other half */
 395        phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
 396        phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
 397
 398        /* Update mappings */
 399        pnv_phb4_check_mbt(phb, idx >> 1);
 400        break;
 401    default:
 402        *tptr = val;
 403    }
 404}
 405
 406static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
 407{
 408    PnvPhb4DMASpace *ds;
 409
 410    /* Always invalidate all for now ... */
 411    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 412        ds->pe_num = PHB_INVALID_PE;
 413    }
 414}
 415
 416static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
 417{
 418    uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
 419
 420    if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
 421        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 422            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 423                                        0xffff0000, &ds->msi32_mr);
 424        }
 425    } else {
 426        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
 427            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 428                                        &ds->msi32_mr);
 429        }
 430    }
 431
 432    if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
 433        if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 434            memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
 435                                        (1ull << 60), &ds->msi64_mr);
 436        }
 437    } else {
 438        if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
 439            memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
 440                                        &ds->msi64_mr);
 441        }
 442    }
 443}
 444
 445static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
 446{
 447    PnvPhb4DMASpace *ds;
 448
 449    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
 450        pnv_phb4_update_msi_regions(ds);
 451    }
 452}
 453
 454static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
 455{
 456    int shift, flags, i, lsi_base;
 457    XiveSource *xsrc = &phb->xsrc;
 458
 459    /* The XIVE source characteristics can be set at run time */
 460    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
 461        shift = XIVE_ESB_64K;
 462    } else {
 463        shift = XIVE_ESB_4K;
 464    }
 465    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
 466        flags = XIVE_SRC_STORE_EOI;
 467    } else {
 468        flags = 0;
 469    }
 470
 471    /*
 472     * When the PQ disable configuration bit is set, the check on the
 473     * PQ state bits is disabled on the PHB side (for MSI only) and it
 474     * is performed on the IC side instead.
 475     */
 476    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
 477        flags |= XIVE_SRC_PQ_DISABLE;
 478    }
 479
 480    phb->xsrc.esb_shift = shift;
 481    phb->xsrc.esb_flags = flags;
 482
 483    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
 484    lsi_base <<= 3;
 485
 486    /* TODO: handle reset values of PHB_LSI_SRC_ID */
 487    if (!lsi_base) {
 488        return;
 489    }
 490
 491    /* TODO: need a xive_source_irq_reset_lsi() */
 492    bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
 493
 494    for (i = 0; i < xsrc->nr_irqs; i++) {
 495        bool msi = (i < lsi_base || i >= (lsi_base + 8));
 496        if (!msi) {
 497            xive_source_irq_set_lsi(xsrc, i);
 498        }
 499    }
 500}
 501
 502static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
 503                               unsigned size)
 504{
 505    PnvPHB4 *phb = PNV_PHB4(opaque);
 506    bool changed;
 507
 508    /* Special case outbound configuration data */
 509    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 510        pnv_phb4_config_write(phb, off & 0x3, size, val);
 511        return;
 512    }
 513
 514    /* Special case RC configuration space */
 515    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 516        pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
 517        return;
 518    }
 519
 520    /* Other registers are 64-bit only */
 521    if (size != 8 || off & 0x7) {
 522        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 523                   off, size);
 524        return;
 525    }
 526
 527    /* Handle masking */
 528    switch (off) {
 529    case PHB_LSI_SOURCE_ID:
 530        val &= PHB_LSI_SRC_ID;
 531        break;
 532    case PHB_M64_UPPER_BITS:
 533        val &= 0xff00000000000000ull;
 534        break;
 535    /* TCE Kill */
 536    case PHB_TCE_KILL:
 537        /* Clear top 3 bits which HW does to indicate successful queuing */
 538        val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
 539        break;
 540    case PHB_Q_DMA_R:
 541        /*
 542         * This is enough logic to make SW happy but we aren't
 543         * actually quiescing the DMAs
 544         */
 545        if (val & PHB_Q_DMA_R_AUTORESET) {
 546            val = 0;
 547        } else {
 548            val &= PHB_Q_DMA_R_QUIESCE_DMA;
 549        }
 550        break;
 551    /* LEM stuff */
 552    case PHB_LEM_FIR_AND_MASK:
 553        phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
 554        return;
 555    case PHB_LEM_FIR_OR_MASK:
 556        phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
 557        return;
 558    case PHB_LEM_ERROR_AND_MASK:
 559        phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
 560        return;
 561    case PHB_LEM_ERROR_OR_MASK:
 562        phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
 563        return;
 564    case PHB_LEM_WOF:
 565        val = 0;
 566        break;
 567    /* TODO: More regs ..., maybe create a table with masks... */
 568
 569    /* Read only registers */
 570    case PHB_CPU_LOADSTORE_STATUS:
 571    case PHB_ETU_ERR_SUMMARY:
 572    case PHB_PHB4_GEN_CAP:
 573    case PHB_PHB4_TCE_CAP:
 574    case PHB_PHB4_IRQ_CAP:
 575    case PHB_PHB4_EEH_CAP:
 576        return;
 577    }
 578
 579    /* Record whether it changed */
 580    changed = phb->regs[off >> 3] != val;
 581
 582    /* Store in register cache first */
 583    phb->regs[off >> 3] = val;
 584
 585    /* Handle side effects */
 586    switch (off) {
 587    case PHB_PHB4_CONFIG:
 588        if (changed) {
 589            pnv_phb4_update_all_msi_regions(phb);
 590        }
 591        break;
 592    case PHB_M32_START_ADDR:
 593    case PHB_M64_UPPER_BITS:
 594        if (changed) {
 595            pnv_phb4_check_all_mbt(phb);
 596        }
 597        break;
 598
 599    /* IODA table accesses */
 600    case PHB_IODA_DATA0:
 601        pnv_phb4_ioda_write(phb, val);
 602        break;
 603
 604    /* RTC invalidation */
 605    case PHB_RTC_INVALIDATE:
 606        pnv_phb4_rtc_invalidate(phb, val);
 607        break;
 608
 609    /* PHB Control (Affects XIVE source) */
 610    case PHB_CTRLR:
 611    case PHB_LSI_SOURCE_ID:
 612        pnv_phb4_update_xsrc(phb);
 613        break;
 614
 615    /* Silent simple writes */
 616    case PHB_ASN_CMPM:
 617    case PHB_CONFIG_ADDRESS:
 618    case PHB_IODA_ADDR:
 619    case PHB_TCE_KILL:
 620    case PHB_TCE_SPEC_CTL:
 621    case PHB_PEST_BAR:
 622    case PHB_PELTV_BAR:
 623    case PHB_RTT_BAR:
 624    case PHB_LEM_FIR_ACCUM:
 625    case PHB_LEM_ERROR_MASK:
 626    case PHB_LEM_ACTION0:
 627    case PHB_LEM_ACTION1:
 628    case PHB_TCE_TAG_ENABLE:
 629    case PHB_INT_NOTIFY_ADDR:
 630    case PHB_INT_NOTIFY_INDEX:
 631    case PHB_DMARD_SYNC:
 632       break;
 633
 634    /* Noise on anything else */
 635    default:
 636        qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
 637                      off, val);
 638    }
 639}
 640
 641static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
 642{
 643    PnvPHB4 *phb = PNV_PHB4(opaque);
 644    uint64_t val;
 645
 646    if ((off & 0xfffc) == PHB_CONFIG_DATA) {
 647        return pnv_phb4_config_read(phb, off & 0x3, size);
 648    }
 649
 650    /* Special case RC configuration space */
 651    if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
 652        return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
 653    }
 654
 655    /* Other registers are 64-bit only */
 656    if (size != 8 || off & 0x7) {
 657        phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
 658                   off, size);
 659        return ~0ull;
 660    }
 661
 662    /* Default read from cache */
 663    val = phb->regs[off >> 3];
 664
 665    switch (off) {
 666    case PHB_VERSION:
 667        return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
 668
 669        /* Read-only */
 670    case PHB_PHB4_GEN_CAP:
 671        return 0xe4b8000000000000ull;
 672    case PHB_PHB4_TCE_CAP:
 673        return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
 674    case PHB_PHB4_IRQ_CAP:
 675        return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
 676    case PHB_PHB4_EEH_CAP:
 677        return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
 678
 679    /* IODA table accesses */
 680    case PHB_IODA_DATA0:
 681        return pnv_phb4_ioda_read(phb);
 682
 683    /* Link training always appears trained */
 684    case PHB_PCIE_DLP_TRAIN_CTL:
 685        /* TODO: Do something sensible with speed ? */
 686        return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
 687
 688    /* DMA read sync: make it look like it's complete */
 689    case PHB_DMARD_SYNC:
 690        return PHB_DMARD_SYNC_COMPLETE;
 691
 692    /* Silent simple reads */
 693    case PHB_LSI_SOURCE_ID:
 694    case PHB_CPU_LOADSTORE_STATUS:
 695    case PHB_ASN_CMPM:
 696    case PHB_PHB4_CONFIG:
 697    case PHB_M32_START_ADDR:
 698    case PHB_CONFIG_ADDRESS:
 699    case PHB_IODA_ADDR:
 700    case PHB_RTC_INVALIDATE:
 701    case PHB_TCE_KILL:
 702    case PHB_TCE_SPEC_CTL:
 703    case PHB_PEST_BAR:
 704    case PHB_PELTV_BAR:
 705    case PHB_RTT_BAR:
 706    case PHB_M64_UPPER_BITS:
 707    case PHB_CTRLR:
 708    case PHB_LEM_FIR_ACCUM:
 709    case PHB_LEM_ERROR_MASK:
 710    case PHB_LEM_ACTION0:
 711    case PHB_LEM_ACTION1:
 712    case PHB_TCE_TAG_ENABLE:
 713    case PHB_INT_NOTIFY_ADDR:
 714    case PHB_INT_NOTIFY_INDEX:
 715    case PHB_Q_DMA_R:
 716    case PHB_ETU_ERR_SUMMARY:
 717        break;
 718
 719    /* Noise on anything else */
 720    default:
 721        qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
 722                      off, val);
 723    }
 724    return val;
 725}
 726
 727static const MemoryRegionOps pnv_phb4_reg_ops = {
 728    .read = pnv_phb4_reg_read,
 729    .write = pnv_phb4_reg_write,
 730    .valid.min_access_size = 1,
 731    .valid.max_access_size = 8,
 732    .impl.min_access_size = 1,
 733    .impl.max_access_size = 8,
 734    .endianness = DEVICE_BIG_ENDIAN,
 735};
 736
 737static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
 738{
 739    PnvPHB4 *phb = PNV_PHB4(opaque);
 740    uint32_t reg = addr >> 3;
 741    uint64_t val;
 742    hwaddr offset;
 743
 744    switch (reg) {
 745    case PHB_SCOM_HV_IND_ADDR:
 746        return phb->scom_hv_ind_addr_reg;
 747
 748    case PHB_SCOM_HV_IND_DATA:
 749        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 750            phb_error(phb, "Invalid indirect address");
 751            return ~0ull;
 752        }
 753        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 754        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 755        val = pnv_phb4_reg_read(phb, offset, size);
 756        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 757            offset += size;
 758            offset &= 0x3fff;
 759            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 760                                                 phb->scom_hv_ind_addr_reg,
 761                                                 offset);
 762        }
 763        return val;
 764    case PHB_SCOM_ETU_LEM_FIR:
 765    case PHB_SCOM_ETU_LEM_FIR_AND:
 766    case PHB_SCOM_ETU_LEM_FIR_OR:
 767    case PHB_SCOM_ETU_LEM_FIR_MSK:
 768    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 769    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 770    case PHB_SCOM_ETU_LEM_ACT0:
 771    case PHB_SCOM_ETU_LEM_ACT1:
 772    case PHB_SCOM_ETU_LEM_WOF:
 773        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 774        return pnv_phb4_reg_read(phb, offset, size);
 775    case PHB_SCOM_ETU_PMON_CONFIG:
 776    case PHB_SCOM_ETU_PMON_CTR0:
 777    case PHB_SCOM_ETU_PMON_CTR1:
 778    case PHB_SCOM_ETU_PMON_CTR2:
 779    case PHB_SCOM_ETU_PMON_CTR3:
 780        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 781        return pnv_phb4_reg_read(phb, offset, size);
 782
 783    default:
 784        qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
 785        return ~0ull;
 786    }
 787}
 788
 789static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
 790                                 uint64_t val, unsigned size)
 791{
 792    PnvPHB4 *phb = PNV_PHB4(opaque);
 793    uint32_t reg = addr >> 3;
 794    hwaddr offset;
 795
 796    switch (reg) {
 797    case PHB_SCOM_HV_IND_ADDR:
 798        phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
 799        break;
 800    case PHB_SCOM_HV_IND_DATA:
 801        if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
 802            phb_error(phb, "Invalid indirect address");
 803            break;
 804        }
 805        size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
 806        offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
 807        pnv_phb4_reg_write(phb, offset, val, size);
 808        if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
 809            offset += size;
 810            offset &= 0x3fff;
 811            phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
 812                                                 phb->scom_hv_ind_addr_reg,
 813                                                 offset);
 814        }
 815        break;
 816    case PHB_SCOM_ETU_LEM_FIR:
 817    case PHB_SCOM_ETU_LEM_FIR_AND:
 818    case PHB_SCOM_ETU_LEM_FIR_OR:
 819    case PHB_SCOM_ETU_LEM_FIR_MSK:
 820    case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
 821    case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
 822    case PHB_SCOM_ETU_LEM_ACT0:
 823    case PHB_SCOM_ETU_LEM_ACT1:
 824    case PHB_SCOM_ETU_LEM_WOF:
 825        offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
 826        pnv_phb4_reg_write(phb, offset, val, size);
 827        break;
 828    case PHB_SCOM_ETU_PMON_CONFIG:
 829    case PHB_SCOM_ETU_PMON_CTR0:
 830    case PHB_SCOM_ETU_PMON_CTR1:
 831    case PHB_SCOM_ETU_PMON_CTR2:
 832    case PHB_SCOM_ETU_PMON_CTR3:
 833        offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
 834        pnv_phb4_reg_write(phb, offset, val, size);
 835        break;
 836    default:
 837        qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
 838                      "=%"PRIx64"\n", addr, val);
 839    }
 840}
 841
 842const MemoryRegionOps pnv_phb4_xscom_ops = {
 843    .read = pnv_phb4_xscom_read,
 844    .write = pnv_phb4_xscom_write,
 845    .valid.min_access_size = 8,
 846    .valid.max_access_size = 8,
 847    .impl.min_access_size = 8,
 848    .impl.max_access_size = 8,
 849    .endianness = DEVICE_BIG_ENDIAN,
 850};
 851
 852static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
 853                                            unsigned size)
 854{
 855    PnvPHB4 *phb = PNV_PHB4(opaque);
 856    uint32_t reg = addr >> 3;
 857
 858    /* TODO: add list of allowed registers and error out if not */
 859    return phb->nest_regs[reg];
 860}
 861
 862/*
 863 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
 864 * the PHB4 occupies in the PEC. This is the reverse of what
 865 * pnv_phb4_pec_get_phb_id() does.
 866 *
 867 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
 868 * be the second phb (stack_no = 1) of the PEC.
 869 */
 870static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
 871{
 872    PnvPhb4PecState *pec = phb->pec;
 873    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
 874    int index = pec->index;
 875    int stack_no = phb->phb_id;
 876
 877    while (index--) {
 878        stack_no -= pecc->num_phbs[index];
 879    }
 880
 881    return stack_no;
 882}
 883
 884static void pnv_phb4_update_regions(PnvPHB4 *phb)
 885{
 886    /* Unmap first always */
 887    if (memory_region_is_mapped(&phb->mr_regs)) {
 888        memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
 889    }
 890    if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
 891        memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
 892    }
 893
 894    /* Map registers if enabled */
 895    if (memory_region_is_mapped(&phb->phbbar)) {
 896        memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
 897    }
 898
 899    /* Map ESB if enabled */
 900    if (memory_region_is_mapped(&phb->intbar)) {
 901        memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
 902    }
 903
 904    /* Check/update m32 */
 905    pnv_phb4_check_all_mbt(phb);
 906}
 907
 908static void pnv_pec_phb_update_map(PnvPHB4 *phb)
 909{
 910    PnvPhb4PecState *pec = phb->pec;
 911    MemoryRegion *sysmem = get_system_memory();
 912    uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
 913    int stack_no = pnv_phb4_get_phb_stack_no(phb);
 914    uint64_t bar, mask, size;
 915    char name[64];
 916
 917    /*
 918     * NOTE: This will really not work well if those are remapped
 919     * after the PHB has created its sub regions. We could do better
 920     * if we had a way to resize regions but we don't really care
 921     * that much in practice as the stuff below really only happens
 922     * once early during boot
 923     */
 924
 925    /* Handle unmaps */
 926    if (memory_region_is_mapped(&phb->mmbar0) &&
 927        !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
 928        memory_region_del_subregion(sysmem, &phb->mmbar0);
 929    }
 930    if (memory_region_is_mapped(&phb->mmbar1) &&
 931        !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
 932        memory_region_del_subregion(sysmem, &phb->mmbar1);
 933    }
 934    if (memory_region_is_mapped(&phb->phbbar) &&
 935        !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
 936        memory_region_del_subregion(sysmem, &phb->phbbar);
 937    }
 938    if (memory_region_is_mapped(&phb->intbar) &&
 939        !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
 940        memory_region_del_subregion(sysmem, &phb->intbar);
 941    }
 942
 943    /* Update PHB */
 944    pnv_phb4_update_regions(phb);
 945
 946    /* Handle maps */
 947    if (!memory_region_is_mapped(&phb->mmbar0) &&
 948        (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
 949        bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
 950        mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
 951        size = ((~mask) >> 8) + 1;
 952        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
 953                 pec->chip_id, pec->index, stack_no);
 954        memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
 955        memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
 956        phb->mmio0_base = bar;
 957        phb->mmio0_size = size;
 958    }
 959    if (!memory_region_is_mapped(&phb->mmbar1) &&
 960        (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
 961        bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
 962        mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
 963        size = ((~mask) >> 8) + 1;
 964        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
 965                 pec->chip_id, pec->index, stack_no);
 966        memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
 967        memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
 968        phb->mmio1_base = bar;
 969        phb->mmio1_size = size;
 970    }
 971    if (!memory_region_is_mapped(&phb->phbbar) &&
 972        (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
 973        bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
 974        size = PNV_PHB4_NUM_REGS << 3;
 975        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
 976                 pec->chip_id, pec->index, stack_no);
 977        memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
 978        memory_region_add_subregion(sysmem, bar, &phb->phbbar);
 979    }
 980    if (!memory_region_is_mapped(&phb->intbar) &&
 981        (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
 982        bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
 983        size = PNV_PHB4_MAX_INTs << 16;
 984        snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
 985                 phb->pec->chip_id, phb->pec->index, stack_no);
 986        memory_region_init(&phb->intbar, OBJECT(phb), name, size);
 987        memory_region_add_subregion(sysmem, bar, &phb->intbar);
 988    }
 989
 990    /* Update PHB */
 991    pnv_phb4_update_regions(phb);
 992}
 993
 994static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
 995                                         uint64_t val, unsigned size)
 996{
 997    PnvPHB4 *phb = PNV_PHB4(opaque);
 998    PnvPhb4PecState *pec = phb->pec;
 999    uint32_t reg = addr >> 3;
1000
1001    switch (reg) {
1002    case PEC_NEST_STK_PCI_NEST_FIR:
1003        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
1004        break;
1005    case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1006        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1007        break;
1008    case PEC_NEST_STK_PCI_NEST_FIR_SET:
1009        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1010        break;
1011    case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1012        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
1013        break;
1014    case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1015        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1016        break;
1017    case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1018        phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1019        break;
1020    case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1021    case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1022        phb->nest_regs[reg] = val;
1023        break;
1024    case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1025        phb->nest_regs[reg] = 0;
1026        break;
1027    case PEC_NEST_STK_ERR_REPORT_0:
1028    case PEC_NEST_STK_ERR_REPORT_1:
1029    case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1030        /* Flag error ? */
1031        break;
1032    case PEC_NEST_STK_PBCQ_MODE:
1033        phb->nest_regs[reg] = val & 0xff00000000000000ull;
1034        break;
1035    case PEC_NEST_STK_MMIO_BAR0:
1036    case PEC_NEST_STK_MMIO_BAR0_MASK:
1037    case PEC_NEST_STK_MMIO_BAR1:
1038    case PEC_NEST_STK_MMIO_BAR1_MASK:
1039        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1040            (PEC_NEST_STK_BAR_EN_MMIO0 |
1041             PEC_NEST_STK_BAR_EN_MMIO1)) {
1042            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1043        }
1044        phb->nest_regs[reg] = val & 0xffffffffff000000ull;
1045        break;
1046    case PEC_NEST_STK_PHB_REGS_BAR:
1047        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1048            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1049        }
1050        phb->nest_regs[reg] = val & 0xffffffffffc00000ull;
1051        break;
1052    case PEC_NEST_STK_INT_BAR:
1053        if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1054            phb_pec_error(pec, "Changing enabled BAR unsupported\n");
1055        }
1056        phb->nest_regs[reg] = val & 0xfffffff000000000ull;
1057        break;
1058    case PEC_NEST_STK_BAR_EN:
1059        phb->nest_regs[reg] = val & 0xf000000000000000ull;
1060        pnv_pec_phb_update_map(phb);
1061        break;
1062    case PEC_NEST_STK_DATA_FRZ_TYPE:
1063    case PEC_NEST_STK_PBCQ_TUN_BAR:
1064        /* Not used for now */
1065        phb->nest_regs[reg] = val;
1066        break;
1067    default:
1068        qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1069                      "=%"PRIx64"\n", addr, val);
1070    }
1071}
1072
1073static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1074    .read = pnv_pec_stk_nest_xscom_read,
1075    .write = pnv_pec_stk_nest_xscom_write,
1076    .valid.min_access_size = 8,
1077    .valid.max_access_size = 8,
1078    .impl.min_access_size = 8,
1079    .impl.max_access_size = 8,
1080    .endianness = DEVICE_BIG_ENDIAN,
1081};
1082
1083static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1084                                           unsigned size)
1085{
1086    PnvPHB4 *phb = PNV_PHB4(opaque);
1087    uint32_t reg = addr >> 3;
1088
1089    /* TODO: add list of allowed registers and error out if not */
1090    return phb->pci_regs[reg];
1091}
1092
1093static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1094                                        uint64_t val, unsigned size)
1095{
1096    PnvPHB4 *phb = PNV_PHB4(opaque);
1097    uint32_t reg = addr >> 3;
1098
1099    switch (reg) {
1100    case PEC_PCI_STK_PCI_FIR:
1101        phb->pci_regs[reg] = val;
1102        break;
1103    case PEC_PCI_STK_PCI_FIR_CLR:
1104        phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1105        break;
1106    case PEC_PCI_STK_PCI_FIR_SET:
1107        phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1108        break;
1109    case PEC_PCI_STK_PCI_FIR_MSK:
1110        phb->pci_regs[reg] = val;
1111        break;
1112    case PEC_PCI_STK_PCI_FIR_MSKC:
1113        phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1114        break;
1115    case PEC_PCI_STK_PCI_FIR_MSKS:
1116        phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1117        break;
1118    case PEC_PCI_STK_PCI_FIR_ACT0:
1119    case PEC_PCI_STK_PCI_FIR_ACT1:
1120        phb->pci_regs[reg] = val;
1121        break;
1122    case PEC_PCI_STK_PCI_FIR_WOF:
1123        phb->pci_regs[reg] = 0;
1124        break;
1125    case PEC_PCI_STK_ETU_RESET:
1126        phb->pci_regs[reg] = val & 0x8000000000000000ull;
1127        /* TODO: Implement reset */
1128        break;
1129    case PEC_PCI_STK_PBAIB_ERR_REPORT:
1130        break;
1131    case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1132    case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1133        phb->pci_regs[reg] = val;
1134        break;
1135    default:
1136        qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1137                      "=%"PRIx64"\n", addr, val);
1138    }
1139}
1140
1141static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1142    .read = pnv_pec_stk_pci_xscom_read,
1143    .write = pnv_pec_stk_pci_xscom_write,
1144    .valid.min_access_size = 8,
1145    .valid.max_access_size = 8,
1146    .impl.min_access_size = 8,
1147    .impl.max_access_size = 8,
1148    .endianness = DEVICE_BIG_ENDIAN,
1149};
1150
1151static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1152{
1153    /* Check that out properly ... */
1154    return irq_num & 3;
1155}
1156
1157static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1158{
1159    PnvPHB4 *phb = PNV_PHB4(opaque);
1160    uint32_t lsi_base;
1161
1162    /* LSI only ... */
1163    if (irq_num > 3) {
1164        phb_error(phb, "IRQ %x is not an LSI", irq_num);
1165    }
1166    lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1167    lsi_base <<= 3;
1168    qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1169}
1170
1171static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1172{
1173    uint64_t rtt, addr;
1174    uint16_t rte;
1175    int bus_num;
1176    int num_PEs;
1177
1178    /* Already resolved ? */
1179    if (ds->pe_num != PHB_INVALID_PE) {
1180        return true;
1181    }
1182
1183    /* We need to lookup the RTT */
1184    rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1185    if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1186        phb_error(ds->phb, "DMA with RTT BAR disabled !");
1187        /* Set error bits ? fence ? ... */
1188        return false;
1189    }
1190
1191    /* Read RTE */
1192    bus_num = pci_bus_num(ds->bus);
1193    addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1194    addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1195    if (dma_memory_read(&address_space_memory, addr, &rte,
1196                        sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1197        phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1198        /* Set error bits ? fence ? ... */
1199        return false;
1200    }
1201    rte = be16_to_cpu(rte);
1202
1203    /* Fail upon reading of invalid PE# */
1204    num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1205    if (rte >= num_PEs) {
1206        phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1207        rte &= num_PEs - 1;
1208    }
1209    ds->pe_num = rte;
1210    return true;
1211}
1212
1213static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1214                                   bool is_write, uint64_t tve,
1215                                   IOMMUTLBEntry *tlb)
1216{
1217    uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1218    int32_t  lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1219    uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1220    uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1221
1222    /* Invalid levels */
1223    if (lev > 4) {
1224        phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1225        return;
1226    }
1227
1228    /* Invalid entry */
1229    if (tts == 0) {
1230        phb_error(ds->phb, "Access to invalid TVE");
1231        return;
1232    }
1233
1234    /* IO Page Size of 0 means untranslated, else use TCEs */
1235    if (tps == 0) {
1236        /* TODO: Handle boundaries */
1237
1238        /* Use 4k pages like q35 ... for now */
1239        tlb->iova = addr & 0xfffffffffffff000ull;
1240        tlb->translated_addr = addr & 0x0003fffffffff000ull;
1241        tlb->addr_mask = 0xfffull;
1242        tlb->perm = IOMMU_RW;
1243    } else {
1244        uint32_t tce_shift, tbl_shift, sh;
1245        uint64_t base, taddr, tce, tce_mask;
1246
1247        /* Address bits per bottom level TCE entry */
1248        tce_shift = tps + 11;
1249
1250        /* Address bits per table level */
1251        tbl_shift = tts + 8;
1252
1253        /* Top level table base address */
1254        base = tta << 12;
1255
1256        /* Total shift to first level */
1257        sh = tbl_shift * lev + tce_shift;
1258
1259        /* TODO: Limit to support IO page sizes */
1260
1261        /* TODO: Multi-level untested */
1262        do {
1263            lev--;
1264
1265            /* Grab the TCE address */
1266            taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1267            if (dma_memory_read(&address_space_memory, taddr, &tce,
1268                                sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1269                phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1270                return;
1271            }
1272            tce = be64_to_cpu(tce);
1273
1274            /* Check permission for indirect TCE */
1275            if ((lev >= 0) && !(tce & 3)) {
1276                phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1277                phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1278                           is_write ? 'W' : 'R', tve);
1279                phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1280                           tta, lev, tts, tps);
1281                return;
1282            }
1283            sh -= tbl_shift;
1284            base = tce & ~0xfffull;
1285        } while (lev >= 0);
1286
1287        /* We exit the loop with TCE being the final TCE */
1288        if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1289            phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1290            phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1291                       is_write ? 'W' : 'R', tve);
1292            phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1293                       tta, lev, tts, tps);
1294            return;
1295        }
1296        tce_mask = ~((1ull << tce_shift) - 1);
1297        tlb->iova = addr & tce_mask;
1298        tlb->translated_addr = tce & tce_mask;
1299        tlb->addr_mask = ~tce_mask;
1300        tlb->perm = tce & 3;
1301    }
1302}
1303
1304static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1305                                              hwaddr addr,
1306                                              IOMMUAccessFlags flag,
1307                                              int iommu_idx)
1308{
1309    PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1310    int tve_sel;
1311    uint64_t tve, cfg;
1312    IOMMUTLBEntry ret = {
1313        .target_as = &address_space_memory,
1314        .iova = addr,
1315        .translated_addr = 0,
1316        .addr_mask = ~(hwaddr)0,
1317        .perm = IOMMU_NONE,
1318    };
1319
1320    /* Resolve PE# */
1321    if (!pnv_phb4_resolve_pe(ds)) {
1322        phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1323                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1324        return ret;
1325    }
1326
1327    /* Check top bits */
1328    switch (addr >> 60) {
1329    case 00:
1330        /* DMA or 32-bit MSI ? */
1331        cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1332        if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1333            ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1334            phb_error(ds->phb, "xlate on 32-bit MSI region");
1335            return ret;
1336        }
1337        /* Choose TVE XXX Use PHB4 Control Register */
1338        tve_sel = (addr >> 59) & 1;
1339        tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1340        pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1341        break;
1342    case 01:
1343        phb_error(ds->phb, "xlate on 64-bit MSI region");
1344        break;
1345    default:
1346        phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1347    }
1348    return ret;
1349}
1350
1351#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1352DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1353                         TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1354
1355static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1356                                                    void *data)
1357{
1358    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1359
1360    imrc->translate = pnv_phb4_translate_iommu;
1361}
1362
1363static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1364    .parent = TYPE_IOMMU_MEMORY_REGION,
1365    .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1366    .class_init = pnv_phb4_iommu_memory_region_class_init,
1367};
1368
1369/*
1370 * Return the index/phb-id of a PHB4 that belongs to a
1371 * pec->stacks[stack_index] stack.
1372 */
1373int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1374{
1375    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1376    int index = pec->index;
1377    int offset = 0;
1378
1379    while (index--) {
1380        offset += pecc->num_phbs[index];
1381    }
1382
1383    return offset + stack_index;
1384}
1385
1386/*
1387 * MSI/MSIX memory region implementation.
1388 * The handler handles both MSI and MSIX.
1389 */
1390static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1391                               uint64_t data, unsigned size)
1392{
1393    PnvPhb4DMASpace *ds = opaque;
1394    PnvPHB4 *phb = ds->phb;
1395
1396    uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1397
1398    /* Resolve PE# */
1399    if (!pnv_phb4_resolve_pe(ds)) {
1400        phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1401                   ds->bus, pci_bus_num(ds->bus), ds->devfn);
1402        return;
1403    }
1404
1405    /* TODO: Check it doesn't collide with LSIs */
1406    if (src >= phb->xsrc.nr_irqs) {
1407        phb_error(phb, "MSI %d out of bounds", src);
1408        return;
1409    }
1410
1411    /* TODO: check PE/MSI assignement */
1412
1413    qemu_irq_pulse(phb->qirqs[src]);
1414}
1415
1416/* There is no .read as the read result is undefined by PCI spec */
1417static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1418{
1419    PnvPhb4DMASpace *ds = opaque;
1420
1421    phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1422    return -1;
1423}
1424
1425static const MemoryRegionOps pnv_phb4_msi_ops = {
1426    .read = pnv_phb4_msi_read,
1427    .write = pnv_phb4_msi_write,
1428    .endianness = DEVICE_LITTLE_ENDIAN
1429};
1430
1431static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1432{
1433    PnvPhb4DMASpace *ds;
1434
1435    QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1436        if (ds->bus == bus && ds->devfn == devfn) {
1437            break;
1438        }
1439    }
1440    return ds;
1441}
1442
1443static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1444{
1445    PnvPHB4 *phb = opaque;
1446    PnvPhb4DMASpace *ds;
1447    char name[32];
1448
1449    ds = pnv_phb4_dma_find(phb, bus, devfn);
1450
1451    if (ds == NULL) {
1452        ds = g_new0(PnvPhb4DMASpace, 1);
1453        ds->bus = bus;
1454        ds->devfn = devfn;
1455        ds->pe_num = PHB_INVALID_PE;
1456        ds->phb = phb;
1457        snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1458                 phb->phb_id);
1459        memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1460                                 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1461                                 OBJECT(phb), name, UINT64_MAX);
1462        address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1463                           name);
1464        memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1465                              ds, "msi32", 0x10000);
1466        memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1467                              ds, "msi64", 0x100000);
1468        pnv_phb4_update_msi_regions(ds);
1469
1470        QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1471    }
1472    return &ds->dma_as;
1473}
1474
1475static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1476{
1477    PnvPhb4PecState *pec = phb->pec;
1478    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1479    int stack_no = pnv_phb4_get_phb_stack_no(phb);
1480    uint32_t pec_nest_base;
1481    uint32_t pec_pci_base;
1482    char name[64];
1483
1484    assert(pec);
1485
1486    /* Initialize the XSCOM regions for the stack registers */
1487    snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1488             pec->chip_id, pec->index, stack_no);
1489    pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1490                          &pnv_pec_stk_nest_xscom_ops, phb, name,
1491                          PHB4_PEC_NEST_STK_REGS_COUNT);
1492
1493    snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1494             pec->chip_id, pec->index, stack_no);
1495    pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1496                          &pnv_pec_stk_pci_xscom_ops, phb, name,
1497                          PHB4_PEC_PCI_STK_REGS_COUNT);
1498
1499    /* PHB pass-through */
1500    snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1501             pec->chip_id, pec->index, stack_no);
1502    pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1503                          &pnv_phb4_xscom_ops, phb, name, 0x40);
1504
1505    pec_nest_base = pecc->xscom_nest_base(pec);
1506    pec_pci_base = pecc->xscom_pci_base(pec);
1507
1508    /* Populate the XSCOM address space. */
1509    pnv_xscom_add_subregion(pec->chip,
1510                            pec_nest_base + 0x40 * (stack_no + 1),
1511                            &phb->nest_regs_mr);
1512    pnv_xscom_add_subregion(pec->chip,
1513                            pec_pci_base + 0x40 * (stack_no + 1),
1514                            &phb->pci_regs_mr);
1515    pnv_xscom_add_subregion(pec->chip,
1516                            pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1517                            0x40 * stack_no,
1518                            &phb->phb_regs_mr);
1519}
1520
1521static void pnv_phb4_instance_init(Object *obj)
1522{
1523    PnvPHB4 *phb = PNV_PHB4(obj);
1524
1525    QLIST_INIT(&phb->dma_spaces);
1526
1527    /* XIVE interrupt source object */
1528    object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1529}
1530
1531static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1532{
1533    PnvPHB4 *phb = PNV_PHB4(dev);
1534    PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(phb->pec);
1535    PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1536    XiveSource *xsrc = &phb->xsrc;
1537    int nr_irqs;
1538    char name[32];
1539
1540    /* Set the "big_phb" flag */
1541    phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1542
1543    /* Controller Registers */
1544    snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1545             phb->phb_id);
1546    memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1547                          name, 0x2000);
1548
1549    /*
1550     * PHB4 doesn't support IO space. However, qemu gets very upset if
1551     * we don't have an IO region to anchor IO BARs onto so we just
1552     * initialize one which we never hook up to anything
1553     */
1554
1555    snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1556             phb->phb_id);
1557    memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1558
1559    snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1560             phb->phb_id);
1561    memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1562                       PCI_MMIO_TOTAL_SIZE);
1563
1564    pci->bus = pci_register_root_bus(dev, dev->id,
1565                                     pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1566                                     &phb->pci_mmio, &phb->pci_io,
1567                                     0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1568    pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1569    pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1570
1571    /* Add a single Root port if running with defaults */
1572    pnv_phb_attach_root_port(pci, pecc->rp_model,
1573                             phb->phb_id, phb->chip_id);
1574
1575    /* Setup XIVE Source */
1576    if (phb->big_phb) {
1577        nr_irqs = PNV_PHB4_MAX_INTs;
1578    } else {
1579        nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1580    }
1581    object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1582    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1583    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1584        return;
1585    }
1586
1587    pnv_phb4_update_xsrc(phb);
1588
1589    phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1590
1591    pnv_phb4_xscom_realize(phb);
1592}
1593
1594static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1595                                          PCIBus *rootbus)
1596{
1597    PnvPHB4 *phb = PNV_PHB4(host_bridge);
1598
1599    snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1600             phb->chip_id, phb->phb_id);
1601    return phb->bus_path;
1602}
1603
1604/*
1605 * Address base trigger mode (POWER10)
1606 *
1607 * Trigger directly the IC ESB page
1608 */
1609static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1610                                     bool pq_checked)
1611{
1612    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1613    uint64_t data = 0; /* trigger data : don't care */
1614    hwaddr addr;
1615    MemTxResult result;
1616    int esb_shift;
1617
1618    if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1619        esb_shift = 16;
1620    } else {
1621        esb_shift = 12;
1622    }
1623
1624    /* Compute the address of the IC ESB management page */
1625    addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1626    addr |= (1ull << (esb_shift + 1)) * srcno;
1627    addr |= (1ull << esb_shift);
1628
1629    /*
1630     * When the PQ state bits are checked on the PHB, the associated
1631     * PQ state bits on the IC should be ignored. Use the unconditional
1632     * trigger offset to inject a trigger on the IC. This is always
1633     * the case for LSIs
1634     */
1635    if (pq_checked) {
1636        addr |= XIVE_ESB_INJECT;
1637    }
1638
1639    trace_pnv_phb4_xive_notify_ic(addr, data);
1640
1641    address_space_stq_be(&address_space_memory, addr, data,
1642                         MEMTXATTRS_UNSPECIFIED, &result);
1643    if (result != MEMTX_OK) {
1644        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1645        return;
1646    }
1647}
1648
1649static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1650                                    bool pq_checked)
1651{
1652    uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1653    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1654    uint64_t data = offset | srcno;
1655    MemTxResult result;
1656
1657    if (pq_checked) {
1658        data |= XIVE_TRIGGER_PQ;
1659    }
1660
1661    trace_pnv_phb4_xive_notify_ic(notif_port, data);
1662
1663    address_space_stq_be(&address_space_memory, notif_port, data,
1664                         MEMTXATTRS_UNSPECIFIED, &result);
1665    if (result != MEMTX_OK) {
1666        phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1667        return;
1668    }
1669}
1670
1671static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1672                                 bool pq_checked)
1673{
1674    PnvPHB4 *phb = PNV_PHB4(xf);
1675
1676    if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1677        pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1678    } else {
1679        pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1680    }
1681}
1682
1683static Property pnv_phb4_properties[] = {
1684    DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1685    DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1686    DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1687                     PnvPhb4PecState *),
1688    DEFINE_PROP_END_OF_LIST(),
1689};
1690
1691static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1692{
1693    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1694    DeviceClass *dc = DEVICE_CLASS(klass);
1695    XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1696
1697    hc->root_bus_path   = pnv_phb4_root_bus_path;
1698    dc->realize         = pnv_phb4_realize;
1699    device_class_set_props(dc, pnv_phb4_properties);
1700    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1701    dc->user_creatable  = false;
1702
1703    xfc->notify         = pnv_phb4_xive_notify;
1704}
1705
1706static const TypeInfo pnv_phb4_type_info = {
1707    .name          = TYPE_PNV_PHB4,
1708    .parent        = TYPE_PCIE_HOST_BRIDGE,
1709    .instance_init = pnv_phb4_instance_init,
1710    .instance_size = sizeof(PnvPHB4),
1711    .class_init    = pnv_phb4_class_init,
1712    .interfaces = (InterfaceInfo[]) {
1713            { TYPE_XIVE_NOTIFIER },
1714            { },
1715    }
1716};
1717
1718static const TypeInfo pnv_phb5_type_info = {
1719    .name          = TYPE_PNV_PHB5,
1720    .parent        = TYPE_PNV_PHB4,
1721    .instance_size = sizeof(PnvPHB4),
1722};
1723
1724static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1725{
1726    BusClass *k = BUS_CLASS(klass);
1727
1728    /*
1729     * PHB4 has only a single root complex. Enforce the limit on the
1730     * parent bus
1731     */
1732    k->max_dev = 1;
1733}
1734
1735static const TypeInfo pnv_phb4_root_bus_info = {
1736    .name = TYPE_PNV_PHB4_ROOT_BUS,
1737    .parent = TYPE_PCIE_BUS,
1738    .class_init = pnv_phb4_root_bus_class_init,
1739};
1740
1741static void pnv_phb4_root_port_reset(DeviceState *dev)
1742{
1743    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1744    PCIDevice *d = PCI_DEVICE(dev);
1745    uint8_t *conf = d->config;
1746
1747    rpc->parent_reset(dev);
1748
1749    pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1750                               PCI_IO_RANGE_MASK & 0xff);
1751    pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1752                                 PCI_IO_RANGE_MASK & 0xff);
1753    pci_set_word(conf + PCI_MEMORY_BASE, 0);
1754    pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1755    pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1756    pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1757    pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1758    pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1759    pci_config_set_interrupt_pin(conf, 0);
1760}
1761
1762static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1763{
1764    PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1765    Error *local_err = NULL;
1766
1767    rpc->parent_realize(dev, &local_err);
1768    if (local_err) {
1769        error_propagate(errp, local_err);
1770        return;
1771    }
1772}
1773
1774static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1775{
1776    DeviceClass *dc = DEVICE_CLASS(klass);
1777    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1778    PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1779
1780    dc->desc     = "IBM PHB4 PCIE Root Port";
1781    dc->user_creatable = false;
1782
1783    device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1784                                    &rpc->parent_realize);
1785    device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1786                                  &rpc->parent_reset);
1787
1788    k->vendor_id = PCI_VENDOR_ID_IBM;
1789    k->device_id = PNV_PHB4_DEVICE_ID;
1790    k->revision  = 0;
1791
1792    rpc->exp_offset = 0x48;
1793    rpc->aer_offset = 0x100;
1794
1795    dc->reset = &pnv_phb4_root_port_reset;
1796}
1797
1798static const TypeInfo pnv_phb4_root_port_info = {
1799    .name          = TYPE_PNV_PHB4_ROOT_PORT,
1800    .parent        = TYPE_PCIE_ROOT_PORT,
1801    .instance_size = sizeof(PnvPHB4RootPort),
1802    .class_init    = pnv_phb4_root_port_class_init,
1803};
1804
1805static void pnv_phb5_root_port_class_init(ObjectClass *klass, void *data)
1806{
1807    DeviceClass *dc = DEVICE_CLASS(klass);
1808    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1809
1810    dc->desc     = "IBM PHB5 PCIE Root Port";
1811    dc->user_creatable = false;
1812
1813    k->vendor_id = PCI_VENDOR_ID_IBM;
1814    k->device_id = PNV_PHB5_DEVICE_ID;
1815}
1816
1817static const TypeInfo pnv_phb5_root_port_info = {
1818    .name          = TYPE_PNV_PHB5_ROOT_PORT,
1819    .parent        = TYPE_PNV_PHB4_ROOT_PORT,
1820    .instance_size = sizeof(PnvPHB4RootPort),
1821    .class_init    = pnv_phb5_root_port_class_init,
1822};
1823
1824static void pnv_phb4_register_types(void)
1825{
1826    type_register_static(&pnv_phb4_root_bus_info);
1827    type_register_static(&pnv_phb5_root_port_info);
1828    type_register_static(&pnv_phb4_root_port_info);
1829    type_register_static(&pnv_phb4_type_info);
1830    type_register_static(&pnv_phb5_type_info);
1831    type_register_static(&pnv_phb4_iommu_memory_region_info);
1832}
1833
1834type_init(pnv_phb4_register_types);
1835
1836void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1837{
1838    uint64_t notif_port =
1839        phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1840    uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1841    bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1842
1843    monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n",
1844                   phb->chip_id, phb->phb_id,
1845                   offset, offset + phb->xsrc.nr_irqs - 1,
1846                   abt ? "ABT" : "",
1847                   notif_port);
1848    xive_source_pic_print_info(&phb->xsrc, 0, mon);
1849}
1850