qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qemu/cutils.h"
   3#include "qapi/error.h"
   4#include "sysemu/hw_accel.h"
   5#include "sysemu/runstate.h"
   6#include "qemu/log.h"
   7#include "qemu/main-loop.h"
   8#include "qemu/module.h"
   9#include "qemu/error-report.h"
  10#include "exec/exec-all.h"
  11#include "helper_regs.h"
  12#include "hw/ppc/ppc.h"
  13#include "hw/ppc/spapr.h"
  14#include "hw/ppc/spapr_cpu_core.h"
  15#include "mmu-hash64.h"
  16#include "cpu-models.h"
  17#include "trace.h"
  18#include "kvm_ppc.h"
  19#include "hw/ppc/fdt.h"
  20#include "hw/ppc/spapr_ovec.h"
  21#include "hw/ppc/spapr_numa.h"
  22#include "mmu-book3s-v3.h"
  23#include "hw/mem/memory-device.h"
  24
  25bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  26{
  27    MachineState *machine = MACHINE(spapr);
  28    DeviceMemoryState *dms = machine->device_memory;
  29
  30    if (addr < machine->ram_size) {
  31        return true;
  32    }
  33    if ((addr >= dms->base)
  34        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  35        return true;
  36    }
  37
  38    return false;
  39}
  40
  41/* Convert a return code from the KVM ioctl()s implementing resize HPT
  42 * into a PAPR hypercall return code */
  43static target_ulong resize_hpt_convert_rc(int ret)
  44{
  45    if (ret >= 100000) {
  46        return H_LONG_BUSY_ORDER_100_SEC;
  47    } else if (ret >= 10000) {
  48        return H_LONG_BUSY_ORDER_10_SEC;
  49    } else if (ret >= 1000) {
  50        return H_LONG_BUSY_ORDER_1_SEC;
  51    } else if (ret >= 100) {
  52        return H_LONG_BUSY_ORDER_100_MSEC;
  53    } else if (ret >= 10) {
  54        return H_LONG_BUSY_ORDER_10_MSEC;
  55    } else if (ret > 0) {
  56        return H_LONG_BUSY_ORDER_1_MSEC;
  57    }
  58
  59    switch (ret) {
  60    case 0:
  61        return H_SUCCESS;
  62    case -EPERM:
  63        return H_AUTHORITY;
  64    case -EINVAL:
  65        return H_PARAMETER;
  66    case -ENXIO:
  67        return H_CLOSED;
  68    case -ENOSPC:
  69        return H_PTEG_FULL;
  70    case -EBUSY:
  71        return H_BUSY;
  72    case -ENOMEM:
  73        return H_NO_MEM;
  74    default:
  75        return H_HARDWARE;
  76    }
  77}
  78
  79static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
  80                                         SpaprMachineState *spapr,
  81                                         target_ulong opcode,
  82                                         target_ulong *args)
  83{
  84    target_ulong flags = args[0];
  85    int shift = args[1];
  86    uint64_t current_ram_size;
  87    int rc;
  88
  89    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
  90        return H_AUTHORITY;
  91    }
  92
  93    if (!spapr->htab_shift) {
  94        /* Radix guest, no HPT */
  95        return H_NOT_AVAILABLE;
  96    }
  97
  98    trace_spapr_h_resize_hpt_prepare(flags, shift);
  99
 100    if (flags != 0) {
 101        return H_PARAMETER;
 102    }
 103
 104    if (shift && ((shift < 18) || (shift > 46))) {
 105        return H_PARAMETER;
 106    }
 107
 108    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 109
 110    /* We only allow the guest to allocate an HPT one order above what
 111     * we'd normally give them (to stop a small guest claiming a huge
 112     * chunk of resources in the HPT */
 113    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 114        return H_RESOURCE;
 115    }
 116
 117    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 118    if (rc != -ENOSYS) {
 119        return resize_hpt_convert_rc(rc);
 120    }
 121
 122    if (kvm_enabled()) {
 123        return H_HARDWARE;
 124    }
 125
 126    return softmmu_resize_hpt_prepare(cpu, spapr, shift);
 127}
 128
 129static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 130{
 131    int ret;
 132
 133    cpu_synchronize_state(cs);
 134
 135    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 136    if (ret < 0) {
 137        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 138        exit(1);
 139    }
 140}
 141
 142void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 143{
 144    CPUState *cs;
 145
 146    /*
 147     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 148     * slot in kvm_sregs to communicate the userspace address of the
 149     * HPT
 150     */
 151    if (!kvm_enabled() || !spapr->htab) {
 152        return;
 153    }
 154
 155    CPU_FOREACH(cs) {
 156        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 157    }
 158}
 159
 160static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 161                                        SpaprMachineState *spapr,
 162                                        target_ulong opcode,
 163                                        target_ulong *args)
 164{
 165    target_ulong flags = args[0];
 166    target_ulong shift = args[1];
 167    int rc;
 168
 169    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 170        return H_AUTHORITY;
 171    }
 172
 173    if (!spapr->htab_shift) {
 174        /* Radix guest, no HPT */
 175        return H_NOT_AVAILABLE;
 176    }
 177
 178    trace_spapr_h_resize_hpt_commit(flags, shift);
 179
 180    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 181    if (rc != -ENOSYS) {
 182        rc = resize_hpt_convert_rc(rc);
 183        if (rc == H_SUCCESS) {
 184            /* Need to set the new htab_shift in the machine state */
 185            spapr->htab_shift = shift;
 186        }
 187        return rc;
 188    }
 189
 190    if (kvm_enabled()) {
 191        return H_HARDWARE;
 192    }
 193
 194    return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
 195}
 196
 197
 198
 199static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 200                                target_ulong opcode, target_ulong *args)
 201{
 202    cpu_synchronize_state(CPU(cpu));
 203    cpu->env.spr[SPR_SPRG0] = args[0];
 204
 205    return H_SUCCESS;
 206}
 207
 208static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 209                               target_ulong opcode, target_ulong *args)
 210{
 211    if (!ppc_has_spr(cpu, SPR_DABR)) {
 212        return H_HARDWARE;              /* DABR register not available */
 213    }
 214    cpu_synchronize_state(CPU(cpu));
 215
 216    if (ppc_has_spr(cpu, SPR_DABRX)) {
 217        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 218    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 219        return H_RESERVED_DABR;
 220    }
 221
 222    cpu->env.spr[SPR_DABR] = args[0];
 223    return H_SUCCESS;
 224}
 225
 226static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 227                                target_ulong opcode, target_ulong *args)
 228{
 229    target_ulong dabrx = args[1];
 230
 231    if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
 232        return H_HARDWARE;
 233    }
 234
 235    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 236        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 237        return H_PARAMETER;
 238    }
 239
 240    cpu_synchronize_state(CPU(cpu));
 241    cpu->env.spr[SPR_DABRX] = dabrx;
 242    cpu->env.spr[SPR_DABR] = args[0];
 243
 244    return H_SUCCESS;
 245}
 246
 247static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 248                                target_ulong opcode, target_ulong *args)
 249{
 250    target_ulong flags = args[0];
 251    hwaddr dst = args[1];
 252    hwaddr src = args[2];
 253    hwaddr len = TARGET_PAGE_SIZE;
 254    uint8_t *pdst, *psrc;
 255    target_long ret = H_SUCCESS;
 256
 257    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 258                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 259        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 260                      flags);
 261        return H_PARAMETER;
 262    }
 263
 264    /* Map-in destination */
 265    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 266        return H_PARAMETER;
 267    }
 268    pdst = cpu_physical_memory_map(dst, &len, true);
 269    if (!pdst || len != TARGET_PAGE_SIZE) {
 270        return H_PARAMETER;
 271    }
 272
 273    if (flags & H_COPY_PAGE) {
 274        /* Map-in source, copy to destination, and unmap source again */
 275        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 276            ret = H_PARAMETER;
 277            goto unmap_out;
 278        }
 279        psrc = cpu_physical_memory_map(src, &len, false);
 280        if (!psrc || len != TARGET_PAGE_SIZE) {
 281            ret = H_PARAMETER;
 282            goto unmap_out;
 283        }
 284        memcpy(pdst, psrc, len);
 285        cpu_physical_memory_unmap(psrc, len, 0, len);
 286    } else if (flags & H_ZERO_PAGE) {
 287        memset(pdst, 0, len);          /* Just clear the destination page */
 288    }
 289
 290    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 291        kvmppc_dcbst_range(cpu, pdst, len);
 292    }
 293    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 294        if (kvm_enabled()) {
 295            kvmppc_icbi_range(cpu, pdst, len);
 296        } else {
 297            tb_flush(CPU(cpu));
 298        }
 299    }
 300
 301unmap_out:
 302    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 303    return ret;
 304}
 305
 306#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 307#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 308#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 309#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 310#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 311#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 312
 313static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 314{
 315    CPUState *cs = CPU(cpu);
 316    CPUPPCState *env = &cpu->env;
 317    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 318    uint16_t size;
 319    uint8_t tmp;
 320
 321    if (vpa == 0) {
 322        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 323        return H_HARDWARE;
 324    }
 325
 326    if (vpa % env->dcache_line_size) {
 327        return H_PARAMETER;
 328    }
 329    /* FIXME: bounds check the address */
 330
 331    size = lduw_be_phys(cs->as, vpa + 0x4);
 332
 333    if (size < VPA_MIN_SIZE) {
 334        return H_PARAMETER;
 335    }
 336
 337    /* VPA is not allowed to cross a page boundary */
 338    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 339        return H_PARAMETER;
 340    }
 341
 342    spapr_cpu->vpa_addr = vpa;
 343
 344    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 345    tmp |= VPA_SHARED_PROC_VAL;
 346    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 347
 348    return H_SUCCESS;
 349}
 350
 351static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 352{
 353    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 354
 355    if (spapr_cpu->slb_shadow_addr) {
 356        return H_RESOURCE;
 357    }
 358
 359    if (spapr_cpu->dtl_addr) {
 360        return H_RESOURCE;
 361    }
 362
 363    spapr_cpu->vpa_addr = 0;
 364    return H_SUCCESS;
 365}
 366
 367static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 368{
 369    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 370    uint32_t size;
 371
 372    if (addr == 0) {
 373        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 374        return H_HARDWARE;
 375    }
 376
 377    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 378    if (size < 0x8) {
 379        return H_PARAMETER;
 380    }
 381
 382    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 383        return H_PARAMETER;
 384    }
 385
 386    if (!spapr_cpu->vpa_addr) {
 387        return H_RESOURCE;
 388    }
 389
 390    spapr_cpu->slb_shadow_addr = addr;
 391    spapr_cpu->slb_shadow_size = size;
 392
 393    return H_SUCCESS;
 394}
 395
 396static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 397{
 398    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 399
 400    spapr_cpu->slb_shadow_addr = 0;
 401    spapr_cpu->slb_shadow_size = 0;
 402    return H_SUCCESS;
 403}
 404
 405static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 406{
 407    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 408    uint32_t size;
 409
 410    if (addr == 0) {
 411        hcall_dprintf("Can't cope with DTL at logical 0\n");
 412        return H_HARDWARE;
 413    }
 414
 415    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 416
 417    if (size < 48) {
 418        return H_PARAMETER;
 419    }
 420
 421    if (!spapr_cpu->vpa_addr) {
 422        return H_RESOURCE;
 423    }
 424
 425    spapr_cpu->dtl_addr = addr;
 426    spapr_cpu->dtl_size = size;
 427
 428    return H_SUCCESS;
 429}
 430
 431static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 432{
 433    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 434
 435    spapr_cpu->dtl_addr = 0;
 436    spapr_cpu->dtl_size = 0;
 437
 438    return H_SUCCESS;
 439}
 440
 441static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
 442                                   target_ulong opcode, target_ulong *args)
 443{
 444    target_ulong flags = args[0];
 445    target_ulong procno = args[1];
 446    target_ulong vpa = args[2];
 447    target_ulong ret = H_PARAMETER;
 448    PowerPCCPU *tcpu;
 449
 450    tcpu = spapr_find_cpu(procno);
 451    if (!tcpu) {
 452        return H_PARAMETER;
 453    }
 454
 455    switch (flags) {
 456    case FLAGS_REGISTER_VPA:
 457        ret = register_vpa(tcpu, vpa);
 458        break;
 459
 460    case FLAGS_DEREGISTER_VPA:
 461        ret = deregister_vpa(tcpu, vpa);
 462        break;
 463
 464    case FLAGS_REGISTER_SLBSHADOW:
 465        ret = register_slb_shadow(tcpu, vpa);
 466        break;
 467
 468    case FLAGS_DEREGISTER_SLBSHADOW:
 469        ret = deregister_slb_shadow(tcpu, vpa);
 470        break;
 471
 472    case FLAGS_REGISTER_DTL:
 473        ret = register_dtl(tcpu, vpa);
 474        break;
 475
 476    case FLAGS_DEREGISTER_DTL:
 477        ret = deregister_dtl(tcpu, vpa);
 478        break;
 479    }
 480
 481    return ret;
 482}
 483
 484static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
 485                           target_ulong opcode, target_ulong *args)
 486{
 487    CPUPPCState *env = &cpu->env;
 488    CPUState *cs = CPU(cpu);
 489    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 490
 491    env->msr |= (1ULL << MSR_EE);
 492    hreg_compute_hflags(env);
 493
 494    if (spapr_cpu->prod) {
 495        spapr_cpu->prod = false;
 496        return H_SUCCESS;
 497    }
 498
 499    if (!cpu_has_work(cs)) {
 500        cs->halted = 1;
 501        cs->exception_index = EXCP_HLT;
 502        cs->exit_request = 1;
 503    }
 504
 505    return H_SUCCESS;
 506}
 507
 508/*
 509 * Confer to self, aka join. Cede could use the same pattern as well, if
 510 * EXCP_HLT can be changed to ECXP_HALTED.
 511 */
 512static target_ulong h_confer_self(PowerPCCPU *cpu)
 513{
 514    CPUState *cs = CPU(cpu);
 515    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 516
 517    if (spapr_cpu->prod) {
 518        spapr_cpu->prod = false;
 519        return H_SUCCESS;
 520    }
 521    cs->halted = 1;
 522    cs->exception_index = EXCP_HALTED;
 523    cs->exit_request = 1;
 524
 525    return H_SUCCESS;
 526}
 527
 528static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
 529                           target_ulong opcode, target_ulong *args)
 530{
 531    CPUPPCState *env = &cpu->env;
 532    CPUState *cs;
 533    bool last_unjoined = true;
 534
 535    if (env->msr & (1ULL << MSR_EE)) {
 536        return H_BAD_MODE;
 537    }
 538
 539    /*
 540     * Must not join the last CPU running. Interestingly, no such restriction
 541     * for H_CONFER-to-self, but that is probably not intended to be used
 542     * when H_JOIN is available.
 543     */
 544    CPU_FOREACH(cs) {
 545        PowerPCCPU *c = POWERPC_CPU(cs);
 546        CPUPPCState *e = &c->env;
 547        if (c == cpu) {
 548            continue;
 549        }
 550
 551        /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
 552        if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
 553            last_unjoined = false;
 554            break;
 555        }
 556    }
 557    if (last_unjoined) {
 558        return H_CONTINUE;
 559    }
 560
 561    return h_confer_self(cpu);
 562}
 563
 564static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
 565                           target_ulong opcode, target_ulong *args)
 566{
 567    target_long target = args[0];
 568    uint32_t dispatch = args[1];
 569    CPUState *cs = CPU(cpu);
 570    SpaprCpuState *spapr_cpu;
 571
 572    /*
 573     * -1 means confer to all other CPUs without dispatch counter check,
 574     *  otherwise it's a targeted confer.
 575     */
 576    if (target != -1) {
 577        PowerPCCPU *target_cpu = spapr_find_cpu(target);
 578        uint32_t target_dispatch;
 579
 580        if (!target_cpu) {
 581            return H_PARAMETER;
 582        }
 583
 584        /*
 585         * target == self is a special case, we wait until prodded, without
 586         * dispatch counter check.
 587         */
 588        if (cpu == target_cpu) {
 589            return h_confer_self(cpu);
 590        }
 591
 592        spapr_cpu = spapr_cpu_state(target_cpu);
 593        if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
 594            return H_SUCCESS;
 595        }
 596
 597        target_dispatch = ldl_be_phys(cs->as,
 598                                  spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
 599        if (target_dispatch != dispatch) {
 600            return H_SUCCESS;
 601        }
 602
 603        /*
 604         * The targeted confer does not do anything special beyond yielding
 605         * the current vCPU, but even this should be better than nothing.
 606         * At least for single-threaded tcg, it gives the target a chance to
 607         * run before we run again. Multi-threaded tcg does not really do
 608         * anything with EXCP_YIELD yet.
 609         */
 610    }
 611
 612    cs->exception_index = EXCP_YIELD;
 613    cs->exit_request = 1;
 614    cpu_loop_exit(cs);
 615
 616    return H_SUCCESS;
 617}
 618
 619static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
 620                           target_ulong opcode, target_ulong *args)
 621{
 622    target_long target = args[0];
 623    PowerPCCPU *tcpu;
 624    CPUState *cs;
 625    SpaprCpuState *spapr_cpu;
 626
 627    tcpu = spapr_find_cpu(target);
 628    cs = CPU(tcpu);
 629    if (!cs) {
 630        return H_PARAMETER;
 631    }
 632
 633    spapr_cpu = spapr_cpu_state(tcpu);
 634    spapr_cpu->prod = true;
 635    cs->halted = 0;
 636    qemu_cpu_kick(cs);
 637
 638    return H_SUCCESS;
 639}
 640
 641static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
 642                           target_ulong opcode, target_ulong *args)
 643{
 644    target_ulong rtas_r3 = args[0];
 645    uint32_t token = rtas_ld(rtas_r3, 0);
 646    uint32_t nargs = rtas_ld(rtas_r3, 1);
 647    uint32_t nret = rtas_ld(rtas_r3, 2);
 648
 649    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
 650                           nret, rtas_r3 + 12 + 4*nargs);
 651}
 652
 653static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
 654                                   target_ulong opcode, target_ulong *args)
 655{
 656    CPUState *cs = CPU(cpu);
 657    target_ulong size = args[0];
 658    target_ulong addr = args[1];
 659
 660    switch (size) {
 661    case 1:
 662        args[0] = ldub_phys(cs->as, addr);
 663        return H_SUCCESS;
 664    case 2:
 665        args[0] = lduw_phys(cs->as, addr);
 666        return H_SUCCESS;
 667    case 4:
 668        args[0] = ldl_phys(cs->as, addr);
 669        return H_SUCCESS;
 670    case 8:
 671        args[0] = ldq_phys(cs->as, addr);
 672        return H_SUCCESS;
 673    }
 674    return H_PARAMETER;
 675}
 676
 677static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
 678                                    target_ulong opcode, target_ulong *args)
 679{
 680    CPUState *cs = CPU(cpu);
 681
 682    target_ulong size = args[0];
 683    target_ulong addr = args[1];
 684    target_ulong val  = args[2];
 685
 686    switch (size) {
 687    case 1:
 688        stb_phys(cs->as, addr, val);
 689        return H_SUCCESS;
 690    case 2:
 691        stw_phys(cs->as, addr, val);
 692        return H_SUCCESS;
 693    case 4:
 694        stl_phys(cs->as, addr, val);
 695        return H_SUCCESS;
 696    case 8:
 697        stq_phys(cs->as, addr, val);
 698        return H_SUCCESS;
 699    }
 700    return H_PARAMETER;
 701}
 702
 703static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
 704                                    target_ulong opcode, target_ulong *args)
 705{
 706    CPUState *cs = CPU(cpu);
 707
 708    target_ulong dst   = args[0]; /* Destination address */
 709    target_ulong src   = args[1]; /* Source address */
 710    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
 711    target_ulong count = args[3]; /* Element count */
 712    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
 713    uint64_t tmp;
 714    unsigned int mask = (1 << esize) - 1;
 715    int step = 1 << esize;
 716
 717    if (count > 0x80000000) {
 718        return H_PARAMETER;
 719    }
 720
 721    if ((dst & mask) || (src & mask) || (op > 1)) {
 722        return H_PARAMETER;
 723    }
 724
 725    if (dst >= src && dst < (src + (count << esize))) {
 726            dst = dst + ((count - 1) << esize);
 727            src = src + ((count - 1) << esize);
 728            step = -step;
 729    }
 730
 731    while (count--) {
 732        switch (esize) {
 733        case 0:
 734            tmp = ldub_phys(cs->as, src);
 735            break;
 736        case 1:
 737            tmp = lduw_phys(cs->as, src);
 738            break;
 739        case 2:
 740            tmp = ldl_phys(cs->as, src);
 741            break;
 742        case 3:
 743            tmp = ldq_phys(cs->as, src);
 744            break;
 745        default:
 746            return H_PARAMETER;
 747        }
 748        if (op == 1) {
 749            tmp = ~tmp;
 750        }
 751        switch (esize) {
 752        case 0:
 753            stb_phys(cs->as, dst, tmp);
 754            break;
 755        case 1:
 756            stw_phys(cs->as, dst, tmp);
 757            break;
 758        case 2:
 759            stl_phys(cs->as, dst, tmp);
 760            break;
 761        case 3:
 762            stq_phys(cs->as, dst, tmp);
 763            break;
 764        }
 765        dst = dst + step;
 766        src = src + step;
 767    }
 768
 769    return H_SUCCESS;
 770}
 771
 772static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
 773                                   target_ulong opcode, target_ulong *args)
 774{
 775    /* Nothing to do on emulation, KVM will trap this in the kernel */
 776    return H_SUCCESS;
 777}
 778
 779static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
 780                                   target_ulong opcode, target_ulong *args)
 781{
 782    /* Nothing to do on emulation, KVM will trap this in the kernel */
 783    return H_SUCCESS;
 784}
 785
 786static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
 787                                           SpaprMachineState *spapr,
 788                                           target_ulong mflags,
 789                                           target_ulong value1,
 790                                           target_ulong value2)
 791{
 792    if (value1) {
 793        return H_P3;
 794    }
 795    if (value2) {
 796        return H_P4;
 797    }
 798
 799    switch (mflags) {
 800    case H_SET_MODE_ENDIAN_BIG:
 801        spapr_set_all_lpcrs(0, LPCR_ILE);
 802        spapr_pci_switch_vga(spapr, true);
 803        return H_SUCCESS;
 804
 805    case H_SET_MODE_ENDIAN_LITTLE:
 806        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
 807        spapr_pci_switch_vga(spapr, false);
 808        return H_SUCCESS;
 809    }
 810
 811    return H_UNSUPPORTED_FLAG;
 812}
 813
 814static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
 815                                                        target_ulong mflags,
 816                                                        target_ulong value1,
 817                                                        target_ulong value2)
 818{
 819    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 820
 821    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
 822        return H_P2;
 823    }
 824    if (value1) {
 825        return H_P3;
 826    }
 827    if (value2) {
 828        return H_P4;
 829    }
 830
 831    if (mflags == 1) {
 832        /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
 833        return H_UNSUPPORTED_FLAG;
 834    }
 835
 836    if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
 837        /* AIL=2 is reserved in POWER10 (ISA v3.1) */
 838        return H_UNSUPPORTED_FLAG;
 839    }
 840
 841    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
 842
 843    return H_SUCCESS;
 844}
 845
 846static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
 847                               target_ulong opcode, target_ulong *args)
 848{
 849    target_ulong resource = args[1];
 850    target_ulong ret = H_P2;
 851
 852    switch (resource) {
 853    case H_SET_MODE_RESOURCE_LE:
 854        ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
 855        break;
 856    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 857        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
 858                                                  args[2], args[3]);
 859        break;
 860    }
 861
 862    return ret;
 863}
 864
 865static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
 866                                target_ulong opcode, target_ulong *args)
 867{
 868    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 869                  opcode, " (H_CLEAN_SLB)");
 870    return H_FUNCTION;
 871}
 872
 873static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
 874                                     target_ulong opcode, target_ulong *args)
 875{
 876    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 877                  opcode, " (H_INVALIDATE_PID)");
 878    return H_FUNCTION;
 879}
 880
 881static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
 882                                       uint64_t patbe_old, uint64_t patbe_new)
 883{
 884    /*
 885     * We have 4 Options:
 886     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
 887     * HASH->RADIX                                  : Free HPT
 888     * RADIX->HASH                                  : Allocate HPT
 889     * NOTHING->HASH                                : Allocate HPT
 890     * Note: NOTHING implies the case where we said the guest could choose
 891     *       later and so assumed radix and now it's called H_REG_PROC_TBL
 892     */
 893
 894    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
 895        /* We assume RADIX, so this catches all the "Do Nothing" cases */
 896    } else if (!(patbe_old & PATE1_GR)) {
 897        /* HASH->RADIX : Free HPT */
 898        spapr_free_hpt(spapr);
 899    } else if (!(patbe_new & PATE1_GR)) {
 900        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
 901        spapr_setup_hpt(spapr);
 902    }
 903    return;
 904}
 905
 906#define FLAGS_MASK              0x01FULL
 907#define FLAG_MODIFY             0x10
 908#define FLAG_REGISTER           0x08
 909#define FLAG_RADIX              0x04
 910#define FLAG_HASH_PROC_TBL      0x02
 911#define FLAG_GTSE               0x01
 912
 913static target_ulong h_register_process_table(PowerPCCPU *cpu,
 914                                             SpaprMachineState *spapr,
 915                                             target_ulong opcode,
 916                                             target_ulong *args)
 917{
 918    target_ulong flags = args[0];
 919    target_ulong proc_tbl = args[1];
 920    target_ulong page_size = args[2];
 921    target_ulong table_size = args[3];
 922    target_ulong update_lpcr = 0;
 923    target_ulong table_byte_size;
 924    uint64_t cproc;
 925
 926    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
 927        return H_PARAMETER;
 928    }
 929    if (flags & FLAG_MODIFY) {
 930        if (flags & FLAG_REGISTER) {
 931            /* Check process table alignment */
 932            table_byte_size = 1ULL << (table_size + 12);
 933            if (proc_tbl & (table_byte_size - 1)) {
 934                qemu_log_mask(LOG_GUEST_ERROR,
 935                    "%s: process table not properly aligned: proc_tbl 0x"
 936                    TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
 937                    __func__, proc_tbl, table_byte_size);
 938            }
 939            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
 940                if (proc_tbl & 0xfff || proc_tbl >> 60) {
 941                    return H_P2;
 942                } else if (page_size) {
 943                    return H_P3;
 944                } else if (table_size > 24) {
 945                    return H_P4;
 946                }
 947                cproc = PATE1_GR | proc_tbl | table_size;
 948            } else { /* Register new HPT process table */
 949                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
 950                    /* TODO - Not Supported */
 951                    /* Technically caused by flag bits => H_PARAMETER */
 952                    return H_PARAMETER;
 953                } else { /* Hash with SLB */
 954                    if (proc_tbl >> 38) {
 955                        return H_P2;
 956                    } else if (page_size & ~0x7) {
 957                        return H_P3;
 958                    } else if (table_size > 24) {
 959                        return H_P4;
 960                    }
 961                }
 962                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
 963            }
 964
 965        } else { /* Deregister current process table */
 966            /*
 967             * Set to benign value: (current GR) | 0. This allows
 968             * deregistration in KVM to succeed even if the radix bit
 969             * in flags doesn't match the radix bit in the old PATE.
 970             */
 971            cproc = spapr->patb_entry & PATE1_GR;
 972        }
 973    } else { /* Maintain current registration */
 974        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
 975            /* Technically caused by flag bits => H_PARAMETER */
 976            return H_PARAMETER; /* Existing Process Table Mismatch */
 977        }
 978        cproc = spapr->patb_entry;
 979    }
 980
 981    /* Check if we need to setup OR free the hpt */
 982    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
 983
 984    spapr->patb_entry = cproc; /* Save new process table */
 985
 986    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
 987    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
 988        update_lpcr |= (LPCR_UPRT | LPCR_HR);
 989    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
 990        update_lpcr |= LPCR_UPRT;
 991    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
 992        update_lpcr |= LPCR_GTSE;
 993
 994    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
 995
 996    if (kvm_enabled()) {
 997        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
 998                                       flags & FLAG_GTSE, cproc);
 999    }
1000    return H_SUCCESS;
1001}
1002
1003#define H_SIGNAL_SYS_RESET_ALL         -1
1004#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1005
1006static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1007                                       SpaprMachineState *spapr,
1008                                       target_ulong opcode, target_ulong *args)
1009{
1010    target_long target = args[0];
1011    CPUState *cs;
1012
1013    if (target < 0) {
1014        /* Broadcast */
1015        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1016            return H_PARAMETER;
1017        }
1018
1019        CPU_FOREACH(cs) {
1020            PowerPCCPU *c = POWERPC_CPU(cs);
1021
1022            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1023                if (c == cpu) {
1024                    continue;
1025                }
1026            }
1027            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1028        }
1029        return H_SUCCESS;
1030
1031    } else {
1032        /* Unicast */
1033        cs = CPU(spapr_find_cpu(target));
1034        if (cs) {
1035            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1036            return H_SUCCESS;
1037        }
1038        return H_PARAMETER;
1039    }
1040}
1041
1042/* Returns either a logical PVR or zero if none was found */
1043static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1044                              target_ulong *addr, bool *raw_mode_supported)
1045{
1046    bool explicit_match = false; /* Matched the CPU's real PVR */
1047    uint32_t best_compat = 0;
1048    int i;
1049
1050    /*
1051     * We scan the supplied table of PVRs looking for two things
1052     *   1. Is our real CPU PVR in the list?
1053     *   2. What's the "best" listed logical PVR
1054     */
1055    for (i = 0; i < 512; ++i) {
1056        uint32_t pvr, pvr_mask;
1057
1058        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1059        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1060        *addr += 8;
1061
1062        if (~pvr_mask & pvr) {
1063            break; /* Terminator record */
1064        }
1065
1066        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1067            explicit_match = true;
1068        } else {
1069            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1070                best_compat = pvr;
1071            }
1072        }
1073    }
1074
1075    *raw_mode_supported = explicit_match;
1076
1077    /* Parsing finished */
1078    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1079
1080    return best_compat;
1081}
1082
1083static
1084target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1085                                            SpaprMachineState *spapr,
1086                                            target_ulong vec,
1087                                            target_ulong fdt_bufsize)
1088{
1089    target_ulong ov_table; /* Working address in data buffer */
1090    uint32_t cas_pvr;
1091    SpaprOptionVector *ov1_guest, *ov5_guest;
1092    bool guest_radix;
1093    bool raw_mode_supported = false;
1094    bool guest_xive;
1095    CPUState *cs;
1096    void *fdt;
1097    uint32_t max_compat = spapr->max_compat_pvr;
1098
1099    /* CAS is supposed to be called early when only the boot vCPU is active. */
1100    CPU_FOREACH(cs) {
1101        if (cs == CPU(cpu)) {
1102            continue;
1103        }
1104        if (!cs->halted) {
1105            warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1106            return H_MULTI_THREADS_ACTIVE;
1107        }
1108    }
1109
1110    cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1111    if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1112        /*
1113         * We couldn't find a suitable compatibility mode, and either
1114         * the guest doesn't support "raw" mode for this CPU, or "raw"
1115         * mode is disabled because a maximum compat mode is set.
1116         */
1117        error_report("Couldn't negotiate a suitable PVR during CAS");
1118        return H_HARDWARE;
1119    }
1120
1121    /* Update CPUs */
1122    if (cpu->compat_pvr != cas_pvr) {
1123        Error *local_err = NULL;
1124
1125        if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1126            /* We fail to set compat mode (likely because running with KVM PR),
1127             * but maybe we can fallback to raw mode if the guest supports it.
1128             */
1129            if (!raw_mode_supported) {
1130                error_report_err(local_err);
1131                return H_HARDWARE;
1132            }
1133            error_free(local_err);
1134        }
1135    }
1136
1137    /* For the future use: here @ov_table points to the first option vector */
1138    ov_table = vec;
1139
1140    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1141    if (!ov1_guest) {
1142        warn_report("guest didn't provide option vector 1");
1143        return H_PARAMETER;
1144    }
1145    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1146    if (!ov5_guest) {
1147        spapr_ovec_cleanup(ov1_guest);
1148        warn_report("guest didn't provide option vector 5");
1149        return H_PARAMETER;
1150    }
1151    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1152        error_report("guest requested hash and radix MMU, which is invalid.");
1153        exit(EXIT_FAILURE);
1154    }
1155    if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1156        error_report("guest requested an invalid interrupt mode");
1157        exit(EXIT_FAILURE);
1158    }
1159
1160    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1161
1162    guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1163
1164    /*
1165     * HPT resizing is a bit of a special case, because when enabled
1166     * we assume an HPT guest will support it until it says it
1167     * doesn't, instead of assuming it won't support it until it says
1168     * it does.  Strictly speaking that approach could break for
1169     * guests which don't make a CAS call, but those are so old we
1170     * don't care about them.  Without that assumption we'd have to
1171     * make at least a temporary allocation of an HPT sized for max
1172     * memory, which could be impossibly difficult under KVM HV if
1173     * maxram is large.
1174     */
1175    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1176        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1177
1178        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1179            error_report(
1180                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1181            exit(1);
1182        }
1183
1184        if (spapr->htab_shift < maxshift) {
1185            /* Guest doesn't know about HPT resizing, so we
1186             * pre-emptively resize for the maximum permitted RAM.  At
1187             * the point this is called, nothing should have been
1188             * entered into the existing HPT */
1189            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1190            push_sregs_to_kvm_pr(spapr);
1191        }
1192    }
1193
1194    /* NOTE: there are actually a number of ov5 bits where input from the
1195     * guest is always zero, and the platform/QEMU enables them independently
1196     * of guest input. To model these properly we'd want some sort of mask,
1197     * but since they only currently apply to memory migration as defined
1198     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1199     * to worry about this for now.
1200     */
1201
1202    /* full range of negotiated ov5 capabilities */
1203    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1204    spapr_ovec_cleanup(ov5_guest);
1205
1206    spapr_check_mmu_mode(guest_radix);
1207
1208    spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1209    spapr_ovec_cleanup(ov1_guest);
1210
1211    /*
1212     * Check for NUMA affinity conditions now that we know which NUMA
1213     * affinity the guest will use.
1214     */
1215    spapr_numa_associativity_check(spapr);
1216
1217    /*
1218     * Ensure the guest asks for an interrupt mode we support;
1219     * otherwise terminate the boot.
1220     */
1221    if (guest_xive) {
1222        if (!spapr->irq->xive) {
1223            error_report(
1224"Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1225            exit(EXIT_FAILURE);
1226        }
1227    } else {
1228        if (!spapr->irq->xics) {
1229            error_report(
1230"Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1231            exit(EXIT_FAILURE);
1232        }
1233    }
1234
1235    spapr_irq_update_active_intc(spapr);
1236
1237    /*
1238     * Process all pending hot-plug/unplug requests now. An updated full
1239     * rendered FDT will be returned to the guest.
1240     */
1241    spapr_drc_reset_all(spapr);
1242    spapr_clear_pending_hotplug_events(spapr);
1243
1244    /*
1245     * If spapr_machine_reset() did not set up a HPT but one is necessary
1246     * (because the guest isn't going to use radix) then set it up here.
1247     */
1248    if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1249        /* legacy hash or new hash: */
1250        spapr_setup_hpt(spapr);
1251    }
1252
1253    fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1254    g_free(spapr->fdt_blob);
1255    spapr->fdt_size = fdt_totalsize(fdt);
1256    spapr->fdt_initial_size = spapr->fdt_size;
1257    spapr->fdt_blob = fdt;
1258
1259    return H_SUCCESS;
1260}
1261
1262static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1263                                                  SpaprMachineState *spapr,
1264                                                  target_ulong opcode,
1265                                                  target_ulong *args)
1266{
1267    target_ulong vec = ppc64_phys_to_real(args[0]);
1268    target_ulong fdt_buf = args[1];
1269    target_ulong fdt_bufsize = args[2];
1270    target_ulong ret;
1271    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1272
1273    if (fdt_bufsize < sizeof(hdr)) {
1274        error_report("SLOF provided insufficient CAS buffer "
1275                     TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1276        exit(EXIT_FAILURE);
1277    }
1278
1279    fdt_bufsize -= sizeof(hdr);
1280
1281    ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1282    if (ret == H_SUCCESS) {
1283        _FDT((fdt_pack(spapr->fdt_blob)));
1284        spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1285        spapr->fdt_initial_size = spapr->fdt_size;
1286
1287        cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1288        cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1289                                  spapr->fdt_size);
1290        trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1291    }
1292
1293    return ret;
1294}
1295
1296target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1297                                                   CPUState *cs,
1298                                                   target_ulong ovec_addr)
1299{
1300    SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1301
1302    target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1303                                                      ovec_addr, FDT_MAX_SIZE);
1304
1305    /*
1306     * This adds stdout and generates phandles for boottime and CAS FDTs.
1307     * It is alright to update the FDT here as do_client_architecture_support()
1308     * does not pack it.
1309     */
1310    spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1311
1312    return ret;
1313}
1314
1315static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1316                                              SpaprMachineState *spapr,
1317                                              target_ulong opcode,
1318                                              target_ulong *args)
1319{
1320    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1321                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1322    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1323    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1324    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1325    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1326    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1327                                                     SPAPR_CAP_CCF_ASSIST);
1328
1329    switch (safe_cache) {
1330    case SPAPR_CAP_WORKAROUND:
1331        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1332        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1333        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1334        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1335        break;
1336    case SPAPR_CAP_FIXED:
1337        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1338        behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1339        break;
1340    default: /* broken */
1341        assert(safe_cache == SPAPR_CAP_BROKEN);
1342        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1343        break;
1344    }
1345
1346    switch (safe_bounds_check) {
1347    case SPAPR_CAP_WORKAROUND:
1348        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1349        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1350        break;
1351    case SPAPR_CAP_FIXED:
1352        break;
1353    default: /* broken */
1354        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1355        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1356        break;
1357    }
1358
1359    switch (safe_indirect_branch) {
1360    case SPAPR_CAP_FIXED_NA:
1361        break;
1362    case SPAPR_CAP_FIXED_CCD:
1363        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1364        break;
1365    case SPAPR_CAP_FIXED_IBS:
1366        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1367        break;
1368    case SPAPR_CAP_WORKAROUND:
1369        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1370        if (count_cache_flush_assist) {
1371            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1372        }
1373        break;
1374    default: /* broken */
1375        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1376        break;
1377    }
1378
1379    args[0] = characteristics;
1380    args[1] = behaviour;
1381    return H_SUCCESS;
1382}
1383
1384static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1385                                target_ulong opcode, target_ulong *args)
1386{
1387    target_ulong dt = ppc64_phys_to_real(args[0]);
1388    struct fdt_header hdr = { 0 };
1389    unsigned cb;
1390    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1391    void *fdt;
1392
1393    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1394    cb = fdt32_to_cpu(hdr.totalsize);
1395
1396    if (!smc->update_dt_enabled) {
1397        return H_SUCCESS;
1398    }
1399
1400    /* Check that the fdt did not grow out of proportion */
1401    if (cb > spapr->fdt_initial_size * 2) {
1402        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1403                                          fdt32_to_cpu(hdr.magic));
1404        return H_PARAMETER;
1405    }
1406
1407    fdt = g_malloc0(cb);
1408    cpu_physical_memory_read(dt, fdt, cb);
1409
1410    /* Check the fdt consistency */
1411    if (fdt_check_full(fdt, cb)) {
1412        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1413                                           fdt32_to_cpu(hdr.magic));
1414        return H_PARAMETER;
1415    }
1416
1417    g_free(spapr->fdt_blob);
1418    spapr->fdt_size = cb;
1419    spapr->fdt_blob = fdt;
1420    trace_spapr_update_dt(cb);
1421
1422    return H_SUCCESS;
1423}
1424
1425static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1426static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1427static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1428
1429void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1430{
1431    spapr_hcall_fn *slot;
1432
1433    if (opcode <= MAX_HCALL_OPCODE) {
1434        assert((opcode & 0x3) == 0);
1435
1436        slot = &papr_hypercall_table[opcode / 4];
1437    } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1438        /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1439        assert((opcode & 0x3) == 0);
1440
1441        slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1442    } else {
1443        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1444
1445        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1446    }
1447
1448    assert(!(*slot));
1449    *slot = fn;
1450}
1451
1452target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1453                             target_ulong *args)
1454{
1455    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1456
1457    if ((opcode <= MAX_HCALL_OPCODE)
1458        && ((opcode & 0x3) == 0)) {
1459        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1460
1461        if (fn) {
1462            return fn(cpu, spapr, opcode, args);
1463        }
1464    } else if ((opcode >= SVM_HCALL_BASE) &&
1465               (opcode <= SVM_HCALL_MAX)) {
1466        spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1467
1468        if (fn) {
1469            return fn(cpu, spapr, opcode, args);
1470        }
1471    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1472               (opcode <= KVMPPC_HCALL_MAX)) {
1473        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1474
1475        if (fn) {
1476            return fn(cpu, spapr, opcode, args);
1477        }
1478    }
1479
1480    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1481                  opcode);
1482    return H_FUNCTION;
1483}
1484
1485#ifdef CONFIG_TCG
1486#define PRTS_MASK      0x1f
1487
1488static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1489                               SpaprMachineState *spapr,
1490                               target_ulong opcode,
1491                               target_ulong *args)
1492{
1493    target_ulong ptcr = args[0];
1494
1495    if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1496        return H_FUNCTION;
1497    }
1498
1499    if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1500        return H_PARAMETER;
1501    }
1502
1503    spapr->nested_ptcr = ptcr; /* Save new partition table */
1504
1505    return H_SUCCESS;
1506}
1507
1508static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1509                                     SpaprMachineState *spapr,
1510                                     target_ulong opcode,
1511                                     target_ulong *args)
1512{
1513    /*
1514     * The spapr virtual hypervisor nested HV implementation retains no L2
1515     * translation state except for TLB. And the TLB is always invalidated
1516     * across L1<->L2 transitions, so nothing is required here.
1517     */
1518
1519    return H_SUCCESS;
1520}
1521
1522static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1523                                        SpaprMachineState *spapr,
1524                                        target_ulong opcode,
1525                                        target_ulong *args)
1526{
1527    /*
1528     * This HCALL is not required, L1 KVM will take a slow path and walk the
1529     * page tables manually to do the data copy.
1530     */
1531    return H_FUNCTION;
1532}
1533
1534/*
1535 * When this handler returns, the environment is switched to the L2 guest
1536 * and TCG begins running that. spapr_exit_nested() performs the switch from
1537 * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1538 */
1539static target_ulong h_enter_nested(PowerPCCPU *cpu,
1540                                   SpaprMachineState *spapr,
1541                                   target_ulong opcode,
1542                                   target_ulong *args)
1543{
1544    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1545    CPUState *cs = CPU(cpu);
1546    CPUPPCState *env = &cpu->env;
1547    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1548    target_ulong hv_ptr = args[0];
1549    target_ulong regs_ptr = args[1];
1550    target_ulong hdec, now = cpu_ppc_load_tbl(env);
1551    target_ulong lpcr, lpcr_mask;
1552    struct kvmppc_hv_guest_state *hvstate;
1553    struct kvmppc_hv_guest_state hv_state;
1554    struct kvmppc_pt_regs *regs;
1555    hwaddr len;
1556    uint64_t cr;
1557    int i;
1558
1559    if (spapr->nested_ptcr == 0) {
1560        return H_NOT_AVAILABLE;
1561    }
1562
1563    len = sizeof(*hvstate);
1564    hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1565                                MEMTXATTRS_UNSPECIFIED);
1566    if (len != sizeof(*hvstate)) {
1567        address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1568        return H_PARAMETER;
1569    }
1570
1571    memcpy(&hv_state, hvstate, len);
1572
1573    address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1574
1575    /*
1576     * We accept versions 1 and 2. Version 2 fields are unused because TCG
1577     * does not implement DAWR*.
1578     */
1579    if (hv_state.version > HV_GUEST_STATE_VERSION) {
1580        return H_PARAMETER;
1581    }
1582
1583    spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1584    if (!spapr_cpu->nested_host_state) {
1585        return H_NO_MEM;
1586    }
1587
1588    memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1589
1590    len = sizeof(*regs);
1591    regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1592                                MEMTXATTRS_UNSPECIFIED);
1593    if (!regs || len != sizeof(*regs)) {
1594        address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1595        g_free(spapr_cpu->nested_host_state);
1596        return H_P2;
1597    }
1598
1599    len = sizeof(env->gpr);
1600    assert(len == sizeof(regs->gpr));
1601    memcpy(env->gpr, regs->gpr, len);
1602
1603    env->lr = regs->link;
1604    env->ctr = regs->ctr;
1605    cpu_write_xer(env, regs->xer);
1606
1607    cr = regs->ccr;
1608    for (i = 7; i >= 0; i--) {
1609        env->crf[i] = cr & 15;
1610        cr >>= 4;
1611    }
1612
1613    env->msr = regs->msr;
1614    env->nip = regs->nip;
1615
1616    address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1617
1618    env->cfar = hv_state.cfar;
1619
1620    assert(env->spr[SPR_LPIDR] == 0);
1621    env->spr[SPR_LPIDR] = hv_state.lpid;
1622
1623    lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1624    lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1625    lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1626    lpcr &= ~LPCR_LPES0;
1627    env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1628
1629    env->spr[SPR_PCR] = hv_state.pcr;
1630    /* hv_state.amor is not used */
1631    env->spr[SPR_DPDES] = hv_state.dpdes;
1632    env->spr[SPR_HFSCR] = hv_state.hfscr;
1633    hdec = hv_state.hdec_expiry - now;
1634    spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1635    /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1636    env->spr[SPR_SRR0] = hv_state.srr0;
1637    env->spr[SPR_SRR1] = hv_state.srr1;
1638    env->spr[SPR_SPRG0] = hv_state.sprg[0];
1639    env->spr[SPR_SPRG1] = hv_state.sprg[1];
1640    env->spr[SPR_SPRG2] = hv_state.sprg[2];
1641    env->spr[SPR_SPRG3] = hv_state.sprg[3];
1642    env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1643    env->spr[SPR_PPR] = hv_state.ppr;
1644
1645    cpu_ppc_hdecr_init(env);
1646    cpu_ppc_store_hdecr(env, hdec);
1647
1648    /*
1649     * The hv_state.vcpu_token is not needed. It is used by the KVM
1650     * implementation to remember which L2 vCPU last ran on which physical
1651     * CPU so as to invalidate process scope translations if it is moved
1652     * between physical CPUs. For now TLBs are always flushed on L1<->L2
1653     * transitions so this is not a problem.
1654     *
1655     * Could validate that the same vcpu_token does not attempt to run on
1656     * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1657     * and it's not obviously worth a new data structure to do it.
1658     */
1659
1660    env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1661    spapr_cpu->in_nested = true;
1662
1663    hreg_compute_hflags(env);
1664    tlb_flush(cs);
1665    env->reserve_addr = -1; /* Reset the reservation */
1666
1667    /*
1668     * The spapr hcall helper sets env->gpr[3] to the return value, but at
1669     * this point the L1 is not returning from the hcall but rather we
1670     * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1671     * to leave it unchanged.
1672     */
1673    return env->gpr[3];
1674}
1675
1676void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1677{
1678    CPUState *cs = CPU(cpu);
1679    CPUPPCState *env = &cpu->env;
1680    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1681    target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1682    target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1683    target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1684    struct kvmppc_hv_guest_state *hvstate;
1685    struct kvmppc_pt_regs *regs;
1686    hwaddr len;
1687    uint64_t cr;
1688    int i;
1689
1690    assert(spapr_cpu->in_nested);
1691
1692    cpu_ppc_hdecr_exit(env);
1693
1694    len = sizeof(*hvstate);
1695    hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1696                                MEMTXATTRS_UNSPECIFIED);
1697    if (len != sizeof(*hvstate)) {
1698        address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1699        r3_return = H_PARAMETER;
1700        goto out_restore_l1;
1701    }
1702
1703    hvstate->cfar = env->cfar;
1704    hvstate->lpcr = env->spr[SPR_LPCR];
1705    hvstate->pcr = env->spr[SPR_PCR];
1706    hvstate->dpdes = env->spr[SPR_DPDES];
1707    hvstate->hfscr = env->spr[SPR_HFSCR];
1708
1709    if (excp == POWERPC_EXCP_HDSI) {
1710        hvstate->hdar = env->spr[SPR_HDAR];
1711        hvstate->hdsisr = env->spr[SPR_HDSISR];
1712        hvstate->asdr = env->spr[SPR_ASDR];
1713    } else if (excp == POWERPC_EXCP_HISI) {
1714        hvstate->asdr = env->spr[SPR_ASDR];
1715    }
1716
1717    /* HEIR should be implemented for HV mode and saved here. */
1718    hvstate->srr0 = env->spr[SPR_SRR0];
1719    hvstate->srr1 = env->spr[SPR_SRR1];
1720    hvstate->sprg[0] = env->spr[SPR_SPRG0];
1721    hvstate->sprg[1] = env->spr[SPR_SPRG1];
1722    hvstate->sprg[2] = env->spr[SPR_SPRG2];
1723    hvstate->sprg[3] = env->spr[SPR_SPRG3];
1724    hvstate->pidr = env->spr[SPR_BOOKS_PID];
1725    hvstate->ppr = env->spr[SPR_PPR];
1726
1727    /* Is it okay to specify write length larger than actual data written? */
1728    address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1729
1730    len = sizeof(*regs);
1731    regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1732                                MEMTXATTRS_UNSPECIFIED);
1733    if (!regs || len != sizeof(*regs)) {
1734        address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1735        r3_return = H_P2;
1736        goto out_restore_l1;
1737    }
1738
1739    len = sizeof(env->gpr);
1740    assert(len == sizeof(regs->gpr));
1741    memcpy(regs->gpr, env->gpr, len);
1742
1743    regs->link = env->lr;
1744    regs->ctr = env->ctr;
1745    regs->xer = cpu_read_xer(env);
1746
1747    cr = 0;
1748    for (i = 0; i < 8; i++) {
1749        cr |= (env->crf[i] & 15) << (4 * (7 - i));
1750    }
1751    regs->ccr = cr;
1752
1753    if (excp == POWERPC_EXCP_MCHECK ||
1754        excp == POWERPC_EXCP_RESET ||
1755        excp == POWERPC_EXCP_SYSCALL) {
1756        regs->nip = env->spr[SPR_SRR0];
1757        regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1758    } else {
1759        regs->nip = env->spr[SPR_HSRR0];
1760        regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1761    }
1762
1763    /* Is it okay to specify write length larger than actual data written? */
1764    address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1765
1766out_restore_l1:
1767    memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1768    env->lr = spapr_cpu->nested_host_state->lr;
1769    env->ctr = spapr_cpu->nested_host_state->ctr;
1770    memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1771    env->cfar = spapr_cpu->nested_host_state->cfar;
1772    env->xer = spapr_cpu->nested_host_state->xer;
1773    env->so = spapr_cpu->nested_host_state->so;
1774    env->ov = spapr_cpu->nested_host_state->ov;
1775    env->ov32 = spapr_cpu->nested_host_state->ov32;
1776    env->ca32 = spapr_cpu->nested_host_state->ca32;
1777    env->msr = spapr_cpu->nested_host_state->msr;
1778    env->nip = spapr_cpu->nested_host_state->nip;
1779
1780    assert(env->spr[SPR_LPIDR] != 0);
1781    env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1782    env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1783    env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1784    env->spr[SPR_DPDES] = 0;
1785    env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1786    env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1787    env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1788    env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1789    env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1790    env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1791    env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1792    env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1793    env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1794
1795    /*
1796     * Return the interrupt vector address from H_ENTER_NESTED to the L1
1797     * (or error code).
1798     */
1799    env->gpr[3] = r3_return;
1800
1801    env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1802    spapr_cpu->in_nested = false;
1803
1804    hreg_compute_hflags(env);
1805    tlb_flush(cs);
1806    env->reserve_addr = -1; /* Reset the reservation */
1807
1808    g_free(spapr_cpu->nested_host_state);
1809    spapr_cpu->nested_host_state = NULL;
1810}
1811
1812static void hypercall_register_nested(void)
1813{
1814    spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1815    spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1816    spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1817    spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1818}
1819
1820static void hypercall_register_softmmu(void)
1821{
1822    /* DO NOTHING */
1823}
1824#else
1825void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1826{
1827    g_assert_not_reached();
1828}
1829
1830static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1831                            target_ulong opcode, target_ulong *args)
1832{
1833    g_assert_not_reached();
1834}
1835
1836static void hypercall_register_nested(void)
1837{
1838    /* DO NOTHING */
1839}
1840
1841static void hypercall_register_softmmu(void)
1842{
1843    /* hcall-pft */
1844    spapr_register_hypercall(H_ENTER, h_softmmu);
1845    spapr_register_hypercall(H_REMOVE, h_softmmu);
1846    spapr_register_hypercall(H_PROTECT, h_softmmu);
1847    spapr_register_hypercall(H_READ, h_softmmu);
1848
1849    /* hcall-bulk */
1850    spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1851}
1852#endif
1853
1854static void hypercall_register_types(void)
1855{
1856    hypercall_register_softmmu();
1857
1858    /* hcall-hpt-resize */
1859    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1860    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1861
1862    /* hcall-splpar */
1863    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1864    spapr_register_hypercall(H_CEDE, h_cede);
1865    spapr_register_hypercall(H_CONFER, h_confer);
1866    spapr_register_hypercall(H_PROD, h_prod);
1867
1868    /* hcall-join */
1869    spapr_register_hypercall(H_JOIN, h_join);
1870
1871    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1872
1873    /* processor register resource access h-calls */
1874    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1875    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1876    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1877    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1878    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1879
1880    /* In Memory Table MMU h-calls */
1881    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1882    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1883    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1884
1885    /* hcall-get-cpu-characteristics */
1886    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1887                             h_get_cpu_characteristics);
1888
1889    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1890     * here between the "CI" and the "CACHE" variants, they will use whatever
1891     * mapping attributes qemu is using. When using KVM, the kernel will
1892     * enforce the attributes more strongly
1893     */
1894    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1895    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1896    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1897    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1898    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1899    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1900    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1901
1902    /* qemu/KVM-PPC specific hcalls */
1903    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1904
1905    /* ibm,client-architecture-support support */
1906    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1907
1908    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1909
1910    hypercall_register_nested();
1911}
1912
1913type_init(hypercall_register_types)
1914