qemu/hw/timer/sse-counter.c
<<
>>
Prefs
   1/*
   2 * Arm SSE Subsystem System Counter
   3 *
   4 * Copyright (c) 2020 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * This is a model of the "System counter" which is documented in
  14 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
  15 * https://developer.arm.com/documentation/101370/latest/
  16 *
  17 * The system counter is a non-stop 64-bit up-counter. It provides
  18 * this count value to other devices like the SSE system timer,
  19 * which are driven by this system timestamp rather than directly
  20 * from a clock. Internally to the counter the count is actually
  21 * 88-bit precision (64.24 fixed point), with a programmable scale factor.
  22 *
  23 * The hardware has the optional feature that it supports dynamic
  24 * clock switching, where two clock inputs are connected, and which
  25 * one is used is selected via a CLKSEL input signal. Since the
  26 * users of this device in QEMU don't use this feature, we only model
  27 * the HWCLKSW=0 configuration.
  28 */
  29#include "qemu/osdep.h"
  30#include "qemu/log.h"
  31#include "qemu/timer.h"
  32#include "qapi/error.h"
  33#include "trace.h"
  34#include "hw/timer/sse-counter.h"
  35#include "hw/sysbus.h"
  36#include "hw/registerfields.h"
  37#include "hw/clock.h"
  38#include "hw/qdev-clock.h"
  39#include "migration/vmstate.h"
  40
  41/* Registers in the control frame */
  42REG32(CNTCR, 0x0)
  43    FIELD(CNTCR, EN, 0, 1)
  44    FIELD(CNTCR, HDBG, 1, 1)
  45    FIELD(CNTCR, SCEN, 2, 1)
  46    FIELD(CNTCR, INTRMASK, 3, 1)
  47    FIELD(CNTCR, PSLVERRDIS, 4, 1)
  48    FIELD(CNTCR, INTRCLR, 5, 1)
  49/*
  50 * Although CNTCR defines interrupt-related bits, the counter doesn't
  51 * appear to actually have an interrupt output. So INTRCLR is
  52 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
  53 */
  54#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
  55                          R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
  56                          R_CNTCR_PSLVERRDIS_MASK)
  57REG32(CNTSR, 0x4)
  58REG32(CNTCV_LO, 0x8)
  59REG32(CNTCV_HI, 0xc)
  60REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
  61REG32(CNTID, 0x1c)
  62    FIELD(CNTID, CNTSC, 0, 4)
  63    FIELD(CNTID, CNTCS, 16, 1)
  64    FIELD(CNTID, CNTSELCLK, 17, 2)
  65    FIELD(CNTID, CNTSCR_OVR, 19, 1)
  66REG32(CNTSCR0, 0xd0)
  67REG32(CNTSCR1, 0xd4)
  68
  69/* Registers in the status frame */
  70REG32(STATUS_CNTCV_LO, 0x0)
  71REG32(STATUS_CNTCV_HI, 0x4)
  72
  73/* Standard ID registers, present in both frames */
  74REG32(PID4, 0xFD0)
  75REG32(PID5, 0xFD4)
  76REG32(PID6, 0xFD8)
  77REG32(PID7, 0xFDC)
  78REG32(PID0, 0xFE0)
  79REG32(PID1, 0xFE4)
  80REG32(PID2, 0xFE8)
  81REG32(PID3, 0xFEC)
  82REG32(CID0, 0xFF0)
  83REG32(CID1, 0xFF4)
  84REG32(CID2, 0xFF8)
  85REG32(CID3, 0xFFC)
  86
  87/* PID/CID values */
  88static const int control_id[] = {
  89    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  90    0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
  91    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  92};
  93
  94static const int status_id[] = {
  95    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
  96    0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
  97    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
  98};
  99
 100static void sse_counter_notify_users(SSECounter *s)
 101{
 102    /*
 103     * Notify users of the count timestamp that they may
 104     * need to recalculate.
 105     */
 106    notifier_list_notify(&s->notifier_list, NULL);
 107}
 108
 109static bool sse_counter_enabled(SSECounter *s)
 110{
 111    return (s->cntcr & R_CNTCR_EN_MASK) != 0;
 112}
 113
 114uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
 115{
 116    if (!sse_counter_enabled(s)) {
 117        return UINT64_MAX;
 118    }
 119
 120    tick -= s->ticks_then;
 121
 122    if (s->cntcr & R_CNTCR_SCEN_MASK) {
 123        /* Adjust the tick count to account for the scale factor */
 124        tick = muldiv64(tick, 0x01000000, s->cntscr0);
 125    }
 126
 127    return s->ns_then + clock_ticks_to_ns(s->clk, tick);
 128}
 129
 130void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
 131{
 132    /*
 133     * For the moment we assume that both we and the devices
 134     * which consume us last for the life of the simulation,
 135     * and so there is no mechanism for removing a notifier.
 136     */
 137    notifier_list_add(&s->notifier_list, notifier);
 138}
 139
 140uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
 141{
 142    /* Return the CNTCV value for a particular timestamp (clock ns value). */
 143    uint64_t ticks;
 144
 145    if (!sse_counter_enabled(s)) {
 146        /* Counter is disabled and does not increment */
 147        return s->ticks_then;
 148    }
 149
 150    ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
 151    if (s->cntcr & R_CNTCR_SCEN_MASK) {
 152        /*
 153         * Scaling is enabled. The CNTSCR value is the amount added to
 154         * the underlying 88-bit counter for every tick of the
 155         * underlying clock; CNTCV is the top 64 bits of that full
 156         * 88-bit value. Multiplying the tick count by CNTSCR tells us
 157         * how much the full 88-bit counter has moved on; we then
 158         * divide that by 0x01000000 to find out how much the 64-bit
 159         * visible portion has advanced. muldiv64() gives us the
 160         * necessary at-least-88-bit precision for the intermediate
 161         * result.
 162         */
 163        ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
 164    }
 165    return s->ticks_then + ticks;
 166}
 167
 168static uint64_t sse_cntcv(SSECounter *s)
 169{
 170    /* Return the CNTCV value for the current time */
 171    return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 172}
 173
 174static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
 175{
 176    /*
 177     * Write one 32-bit half of the counter value; startbit is the
 178     * bit position of this half in the 64-bit word, either 0 or 32.
 179     */
 180    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 181    uint64_t cntcv = sse_counter_for_timestamp(s, now);
 182
 183    cntcv = deposit64(cntcv, startbit, 32, value);
 184    s->ticks_then = cntcv;
 185    s->ns_then = now;
 186    sse_counter_notify_users(s);
 187}
 188
 189static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
 190                                         unsigned size)
 191{
 192    SSECounter *s = SSE_COUNTER(opaque);
 193    uint64_t r;
 194
 195    switch (offset) {
 196    case A_CNTCR:
 197        r = s->cntcr;
 198        break;
 199    case A_CNTSR:
 200        /*
 201         * The only bit here is DBGH, indicating that the counter has been
 202         * halted via the Halt-on-Debug signal. We don't implement halting
 203         * debug, so the whole register always reads as zero.
 204         */
 205        r = 0;
 206        break;
 207    case A_CNTCV_LO:
 208        r = extract64(sse_cntcv(s), 0, 32);
 209        break;
 210    case A_CNTCV_HI:
 211        r = extract64(sse_cntcv(s), 32, 32);
 212        break;
 213    case A_CNTID:
 214        /*
 215         * For our implementation:
 216         *  - CNTSCR can only be written when CNTCR.EN == 0
 217         *  - HWCLKSW=0, so selected clock is always CLK0
 218         *  - counter scaling is implemented
 219         */
 220        r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
 221        break;
 222    case A_CNTSCR:
 223    case A_CNTSCR0:
 224        r = s->cntscr0;
 225        break;
 226    case A_CNTSCR1:
 227        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 228        r = 0;
 229        break;
 230    case A_PID4 ... A_CID3:
 231        r = control_id[(offset - A_PID4) / 4];
 232        break;
 233    default:
 234        qemu_log_mask(LOG_GUEST_ERROR,
 235                      "SSE System Counter control frame read: bad offset 0x%x",
 236                      (unsigned)offset);
 237        r = 0;
 238        break;
 239    }
 240
 241    trace_sse_counter_control_read(offset, r, size);
 242    return r;
 243}
 244
 245static void sse_counter_control_write(void *opaque, hwaddr offset,
 246                                      uint64_t value, unsigned size)
 247{
 248    SSECounter *s = SSE_COUNTER(opaque);
 249
 250    trace_sse_counter_control_write(offset, value, size);
 251
 252    switch (offset) {
 253    case A_CNTCR:
 254        /*
 255         * Although CNTCR defines interrupt-related bits, the counter doesn't
 256         * appear to actually have an interrupt output. So INTRCLR is
 257         * effectively a RAZ/WI bit, as are the reserved bits [31:6].
 258         * The documentation does not explicitly say so, but we assume
 259         * that changing the scale factor while the counter is enabled
 260         * by toggling CNTCR.SCEN has the same behaviour (making the counter
 261         * value UNKNOWN) as changing it by writing to CNTSCR, and so we
 262         * don't need to try to recalculate for that case.
 263         */
 264        value &= CNTCR_VALID_MASK;
 265        if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
 266            /*
 267             * Whether the counter is being enabled or disabled, the
 268             * required action is the same: sync the (ns_then, ticks_then)
 269             * tuple.
 270             */
 271            uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 272            s->ticks_then = sse_counter_for_timestamp(s, now);
 273            s->ns_then = now;
 274            sse_counter_notify_users(s);
 275        }
 276        s->cntcr = value;
 277        break;
 278    case A_CNTCV_LO:
 279        sse_write_cntcv(s, value, 0);
 280        break;
 281    case A_CNTCV_HI:
 282        sse_write_cntcv(s, value, 32);
 283        break;
 284    case A_CNTSCR:
 285    case A_CNTSCR0:
 286        /*
 287         * If the scale registers are changed when the counter is enabled,
 288         * the count value becomes UNKNOWN. So we don't try to recalculate
 289         * anything here but only do it on a write to CNTCR.EN.
 290         */
 291        s->cntscr0 = value;
 292        break;
 293    case A_CNTSCR1:
 294        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
 295        break;
 296    case A_CNTSR:
 297    case A_CNTID:
 298    case A_PID4 ... A_CID3:
 299        qemu_log_mask(LOG_GUEST_ERROR,
 300                      "SSE System Counter control frame: write to RO offset 0x%x\n",
 301                      (unsigned)offset);
 302        break;
 303    default:
 304        qemu_log_mask(LOG_GUEST_ERROR,
 305                      "SSE System Counter control frame: write to bad offset 0x%x\n",
 306                      (unsigned)offset);
 307        break;
 308    }
 309}
 310
 311static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
 312                                        unsigned size)
 313{
 314    SSECounter *s = SSE_COUNTER(opaque);
 315    uint64_t r;
 316
 317    switch (offset) {
 318    case A_STATUS_CNTCV_LO:
 319        r = extract64(sse_cntcv(s), 0, 32);
 320        break;
 321    case A_STATUS_CNTCV_HI:
 322        r = extract64(sse_cntcv(s), 32, 32);
 323        break;
 324    case A_PID4 ... A_CID3:
 325        r = status_id[(offset - A_PID4) / 4];
 326        break;
 327    default:
 328        qemu_log_mask(LOG_GUEST_ERROR,
 329                      "SSE System Counter status frame read: bad offset 0x%x",
 330                      (unsigned)offset);
 331        r = 0;
 332        break;
 333    }
 334
 335    trace_sse_counter_status_read(offset, r, size);
 336    return r;
 337}
 338
 339static void sse_counter_status_write(void *opaque, hwaddr offset,
 340                                     uint64_t value, unsigned size)
 341{
 342    trace_sse_counter_status_write(offset, value, size);
 343
 344    switch (offset) {
 345    case A_STATUS_CNTCV_LO:
 346    case A_STATUS_CNTCV_HI:
 347    case A_PID4 ... A_CID3:
 348        qemu_log_mask(LOG_GUEST_ERROR,
 349                      "SSE System Counter status frame: write to RO offset 0x%x\n",
 350                      (unsigned)offset);
 351        break;
 352    default:
 353        qemu_log_mask(LOG_GUEST_ERROR,
 354                      "SSE System Counter status frame: write to bad offset 0x%x\n",
 355                      (unsigned)offset);
 356        break;
 357    }
 358}
 359
 360static const MemoryRegionOps sse_counter_control_ops = {
 361    .read = sse_counter_control_read,
 362    .write = sse_counter_control_write,
 363    .endianness = DEVICE_LITTLE_ENDIAN,
 364    .valid.min_access_size = 4,
 365    .valid.max_access_size = 4,
 366};
 367
 368static const MemoryRegionOps sse_counter_status_ops = {
 369    .read = sse_counter_status_read,
 370    .write = sse_counter_status_write,
 371    .endianness = DEVICE_LITTLE_ENDIAN,
 372    .valid.min_access_size = 4,
 373    .valid.max_access_size = 4,
 374};
 375
 376static void sse_counter_reset(DeviceState *dev)
 377{
 378    SSECounter *s = SSE_COUNTER(dev);
 379
 380    trace_sse_counter_reset();
 381
 382    s->cntcr = 0;
 383    s->cntscr0 = 0x01000000;
 384    s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 385    s->ticks_then = 0;
 386}
 387
 388static void sse_clk_callback(void *opaque, ClockEvent event)
 389{
 390    SSECounter *s = SSE_COUNTER(opaque);
 391    uint64_t now;
 392
 393    switch (event) {
 394    case ClockPreUpdate:
 395        /*
 396         * Before the clock period updates, set (ticks_then, ns_then)
 397         * to the current time and tick count (as calculated with
 398         * the old clock period).
 399         */
 400        if (sse_counter_enabled(s)) {
 401            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 402            s->ticks_then = sse_counter_for_timestamp(s, now);
 403            s->ns_then = now;
 404        }
 405        break;
 406    case ClockUpdate:
 407        sse_counter_notify_users(s);
 408        break;
 409    default:
 410        break;
 411    }
 412}
 413
 414static void sse_counter_init(Object *obj)
 415{
 416    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 417    SSECounter *s = SSE_COUNTER(obj);
 418
 419    notifier_list_init(&s->notifier_list);
 420
 421    s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
 422                                ClockPreUpdate | ClockUpdate);
 423    memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
 424                          s, "sse-counter-control", 0x1000);
 425    memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
 426                          s, "sse-counter-status", 0x1000);
 427    sysbus_init_mmio(sbd, &s->control_mr);
 428    sysbus_init_mmio(sbd, &s->status_mr);
 429}
 430
 431static void sse_counter_realize(DeviceState *dev, Error **errp)
 432{
 433    SSECounter *s = SSE_COUNTER(dev);
 434
 435    if (!clock_has_source(s->clk)) {
 436        error_setg(errp, "SSE system counter: CLK must be connected");
 437        return;
 438    }
 439}
 440
 441static const VMStateDescription sse_counter_vmstate = {
 442    .name = "sse-counter",
 443    .version_id = 1,
 444    .minimum_version_id = 1,
 445    .fields = (VMStateField[]) {
 446        VMSTATE_CLOCK(clk, SSECounter),
 447        VMSTATE_END_OF_LIST()
 448    }
 449};
 450
 451static void sse_counter_class_init(ObjectClass *klass, void *data)
 452{
 453    DeviceClass *dc = DEVICE_CLASS(klass);
 454
 455    dc->realize = sse_counter_realize;
 456    dc->vmsd = &sse_counter_vmstate;
 457    dc->reset = sse_counter_reset;
 458}
 459
 460static const TypeInfo sse_counter_info = {
 461    .name = TYPE_SSE_COUNTER,
 462    .parent = TYPE_SYS_BUS_DEVICE,
 463    .instance_size = sizeof(SSECounter),
 464    .instance_init = sse_counter_init,
 465    .class_init = sse_counter_class_init,
 466};
 467
 468static void sse_counter_register_types(void)
 469{
 470    type_register_static(&sse_counter_info);
 471}
 472
 473type_init(sse_counter_register_types);
 474