qemu/include/exec/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "exec/cpu-common.h"
  23#include "exec/memory.h"
  24#include "qemu/thread.h"
  25#include "hw/core/cpu.h"
  26#include "qemu/rcu.h"
  27
  28#define EXCP_INTERRUPT  0x10000 /* async interruption */
  29#define EXCP_HLT        0x10001 /* hlt instruction reached */
  30#define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
  31#define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
  32#define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
  33#define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
  34
  35/* some important defines:
  36 *
  37 * HOST_BIG_ENDIAN : whether the host cpu is big endian and
  38 * otherwise little endian.
  39 *
  40 * TARGET_BIG_ENDIAN : same for the target cpu
  41 */
  42
  43#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
  44#define BSWAP_NEEDED
  45#endif
  46
  47#ifdef BSWAP_NEEDED
  48
  49static inline uint16_t tswap16(uint16_t s)
  50{
  51    return bswap16(s);
  52}
  53
  54static inline uint32_t tswap32(uint32_t s)
  55{
  56    return bswap32(s);
  57}
  58
  59static inline uint64_t tswap64(uint64_t s)
  60{
  61    return bswap64(s);
  62}
  63
  64static inline void tswap16s(uint16_t *s)
  65{
  66    *s = bswap16(*s);
  67}
  68
  69static inline void tswap32s(uint32_t *s)
  70{
  71    *s = bswap32(*s);
  72}
  73
  74static inline void tswap64s(uint64_t *s)
  75{
  76    *s = bswap64(*s);
  77}
  78
  79#else
  80
  81static inline uint16_t tswap16(uint16_t s)
  82{
  83    return s;
  84}
  85
  86static inline uint32_t tswap32(uint32_t s)
  87{
  88    return s;
  89}
  90
  91static inline uint64_t tswap64(uint64_t s)
  92{
  93    return s;
  94}
  95
  96static inline void tswap16s(uint16_t *s)
  97{
  98}
  99
 100static inline void tswap32s(uint32_t *s)
 101{
 102}
 103
 104static inline void tswap64s(uint64_t *s)
 105{
 106}
 107
 108#endif
 109
 110#if TARGET_LONG_SIZE == 4
 111#define tswapl(s) tswap32(s)
 112#define tswapls(s) tswap32s((uint32_t *)(s))
 113#define bswaptls(s) bswap32s(s)
 114#else
 115#define tswapl(s) tswap64(s)
 116#define tswapls(s) tswap64s((uint64_t *)(s))
 117#define bswaptls(s) bswap64s(s)
 118#endif
 119
 120/* Target-endianness CPU memory access functions. These fit into the
 121 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
 122 */
 123#if TARGET_BIG_ENDIAN
 124#define lduw_p(p) lduw_be_p(p)
 125#define ldsw_p(p) ldsw_be_p(p)
 126#define ldl_p(p) ldl_be_p(p)
 127#define ldq_p(p) ldq_be_p(p)
 128#define stw_p(p, v) stw_be_p(p, v)
 129#define stl_p(p, v) stl_be_p(p, v)
 130#define stq_p(p, v) stq_be_p(p, v)
 131#define ldn_p(p, sz) ldn_be_p(p, sz)
 132#define stn_p(p, sz, v) stn_be_p(p, sz, v)
 133#else
 134#define lduw_p(p) lduw_le_p(p)
 135#define ldsw_p(p) ldsw_le_p(p)
 136#define ldl_p(p) ldl_le_p(p)
 137#define ldq_p(p) ldq_le_p(p)
 138#define stw_p(p, v) stw_le_p(p, v)
 139#define stl_p(p, v) stl_le_p(p, v)
 140#define stq_p(p, v) stq_le_p(p, v)
 141#define ldn_p(p, sz) ldn_le_p(p, sz)
 142#define stn_p(p, sz, v) stn_le_p(p, sz, v)
 143#endif
 144
 145/* MMU memory access macros */
 146
 147#if defined(CONFIG_USER_ONLY)
 148#include "exec/user/abitypes.h"
 149
 150/* On some host systems the guest address space is reserved on the host.
 151 * This allows the guest address space to be offset to a convenient location.
 152 */
 153extern uintptr_t guest_base;
 154extern bool have_guest_base;
 155extern unsigned long reserved_va;
 156
 157/*
 158 * Limit the guest addresses as best we can.
 159 *
 160 * When not using -R reserved_va, we cannot really limit the guest
 161 * to less address space than the host.  For 32-bit guests, this
 162 * acts as a sanity check that we're not giving the guest an address
 163 * that it cannot even represent.  For 64-bit guests... the address
 164 * might not be what the real kernel would give, but it is at least
 165 * representable in the guest.
 166 *
 167 * TODO: Improve address allocation to avoid this problem, and to
 168 * avoid setting bits at the top of guest addresses that might need
 169 * to be used for tags.
 170 */
 171#define GUEST_ADDR_MAX_                                                 \
 172    ((MIN_CONST(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32) ?  \
 173     UINT32_MAX : ~0ul)
 174#define GUEST_ADDR_MAX    (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_)
 175
 176#else
 177
 178#include "exec/hwaddr.h"
 179
 180#define SUFFIX
 181#define ARG1         as
 182#define ARG1_DECL    AddressSpace *as
 183#define TARGET_ENDIANNESS
 184#include "exec/memory_ldst.h.inc"
 185
 186#define SUFFIX       _cached_slow
 187#define ARG1         cache
 188#define ARG1_DECL    MemoryRegionCache *cache
 189#define TARGET_ENDIANNESS
 190#include "exec/memory_ldst.h.inc"
 191
 192static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
 193{
 194    address_space_stl_notdirty(as, addr, val,
 195                               MEMTXATTRS_UNSPECIFIED, NULL);
 196}
 197
 198#define SUFFIX
 199#define ARG1         as
 200#define ARG1_DECL    AddressSpace *as
 201#define TARGET_ENDIANNESS
 202#include "exec/memory_ldst_phys.h.inc"
 203
 204/* Inline fast path for direct RAM access.  */
 205#define ENDIANNESS
 206#include "exec/memory_ldst_cached.h.inc"
 207
 208#define SUFFIX       _cached
 209#define ARG1         cache
 210#define ARG1_DECL    MemoryRegionCache *cache
 211#define TARGET_ENDIANNESS
 212#include "exec/memory_ldst_phys.h.inc"
 213#endif
 214
 215/* page related stuff */
 216
 217#ifdef TARGET_PAGE_BITS_VARY
 218# include "exec/page-vary.h"
 219extern const TargetPageBits target_page;
 220#ifdef CONFIG_DEBUG_TCG
 221#define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
 222#define TARGET_PAGE_MASK   ({ assert(target_page.decided); \
 223                              (target_long)target_page.mask; })
 224#else
 225#define TARGET_PAGE_BITS   target_page.bits
 226#define TARGET_PAGE_MASK   ((target_long)target_page.mask)
 227#endif
 228#define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
 229#else
 230#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
 231#define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
 232#define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
 233#endif
 234
 235#define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
 236
 237/* same as PROT_xxx */
 238#define PAGE_READ      0x0001
 239#define PAGE_WRITE     0x0002
 240#define PAGE_EXEC      0x0004
 241#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 242#define PAGE_VALID     0x0008
 243/*
 244 * Original state of the write flag (used when tracking self-modifying code)
 245 */
 246#define PAGE_WRITE_ORG 0x0010
 247/*
 248 * Invalidate the TLB entry immediately, helpful for s390x
 249 * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs()
 250 */
 251#define PAGE_WRITE_INV 0x0020
 252/* For use with page_set_flags: page is being replaced; target_data cleared. */
 253#define PAGE_RESET     0x0040
 254/* For linux-user, indicates that the page is MAP_ANON. */
 255#define PAGE_ANON      0x0080
 256
 257#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 258/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 259#define PAGE_RESERVED  0x0100
 260#endif
 261/* Target-specific bits that will be used via page_get_flags().  */
 262#define PAGE_TARGET_1  0x0200
 263#define PAGE_TARGET_2  0x0400
 264
 265#if defined(CONFIG_USER_ONLY)
 266void page_dump(FILE *f);
 267
 268typedef int (*walk_memory_regions_fn)(void *, target_ulong,
 269                                      target_ulong, unsigned long);
 270int walk_memory_regions(void *, walk_memory_regions_fn);
 271
 272int page_get_flags(target_ulong address);
 273void page_set_flags(target_ulong start, target_ulong end, int flags);
 274void page_reset_target_data(target_ulong start, target_ulong end);
 275int page_check_range(target_ulong start, target_ulong len, int flags);
 276
 277/**
 278 * page_alloc_target_data(address, size)
 279 * @address: guest virtual address
 280 * @size: size of data to allocate
 281 *
 282 * Allocate @size bytes of out-of-band data to associate with the
 283 * guest page at @address.  If the page is not mapped, NULL will
 284 * be returned.  If there is existing data associated with @address,
 285 * no new memory will be allocated.
 286 *
 287 * The memory will be freed when the guest page is deallocated,
 288 * e.g. with the munmap system call.
 289 */
 290void *page_alloc_target_data(target_ulong address, size_t size);
 291
 292/**
 293 * page_get_target_data(address)
 294 * @address: guest virtual address
 295 *
 296 * Return any out-of-bound memory assocated with the guest page
 297 * at @address, as per page_alloc_target_data.
 298 */
 299void *page_get_target_data(target_ulong address);
 300#endif
 301
 302CPUArchState *cpu_copy(CPUArchState *env);
 303
 304/* Flags for use in ENV->INTERRUPT_PENDING.
 305
 306   The numbers assigned here are non-sequential in order to preserve
 307   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 308   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 309   the vmstate dump.  */
 310
 311/* External hardware interrupt pending.  This is typically used for
 312   interrupts from devices.  */
 313#define CPU_INTERRUPT_HARD        0x0002
 314
 315/* Exit the current TB.  This is typically used when some system-level device
 316   makes some change to the memory mapping.  E.g. the a20 line change.  */
 317#define CPU_INTERRUPT_EXITTB      0x0004
 318
 319/* Halt the CPU.  */
 320#define CPU_INTERRUPT_HALT        0x0020
 321
 322/* Debug event pending.  */
 323#define CPU_INTERRUPT_DEBUG       0x0080
 324
 325/* Reset signal.  */
 326#define CPU_INTERRUPT_RESET       0x0400
 327
 328/* Several target-specific external hardware interrupts.  Each target/cpu.h
 329   should define proper names based on these defines.  */
 330#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 331#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 332#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 333#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 334#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 335
 336/* Several target-specific internal interrupts.  These differ from the
 337   preceding target-specific interrupts in that they are intended to
 338   originate from within the cpu itself, typically in response to some
 339   instruction being executed.  These, therefore, are not masked while
 340   single-stepping within the debugger.  */
 341#define CPU_INTERRUPT_TGT_INT_0   0x0100
 342#define CPU_INTERRUPT_TGT_INT_1   0x0800
 343#define CPU_INTERRUPT_TGT_INT_2   0x2000
 344
 345/* First unused bit: 0x4000.  */
 346
 347/* The set of all bits that should be masked when single-stepping.  */
 348#define CPU_INTERRUPT_SSTEP_MASK \
 349    (CPU_INTERRUPT_HARD          \
 350     | CPU_INTERRUPT_TGT_EXT_0   \
 351     | CPU_INTERRUPT_TGT_EXT_1   \
 352     | CPU_INTERRUPT_TGT_EXT_2   \
 353     | CPU_INTERRUPT_TGT_EXT_3   \
 354     | CPU_INTERRUPT_TGT_EXT_4)
 355
 356#ifdef CONFIG_USER_ONLY
 357
 358/*
 359 * Allow some level of source compatibility with softmmu.  We do not
 360 * support any of the more exotic features, so only invalid pages may
 361 * be signaled by probe_access_flags().
 362 */
 363#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 364#define TLB_MMIO            0
 365#define TLB_WATCHPOINT      0
 366
 367#else
 368
 369/*
 370 * Flags stored in the low bits of the TLB virtual address.
 371 * These are defined so that fast path ram access is all zeros.
 372 * The flags all must be between TARGET_PAGE_BITS and
 373 * maximum address alignment bit.
 374 *
 375 * Use TARGET_PAGE_BITS_MIN so that these bits are constant
 376 * when TARGET_PAGE_BITS_VARY is in effect.
 377 */
 378/* Zero if TLB entry is valid.  */
 379#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
 380/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 381   contain the page physical address.  */
 382#define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
 383/* Set if TLB entry is an IO callback.  */
 384#define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
 385/* Set if TLB entry contains a watchpoint.  */
 386#define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
 387/* Set if TLB entry requires byte swap.  */
 388#define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
 389/* Set if TLB entry writes ignored.  */
 390#define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
 391
 392/* Use this mask to check interception with an alignment mask
 393 * in a TCG backend.
 394 */
 395#define TLB_FLAGS_MASK \
 396    (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
 397    | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
 398
 399/**
 400 * tlb_hit_page: return true if page aligned @addr is a hit against the
 401 * TLB entry @tlb_addr
 402 *
 403 * @addr: virtual address to test (must be page aligned)
 404 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 405 */
 406static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
 407{
 408    return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
 409}
 410
 411/**
 412 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
 413 *
 414 * @addr: virtual address to test (need not be page aligned)
 415 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
 416 */
 417static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
 418{
 419    return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
 420}
 421
 422#ifdef CONFIG_TCG
 423/* accel/tcg/translate-all.c */
 424void dump_exec_info(GString *buf);
 425#endif /* CONFIG_TCG */
 426
 427#endif /* !CONFIG_USER_ONLY */
 428
 429/* accel/tcg/cpu-exec.c */
 430int cpu_exec(CPUState *cpu);
 431void tcg_exec_realizefn(CPUState *cpu, Error **errp);
 432void tcg_exec_unrealizefn(CPUState *cpu);
 433
 434/**
 435 * cpu_set_cpustate_pointers(cpu)
 436 * @cpu: The cpu object
 437 *
 438 * Set the generic pointers in CPUState into the outer object.
 439 */
 440static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
 441{
 442    cpu->parent_obj.env_ptr = &cpu->env;
 443    cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
 444}
 445
 446/**
 447 * env_archcpu(env)
 448 * @env: The architecture environment
 449 *
 450 * Return the ArchCPU associated with the environment.
 451 */
 452static inline ArchCPU *env_archcpu(CPUArchState *env)
 453{
 454    return container_of(env, ArchCPU, env);
 455}
 456
 457/**
 458 * env_cpu(env)
 459 * @env: The architecture environment
 460 *
 461 * Return the CPUState associated with the environment.
 462 */
 463static inline CPUState *env_cpu(CPUArchState *env)
 464{
 465    return &env_archcpu(env)->parent_obj;
 466}
 467
 468/**
 469 * env_neg(env)
 470 * @env: The architecture environment
 471 *
 472 * Return the CPUNegativeOffsetState associated with the environment.
 473 */
 474static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
 475{
 476    ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
 477    return &arch_cpu->neg;
 478}
 479
 480/**
 481 * cpu_neg(cpu)
 482 * @cpu: The generic CPUState
 483 *
 484 * Return the CPUNegativeOffsetState associated with the cpu.
 485 */
 486static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
 487{
 488    ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
 489    return &arch_cpu->neg;
 490}
 491
 492/**
 493 * env_tlb(env)
 494 * @env: The architecture environment
 495 *
 496 * Return the CPUTLB state associated with the environment.
 497 */
 498static inline CPUTLB *env_tlb(CPUArchState *env)
 499{
 500    return &env_neg(env)->tlb;
 501}
 502
 503#endif /* CPU_ALL_H */
 504