qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/memop.h"
  23#include "exec/ramlist.h"
  24#include "qemu/bswap.h"
  25#include "qemu/queue.h"
  26#include "qemu/int128.h"
  27#include "qemu/notify.h"
  28#include "qom/object.h"
  29#include "qemu/rcu.h"
  30
  31#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  32
  33#define MAX_PHYS_ADDR_SPACE_BITS 62
  34#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  35
  36#define TYPE_MEMORY_REGION "memory-region"
  37DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
  38                         TYPE_MEMORY_REGION)
  39
  40#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
  41typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
  42DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
  43                     IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
  44
  45#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
  46typedef struct RamDiscardManagerClass RamDiscardManagerClass;
  47typedef struct RamDiscardManager RamDiscardManager;
  48DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
  49                     RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
  50
  51#ifdef CONFIG_FUZZ
  52void fuzz_dma_read_cb(size_t addr,
  53                      size_t len,
  54                      MemoryRegion *mr);
  55#else
  56static inline void fuzz_dma_read_cb(size_t addr,
  57                                    size_t len,
  58                                    MemoryRegion *mr)
  59{
  60    /* Do Nothing */
  61}
  62#endif
  63
  64/* Possible bits for global_dirty_log_{start|stop} */
  65
  66/* Dirty tracking enabled because migration is running */
  67#define GLOBAL_DIRTY_MIGRATION  (1U << 0)
  68
  69/* Dirty tracking enabled because measuring dirty rate */
  70#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
  71
  72/* Dirty tracking enabled because dirty limit */
  73#define GLOBAL_DIRTY_LIMIT      (1U << 2)
  74
  75#define GLOBAL_DIRTY_MASK  (0x7)
  76
  77extern unsigned int global_dirty_tracking;
  78
  79typedef struct MemoryRegionOps MemoryRegionOps;
  80
  81struct ReservedRegion {
  82    hwaddr low;
  83    hwaddr high;
  84    unsigned type;
  85};
  86
  87/**
  88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
  89 *
  90 * @mr: the region, or %NULL if empty
  91 * @fv: the flat view of the address space the region is mapped in
  92 * @offset_within_region: the beginning of the section, relative to @mr's start
  93 * @size: the size of the section; will not exceed @mr's boundaries
  94 * @offset_within_address_space: the address of the first byte of the section
  95 *     relative to the region's address space
  96 * @readonly: writes to this section are ignored
  97 * @nonvolatile: this section is non-volatile
  98 */
  99struct MemoryRegionSection {
 100    Int128 size;
 101    MemoryRegion *mr;
 102    FlatView *fv;
 103    hwaddr offset_within_region;
 104    hwaddr offset_within_address_space;
 105    bool readonly;
 106    bool nonvolatile;
 107};
 108
 109typedef struct IOMMUTLBEntry IOMMUTLBEntry;
 110
 111/* See address_space_translate: bit 0 is read, bit 1 is write.  */
 112typedef enum {
 113    IOMMU_NONE = 0,
 114    IOMMU_RO   = 1,
 115    IOMMU_WO   = 2,
 116    IOMMU_RW   = 3,
 117} IOMMUAccessFlags;
 118
 119#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
 120
 121struct IOMMUTLBEntry {
 122    AddressSpace    *target_as;
 123    hwaddr           iova;
 124    hwaddr           translated_addr;
 125    hwaddr           addr_mask;  /* 0xfff = 4k translation */
 126    IOMMUAccessFlags perm;
 127};
 128
 129/*
 130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
 131 * register with one or multiple IOMMU Notifier capability bit(s).
 132 */
 133typedef enum {
 134    IOMMU_NOTIFIER_NONE = 0,
 135    /* Notify cache invalidations */
 136    IOMMU_NOTIFIER_UNMAP = 0x1,
 137    /* Notify entry changes (newly created entries) */
 138    IOMMU_NOTIFIER_MAP = 0x2,
 139    /* Notify changes on device IOTLB entries */
 140    IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
 141} IOMMUNotifierFlag;
 142
 143#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
 144#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
 145#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
 146                            IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
 147
 148struct IOMMUNotifier;
 149typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
 150                            IOMMUTLBEntry *data);
 151
 152struct IOMMUNotifier {
 153    IOMMUNotify notify;
 154    IOMMUNotifierFlag notifier_flags;
 155    /* Notify for address space range start <= addr <= end */
 156    hwaddr start;
 157    hwaddr end;
 158    int iommu_idx;
 159    QLIST_ENTRY(IOMMUNotifier) node;
 160};
 161typedef struct IOMMUNotifier IOMMUNotifier;
 162
 163typedef struct IOMMUTLBEvent {
 164    IOMMUNotifierFlag type;
 165    IOMMUTLBEntry entry;
 166} IOMMUTLBEvent;
 167
 168/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 169#define RAM_PREALLOC   (1 << 0)
 170
 171/* RAM is mmap-ed with MAP_SHARED */
 172#define RAM_SHARED     (1 << 1)
 173
 174/* Only a portion of RAM (used_length) is actually used, and migrated.
 175 * Resizing RAM while migrating can result in the migration being canceled.
 176 */
 177#define RAM_RESIZEABLE (1 << 2)
 178
 179/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 180 * zero the page and wake waiting processes.
 181 * (Set during postcopy)
 182 */
 183#define RAM_UF_ZEROPAGE (1 << 3)
 184
 185/* RAM can be migrated */
 186#define RAM_MIGRATABLE (1 << 4)
 187
 188/* RAM is a persistent kind memory */
 189#define RAM_PMEM (1 << 5)
 190
 191
 192/*
 193 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
 194 * support 'write-tracking' migration type.
 195 * Implies ram_state->ram_wt_enabled.
 196 */
 197#define RAM_UF_WRITEPROTECT (1 << 6)
 198
 199/*
 200 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
 201 * pages if applicable) is skipped: will bail out if not supported. When not
 202 * set, the OS will do the reservation, if supported for the memory type.
 203 */
 204#define RAM_NORESERVE (1 << 7)
 205
 206/* RAM that isn't accessible through normal means. */
 207#define RAM_PROTECTED (1 << 8)
 208
 209static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 210                                       IOMMUNotifierFlag flags,
 211                                       hwaddr start, hwaddr end,
 212                                       int iommu_idx)
 213{
 214    n->notify = fn;
 215    n->notifier_flags = flags;
 216    n->start = start;
 217    n->end = end;
 218    n->iommu_idx = iommu_idx;
 219}
 220
 221/*
 222 * Memory region callbacks
 223 */
 224struct MemoryRegionOps {
 225    /* Read from the memory region. @addr is relative to @mr; @size is
 226     * in bytes. */
 227    uint64_t (*read)(void *opaque,
 228                     hwaddr addr,
 229                     unsigned size);
 230    /* Write to the memory region. @addr is relative to @mr; @size is
 231     * in bytes. */
 232    void (*write)(void *opaque,
 233                  hwaddr addr,
 234                  uint64_t data,
 235                  unsigned size);
 236
 237    MemTxResult (*read_with_attrs)(void *opaque,
 238                                   hwaddr addr,
 239                                   uint64_t *data,
 240                                   unsigned size,
 241                                   MemTxAttrs attrs);
 242    MemTxResult (*write_with_attrs)(void *opaque,
 243                                    hwaddr addr,
 244                                    uint64_t data,
 245                                    unsigned size,
 246                                    MemTxAttrs attrs);
 247
 248    enum device_endian endianness;
 249    /* Guest-visible constraints: */
 250    struct {
 251        /* If nonzero, specify bounds on access sizes beyond which a machine
 252         * check is thrown.
 253         */
 254        unsigned min_access_size;
 255        unsigned max_access_size;
 256        /* If true, unaligned accesses are supported.  Otherwise unaligned
 257         * accesses throw machine checks.
 258         */
 259         bool unaligned;
 260        /*
 261         * If present, and returns #false, the transaction is not accepted
 262         * by the device (and results in machine dependent behaviour such
 263         * as a machine check exception).
 264         */
 265        bool (*accepts)(void *opaque, hwaddr addr,
 266                        unsigned size, bool is_write,
 267                        MemTxAttrs attrs);
 268    } valid;
 269    /* Internal implementation constraints: */
 270    struct {
 271        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 272         * will be rounded upwards and a partial result will be returned.
 273         */
 274        unsigned min_access_size;
 275        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 276         * will be done as a series of accesses with smaller sizes.
 277         */
 278        unsigned max_access_size;
 279        /* If true, unaligned accesses are supported.  Otherwise all accesses
 280         * are converted to (possibly multiple) naturally aligned accesses.
 281         */
 282        bool unaligned;
 283    } impl;
 284};
 285
 286typedef struct MemoryRegionClass {
 287    /* private */
 288    ObjectClass parent_class;
 289} MemoryRegionClass;
 290
 291
 292enum IOMMUMemoryRegionAttr {
 293    IOMMU_ATTR_SPAPR_TCE_FD
 294};
 295
 296/*
 297 * IOMMUMemoryRegionClass:
 298 *
 299 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 300 * and provide an implementation of at least the @translate method here
 301 * to handle requests to the memory region. Other methods are optional.
 302 *
 303 * The IOMMU implementation must use the IOMMU notifier infrastructure
 304 * to report whenever mappings are changed, by calling
 305 * memory_region_notify_iommu() (or, if necessary, by calling
 306 * memory_region_notify_iommu_one() for each registered notifier).
 307 *
 308 * Conceptually an IOMMU provides a mapping from input address
 309 * to an output TLB entry. If the IOMMU is aware of memory transaction
 310 * attributes and the output TLB entry depends on the transaction
 311 * attributes, we represent this using IOMMU indexes. Each index
 312 * selects a particular translation table that the IOMMU has:
 313 *
 314 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 315 *
 316 *   @translate takes an input address and an IOMMU index
 317 *
 318 * and the mapping returned can only depend on the input address and the
 319 * IOMMU index.
 320 *
 321 * Most IOMMUs don't care about the transaction attributes and support
 322 * only a single IOMMU index. A more complex IOMMU might have one index
 323 * for secure transactions and one for non-secure transactions.
 324 */
 325struct IOMMUMemoryRegionClass {
 326    /* private: */
 327    MemoryRegionClass parent_class;
 328
 329    /* public: */
 330    /**
 331     * @translate:
 332     *
 333     * Return a TLB entry that contains a given address.
 334     *
 335     * The IOMMUAccessFlags indicated via @flag are optional and may
 336     * be specified as IOMMU_NONE to indicate that the caller needs
 337     * the full translation information for both reads and writes. If
 338     * the access flags are specified then the IOMMU implementation
 339     * may use this as an optimization, to stop doing a page table
 340     * walk as soon as it knows that the requested permissions are not
 341     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 342     * full page table walk and report the permissions in the returned
 343     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 344     * return different mappings for reads and writes.)
 345     *
 346     * The returned information remains valid while the caller is
 347     * holding the big QEMU lock or is inside an RCU critical section;
 348     * if the caller wishes to cache the mapping beyond that it must
 349     * register an IOMMU notifier so it can invalidate its cached
 350     * information when the IOMMU mapping changes.
 351     *
 352     * @iommu: the IOMMUMemoryRegion
 353     *
 354     * @hwaddr: address to be translated within the memory region
 355     *
 356     * @flag: requested access permission
 357     *
 358     * @iommu_idx: IOMMU index for the translation
 359     */
 360    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 361                               IOMMUAccessFlags flag, int iommu_idx);
 362    /**
 363     * @get_min_page_size:
 364     *
 365     * Returns minimum supported page size in bytes.
 366     *
 367     * If this method is not provided then the minimum is assumed to
 368     * be TARGET_PAGE_SIZE.
 369     *
 370     * @iommu: the IOMMUMemoryRegion
 371     */
 372    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 373    /**
 374     * @notify_flag_changed:
 375     *
 376     * Called when IOMMU Notifier flag changes (ie when the set of
 377     * events which IOMMU users are requesting notification for changes).
 378     * Optional method -- need not be provided if the IOMMU does not
 379     * need to know exactly which events must be notified.
 380     *
 381     * @iommu: the IOMMUMemoryRegion
 382     *
 383     * @old_flags: events which previously needed to be notified
 384     *
 385     * @new_flags: events which now need to be notified
 386     *
 387     * Returns 0 on success, or a negative errno; in particular
 388     * returns -EINVAL if the new flag bitmap is not supported by the
 389     * IOMMU memory region. In case of failure, the error object
 390     * must be created
 391     */
 392    int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 393                               IOMMUNotifierFlag old_flags,
 394                               IOMMUNotifierFlag new_flags,
 395                               Error **errp);
 396    /**
 397     * @replay:
 398     *
 399     * Called to handle memory_region_iommu_replay().
 400     *
 401     * The default implementation of memory_region_iommu_replay() is to
 402     * call the IOMMU translate method for every page in the address space
 403     * with flag == IOMMU_NONE and then call the notifier if translate
 404     * returns a valid mapping. If this method is implemented then it
 405     * overrides the default behaviour, and must provide the full semantics
 406     * of memory_region_iommu_replay(), by calling @notifier for every
 407     * translation present in the IOMMU.
 408     *
 409     * Optional method -- an IOMMU only needs to provide this method
 410     * if the default is inefficient or produces undesirable side effects.
 411     *
 412     * Note: this is not related to record-and-replay functionality.
 413     */
 414    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 415
 416    /**
 417     * @get_attr:
 418     *
 419     * Get IOMMU misc attributes. This is an optional method that
 420     * can be used to allow users of the IOMMU to get implementation-specific
 421     * information. The IOMMU implements this method to handle calls
 422     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 423     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 424     * the IOMMU supports. If the method is unimplemented then
 425     * memory_region_iommu_get_attr() will always return -EINVAL.
 426     *
 427     * @iommu: the IOMMUMemoryRegion
 428     *
 429     * @attr: attribute being queried
 430     *
 431     * @data: memory to fill in with the attribute data
 432     *
 433     * Returns 0 on success, or a negative errno; in particular
 434     * returns -EINVAL for unrecognized or unimplemented attribute types.
 435     */
 436    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 437                    void *data);
 438
 439    /**
 440     * @attrs_to_index:
 441     *
 442     * Return the IOMMU index to use for a given set of transaction attributes.
 443     *
 444     * Optional method: if an IOMMU only supports a single IOMMU index then
 445     * the default implementation of memory_region_iommu_attrs_to_index()
 446     * will return 0.
 447     *
 448     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 449     *
 450     * @iommu: the IOMMUMemoryRegion
 451     * @attrs: memory transaction attributes
 452     */
 453    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 454
 455    /**
 456     * @num_indexes:
 457     *
 458     * Return the number of IOMMU indexes this IOMMU supports.
 459     *
 460     * Optional method: if this method is not provided, then
 461     * memory_region_iommu_num_indexes() will return 1, indicating that
 462     * only a single IOMMU index is supported.
 463     *
 464     * @iommu: the IOMMUMemoryRegion
 465     */
 466    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 467
 468    /**
 469     * @iommu_set_page_size_mask:
 470     *
 471     * Restrict the page size mask that can be supported with a given IOMMU
 472     * memory region. Used for example to propagate host physical IOMMU page
 473     * size mask limitations to the virtual IOMMU.
 474     *
 475     * Optional method: if this method is not provided, then the default global
 476     * page mask is used.
 477     *
 478     * @iommu: the IOMMUMemoryRegion
 479     *
 480     * @page_size_mask: a bitmask of supported page sizes. At least one bit,
 481     * representing the smallest page size, must be set. Additional set bits
 482     * represent supported block sizes. For example a host physical IOMMU that
 483     * uses page tables with a page size of 4kB, and supports 2MB and 4GB
 484     * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
 485     * block sizes is specified with mask 0xfffffffffffff000.
 486     *
 487     * Returns 0 on success, or a negative error. In case of failure, the error
 488     * object must be created.
 489     */
 490     int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
 491                                     uint64_t page_size_mask,
 492                                     Error **errp);
 493};
 494
 495typedef struct RamDiscardListener RamDiscardListener;
 496typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
 497                                 MemoryRegionSection *section);
 498typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
 499                                 MemoryRegionSection *section);
 500
 501struct RamDiscardListener {
 502    /*
 503     * @notify_populate:
 504     *
 505     * Notification that previously discarded memory is about to get populated.
 506     * Listeners are able to object. If any listener objects, already
 507     * successfully notified listeners are notified about a discard again.
 508     *
 509     * @rdl: the #RamDiscardListener getting notified
 510     * @section: the #MemoryRegionSection to get populated. The section
 511     *           is aligned within the memory region to the minimum granularity
 512     *           unless it would exceed the registered section.
 513     *
 514     * Returns 0 on success. If the notification is rejected by the listener,
 515     * an error is returned.
 516     */
 517    NotifyRamPopulate notify_populate;
 518
 519    /*
 520     * @notify_discard:
 521     *
 522     * Notification that previously populated memory was discarded successfully
 523     * and listeners should drop all references to such memory and prevent
 524     * new population (e.g., unmap).
 525     *
 526     * @rdl: the #RamDiscardListener getting notified
 527     * @section: the #MemoryRegionSection to get populated. The section
 528     *           is aligned within the memory region to the minimum granularity
 529     *           unless it would exceed the registered section.
 530     */
 531    NotifyRamDiscard notify_discard;
 532
 533    /*
 534     * @double_discard_supported:
 535     *
 536     * The listener suppors getting @notify_discard notifications that span
 537     * already discarded parts.
 538     */
 539    bool double_discard_supported;
 540
 541    MemoryRegionSection *section;
 542    QLIST_ENTRY(RamDiscardListener) next;
 543};
 544
 545static inline void ram_discard_listener_init(RamDiscardListener *rdl,
 546                                             NotifyRamPopulate populate_fn,
 547                                             NotifyRamDiscard discard_fn,
 548                                             bool double_discard_supported)
 549{
 550    rdl->notify_populate = populate_fn;
 551    rdl->notify_discard = discard_fn;
 552    rdl->double_discard_supported = double_discard_supported;
 553}
 554
 555typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
 556typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
 557
 558/*
 559 * RamDiscardManagerClass:
 560 *
 561 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
 562 * regions are currently populated to be used/accessed by the VM, notifying
 563 * after parts were discarded (freeing up memory) and before parts will be
 564 * populated (consuming memory), to be used/acessed by the VM.
 565 *
 566 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
 567 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
 568 * mapped.
 569 *
 570 * The #RamDiscardManager is intended to be used by technologies that are
 571 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
 572 * memory inside a #MemoryRegion), and require proper coordination to only
 573 * map the currently populated parts, to hinder parts that are expected to
 574 * remain discarded from silently getting populated and consuming memory.
 575 * Technologies that support discarding of RAM don't have to bother and can
 576 * simply map the whole #MemoryRegion.
 577 *
 578 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
 579 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
 580 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
 581 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
 582 * properly coordinate with listeners before memory is plugged (populated),
 583 * and after memory is unplugged (discarded).
 584 *
 585 * Listeners are called in multiples of the minimum granularity (unless it
 586 * would exceed the registered range) and changes are aligned to the minimum
 587 * granularity within the #MemoryRegion. Listeners have to prepare for memory
 588 * becomming discarded in a different granularity than it was populated and the
 589 * other way around.
 590 */
 591struct RamDiscardManagerClass {
 592    /* private */
 593    InterfaceClass parent_class;
 594
 595    /* public */
 596
 597    /**
 598     * @get_min_granularity:
 599     *
 600     * Get the minimum granularity in which listeners will get notified
 601     * about changes within the #MemoryRegion via the #RamDiscardManager.
 602     *
 603     * @rdm: the #RamDiscardManager
 604     * @mr: the #MemoryRegion
 605     *
 606     * Returns the minimum granularity.
 607     */
 608    uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
 609                                    const MemoryRegion *mr);
 610
 611    /**
 612     * @is_populated:
 613     *
 614     * Check whether the given #MemoryRegionSection is completely populated
 615     * (i.e., no parts are currently discarded) via the #RamDiscardManager.
 616     * There are no alignment requirements.
 617     *
 618     * @rdm: the #RamDiscardManager
 619     * @section: the #MemoryRegionSection
 620     *
 621     * Returns whether the given range is completely populated.
 622     */
 623    bool (*is_populated)(const RamDiscardManager *rdm,
 624                         const MemoryRegionSection *section);
 625
 626    /**
 627     * @replay_populated:
 628     *
 629     * Call the #ReplayRamPopulate callback for all populated parts within the
 630     * #MemoryRegionSection via the #RamDiscardManager.
 631     *
 632     * In case any call fails, no further calls are made.
 633     *
 634     * @rdm: the #RamDiscardManager
 635     * @section: the #MemoryRegionSection
 636     * @replay_fn: the #ReplayRamPopulate callback
 637     * @opaque: pointer to forward to the callback
 638     *
 639     * Returns 0 on success, or a negative error if any notification failed.
 640     */
 641    int (*replay_populated)(const RamDiscardManager *rdm,
 642                            MemoryRegionSection *section,
 643                            ReplayRamPopulate replay_fn, void *opaque);
 644
 645    /**
 646     * @replay_discarded:
 647     *
 648     * Call the #ReplayRamDiscard callback for all discarded parts within the
 649     * #MemoryRegionSection via the #RamDiscardManager.
 650     *
 651     * @rdm: the #RamDiscardManager
 652     * @section: the #MemoryRegionSection
 653     * @replay_fn: the #ReplayRamDiscard callback
 654     * @opaque: pointer to forward to the callback
 655     */
 656    void (*replay_discarded)(const RamDiscardManager *rdm,
 657                             MemoryRegionSection *section,
 658                             ReplayRamDiscard replay_fn, void *opaque);
 659
 660    /**
 661     * @register_listener:
 662     *
 663     * Register a #RamDiscardListener for the given #MemoryRegionSection and
 664     * immediately notify the #RamDiscardListener about all populated parts
 665     * within the #MemoryRegionSection via the #RamDiscardManager.
 666     *
 667     * In case any notification fails, no further notifications are triggered
 668     * and an error is logged.
 669     *
 670     * @rdm: the #RamDiscardManager
 671     * @rdl: the #RamDiscardListener
 672     * @section: the #MemoryRegionSection
 673     */
 674    void (*register_listener)(RamDiscardManager *rdm,
 675                              RamDiscardListener *rdl,
 676                              MemoryRegionSection *section);
 677
 678    /**
 679     * @unregister_listener:
 680     *
 681     * Unregister a previously registered #RamDiscardListener via the
 682     * #RamDiscardManager after notifying the #RamDiscardListener about all
 683     * populated parts becoming unpopulated within the registered
 684     * #MemoryRegionSection.
 685     *
 686     * @rdm: the #RamDiscardManager
 687     * @rdl: the #RamDiscardListener
 688     */
 689    void (*unregister_listener)(RamDiscardManager *rdm,
 690                                RamDiscardListener *rdl);
 691};
 692
 693uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
 694                                                 const MemoryRegion *mr);
 695
 696bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
 697                                      const MemoryRegionSection *section);
 698
 699int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
 700                                         MemoryRegionSection *section,
 701                                         ReplayRamPopulate replay_fn,
 702                                         void *opaque);
 703
 704void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
 705                                          MemoryRegionSection *section,
 706                                          ReplayRamDiscard replay_fn,
 707                                          void *opaque);
 708
 709void ram_discard_manager_register_listener(RamDiscardManager *rdm,
 710                                           RamDiscardListener *rdl,
 711                                           MemoryRegionSection *section);
 712
 713void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
 714                                             RamDiscardListener *rdl);
 715
 716typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 717typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 718
 719/** MemoryRegion:
 720 *
 721 * A struct representing a memory region.
 722 */
 723struct MemoryRegion {
 724    Object parent_obj;
 725
 726    /* private: */
 727
 728    /* The following fields should fit in a cache line */
 729    bool romd_mode;
 730    bool ram;
 731    bool subpage;
 732    bool readonly; /* For RAM regions */
 733    bool nonvolatile;
 734    bool rom_device;
 735    bool flush_coalesced_mmio;
 736    uint8_t dirty_log_mask;
 737    bool is_iommu;
 738    RAMBlock *ram_block;
 739    Object *owner;
 740
 741    const MemoryRegionOps *ops;
 742    void *opaque;
 743    MemoryRegion *container;
 744    int mapped_via_alias; /* Mapped via an alias, container might be NULL */
 745    Int128 size;
 746    hwaddr addr;
 747    void (*destructor)(MemoryRegion *mr);
 748    uint64_t align;
 749    bool terminates;
 750    bool ram_device;
 751    bool enabled;
 752    bool warning_printed; /* For reservations */
 753    uint8_t vga_logging_count;
 754    MemoryRegion *alias;
 755    hwaddr alias_offset;
 756    int32_t priority;
 757    QTAILQ_HEAD(, MemoryRegion) subregions;
 758    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 759    QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
 760    const char *name;
 761    unsigned ioeventfd_nb;
 762    MemoryRegionIoeventfd *ioeventfds;
 763    RamDiscardManager *rdm; /* Only for RAM */
 764};
 765
 766struct IOMMUMemoryRegion {
 767    MemoryRegion parent_obj;
 768
 769    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 770    IOMMUNotifierFlag iommu_notify_flags;
 771};
 772
 773#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 774    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 775
 776/**
 777 * struct MemoryListener: callbacks structure for updates to the physical memory map
 778 *
 779 * Allows a component to adjust to changes in the guest-visible memory map.
 780 * Use with memory_listener_register() and memory_listener_unregister().
 781 */
 782struct MemoryListener {
 783    /**
 784     * @begin:
 785     *
 786     * Called at the beginning of an address space update transaction.
 787     * Followed by calls to #MemoryListener.region_add(),
 788     * #MemoryListener.region_del(), #MemoryListener.region_nop(),
 789     * #MemoryListener.log_start() and #MemoryListener.log_stop() in
 790     * increasing address order.
 791     *
 792     * @listener: The #MemoryListener.
 793     */
 794    void (*begin)(MemoryListener *listener);
 795
 796    /**
 797     * @commit:
 798     *
 799     * Called at the end of an address space update transaction,
 800     * after the last call to #MemoryListener.region_add(),
 801     * #MemoryListener.region_del() or #MemoryListener.region_nop(),
 802     * #MemoryListener.log_start() and #MemoryListener.log_stop().
 803     *
 804     * @listener: The #MemoryListener.
 805     */
 806    void (*commit)(MemoryListener *listener);
 807
 808    /**
 809     * @region_add:
 810     *
 811     * Called during an address space update transaction,
 812     * for a section of the address space that is new in this address space
 813     * space since the last transaction.
 814     *
 815     * @listener: The #MemoryListener.
 816     * @section: The new #MemoryRegionSection.
 817     */
 818    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 819
 820    /**
 821     * @region_del:
 822     *
 823     * Called during an address space update transaction,
 824     * for a section of the address space that has disappeared in the address
 825     * space since the last transaction.
 826     *
 827     * @listener: The #MemoryListener.
 828     * @section: The old #MemoryRegionSection.
 829     */
 830    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 831
 832    /**
 833     * @region_nop:
 834     *
 835     * Called during an address space update transaction,
 836     * for a section of the address space that is in the same place in the address
 837     * space as in the last transaction.
 838     *
 839     * @listener: The #MemoryListener.
 840     * @section: The #MemoryRegionSection.
 841     */
 842    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 843
 844    /**
 845     * @log_start:
 846     *
 847     * Called during an address space update transaction, after
 848     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 849     * #MemoryListener.region_nop(), if dirty memory logging clients have
 850     * become active since the last transaction.
 851     *
 852     * @listener: The #MemoryListener.
 853     * @section: The #MemoryRegionSection.
 854     * @old: A bitmap of dirty memory logging clients that were active in
 855     * the previous transaction.
 856     * @new: A bitmap of dirty memory logging clients that are active in
 857     * the current transaction.
 858     */
 859    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 860                      int old, int new);
 861
 862    /**
 863     * @log_stop:
 864     *
 865     * Called during an address space update transaction, after
 866     * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
 867     * #MemoryListener.region_nop() and possibly after
 868     * #MemoryListener.log_start(), if dirty memory logging clients have
 869     * become inactive since the last transaction.
 870     *
 871     * @listener: The #MemoryListener.
 872     * @section: The #MemoryRegionSection.
 873     * @old: A bitmap of dirty memory logging clients that were active in
 874     * the previous transaction.
 875     * @new: A bitmap of dirty memory logging clients that are active in
 876     * the current transaction.
 877     */
 878    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 879                     int old, int new);
 880
 881    /**
 882     * @log_sync:
 883     *
 884     * Called by memory_region_snapshot_and_clear_dirty() and
 885     * memory_global_dirty_log_sync(), before accessing QEMU's "official"
 886     * copy of the dirty memory bitmap for a #MemoryRegionSection.
 887     *
 888     * @listener: The #MemoryListener.
 889     * @section: The #MemoryRegionSection.
 890     */
 891    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 892
 893    /**
 894     * @log_sync_global:
 895     *
 896     * This is the global version of @log_sync when the listener does
 897     * not have a way to synchronize the log with finer granularity.
 898     * When the listener registers with @log_sync_global defined, then
 899     * its @log_sync must be NULL.  Vice versa.
 900     *
 901     * @listener: The #MemoryListener.
 902     */
 903    void (*log_sync_global)(MemoryListener *listener);
 904
 905    /**
 906     * @log_clear:
 907     *
 908     * Called before reading the dirty memory bitmap for a
 909     * #MemoryRegionSection.
 910     *
 911     * @listener: The #MemoryListener.
 912     * @section: The #MemoryRegionSection.
 913     */
 914    void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
 915
 916    /**
 917     * @log_global_start:
 918     *
 919     * Called by memory_global_dirty_log_start(), which
 920     * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
 921     * the address space.  #MemoryListener.log_global_start() is also
 922     * called when a #MemoryListener is added, if global dirty logging is
 923     * active at that time.
 924     *
 925     * @listener: The #MemoryListener.
 926     */
 927    void (*log_global_start)(MemoryListener *listener);
 928
 929    /**
 930     * @log_global_stop:
 931     *
 932     * Called by memory_global_dirty_log_stop(), which
 933     * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
 934     * the address space.
 935     *
 936     * @listener: The #MemoryListener.
 937     */
 938    void (*log_global_stop)(MemoryListener *listener);
 939
 940    /**
 941     * @log_global_after_sync:
 942     *
 943     * Called after reading the dirty memory bitmap
 944     * for any #MemoryRegionSection.
 945     *
 946     * @listener: The #MemoryListener.
 947     */
 948    void (*log_global_after_sync)(MemoryListener *listener);
 949
 950    /**
 951     * @eventfd_add:
 952     *
 953     * Called during an address space update transaction,
 954     * for a section of the address space that has had a new ioeventfd
 955     * registration since the last transaction.
 956     *
 957     * @listener: The #MemoryListener.
 958     * @section: The new #MemoryRegionSection.
 959     * @match_data: The @match_data parameter for the new ioeventfd.
 960     * @data: The @data parameter for the new ioeventfd.
 961     * @e: The #EventNotifier parameter for the new ioeventfd.
 962     */
 963    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 964                        bool match_data, uint64_t data, EventNotifier *e);
 965
 966    /**
 967     * @eventfd_del:
 968     *
 969     * Called during an address space update transaction,
 970     * for a section of the address space that has dropped an ioeventfd
 971     * registration since the last transaction.
 972     *
 973     * @listener: The #MemoryListener.
 974     * @section: The new #MemoryRegionSection.
 975     * @match_data: The @match_data parameter for the dropped ioeventfd.
 976     * @data: The @data parameter for the dropped ioeventfd.
 977     * @e: The #EventNotifier parameter for the dropped ioeventfd.
 978     */
 979    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 980                        bool match_data, uint64_t data, EventNotifier *e);
 981
 982    /**
 983     * @coalesced_io_add:
 984     *
 985     * Called during an address space update transaction,
 986     * for a section of the address space that has had a new coalesced
 987     * MMIO range registration since the last transaction.
 988     *
 989     * @listener: The #MemoryListener.
 990     * @section: The new #MemoryRegionSection.
 991     * @addr: The starting address for the coalesced MMIO range.
 992     * @len: The length of the coalesced MMIO range.
 993     */
 994    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 995                               hwaddr addr, hwaddr len);
 996
 997    /**
 998     * @coalesced_io_del:
 999     *
1000     * Called during an address space update transaction,
1001     * for a section of the address space that has dropped a coalesced
1002     * MMIO range since the last transaction.
1003     *
1004     * @listener: The #MemoryListener.
1005     * @section: The new #MemoryRegionSection.
1006     * @addr: The starting address for the coalesced MMIO range.
1007     * @len: The length of the coalesced MMIO range.
1008     */
1009    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1010                               hwaddr addr, hwaddr len);
1011    /**
1012     * @priority:
1013     *
1014     * Govern the order in which memory listeners are invoked. Lower priorities
1015     * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1016     * or "stop" callbacks.
1017     */
1018    unsigned priority;
1019
1020    /**
1021     * @name:
1022     *
1023     * Name of the listener.  It can be used in contexts where we'd like to
1024     * identify one memory listener with the rest.
1025     */
1026    const char *name;
1027
1028    /* private: */
1029    AddressSpace *address_space;
1030    QTAILQ_ENTRY(MemoryListener) link;
1031    QTAILQ_ENTRY(MemoryListener) link_as;
1032};
1033
1034/**
1035 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1036 */
1037struct AddressSpace {
1038    /* private: */
1039    struct rcu_head rcu;
1040    char *name;
1041    MemoryRegion *root;
1042
1043    /* Accessed via RCU.  */
1044    struct FlatView *current_map;
1045
1046    int ioeventfd_nb;
1047    struct MemoryRegionIoeventfd *ioeventfds;
1048    QTAILQ_HEAD(, MemoryListener) listeners;
1049    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1050};
1051
1052typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1053typedef struct FlatRange FlatRange;
1054
1055/* Flattened global view of current active memory hierarchy.  Kept in sorted
1056 * order.
1057 */
1058struct FlatView {
1059    struct rcu_head rcu;
1060    unsigned ref;
1061    FlatRange *ranges;
1062    unsigned nr;
1063    unsigned nr_allocated;
1064    struct AddressSpaceDispatch *dispatch;
1065    MemoryRegion *root;
1066};
1067
1068static inline FlatView *address_space_to_flatview(AddressSpace *as)
1069{
1070    return qatomic_rcu_read(&as->current_map);
1071}
1072
1073/**
1074 * typedef flatview_cb: callback for flatview_for_each_range()
1075 *
1076 * @start: start address of the range within the FlatView
1077 * @len: length of the range in bytes
1078 * @mr: MemoryRegion covering this range
1079 * @offset_in_region: offset of the first byte of the range within @mr
1080 * @opaque: data pointer passed to flatview_for_each_range()
1081 *
1082 * Returns: true to stop the iteration, false to keep going.
1083 */
1084typedef bool (*flatview_cb)(Int128 start,
1085                            Int128 len,
1086                            const MemoryRegion *mr,
1087                            hwaddr offset_in_region,
1088                            void *opaque);
1089
1090/**
1091 * flatview_for_each_range: Iterate through a FlatView
1092 * @fv: the FlatView to iterate through
1093 * @cb: function to call for each range
1094 * @opaque: opaque data pointer to pass to @cb
1095 *
1096 * A FlatView is made up of a list of non-overlapping ranges, each of
1097 * which is a slice of a MemoryRegion. This function iterates through
1098 * each range in @fv, calling @cb. The callback function can terminate
1099 * iteration early by returning 'true'.
1100 */
1101void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1102
1103static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1104                                          MemoryRegionSection *b)
1105{
1106    return a->mr == b->mr &&
1107           a->fv == b->fv &&
1108           a->offset_within_region == b->offset_within_region &&
1109           a->offset_within_address_space == b->offset_within_address_space &&
1110           int128_eq(a->size, b->size) &&
1111           a->readonly == b->readonly &&
1112           a->nonvolatile == b->nonvolatile;
1113}
1114
1115/**
1116 * memory_region_section_new_copy: Copy a memory region section
1117 *
1118 * Allocate memory for a new copy, copy the memory region section, and
1119 * properly take a reference on all relevant members.
1120 *
1121 * @s: the #MemoryRegionSection to copy
1122 */
1123MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1124
1125/**
1126 * memory_region_section_new_copy: Free a copied memory region section
1127 *
1128 * Free a copy of a memory section created via memory_region_section_new_copy().
1129 * properly dropping references on all relevant members.
1130 *
1131 * @s: the #MemoryRegionSection to copy
1132 */
1133void memory_region_section_free_copy(MemoryRegionSection *s);
1134
1135/**
1136 * memory_region_init: Initialize a memory region
1137 *
1138 * The region typically acts as a container for other memory regions.  Use
1139 * memory_region_add_subregion() to add subregions.
1140 *
1141 * @mr: the #MemoryRegion to be initialized
1142 * @owner: the object that tracks the region's reference count
1143 * @name: used for debugging; not visible to the user or ABI
1144 * @size: size of the region; any subregions beyond this size will be clipped
1145 */
1146void memory_region_init(MemoryRegion *mr,
1147                        Object *owner,
1148                        const char *name,
1149                        uint64_t size);
1150
1151/**
1152 * memory_region_ref: Add 1 to a memory region's reference count
1153 *
1154 * Whenever memory regions are accessed outside the BQL, they need to be
1155 * preserved against hot-unplug.  MemoryRegions actually do not have their
1156 * own reference count; they piggyback on a QOM object, their "owner".
1157 * This function adds a reference to the owner.
1158 *
1159 * All MemoryRegions must have an owner if they can disappear, even if the
1160 * device they belong to operates exclusively under the BQL.  This is because
1161 * the region could be returned at any time by memory_region_find, and this
1162 * is usually under guest control.
1163 *
1164 * @mr: the #MemoryRegion
1165 */
1166void memory_region_ref(MemoryRegion *mr);
1167
1168/**
1169 * memory_region_unref: Remove 1 to a memory region's reference count
1170 *
1171 * Whenever memory regions are accessed outside the BQL, they need to be
1172 * preserved against hot-unplug.  MemoryRegions actually do not have their
1173 * own reference count; they piggyback on a QOM object, their "owner".
1174 * This function removes a reference to the owner and possibly destroys it.
1175 *
1176 * @mr: the #MemoryRegion
1177 */
1178void memory_region_unref(MemoryRegion *mr);
1179
1180/**
1181 * memory_region_init_io: Initialize an I/O memory region.
1182 *
1183 * Accesses into the region will cause the callbacks in @ops to be called.
1184 * if @size is nonzero, subregions will be clipped to @size.
1185 *
1186 * @mr: the #MemoryRegion to be initialized.
1187 * @owner: the object that tracks the region's reference count
1188 * @ops: a structure containing read and write callbacks to be used when
1189 *       I/O is performed on the region.
1190 * @opaque: passed to the read and write callbacks of the @ops structure.
1191 * @name: used for debugging; not visible to the user or ABI
1192 * @size: size of the region.
1193 */
1194void memory_region_init_io(MemoryRegion *mr,
1195                           Object *owner,
1196                           const MemoryRegionOps *ops,
1197                           void *opaque,
1198                           const char *name,
1199                           uint64_t size);
1200
1201/**
1202 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
1203 *                                    into the region will modify memory
1204 *                                    directly.
1205 *
1206 * @mr: the #MemoryRegion to be initialized.
1207 * @owner: the object that tracks the region's reference count
1208 * @name: Region name, becomes part of RAMBlock name used in migration stream
1209 *        must be unique within any device
1210 * @size: size of the region.
1211 * @errp: pointer to Error*, to store an error if it happens.
1212 *
1213 * Note that this function does not do anything to cause the data in the
1214 * RAM memory region to be migrated; that is the responsibility of the caller.
1215 */
1216void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1217                                      Object *owner,
1218                                      const char *name,
1219                                      uint64_t size,
1220                                      Error **errp);
1221
1222/**
1223 * memory_region_init_ram_flags_nomigrate:  Initialize RAM memory region.
1224 *                                          Accesses into the region will
1225 *                                          modify memory directly.
1226 *
1227 * @mr: the #MemoryRegion to be initialized.
1228 * @owner: the object that tracks the region's reference count
1229 * @name: Region name, becomes part of RAMBlock name used in migration stream
1230 *        must be unique within any device
1231 * @size: size of the region.
1232 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1233 * @errp: pointer to Error*, to store an error if it happens.
1234 *
1235 * Note that this function does not do anything to cause the data in the
1236 * RAM memory region to be migrated; that is the responsibility of the caller.
1237 */
1238void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1239                                            Object *owner,
1240                                            const char *name,
1241                                            uint64_t size,
1242                                            uint32_t ram_flags,
1243                                            Error **errp);
1244
1245/**
1246 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
1247 *                                     RAM.  Accesses into the region will
1248 *                                     modify memory directly.  Only an initial
1249 *                                     portion of this RAM is actually used.
1250 *                                     Changing the size while migrating
1251 *                                     can result in the migration being
1252 *                                     canceled.
1253 *
1254 * @mr: the #MemoryRegion to be initialized.
1255 * @owner: the object that tracks the region's reference count
1256 * @name: Region name, becomes part of RAMBlock name used in migration stream
1257 *        must be unique within any device
1258 * @size: used size of the region.
1259 * @max_size: max size of the region.
1260 * @resized: callback to notify owner about used size change.
1261 * @errp: pointer to Error*, to store an error if it happens.
1262 *
1263 * Note that this function does not do anything to cause the data in the
1264 * RAM memory region to be migrated; that is the responsibility of the caller.
1265 */
1266void memory_region_init_resizeable_ram(MemoryRegion *mr,
1267                                       Object *owner,
1268                                       const char *name,
1269                                       uint64_t size,
1270                                       uint64_t max_size,
1271                                       void (*resized)(const char*,
1272                                                       uint64_t length,
1273                                                       void *host),
1274                                       Error **errp);
1275#ifdef CONFIG_POSIX
1276
1277/**
1278 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
1279 *                                    mmap-ed backend.
1280 *
1281 * @mr: the #MemoryRegion to be initialized.
1282 * @owner: the object that tracks the region's reference count
1283 * @name: Region name, becomes part of RAMBlock name used in migration stream
1284 *        must be unique within any device
1285 * @size: size of the region.
1286 * @align: alignment of the region base address; if 0, the default alignment
1287 *         (getpagesize()) will be used.
1288 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1289 *             RAM_NORESERVE,
1290 * @path: the path in which to allocate the RAM.
1291 * @readonly: true to open @path for reading, false for read/write.
1292 * @errp: pointer to Error*, to store an error if it happens.
1293 *
1294 * Note that this function does not do anything to cause the data in the
1295 * RAM memory region to be migrated; that is the responsibility of the caller.
1296 */
1297void memory_region_init_ram_from_file(MemoryRegion *mr,
1298                                      Object *owner,
1299                                      const char *name,
1300                                      uint64_t size,
1301                                      uint64_t align,
1302                                      uint32_t ram_flags,
1303                                      const char *path,
1304                                      bool readonly,
1305                                      Error **errp);
1306
1307/**
1308 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
1309 *                                  mmap-ed backend.
1310 *
1311 * @mr: the #MemoryRegion to be initialized.
1312 * @owner: the object that tracks the region's reference count
1313 * @name: the name of the region.
1314 * @size: size of the region.
1315 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1316 *             RAM_NORESERVE, RAM_PROTECTED.
1317 * @fd: the fd to mmap.
1318 * @offset: offset within the file referenced by fd
1319 * @errp: pointer to Error*, to store an error if it happens.
1320 *
1321 * Note that this function does not do anything to cause the data in the
1322 * RAM memory region to be migrated; that is the responsibility of the caller.
1323 */
1324void memory_region_init_ram_from_fd(MemoryRegion *mr,
1325                                    Object *owner,
1326                                    const char *name,
1327                                    uint64_t size,
1328                                    uint32_t ram_flags,
1329                                    int fd,
1330                                    ram_addr_t offset,
1331                                    Error **errp);
1332#endif
1333
1334/**
1335 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
1336 *                              user-provided pointer.  Accesses into the
1337 *                              region will modify memory directly.
1338 *
1339 * @mr: the #MemoryRegion to be initialized.
1340 * @owner: the object that tracks the region's reference count
1341 * @name: Region name, becomes part of RAMBlock name used in migration stream
1342 *        must be unique within any device
1343 * @size: size of the region.
1344 * @ptr: memory to be mapped; must contain at least @size bytes.
1345 *
1346 * Note that this function does not do anything to cause the data in the
1347 * RAM memory region to be migrated; that is the responsibility of the caller.
1348 */
1349void memory_region_init_ram_ptr(MemoryRegion *mr,
1350                                Object *owner,
1351                                const char *name,
1352                                uint64_t size,
1353                                void *ptr);
1354
1355/**
1356 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
1357 *                                     a user-provided pointer.
1358 *
1359 * A RAM device represents a mapping to a physical device, such as to a PCI
1360 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
1361 * into the VM address space and access to the region will modify memory
1362 * directly.  However, the memory region should not be included in a memory
1363 * dump (device may not be enabled/mapped at the time of the dump), and
1364 * operations incompatible with manipulating MMIO should be avoided.  Replaces
1365 * skip_dump flag.
1366 *
1367 * @mr: the #MemoryRegion to be initialized.
1368 * @owner: the object that tracks the region's reference count
1369 * @name: the name of the region.
1370 * @size: size of the region.
1371 * @ptr: memory to be mapped; must contain at least @size bytes.
1372 *
1373 * Note that this function does not do anything to cause the data in the
1374 * RAM memory region to be migrated; that is the responsibility of the caller.
1375 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1376 */
1377void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1378                                       Object *owner,
1379                                       const char *name,
1380                                       uint64_t size,
1381                                       void *ptr);
1382
1383/**
1384 * memory_region_init_alias: Initialize a memory region that aliases all or a
1385 *                           part of another memory region.
1386 *
1387 * @mr: the #MemoryRegion to be initialized.
1388 * @owner: the object that tracks the region's reference count
1389 * @name: used for debugging; not visible to the user or ABI
1390 * @orig: the region to be referenced; @mr will be equivalent to
1391 *        @orig between @offset and @offset + @size - 1.
1392 * @offset: start of the section in @orig to be referenced.
1393 * @size: size of the region.
1394 */
1395void memory_region_init_alias(MemoryRegion *mr,
1396                              Object *owner,
1397                              const char *name,
1398                              MemoryRegion *orig,
1399                              hwaddr offset,
1400                              uint64_t size);
1401
1402/**
1403 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1404 *
1405 * This has the same effect as calling memory_region_init_ram_nomigrate()
1406 * and then marking the resulting region read-only with
1407 * memory_region_set_readonly().
1408 *
1409 * Note that this function does not do anything to cause the data in the
1410 * RAM side of the memory region to be migrated; that is the responsibility
1411 * of the caller.
1412 *
1413 * @mr: the #MemoryRegion to be initialized.
1414 * @owner: the object that tracks the region's reference count
1415 * @name: Region name, becomes part of RAMBlock name used in migration stream
1416 *        must be unique within any device
1417 * @size: size of the region.
1418 * @errp: pointer to Error*, to store an error if it happens.
1419 */
1420void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1421                                      Object *owner,
1422                                      const char *name,
1423                                      uint64_t size,
1424                                      Error **errp);
1425
1426/**
1427 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
1428 *                                 Writes are handled via callbacks.
1429 *
1430 * Note that this function does not do anything to cause the data in the
1431 * RAM side of the memory region to be migrated; that is the responsibility
1432 * of the caller.
1433 *
1434 * @mr: the #MemoryRegion to be initialized.
1435 * @owner: the object that tracks the region's reference count
1436 * @ops: callbacks for write access handling (must not be NULL).
1437 * @opaque: passed to the read and write callbacks of the @ops structure.
1438 * @name: Region name, becomes part of RAMBlock name used in migration stream
1439 *        must be unique within any device
1440 * @size: size of the region.
1441 * @errp: pointer to Error*, to store an error if it happens.
1442 */
1443void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1444                                             Object *owner,
1445                                             const MemoryRegionOps *ops,
1446                                             void *opaque,
1447                                             const char *name,
1448                                             uint64_t size,
1449                                             Error **errp);
1450
1451/**
1452 * memory_region_init_iommu: Initialize a memory region of a custom type
1453 * that translates addresses
1454 *
1455 * An IOMMU region translates addresses and forwards accesses to a target
1456 * memory region.
1457 *
1458 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1459 * @_iommu_mr should be a pointer to enough memory for an instance of
1460 * that subclass, @instance_size is the size of that subclass, and
1461 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1462 * instance of the subclass, and its methods will then be called to handle
1463 * accesses to the memory region. See the documentation of
1464 * #IOMMUMemoryRegionClass for further details.
1465 *
1466 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1467 * @instance_size: the IOMMUMemoryRegion subclass instance size
1468 * @mrtypename: the type name of the #IOMMUMemoryRegion
1469 * @owner: the object that tracks the region's reference count
1470 * @name: used for debugging; not visible to the user or ABI
1471 * @size: size of the region.
1472 */
1473void memory_region_init_iommu(void *_iommu_mr,
1474                              size_t instance_size,
1475                              const char *mrtypename,
1476                              Object *owner,
1477                              const char *name,
1478                              uint64_t size);
1479
1480/**
1481 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
1482 *                          region will modify memory directly.
1483 *
1484 * @mr: the #MemoryRegion to be initialized
1485 * @owner: the object that tracks the region's reference count (must be
1486 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1487 * @name: name of the memory region
1488 * @size: size of the region in bytes
1489 * @errp: pointer to Error*, to store an error if it happens.
1490 *
1491 * This function allocates RAM for a board model or device, and
1492 * arranges for it to be migrated (by calling vmstate_register_ram()
1493 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1494 * @owner is NULL).
1495 *
1496 * TODO: Currently we restrict @owner to being either NULL (for
1497 * global RAM regions with no owner) or devices, so that we can
1498 * give the RAM block a unique name for migration purposes.
1499 * We should lift this restriction and allow arbitrary Objects.
1500 * If you pass a non-NULL non-device @owner then we will assert.
1501 */
1502void memory_region_init_ram(MemoryRegion *mr,
1503                            Object *owner,
1504                            const char *name,
1505                            uint64_t size,
1506                            Error **errp);
1507
1508/**
1509 * memory_region_init_rom: Initialize a ROM memory region.
1510 *
1511 * This has the same effect as calling memory_region_init_ram()
1512 * and then marking the resulting region read-only with
1513 * memory_region_set_readonly(). This includes arranging for the
1514 * contents to be migrated.
1515 *
1516 * TODO: Currently we restrict @owner to being either NULL (for
1517 * global RAM regions with no owner) or devices, so that we can
1518 * give the RAM block a unique name for migration purposes.
1519 * We should lift this restriction and allow arbitrary Objects.
1520 * If you pass a non-NULL non-device @owner then we will assert.
1521 *
1522 * @mr: the #MemoryRegion to be initialized.
1523 * @owner: the object that tracks the region's reference count
1524 * @name: Region name, becomes part of RAMBlock name used in migration stream
1525 *        must be unique within any device
1526 * @size: size of the region.
1527 * @errp: pointer to Error*, to store an error if it happens.
1528 */
1529void memory_region_init_rom(MemoryRegion *mr,
1530                            Object *owner,
1531                            const char *name,
1532                            uint64_t size,
1533                            Error **errp);
1534
1535/**
1536 * memory_region_init_rom_device:  Initialize a ROM memory region.
1537 *                                 Writes are handled via callbacks.
1538 *
1539 * This function initializes a memory region backed by RAM for reads
1540 * and callbacks for writes, and arranges for the RAM backing to
1541 * be migrated (by calling vmstate_register_ram()
1542 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1543 * @owner is NULL).
1544 *
1545 * TODO: Currently we restrict @owner to being either NULL (for
1546 * global RAM regions with no owner) or devices, so that we can
1547 * give the RAM block a unique name for migration purposes.
1548 * We should lift this restriction and allow arbitrary Objects.
1549 * If you pass a non-NULL non-device @owner then we will assert.
1550 *
1551 * @mr: the #MemoryRegion to be initialized.
1552 * @owner: the object that tracks the region's reference count
1553 * @ops: callbacks for write access handling (must not be NULL).
1554 * @opaque: passed to the read and write callbacks of the @ops structure.
1555 * @name: Region name, becomes part of RAMBlock name used in migration stream
1556 *        must be unique within any device
1557 * @size: size of the region.
1558 * @errp: pointer to Error*, to store an error if it happens.
1559 */
1560void memory_region_init_rom_device(MemoryRegion *mr,
1561                                   Object *owner,
1562                                   const MemoryRegionOps *ops,
1563                                   void *opaque,
1564                                   const char *name,
1565                                   uint64_t size,
1566                                   Error **errp);
1567
1568
1569/**
1570 * memory_region_owner: get a memory region's owner.
1571 *
1572 * @mr: the memory region being queried.
1573 */
1574Object *memory_region_owner(MemoryRegion *mr);
1575
1576/**
1577 * memory_region_size: get a memory region's size.
1578 *
1579 * @mr: the memory region being queried.
1580 */
1581uint64_t memory_region_size(MemoryRegion *mr);
1582
1583/**
1584 * memory_region_is_ram: check whether a memory region is random access
1585 *
1586 * Returns %true if a memory region is random access.
1587 *
1588 * @mr: the memory region being queried
1589 */
1590static inline bool memory_region_is_ram(MemoryRegion *mr)
1591{
1592    return mr->ram;
1593}
1594
1595/**
1596 * memory_region_is_ram_device: check whether a memory region is a ram device
1597 *
1598 * Returns %true if a memory region is a device backed ram region
1599 *
1600 * @mr: the memory region being queried
1601 */
1602bool memory_region_is_ram_device(MemoryRegion *mr);
1603
1604/**
1605 * memory_region_is_romd: check whether a memory region is in ROMD mode
1606 *
1607 * Returns %true if a memory region is a ROM device and currently set to allow
1608 * direct reads.
1609 *
1610 * @mr: the memory region being queried
1611 */
1612static inline bool memory_region_is_romd(MemoryRegion *mr)
1613{
1614    return mr->rom_device && mr->romd_mode;
1615}
1616
1617/**
1618 * memory_region_is_protected: check whether a memory region is protected
1619 *
1620 * Returns %true if a memory region is protected RAM and cannot be accessed
1621 * via standard mechanisms, e.g. DMA.
1622 *
1623 * @mr: the memory region being queried
1624 */
1625bool memory_region_is_protected(MemoryRegion *mr);
1626
1627/**
1628 * memory_region_get_iommu: check whether a memory region is an iommu
1629 *
1630 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1631 * otherwise NULL.
1632 *
1633 * @mr: the memory region being queried
1634 */
1635static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1636{
1637    if (mr->alias) {
1638        return memory_region_get_iommu(mr->alias);
1639    }
1640    if (mr->is_iommu) {
1641        return (IOMMUMemoryRegion *) mr;
1642    }
1643    return NULL;
1644}
1645
1646/**
1647 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1648 *   if an iommu or NULL if not
1649 *
1650 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1651 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1652 *
1653 * @iommu_mr: the memory region being queried
1654 */
1655static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1656        IOMMUMemoryRegion *iommu_mr)
1657{
1658    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1659}
1660
1661#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1662
1663/**
1664 * memory_region_iommu_get_min_page_size: get minimum supported page size
1665 * for an iommu
1666 *
1667 * Returns minimum supported page size for an iommu.
1668 *
1669 * @iommu_mr: the memory region being queried
1670 */
1671uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1672
1673/**
1674 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1675 *
1676 * Note: for any IOMMU implementation, an in-place mapping change
1677 * should be notified with an UNMAP followed by a MAP.
1678 *
1679 * @iommu_mr: the memory region that was changed
1680 * @iommu_idx: the IOMMU index for the translation table which has changed
1681 * @event: TLB event with the new entry in the IOMMU translation table.
1682 *         The entry replaces all old entries for the same virtual I/O address
1683 *         range.
1684 */
1685void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1686                                int iommu_idx,
1687                                IOMMUTLBEvent event);
1688
1689/**
1690 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1691 *                           entry to a single notifier
1692 *
1693 * This works just like memory_region_notify_iommu(), but it only
1694 * notifies a specific notifier, not all of them.
1695 *
1696 * @notifier: the notifier to be notified
1697 * @event: TLB event with the new entry in the IOMMU translation table.
1698 *         The entry replaces all old entries for the same virtual I/O address
1699 *         range.
1700 */
1701void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1702                                    IOMMUTLBEvent *event);
1703
1704/**
1705 * memory_region_register_iommu_notifier: register a notifier for changes to
1706 * IOMMU translation entries.
1707 *
1708 * Returns 0 on success, or a negative errno otherwise. In particular,
1709 * -EINVAL indicates that at least one of the attributes of the notifier
1710 * is not supported (flag/range) by the IOMMU memory region. In case of error
1711 * the error object must be created.
1712 *
1713 * @mr: the memory region to observe
1714 * @n: the IOMMUNotifier to be added; the notify callback receives a
1715 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1716 *     ceases to be valid on exit from the notifier.
1717 * @errp: pointer to Error*, to store an error if it happens.
1718 */
1719int memory_region_register_iommu_notifier(MemoryRegion *mr,
1720                                          IOMMUNotifier *n, Error **errp);
1721
1722/**
1723 * memory_region_iommu_replay: replay existing IOMMU translations to
1724 * a notifier with the minimum page granularity returned by
1725 * mr->iommu_ops->get_page_size().
1726 *
1727 * Note: this is not related to record-and-replay functionality.
1728 *
1729 * @iommu_mr: the memory region to observe
1730 * @n: the notifier to which to replay iommu mappings
1731 */
1732void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1733
1734/**
1735 * memory_region_unregister_iommu_notifier: unregister a notifier for
1736 * changes to IOMMU translation entries.
1737 *
1738 * @mr: the memory region which was observed and for which notity_stopped()
1739 *      needs to be called
1740 * @n: the notifier to be removed.
1741 */
1742void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1743                                             IOMMUNotifier *n);
1744
1745/**
1746 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1747 * defined on the IOMMU.
1748 *
1749 * Returns 0 on success, or a negative errno otherwise. In particular,
1750 * -EINVAL indicates that the IOMMU does not support the requested
1751 * attribute.
1752 *
1753 * @iommu_mr: the memory region
1754 * @attr: the requested attribute
1755 * @data: a pointer to the requested attribute data
1756 */
1757int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1758                                 enum IOMMUMemoryRegionAttr attr,
1759                                 void *data);
1760
1761/**
1762 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1763 * use for translations with the given memory transaction attributes.
1764 *
1765 * @iommu_mr: the memory region
1766 * @attrs: the memory transaction attributes
1767 */
1768int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1769                                       MemTxAttrs attrs);
1770
1771/**
1772 * memory_region_iommu_num_indexes: return the total number of IOMMU
1773 * indexes that this IOMMU supports.
1774 *
1775 * @iommu_mr: the memory region
1776 */
1777int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1778
1779/**
1780 * memory_region_iommu_set_page_size_mask: set the supported page
1781 * sizes for a given IOMMU memory region
1782 *
1783 * @iommu_mr: IOMMU memory region
1784 * @page_size_mask: supported page size mask
1785 * @errp: pointer to Error*, to store an error if it happens.
1786 */
1787int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1788                                           uint64_t page_size_mask,
1789                                           Error **errp);
1790
1791/**
1792 * memory_region_name: get a memory region's name
1793 *
1794 * Returns the string that was used to initialize the memory region.
1795 *
1796 * @mr: the memory region being queried
1797 */
1798const char *memory_region_name(const MemoryRegion *mr);
1799
1800/**
1801 * memory_region_is_logging: return whether a memory region is logging writes
1802 *
1803 * Returns %true if the memory region is logging writes for the given client
1804 *
1805 * @mr: the memory region being queried
1806 * @client: the client being queried
1807 */
1808bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1809
1810/**
1811 * memory_region_get_dirty_log_mask: return the clients for which a
1812 * memory region is logging writes.
1813 *
1814 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1815 * are the bit indices.
1816 *
1817 * @mr: the memory region being queried
1818 */
1819uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1820
1821/**
1822 * memory_region_is_rom: check whether a memory region is ROM
1823 *
1824 * Returns %true if a memory region is read-only memory.
1825 *
1826 * @mr: the memory region being queried
1827 */
1828static inline bool memory_region_is_rom(MemoryRegion *mr)
1829{
1830    return mr->ram && mr->readonly;
1831}
1832
1833/**
1834 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1835 *
1836 * Returns %true is a memory region is non-volatile memory.
1837 *
1838 * @mr: the memory region being queried
1839 */
1840static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1841{
1842    return mr->nonvolatile;
1843}
1844
1845/**
1846 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1847 *
1848 * Returns a file descriptor backing a file-based RAM memory region,
1849 * or -1 if the region is not a file-based RAM memory region.
1850 *
1851 * @mr: the RAM or alias memory region being queried.
1852 */
1853int memory_region_get_fd(MemoryRegion *mr);
1854
1855/**
1856 * memory_region_from_host: Convert a pointer into a RAM memory region
1857 * and an offset within it.
1858 *
1859 * Given a host pointer inside a RAM memory region (created with
1860 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1861 * the MemoryRegion and the offset within it.
1862 *
1863 * Use with care; by the time this function returns, the returned pointer is
1864 * not protected by RCU anymore.  If the caller is not within an RCU critical
1865 * section and does not hold the iothread lock, it must have other means of
1866 * protecting the pointer, such as a reference to the region that includes
1867 * the incoming ram_addr_t.
1868 *
1869 * @ptr: the host pointer to be converted
1870 * @offset: the offset within memory region
1871 */
1872MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1873
1874/**
1875 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1876 *
1877 * Returns a host pointer to a RAM memory region (created with
1878 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1879 *
1880 * Use with care; by the time this function returns, the returned pointer is
1881 * not protected by RCU anymore.  If the caller is not within an RCU critical
1882 * section and does not hold the iothread lock, it must have other means of
1883 * protecting the pointer, such as a reference to the region that includes
1884 * the incoming ram_addr_t.
1885 *
1886 * @mr: the memory region being queried.
1887 */
1888void *memory_region_get_ram_ptr(MemoryRegion *mr);
1889
1890/* memory_region_ram_resize: Resize a RAM region.
1891 *
1892 * Resizing RAM while migrating can result in the migration being canceled.
1893 * Care has to be taken if the guest might have already detected the memory.
1894 *
1895 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1896 * @newsize: the new size the region
1897 * @errp: pointer to Error*, to store an error if it happens.
1898 */
1899void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1900                              Error **errp);
1901
1902/**
1903 * memory_region_msync: Synchronize selected address range of
1904 * a memory mapped region
1905 *
1906 * @mr: the memory region to be msync
1907 * @addr: the initial address of the range to be sync
1908 * @size: the size of the range to be sync
1909 */
1910void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1911
1912/**
1913 * memory_region_writeback: Trigger cache writeback for
1914 * selected address range
1915 *
1916 * @mr: the memory region to be updated
1917 * @addr: the initial address of the range to be written back
1918 * @size: the size of the range to be written back
1919 */
1920void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1921
1922/**
1923 * memory_region_set_log: Turn dirty logging on or off for a region.
1924 *
1925 * Turns dirty logging on or off for a specified client (display, migration).
1926 * Only meaningful for RAM regions.
1927 *
1928 * @mr: the memory region being updated.
1929 * @log: whether dirty logging is to be enabled or disabled.
1930 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1931 */
1932void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1933
1934/**
1935 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1936 *
1937 * Marks a range of bytes as dirty, after it has been dirtied outside
1938 * guest code.
1939 *
1940 * @mr: the memory region being dirtied.
1941 * @addr: the address (relative to the start of the region) being dirtied.
1942 * @size: size of the range being dirtied.
1943 */
1944void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1945                             hwaddr size);
1946
1947/**
1948 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1949 *
1950 * This function is called when the caller wants to clear the remote
1951 * dirty bitmap of a memory range within the memory region.  This can
1952 * be used by e.g. KVM to manually clear dirty log when
1953 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1954 * kernel.
1955 *
1956 * @mr:     the memory region to clear the dirty log upon
1957 * @start:  start address offset within the memory region
1958 * @len:    length of the memory region to clear dirty bitmap
1959 */
1960void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1961                                      hwaddr len);
1962
1963/**
1964 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1965 *                                         bitmap and clear it.
1966 *
1967 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1968 * returns the snapshot.  The snapshot can then be used to query dirty
1969 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1970 * querying the same page multiple times, which is especially useful for
1971 * display updates where the scanlines often are not page aligned.
1972 *
1973 * The dirty bitmap region which gets copyed into the snapshot (and
1974 * cleared afterwards) can be larger than requested.  The boundaries
1975 * are rounded up/down so complete bitmap longs (covering 64 pages on
1976 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1977 * isn't a problem for display updates as the extra pages are outside
1978 * the visible area, and in case the visible area changes a full
1979 * display redraw is due anyway.  Should other use cases for this
1980 * function emerge we might have to revisit this implementation
1981 * detail.
1982 *
1983 * Use g_free to release DirtyBitmapSnapshot.
1984 *
1985 * @mr: the memory region being queried.
1986 * @addr: the address (relative to the start of the region) being queried.
1987 * @size: the size of the range being queried.
1988 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1989 */
1990DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1991                                                            hwaddr addr,
1992                                                            hwaddr size,
1993                                                            unsigned client);
1994
1995/**
1996 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1997 *                                   in the specified dirty bitmap snapshot.
1998 *
1999 * @mr: the memory region being queried.
2000 * @snap: the dirty bitmap snapshot
2001 * @addr: the address (relative to the start of the region) being queried.
2002 * @size: the size of the range being queried.
2003 */
2004bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2005                                      DirtyBitmapSnapshot *snap,
2006                                      hwaddr addr, hwaddr size);
2007
2008/**
2009 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2010 *                            client.
2011 *
2012 * Marks a range of pages as no longer dirty.
2013 *
2014 * @mr: the region being updated.
2015 * @addr: the start of the subrange being cleaned.
2016 * @size: the size of the subrange being cleaned.
2017 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2018 *          %DIRTY_MEMORY_VGA.
2019 */
2020void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2021                               hwaddr size, unsigned client);
2022
2023/**
2024 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2025 *                                 TBs (for self-modifying code).
2026 *
2027 * The MemoryRegionOps->write() callback of a ROM device must use this function
2028 * to mark byte ranges that have been modified internally, such as by directly
2029 * accessing the memory returned by memory_region_get_ram_ptr().
2030 *
2031 * This function marks the range dirty and invalidates TBs so that TCG can
2032 * detect self-modifying code.
2033 *
2034 * @mr: the region being flushed.
2035 * @addr: the start, relative to the start of the region, of the range being
2036 *        flushed.
2037 * @size: the size, in bytes, of the range being flushed.
2038 */
2039void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2040
2041/**
2042 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2043 *
2044 * Allows a memory region to be marked as read-only (turning it into a ROM).
2045 * only useful on RAM regions.
2046 *
2047 * @mr: the region being updated.
2048 * @readonly: whether rhe region is to be ROM or RAM.
2049 */
2050void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2051
2052/**
2053 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2054 *
2055 * Allows a memory region to be marked as non-volatile.
2056 * only useful on RAM regions.
2057 *
2058 * @mr: the region being updated.
2059 * @nonvolatile: whether rhe region is to be non-volatile.
2060 */
2061void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2062
2063/**
2064 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2065 *
2066 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2067 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
2068 * device is mapped to guest memory and satisfies read access directly.
2069 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2070 * Writes are always handled by the #MemoryRegion.write function.
2071 *
2072 * @mr: the memory region to be updated
2073 * @romd_mode: %true to put the region into ROMD mode
2074 */
2075void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2076
2077/**
2078 * memory_region_set_coalescing: Enable memory coalescing for the region.
2079 *
2080 * Enabled writes to a region to be queued for later processing. MMIO ->write
2081 * callbacks may be delayed until a non-coalesced MMIO is issued.
2082 * Only useful for IO regions.  Roughly similar to write-combining hardware.
2083 *
2084 * @mr: the memory region to be write coalesced
2085 */
2086void memory_region_set_coalescing(MemoryRegion *mr);
2087
2088/**
2089 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2090 *                               a region.
2091 *
2092 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2093 * Multiple calls can be issued coalesced disjoint ranges.
2094 *
2095 * @mr: the memory region to be updated.
2096 * @offset: the start of the range within the region to be coalesced.
2097 * @size: the size of the subrange to be coalesced.
2098 */
2099void memory_region_add_coalescing(MemoryRegion *mr,
2100                                  hwaddr offset,
2101                                  uint64_t size);
2102
2103/**
2104 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2105 *
2106 * Disables any coalescing caused by memory_region_set_coalescing() or
2107 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
2108 * hardware.
2109 *
2110 * @mr: the memory region to be updated.
2111 */
2112void memory_region_clear_coalescing(MemoryRegion *mr);
2113
2114/**
2115 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2116 *                                    accesses.
2117 *
2118 * Ensure that pending coalesced MMIO request are flushed before the memory
2119 * region is accessed. This property is automatically enabled for all regions
2120 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2121 *
2122 * @mr: the memory region to be updated.
2123 */
2124void memory_region_set_flush_coalesced(MemoryRegion *mr);
2125
2126/**
2127 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2128 *                                      accesses.
2129 *
2130 * Clear the automatic coalesced MMIO flushing enabled via
2131 * memory_region_set_flush_coalesced. Note that this service has no effect on
2132 * memory regions that have MMIO coalescing enabled for themselves. For them,
2133 * automatic flushing will stop once coalescing is disabled.
2134 *
2135 * @mr: the memory region to be updated.
2136 */
2137void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2138
2139/**
2140 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2141 *                            is written to a location.
2142 *
2143 * Marks a word in an IO region (initialized with memory_region_init_io())
2144 * as a trigger for an eventfd event.  The I/O callback will not be called.
2145 * The caller must be prepared to handle failure (that is, take the required
2146 * action if the callback _is_ called).
2147 *
2148 * @mr: the memory region being updated.
2149 * @addr: the address within @mr that is to be monitored
2150 * @size: the size of the access to trigger the eventfd
2151 * @match_data: whether to match against @data, instead of just @addr
2152 * @data: the data to match against the guest write
2153 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2154 **/
2155void memory_region_add_eventfd(MemoryRegion *mr,
2156                               hwaddr addr,
2157                               unsigned size,
2158                               bool match_data,
2159                               uint64_t data,
2160                               EventNotifier *e);
2161
2162/**
2163 * memory_region_del_eventfd: Cancel an eventfd.
2164 *
2165 * Cancels an eventfd trigger requested by a previous
2166 * memory_region_add_eventfd() call.
2167 *
2168 * @mr: the memory region being updated.
2169 * @addr: the address within @mr that is to be monitored
2170 * @size: the size of the access to trigger the eventfd
2171 * @match_data: whether to match against @data, instead of just @addr
2172 * @data: the data to match against the guest write
2173 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2174 */
2175void memory_region_del_eventfd(MemoryRegion *mr,
2176                               hwaddr addr,
2177                               unsigned size,
2178                               bool match_data,
2179                               uint64_t data,
2180                               EventNotifier *e);
2181
2182/**
2183 * memory_region_add_subregion: Add a subregion to a container.
2184 *
2185 * Adds a subregion at @offset.  The subregion may not overlap with other
2186 * subregions (except for those explicitly marked as overlapping).  A region
2187 * may only be added once as a subregion (unless removed with
2188 * memory_region_del_subregion()); use memory_region_init_alias() if you
2189 * want a region to be a subregion in multiple locations.
2190 *
2191 * @mr: the region to contain the new subregion; must be a container
2192 *      initialized with memory_region_init().
2193 * @offset: the offset relative to @mr where @subregion is added.
2194 * @subregion: the subregion to be added.
2195 */
2196void memory_region_add_subregion(MemoryRegion *mr,
2197                                 hwaddr offset,
2198                                 MemoryRegion *subregion);
2199/**
2200 * memory_region_add_subregion_overlap: Add a subregion to a container
2201 *                                      with overlap.
2202 *
2203 * Adds a subregion at @offset.  The subregion may overlap with other
2204 * subregions.  Conflicts are resolved by having a higher @priority hide a
2205 * lower @priority. Subregions without priority are taken as @priority 0.
2206 * A region may only be added once as a subregion (unless removed with
2207 * memory_region_del_subregion()); use memory_region_init_alias() if you
2208 * want a region to be a subregion in multiple locations.
2209 *
2210 * @mr: the region to contain the new subregion; must be a container
2211 *      initialized with memory_region_init().
2212 * @offset: the offset relative to @mr where @subregion is added.
2213 * @subregion: the subregion to be added.
2214 * @priority: used for resolving overlaps; highest priority wins.
2215 */
2216void memory_region_add_subregion_overlap(MemoryRegion *mr,
2217                                         hwaddr offset,
2218                                         MemoryRegion *subregion,
2219                                         int priority);
2220
2221/**
2222 * memory_region_get_ram_addr: Get the ram address associated with a memory
2223 *                             region
2224 *
2225 * @mr: the region to be queried
2226 */
2227ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2228
2229uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2230/**
2231 * memory_region_del_subregion: Remove a subregion.
2232 *
2233 * Removes a subregion from its container.
2234 *
2235 * @mr: the container to be updated.
2236 * @subregion: the region being removed; must be a current subregion of @mr.
2237 */
2238void memory_region_del_subregion(MemoryRegion *mr,
2239                                 MemoryRegion *subregion);
2240
2241/*
2242 * memory_region_set_enabled: dynamically enable or disable a region
2243 *
2244 * Enables or disables a memory region.  A disabled memory region
2245 * ignores all accesses to itself and its subregions.  It does not
2246 * obscure sibling subregions with lower priority - it simply behaves as
2247 * if it was removed from the hierarchy.
2248 *
2249 * Regions default to being enabled.
2250 *
2251 * @mr: the region to be updated
2252 * @enabled: whether to enable or disable the region
2253 */
2254void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2255
2256/*
2257 * memory_region_set_address: dynamically update the address of a region
2258 *
2259 * Dynamically updates the address of a region, relative to its container.
2260 * May be used on regions are currently part of a memory hierarchy.
2261 *
2262 * @mr: the region to be updated
2263 * @addr: new address, relative to container region
2264 */
2265void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2266
2267/*
2268 * memory_region_set_size: dynamically update the size of a region.
2269 *
2270 * Dynamically updates the size of a region.
2271 *
2272 * @mr: the region to be updated
2273 * @size: used size of the region.
2274 */
2275void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2276
2277/*
2278 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2279 *
2280 * Dynamically updates the offset into the target region that an alias points
2281 * to, as if the fourth argument to memory_region_init_alias() has changed.
2282 *
2283 * @mr: the #MemoryRegion to be updated; should be an alias.
2284 * @offset: the new offset into the target memory region
2285 */
2286void memory_region_set_alias_offset(MemoryRegion *mr,
2287                                    hwaddr offset);
2288
2289/**
2290 * memory_region_present: checks if an address relative to a @container
2291 * translates into #MemoryRegion within @container
2292 *
2293 * Answer whether a #MemoryRegion within @container covers the address
2294 * @addr.
2295 *
2296 * @container: a #MemoryRegion within which @addr is a relative address
2297 * @addr: the area within @container to be searched
2298 */
2299bool memory_region_present(MemoryRegion *container, hwaddr addr);
2300
2301/**
2302 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2303 * into another memory region, which does not necessarily imply that it is
2304 * mapped into an address space.
2305 *
2306 * @mr: a #MemoryRegion which should be checked if it's mapped
2307 */
2308bool memory_region_is_mapped(MemoryRegion *mr);
2309
2310/**
2311 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2312 * #MemoryRegion
2313 *
2314 * The #RamDiscardManager cannot change while a memory region is mapped.
2315 *
2316 * @mr: the #MemoryRegion
2317 */
2318RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2319
2320/**
2321 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2322 * #RamDiscardManager assigned
2323 *
2324 * @mr: the #MemoryRegion
2325 */
2326static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2327{
2328    return !!memory_region_get_ram_discard_manager(mr);
2329}
2330
2331/**
2332 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2333 * #MemoryRegion
2334 *
2335 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2336 * that does not cover RAM, or a #MemoryRegion that already has a
2337 * #RamDiscardManager assigned.
2338 *
2339 * @mr: the #MemoryRegion
2340 * @rdm: #RamDiscardManager to set
2341 */
2342void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2343                                           RamDiscardManager *rdm);
2344
2345/**
2346 * memory_region_find: translate an address/size relative to a
2347 * MemoryRegion into a #MemoryRegionSection.
2348 *
2349 * Locates the first #MemoryRegion within @mr that overlaps the range
2350 * given by @addr and @size.
2351 *
2352 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2353 * It will have the following characteristics:
2354 * - @size = 0 iff no overlap was found
2355 * - @mr is non-%NULL iff an overlap was found
2356 *
2357 * Remember that in the return value the @offset_within_region is
2358 * relative to the returned region (in the .@mr field), not to the
2359 * @mr argument.
2360 *
2361 * Similarly, the .@offset_within_address_space is relative to the
2362 * address space that contains both regions, the passed and the
2363 * returned one.  However, in the special case where the @mr argument
2364 * has no container (and thus is the root of the address space), the
2365 * following will hold:
2366 * - @offset_within_address_space >= @addr
2367 * - @offset_within_address_space + .@size <= @addr + @size
2368 *
2369 * @mr: a MemoryRegion within which @addr is a relative address
2370 * @addr: start of the area within @as to be searched
2371 * @size: size of the area to be searched
2372 */
2373MemoryRegionSection memory_region_find(MemoryRegion *mr,
2374                                       hwaddr addr, uint64_t size);
2375
2376/**
2377 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2378 *
2379 * Synchronizes the dirty page log for all address spaces.
2380 */
2381void memory_global_dirty_log_sync(void);
2382
2383/**
2384 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2385 *
2386 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2387 * This function must be called after the dirty log bitmap is cleared, and
2388 * before dirty guest memory pages are read.  If you are using
2389 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2390 * care of doing this.
2391 */
2392void memory_global_after_dirty_log_sync(void);
2393
2394/**
2395 * memory_region_transaction_begin: Start a transaction.
2396 *
2397 * During a transaction, changes will be accumulated and made visible
2398 * only when the transaction ends (is committed).
2399 */
2400void memory_region_transaction_begin(void);
2401
2402/**
2403 * memory_region_transaction_commit: Commit a transaction and make changes
2404 *                                   visible to the guest.
2405 */
2406void memory_region_transaction_commit(void);
2407
2408/**
2409 * memory_listener_register: register callbacks to be called when memory
2410 *                           sections are mapped or unmapped into an address
2411 *                           space
2412 *
2413 * @listener: an object containing the callbacks to be called
2414 * @filter: if non-%NULL, only regions in this address space will be observed
2415 */
2416void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2417
2418/**
2419 * memory_listener_unregister: undo the effect of memory_listener_register()
2420 *
2421 * @listener: an object containing the callbacks to be removed
2422 */
2423void memory_listener_unregister(MemoryListener *listener);
2424
2425/**
2426 * memory_global_dirty_log_start: begin dirty logging for all regions
2427 *
2428 * @flags: purpose of starting dirty log, migration or dirty rate
2429 */
2430void memory_global_dirty_log_start(unsigned int flags);
2431
2432/**
2433 * memory_global_dirty_log_stop: end dirty logging for all regions
2434 *
2435 * @flags: purpose of stopping dirty log, migration or dirty rate
2436 */
2437void memory_global_dirty_log_stop(unsigned int flags);
2438
2439void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2440
2441/**
2442 * memory_region_dispatch_read: perform a read directly to the specified
2443 * MemoryRegion.
2444 *
2445 * @mr: #MemoryRegion to access
2446 * @addr: address within that region
2447 * @pval: pointer to uint64_t which the data is written to
2448 * @op: size, sign, and endianness of the memory operation
2449 * @attrs: memory transaction attributes to use for the access
2450 */
2451MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2452                                        hwaddr addr,
2453                                        uint64_t *pval,
2454                                        MemOp op,
2455                                        MemTxAttrs attrs);
2456/**
2457 * memory_region_dispatch_write: perform a write directly to the specified
2458 * MemoryRegion.
2459 *
2460 * @mr: #MemoryRegion to access
2461 * @addr: address within that region
2462 * @data: data to write
2463 * @op: size, sign, and endianness of the memory operation
2464 * @attrs: memory transaction attributes to use for the access
2465 */
2466MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2467                                         hwaddr addr,
2468                                         uint64_t data,
2469                                         MemOp op,
2470                                         MemTxAttrs attrs);
2471
2472/**
2473 * address_space_init: initializes an address space
2474 *
2475 * @as: an uninitialized #AddressSpace
2476 * @root: a #MemoryRegion that routes addresses for the address space
2477 * @name: an address space name.  The name is only used for debugging
2478 *        output.
2479 */
2480void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2481
2482/**
2483 * address_space_destroy: destroy an address space
2484 *
2485 * Releases all resources associated with an address space.  After an address space
2486 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2487 * as well.
2488 *
2489 * @as: address space to be destroyed
2490 */
2491void address_space_destroy(AddressSpace *as);
2492
2493/**
2494 * address_space_remove_listeners: unregister all listeners of an address space
2495 *
2496 * Removes all callbacks previously registered with memory_listener_register()
2497 * for @as.
2498 *
2499 * @as: an initialized #AddressSpace
2500 */
2501void address_space_remove_listeners(AddressSpace *as);
2502
2503/**
2504 * address_space_rw: read from or write to an address space.
2505 *
2506 * Return a MemTxResult indicating whether the operation succeeded
2507 * or failed (eg unassigned memory, device rejected the transaction,
2508 * IOMMU fault).
2509 *
2510 * @as: #AddressSpace to be accessed
2511 * @addr: address within that address space
2512 * @attrs: memory transaction attributes
2513 * @buf: buffer with the data transferred
2514 * @len: the number of bytes to read or write
2515 * @is_write: indicates the transfer direction
2516 */
2517MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2518                             MemTxAttrs attrs, void *buf,
2519                             hwaddr len, bool is_write);
2520
2521/**
2522 * address_space_write: write to address space.
2523 *
2524 * Return a MemTxResult indicating whether the operation succeeded
2525 * or failed (eg unassigned memory, device rejected the transaction,
2526 * IOMMU fault).
2527 *
2528 * @as: #AddressSpace to be accessed
2529 * @addr: address within that address space
2530 * @attrs: memory transaction attributes
2531 * @buf: buffer with the data transferred
2532 * @len: the number of bytes to write
2533 */
2534MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2535                                MemTxAttrs attrs,
2536                                const void *buf, hwaddr len);
2537
2538/**
2539 * address_space_write_rom: write to address space, including ROM.
2540 *
2541 * This function writes to the specified address space, but will
2542 * write data to both ROM and RAM. This is used for non-guest
2543 * writes like writes from the gdb debug stub or initial loading
2544 * of ROM contents.
2545 *
2546 * Note that portions of the write which attempt to write data to
2547 * a device will be silently ignored -- only real RAM and ROM will
2548 * be written to.
2549 *
2550 * Return a MemTxResult indicating whether the operation succeeded
2551 * or failed (eg unassigned memory, device rejected the transaction,
2552 * IOMMU fault).
2553 *
2554 * @as: #AddressSpace to be accessed
2555 * @addr: address within that address space
2556 * @attrs: memory transaction attributes
2557 * @buf: buffer with the data transferred
2558 * @len: the number of bytes to write
2559 */
2560MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2561                                    MemTxAttrs attrs,
2562                                    const void *buf, hwaddr len);
2563
2564/* address_space_ld*: load from an address space
2565 * address_space_st*: store to an address space
2566 *
2567 * These functions perform a load or store of the byte, word,
2568 * longword or quad to the specified address within the AddressSpace.
2569 * The _le suffixed functions treat the data as little endian;
2570 * _be indicates big endian; no suffix indicates "same endianness
2571 * as guest CPU".
2572 *
2573 * The "guest CPU endianness" accessors are deprecated for use outside
2574 * target-* code; devices should be CPU-agnostic and use either the LE
2575 * or the BE accessors.
2576 *
2577 * @as #AddressSpace to be accessed
2578 * @addr: address within that address space
2579 * @val: data value, for stores
2580 * @attrs: memory transaction attributes
2581 * @result: location to write the success/failure of the transaction;
2582 *   if NULL, this information is discarded
2583 */
2584
2585#define SUFFIX
2586#define ARG1         as
2587#define ARG1_DECL    AddressSpace *as
2588#include "exec/memory_ldst.h.inc"
2589
2590#define SUFFIX
2591#define ARG1         as
2592#define ARG1_DECL    AddressSpace *as
2593#include "exec/memory_ldst_phys.h.inc"
2594
2595struct MemoryRegionCache {
2596    void *ptr;
2597    hwaddr xlat;
2598    hwaddr len;
2599    FlatView *fv;
2600    MemoryRegionSection mrs;
2601    bool is_write;
2602};
2603
2604#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2605
2606
2607/* address_space_ld*_cached: load from a cached #MemoryRegion
2608 * address_space_st*_cached: store into a cached #MemoryRegion
2609 *
2610 * These functions perform a load or store of the byte, word,
2611 * longword or quad to the specified address.  The address is
2612 * a physical address in the AddressSpace, but it must lie within
2613 * a #MemoryRegion that was mapped with address_space_cache_init.
2614 *
2615 * The _le suffixed functions treat the data as little endian;
2616 * _be indicates big endian; no suffix indicates "same endianness
2617 * as guest CPU".
2618 *
2619 * The "guest CPU endianness" accessors are deprecated for use outside
2620 * target-* code; devices should be CPU-agnostic and use either the LE
2621 * or the BE accessors.
2622 *
2623 * @cache: previously initialized #MemoryRegionCache to be accessed
2624 * @addr: address within the address space
2625 * @val: data value, for stores
2626 * @attrs: memory transaction attributes
2627 * @result: location to write the success/failure of the transaction;
2628 *   if NULL, this information is discarded
2629 */
2630
2631#define SUFFIX       _cached_slow
2632#define ARG1         cache
2633#define ARG1_DECL    MemoryRegionCache *cache
2634#include "exec/memory_ldst.h.inc"
2635
2636/* Inline fast path for direct RAM access.  */
2637static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2638    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2639{
2640    assert(addr < cache->len);
2641    if (likely(cache->ptr)) {
2642        return ldub_p(cache->ptr + addr);
2643    } else {
2644        return address_space_ldub_cached_slow(cache, addr, attrs, result);
2645    }
2646}
2647
2648static inline void address_space_stb_cached(MemoryRegionCache *cache,
2649    hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2650{
2651    assert(addr < cache->len);
2652    if (likely(cache->ptr)) {
2653        stb_p(cache->ptr + addr, val);
2654    } else {
2655        address_space_stb_cached_slow(cache, addr, val, attrs, result);
2656    }
2657}
2658
2659#define ENDIANNESS   _le
2660#include "exec/memory_ldst_cached.h.inc"
2661
2662#define ENDIANNESS   _be
2663#include "exec/memory_ldst_cached.h.inc"
2664
2665#define SUFFIX       _cached
2666#define ARG1         cache
2667#define ARG1_DECL    MemoryRegionCache *cache
2668#include "exec/memory_ldst_phys.h.inc"
2669
2670/* address_space_cache_init: prepare for repeated access to a physical
2671 * memory region
2672 *
2673 * @cache: #MemoryRegionCache to be filled
2674 * @as: #AddressSpace to be accessed
2675 * @addr: address within that address space
2676 * @len: length of buffer
2677 * @is_write: indicates the transfer direction
2678 *
2679 * Will only work with RAM, and may map a subset of the requested range by
2680 * returning a value that is less than @len.  On failure, return a negative
2681 * errno value.
2682 *
2683 * Because it only works with RAM, this function can be used for
2684 * read-modify-write operations.  In this case, is_write should be %true.
2685 *
2686 * Note that addresses passed to the address_space_*_cached functions
2687 * are relative to @addr.
2688 */
2689int64_t address_space_cache_init(MemoryRegionCache *cache,
2690                                 AddressSpace *as,
2691                                 hwaddr addr,
2692                                 hwaddr len,
2693                                 bool is_write);
2694
2695/**
2696 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2697 *
2698 * @cache: The #MemoryRegionCache to operate on.
2699 * @addr: The first physical address that was written, relative to the
2700 * address that was passed to @address_space_cache_init.
2701 * @access_len: The number of bytes that were written starting at @addr.
2702 */
2703void address_space_cache_invalidate(MemoryRegionCache *cache,
2704                                    hwaddr addr,
2705                                    hwaddr access_len);
2706
2707/**
2708 * address_space_cache_destroy: free a #MemoryRegionCache
2709 *
2710 * @cache: The #MemoryRegionCache whose memory should be released.
2711 */
2712void address_space_cache_destroy(MemoryRegionCache *cache);
2713
2714/* address_space_get_iotlb_entry: translate an address into an IOTLB
2715 * entry. Should be called from an RCU critical section.
2716 */
2717IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2718                                            bool is_write, MemTxAttrs attrs);
2719
2720/* address_space_translate: translate an address range into an address space
2721 * into a MemoryRegion and an address range into that section.  Should be
2722 * called from an RCU critical section, to avoid that the last reference
2723 * to the returned region disappears after address_space_translate returns.
2724 *
2725 * @fv: #FlatView to be accessed
2726 * @addr: address within that address space
2727 * @xlat: pointer to address within the returned memory region section's
2728 * #MemoryRegion.
2729 * @len: pointer to length
2730 * @is_write: indicates the transfer direction
2731 * @attrs: memory attributes
2732 */
2733MemoryRegion *flatview_translate(FlatView *fv,
2734                                 hwaddr addr, hwaddr *xlat,
2735                                 hwaddr *len, bool is_write,
2736                                 MemTxAttrs attrs);
2737
2738static inline MemoryRegion *address_space_translate(AddressSpace *as,
2739                                                    hwaddr addr, hwaddr *xlat,
2740                                                    hwaddr *len, bool is_write,
2741                                                    MemTxAttrs attrs)
2742{
2743    return flatview_translate(address_space_to_flatview(as),
2744                              addr, xlat, len, is_write, attrs);
2745}
2746
2747/* address_space_access_valid: check for validity of accessing an address
2748 * space range
2749 *
2750 * Check whether memory is assigned to the given address space range, and
2751 * access is permitted by any IOMMU regions that are active for the address
2752 * space.
2753 *
2754 * For now, addr and len should be aligned to a page size.  This limitation
2755 * will be lifted in the future.
2756 *
2757 * @as: #AddressSpace to be accessed
2758 * @addr: address within that address space
2759 * @len: length of the area to be checked
2760 * @is_write: indicates the transfer direction
2761 * @attrs: memory attributes
2762 */
2763bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2764                                bool is_write, MemTxAttrs attrs);
2765
2766/* address_space_map: map a physical memory region into a host virtual address
2767 *
2768 * May map a subset of the requested range, given by and returned in @plen.
2769 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2770 * the mapping are exhausted.
2771 * Use only for reads OR writes - not for read-modify-write operations.
2772 * Use cpu_register_map_client() to know when retrying the map operation is
2773 * likely to succeed.
2774 *
2775 * @as: #AddressSpace to be accessed
2776 * @addr: address within that address space
2777 * @plen: pointer to length of buffer; updated on return
2778 * @is_write: indicates the transfer direction
2779 * @attrs: memory attributes
2780 */
2781void *address_space_map(AddressSpace *as, hwaddr addr,
2782                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2783
2784/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2785 *
2786 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2787 * the amount of memory that was actually read or written by the caller.
2788 *
2789 * @as: #AddressSpace used
2790 * @buffer: host pointer as returned by address_space_map()
2791 * @len: buffer length as returned by address_space_map()
2792 * @access_len: amount of data actually transferred
2793 * @is_write: indicates the transfer direction
2794 */
2795void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2796                         bool is_write, hwaddr access_len);
2797
2798
2799/* Internal functions, part of the implementation of address_space_read.  */
2800MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2801                                    MemTxAttrs attrs, void *buf, hwaddr len);
2802MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2803                                   MemTxAttrs attrs, void *buf,
2804                                   hwaddr len, hwaddr addr1, hwaddr l,
2805                                   MemoryRegion *mr);
2806void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2807
2808/* Internal functions, part of the implementation of address_space_read_cached
2809 * and address_space_write_cached.  */
2810MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2811                                           hwaddr addr, void *buf, hwaddr len);
2812MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2813                                            hwaddr addr, const void *buf,
2814                                            hwaddr len);
2815
2816int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2817bool prepare_mmio_access(MemoryRegion *mr);
2818
2819static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2820{
2821    if (is_write) {
2822        return memory_region_is_ram(mr) && !mr->readonly &&
2823               !mr->rom_device && !memory_region_is_ram_device(mr);
2824    } else {
2825        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2826               memory_region_is_romd(mr);
2827    }
2828}
2829
2830/**
2831 * address_space_read: read from an address space.
2832 *
2833 * Return a MemTxResult indicating whether the operation succeeded
2834 * or failed (eg unassigned memory, device rejected the transaction,
2835 * IOMMU fault).  Called within RCU critical section.
2836 *
2837 * @as: #AddressSpace to be accessed
2838 * @addr: address within that address space
2839 * @attrs: memory transaction attributes
2840 * @buf: buffer with the data transferred
2841 * @len: length of the data transferred
2842 */
2843static inline __attribute__((__always_inline__))
2844MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2845                               MemTxAttrs attrs, void *buf,
2846                               hwaddr len)
2847{
2848    MemTxResult result = MEMTX_OK;
2849    hwaddr l, addr1;
2850    void *ptr;
2851    MemoryRegion *mr;
2852    FlatView *fv;
2853
2854    if (__builtin_constant_p(len)) {
2855        if (len) {
2856            RCU_READ_LOCK_GUARD();
2857            fv = address_space_to_flatview(as);
2858            l = len;
2859            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2860            if (len == l && memory_access_is_direct(mr, false)) {
2861                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2862                memcpy(buf, ptr, len);
2863            } else {
2864                result = flatview_read_continue(fv, addr, attrs, buf, len,
2865                                                addr1, l, mr);
2866            }
2867        }
2868    } else {
2869        result = address_space_read_full(as, addr, attrs, buf, len);
2870    }
2871    return result;
2872}
2873
2874/**
2875 * address_space_read_cached: read from a cached RAM region
2876 *
2877 * @cache: Cached region to be addressed
2878 * @addr: address relative to the base of the RAM region
2879 * @buf: buffer with the data transferred
2880 * @len: length of the data transferred
2881 */
2882static inline MemTxResult
2883address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2884                          void *buf, hwaddr len)
2885{
2886    assert(addr < cache->len && len <= cache->len - addr);
2887    fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2888    if (likely(cache->ptr)) {
2889        memcpy(buf, cache->ptr + addr, len);
2890        return MEMTX_OK;
2891    } else {
2892        return address_space_read_cached_slow(cache, addr, buf, len);
2893    }
2894}
2895
2896/**
2897 * address_space_write_cached: write to a cached RAM region
2898 *
2899 * @cache: Cached region to be addressed
2900 * @addr: address relative to the base of the RAM region
2901 * @buf: buffer with the data transferred
2902 * @len: length of the data transferred
2903 */
2904static inline MemTxResult
2905address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2906                           const void *buf, hwaddr len)
2907{
2908    assert(addr < cache->len && len <= cache->len - addr);
2909    if (likely(cache->ptr)) {
2910        memcpy(cache->ptr + addr, buf, len);
2911        return MEMTX_OK;
2912    } else {
2913        return address_space_write_cached_slow(cache, addr, buf, len);
2914    }
2915}
2916
2917/**
2918 * address_space_set: Fill address space with a constant byte.
2919 *
2920 * Return a MemTxResult indicating whether the operation succeeded
2921 * or failed (eg unassigned memory, device rejected the transaction,
2922 * IOMMU fault).
2923 *
2924 * @as: #AddressSpace to be accessed
2925 * @addr: address within that address space
2926 * @c: constant byte to fill the memory
2927 * @len: the number of bytes to fill with the constant byte
2928 * @attrs: memory transaction attributes
2929 */
2930MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2931                              uint8_t c, hwaddr len, MemTxAttrs attrs);
2932
2933#ifdef NEED_CPU_H
2934/* enum device_endian to MemOp.  */
2935static inline MemOp devend_memop(enum device_endian end)
2936{
2937    QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2938                      DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2939
2940#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2941    /* Swap if non-host endianness or native (target) endianness */
2942    return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2943#else
2944    const int non_host_endianness =
2945        DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2946
2947    /* In this case, native (target) endianness needs no swap.  */
2948    return (end == non_host_endianness) ? MO_BSWAP : 0;
2949#endif
2950}
2951#endif
2952
2953/*
2954 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2955 * to manage the actual amount of memory consumed by the VM (then, the memory
2956 * provided by RAM blocks might be bigger than the desired memory consumption).
2957 * This *must* be set if:
2958 * - Discarding parts of a RAM blocks does not result in the change being
2959 *   reflected in the VM and the pages getting freed.
2960 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2961 *   discards blindly.
2962 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2963 *   encrypted VMs).
2964 * Technologies that only temporarily pin the current working set of a
2965 * driver are fine, because we don't expect such pages to be discarded
2966 * (esp. based on guest action like balloon inflation).
2967 *
2968 * This is *not* to be used to protect from concurrent discards (esp.,
2969 * postcopy).
2970 *
2971 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2972 * discards to work reliably is active.
2973 */
2974int ram_block_discard_disable(bool state);
2975
2976/*
2977 * See ram_block_discard_disable(): only disable uncoordinated discards,
2978 * keeping coordinated discards (via the RamDiscardManager) enabled.
2979 */
2980int ram_block_uncoordinated_discard_disable(bool state);
2981
2982/*
2983 * Inhibit technologies that disable discarding of pages in RAM blocks.
2984 *
2985 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2986 * broken.
2987 */
2988int ram_block_discard_require(bool state);
2989
2990/*
2991 * See ram_block_discard_require(): only inhibit technologies that disable
2992 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
2993 * technologies that only inhibit uncoordinated discards (via the
2994 * RamDiscardManager).
2995 */
2996int ram_block_coordinated_discard_require(bool state);
2997
2998/*
2999 * Test if any discarding of memory in ram blocks is disabled.
3000 */
3001bool ram_block_discard_is_disabled(void);
3002
3003/*
3004 * Test if any discarding of memory in ram blocks is required to work reliably.
3005 */
3006bool ram_block_discard_is_required(void);
3007
3008#endif
3009
3010#endif
3011