qemu/include/hw/core/cpu.h
<<
>>
Prefs
   1/*
   2 * QEMU CPU model
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20#ifndef QEMU_CPU_H
  21#define QEMU_CPU_H
  22
  23#include "hw/qdev-core.h"
  24#include "disas/dis-asm.h"
  25#include "exec/cpu-common.h"
  26#include "exec/hwaddr.h"
  27#include "exec/memattrs.h"
  28#include "qapi/qapi-types-run-state.h"
  29#include "qemu/bitmap.h"
  30#include "qemu/rcu_queue.h"
  31#include "qemu/queue.h"
  32#include "qemu/thread.h"
  33#include "qemu/plugin.h"
  34#include "qom/object.h"
  35
  36typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
  37                                     void *opaque);
  38
  39/**
  40 * SECTION:cpu
  41 * @section_id: QEMU-cpu
  42 * @title: CPU Class
  43 * @short_description: Base class for all CPUs
  44 */
  45
  46#define TYPE_CPU "cpu"
  47
  48/* Since this macro is used a lot in hot code paths and in conjunction with
  49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
  50 * an unchecked cast.
  51 */
  52#define CPU(obj) ((CPUState *)(obj))
  53
  54typedef struct CPUClass CPUClass;
  55DECLARE_CLASS_CHECKERS(CPUClass, CPU,
  56                       TYPE_CPU)
  57
  58/**
  59 * OBJECT_DECLARE_CPU_TYPE:
  60 * @CpuInstanceType: instance struct name
  61 * @CpuClassType: class struct name
  62 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
  63 *
  64 * This macro is typically used in "cpu-qom.h" header file, and will:
  65 *
  66 *   - create the typedefs for the CPU object and class structs
  67 *   - register the type for use with g_autoptr
  68 *   - provide three standard type cast functions
  69 *
  70 * The object struct and class struct need to be declared manually.
  71 */
  72#define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
  73    typedef struct ArchCPU CpuInstanceType; \
  74    OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
  75
  76typedef enum MMUAccessType {
  77    MMU_DATA_LOAD  = 0,
  78    MMU_DATA_STORE = 1,
  79    MMU_INST_FETCH = 2
  80} MMUAccessType;
  81
  82typedef struct CPUWatchpoint CPUWatchpoint;
  83
  84/* see tcg-cpu-ops.h */
  85struct TCGCPUOps;
  86
  87/* see accel-cpu.h */
  88struct AccelCPUClass;
  89
  90/* see sysemu-cpu-ops.h */
  91struct SysemuCPUOps;
  92
  93/**
  94 * CPUClass:
  95 * @class_by_name: Callback to map -cpu command line model name to an
  96 * instantiatable CPU type.
  97 * @parse_features: Callback to parse command line arguments.
  98 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
  99 * @has_work: Callback for checking if there is work to do.
 100 * @memory_rw_debug: Callback for GDB memory access.
 101 * @dump_state: Callback for dumping state.
 102 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
 103 * @set_pc: Callback for setting the Program Counter register. This
 104 *       should have the semantics used by the target architecture when
 105 *       setting the PC from a source such as an ELF file entry point;
 106 *       for example on Arm it will also set the Thumb mode bit based
 107 *       on the least significant bit of the new PC value.
 108 *       If the target behaviour here is anything other than "set
 109 *       the PC register to the value passed in" then the target must
 110 *       also implement the synchronize_from_tb hook.
 111 * @gdb_read_register: Callback for letting GDB read a register.
 112 * @gdb_write_register: Callback for letting GDB write a register.
 113 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
 114 *       breakpoint.  Used by AVR to handle a gdb mis-feature with
 115 *       its Harvard architecture split code and data.
 116 * @gdb_num_core_regs: Number of core registers accessible to GDB.
 117 * @gdb_core_xml_file: File name for core registers GDB XML description.
 118 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
 119 *           before the insn which triggers a watchpoint rather than after it.
 120 * @gdb_arch_name: Optional callback that returns the architecture name known
 121 * to GDB. The caller must free the returned string with g_free.
 122 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
 123 *   gdb stub. Returns a pointer to the XML contents for the specified XML file
 124 *   or NULL if the CPU doesn't have a dynamically generated content for it.
 125 * @disas_set_info: Setup architecture specific components of disassembly info
 126 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
 127 * address before attempting to match it against watchpoints.
 128 * @deprecation_note: If this CPUClass is deprecated, this field provides
 129 *                    related information.
 130 *
 131 * Represents a CPU family or model.
 132 */
 133struct CPUClass {
 134    /*< private >*/
 135    DeviceClass parent_class;
 136    /*< public >*/
 137
 138    ObjectClass *(*class_by_name)(const char *cpu_model);
 139    void (*parse_features)(const char *typename, char *str, Error **errp);
 140
 141    bool (*has_work)(CPUState *cpu);
 142    int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
 143                           uint8_t *buf, int len, bool is_write);
 144    void (*dump_state)(CPUState *cpu, FILE *, int flags);
 145    int64_t (*get_arch_id)(CPUState *cpu);
 146    void (*set_pc)(CPUState *cpu, vaddr value);
 147    int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
 148    int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
 149    vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
 150
 151    const char *gdb_core_xml_file;
 152    gchar * (*gdb_arch_name)(CPUState *cpu);
 153    const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
 154
 155    void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
 156
 157    const char *deprecation_note;
 158    struct AccelCPUClass *accel_cpu;
 159
 160    /* when system emulation is not available, this pointer is NULL */
 161    const struct SysemuCPUOps *sysemu_ops;
 162
 163    /* when TCG is not available, this pointer is NULL */
 164    const struct TCGCPUOps *tcg_ops;
 165
 166    /*
 167     * if not NULL, this is called in order for the CPUClass to initialize
 168     * class data that depends on the accelerator, see accel/accel-common.c.
 169     */
 170    void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
 171
 172    /*
 173     * Keep non-pointer data at the end to minimize holes.
 174     */
 175    int reset_dump_flags;
 176    int gdb_num_core_regs;
 177    bool gdb_stop_before_watchpoint;
 178};
 179
 180/*
 181 * Low 16 bits: number of cycles left, used only in icount mode.
 182 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
 183 * for this CPU and return to its top level loop (even in non-icount mode).
 184 * This allows a single read-compare-cbranch-write sequence to test
 185 * for both decrementer underflow and exceptions.
 186 */
 187typedef union IcountDecr {
 188    uint32_t u32;
 189    struct {
 190#if HOST_BIG_ENDIAN
 191        uint16_t high;
 192        uint16_t low;
 193#else
 194        uint16_t low;
 195        uint16_t high;
 196#endif
 197    } u16;
 198} IcountDecr;
 199
 200typedef struct CPUBreakpoint {
 201    vaddr pc;
 202    int flags; /* BP_* */
 203    QTAILQ_ENTRY(CPUBreakpoint) entry;
 204} CPUBreakpoint;
 205
 206struct CPUWatchpoint {
 207    vaddr vaddr;
 208    vaddr len;
 209    vaddr hitaddr;
 210    MemTxAttrs hitattrs;
 211    int flags; /* BP_* */
 212    QTAILQ_ENTRY(CPUWatchpoint) entry;
 213};
 214
 215#ifdef CONFIG_PLUGIN
 216/*
 217 * For plugins we sometime need to save the resolved iotlb data before
 218 * the memory regions get moved around  by io_writex.
 219 */
 220typedef struct SavedIOTLB {
 221    hwaddr addr;
 222    MemoryRegionSection *section;
 223    hwaddr mr_offset;
 224} SavedIOTLB;
 225#endif
 226
 227struct KVMState;
 228struct kvm_run;
 229
 230struct hax_vcpu_state;
 231struct hvf_vcpu_state;
 232
 233#define TB_JMP_CACHE_BITS 12
 234#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
 235
 236/* work queue */
 237
 238/* The union type allows passing of 64 bit target pointers on 32 bit
 239 * hosts in a single parameter
 240 */
 241typedef union {
 242    int           host_int;
 243    unsigned long host_ulong;
 244    void         *host_ptr;
 245    vaddr         target_ptr;
 246} run_on_cpu_data;
 247
 248#define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
 249#define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
 250#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
 251#define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
 252#define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
 253
 254typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
 255
 256struct qemu_work_item;
 257
 258#define CPU_UNSET_NUMA_NODE_ID -1
 259#define CPU_TRACE_DSTATE_MAX_EVENTS 32
 260
 261/**
 262 * CPUState:
 263 * @cpu_index: CPU index (informative).
 264 * @cluster_index: Identifies which cluster this CPU is in.
 265 *   For boards which don't define clusters or for "loose" CPUs not assigned
 266 *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
 267 *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
 268 *   QOM parent.
 269 * @tcg_cflags: Pre-computed cflags for this cpu.
 270 * @nr_cores: Number of cores within this CPU package.
 271 * @nr_threads: Number of threads within this CPU.
 272 * @running: #true if CPU is currently running (lockless).
 273 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
 274 * valid under cpu_list_lock.
 275 * @created: Indicates whether the CPU thread has been successfully created.
 276 * @interrupt_request: Indicates a pending interrupt request.
 277 * @halted: Nonzero if the CPU is in suspended state.
 278 * @stop: Indicates a pending stop request.
 279 * @stopped: Indicates the CPU has been artificially stopped.
 280 * @unplug: Indicates a pending CPU unplug request.
 281 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
 282 * @singlestep_enabled: Flags for single-stepping.
 283 * @icount_extra: Instructions until next timer event.
 284 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
 285 * requires that IO only be performed on the last instruction of a TB
 286 * so that interrupts take effect immediately.
 287 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
 288 *            AddressSpaces this CPU has)
 289 * @num_ases: number of CPUAddressSpaces in @cpu_ases
 290 * @as: Pointer to the first AddressSpace, for the convenience of targets which
 291 *      only have a single AddressSpace
 292 * @env_ptr: Pointer to subclass-specific CPUArchState field.
 293 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
 294 * @gdb_regs: Additional GDB registers.
 295 * @gdb_num_regs: Number of total registers accessible to GDB.
 296 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
 297 * @next_cpu: Next CPU sharing TB cache.
 298 * @opaque: User data.
 299 * @mem_io_pc: Host Program Counter at which the memory was accessed.
 300 * @kvm_fd: vCPU file descriptor for KVM.
 301 * @work_mutex: Lock to prevent multiple access to @work_list.
 302 * @work_list: List of pending asynchronous work.
 303 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
 304 *                        to @trace_dstate).
 305 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
 306 * @plugin_mask: Plugin event bitmap. Modified only via async work.
 307 * @ignore_memory_transaction_failures: Cached copy of the MachineState
 308 *    flag of the same name: allows the board to suppress calling of the
 309 *    CPU do_transaction_failed hook function.
 310 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
 311 *    ring is enabled.
 312 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
 313 *    dirty ring structure.
 314 *
 315 * State of one CPU core or thread.
 316 */
 317struct CPUState {
 318    /*< private >*/
 319    DeviceState parent_obj;
 320    /*< public >*/
 321
 322    int nr_cores;
 323    int nr_threads;
 324
 325    struct QemuThread *thread;
 326#ifdef _WIN32
 327    HANDLE hThread;
 328#endif
 329    int thread_id;
 330    bool running, has_waiter;
 331    struct QemuCond *halt_cond;
 332    bool thread_kicked;
 333    bool created;
 334    bool stop;
 335    bool stopped;
 336
 337    /* Should CPU start in powered-off state? */
 338    bool start_powered_off;
 339
 340    bool unplug;
 341    bool crash_occurred;
 342    bool exit_request;
 343    bool in_exclusive_context;
 344    uint32_t cflags_next_tb;
 345    /* updates protected by BQL */
 346    uint32_t interrupt_request;
 347    int singlestep_enabled;
 348    int64_t icount_budget;
 349    int64_t icount_extra;
 350    uint64_t random_seed;
 351    sigjmp_buf jmp_env;
 352
 353    QemuMutex work_mutex;
 354    QSIMPLEQ_HEAD(, qemu_work_item) work_list;
 355
 356    CPUAddressSpace *cpu_ases;
 357    int num_ases;
 358    AddressSpace *as;
 359    MemoryRegion *memory;
 360
 361    CPUArchState *env_ptr;
 362    IcountDecr *icount_decr_ptr;
 363
 364    /* Accessed in parallel; all accesses must be atomic */
 365    TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
 366
 367    struct GDBRegisterState *gdb_regs;
 368    int gdb_num_regs;
 369    int gdb_num_g_regs;
 370    QTAILQ_ENTRY(CPUState) node;
 371
 372    /* ice debug support */
 373    QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
 374
 375    QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
 376    CPUWatchpoint *watchpoint_hit;
 377
 378    void *opaque;
 379
 380    /* In order to avoid passing too many arguments to the MMIO helpers,
 381     * we store some rarely used information in the CPU context.
 382     */
 383    uintptr_t mem_io_pc;
 384
 385    /* Only used in KVM */
 386    int kvm_fd;
 387    struct KVMState *kvm_state;
 388    struct kvm_run *kvm_run;
 389    struct kvm_dirty_gfn *kvm_dirty_gfns;
 390    uint32_t kvm_fetch_index;
 391    uint64_t dirty_pages;
 392
 393    /* Used for events with 'vcpu' and *without* the 'disabled' properties */
 394    DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
 395    DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
 396
 397    DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
 398
 399#ifdef CONFIG_PLUGIN
 400    GArray *plugin_mem_cbs;
 401    /* saved iotlb data from io_writex */
 402    SavedIOTLB saved_iotlb;
 403#endif
 404
 405    /* TODO Move common fields from CPUArchState here. */
 406    int cpu_index;
 407    int cluster_index;
 408    uint32_t tcg_cflags;
 409    uint32_t halted;
 410    uint32_t can_do_io;
 411    int32_t exception_index;
 412
 413    /* shared by kvm, hax and hvf */
 414    bool vcpu_dirty;
 415
 416    /* Used to keep track of an outstanding cpu throttle thread for migration
 417     * autoconverge
 418     */
 419    bool throttle_thread_scheduled;
 420
 421    /*
 422     * Sleep throttle_us_per_full microseconds once dirty ring is full
 423     * if dirty page rate limit is enabled.
 424     */
 425    int64_t throttle_us_per_full;
 426
 427    bool ignore_memory_transaction_failures;
 428
 429    /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
 430    bool prctl_unalign_sigbus;
 431
 432    struct hax_vcpu_state *hax_vcpu;
 433
 434    struct hvf_vcpu_state *hvf;
 435
 436    /* track IOMMUs whose translations we've cached in the TCG TLB */
 437    GArray *iommu_notifiers;
 438};
 439
 440typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
 441extern CPUTailQ cpus;
 442
 443#define first_cpu        QTAILQ_FIRST_RCU(&cpus)
 444#define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
 445#define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
 446#define CPU_FOREACH_SAFE(cpu, next_cpu) \
 447    QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
 448
 449extern __thread CPUState *current_cpu;
 450
 451static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
 452{
 453    unsigned int i;
 454
 455    for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
 456        qatomic_set(&cpu->tb_jmp_cache[i], NULL);
 457    }
 458}
 459
 460/**
 461 * qemu_tcg_mttcg_enabled:
 462 * Check whether we are running MultiThread TCG or not.
 463 *
 464 * Returns: %true if we are in MTTCG mode %false otherwise.
 465 */
 466extern bool mttcg_enabled;
 467#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
 468
 469/**
 470 * cpu_paging_enabled:
 471 * @cpu: The CPU whose state is to be inspected.
 472 *
 473 * Returns: %true if paging is enabled, %false otherwise.
 474 */
 475bool cpu_paging_enabled(const CPUState *cpu);
 476
 477/**
 478 * cpu_get_memory_mapping:
 479 * @cpu: The CPU whose memory mappings are to be obtained.
 480 * @list: Where to write the memory mappings to.
 481 * @errp: Pointer for reporting an #Error.
 482 */
 483void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
 484                            Error **errp);
 485
 486#if !defined(CONFIG_USER_ONLY)
 487
 488/**
 489 * cpu_write_elf64_note:
 490 * @f: pointer to a function that writes memory to a file
 491 * @cpu: The CPU whose memory is to be dumped
 492 * @cpuid: ID number of the CPU
 493 * @opaque: pointer to the CPUState struct
 494 */
 495int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
 496                         int cpuid, void *opaque);
 497
 498/**
 499 * cpu_write_elf64_qemunote:
 500 * @f: pointer to a function that writes memory to a file
 501 * @cpu: The CPU whose memory is to be dumped
 502 * @cpuid: ID number of the CPU
 503 * @opaque: pointer to the CPUState struct
 504 */
 505int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 506                             void *opaque);
 507
 508/**
 509 * cpu_write_elf32_note:
 510 * @f: pointer to a function that writes memory to a file
 511 * @cpu: The CPU whose memory is to be dumped
 512 * @cpuid: ID number of the CPU
 513 * @opaque: pointer to the CPUState struct
 514 */
 515int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
 516                         int cpuid, void *opaque);
 517
 518/**
 519 * cpu_write_elf32_qemunote:
 520 * @f: pointer to a function that writes memory to a file
 521 * @cpu: The CPU whose memory is to be dumped
 522 * @cpuid: ID number of the CPU
 523 * @opaque: pointer to the CPUState struct
 524 */
 525int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 526                             void *opaque);
 527
 528/**
 529 * cpu_get_crash_info:
 530 * @cpu: The CPU to get crash information for
 531 *
 532 * Gets the previously saved crash information.
 533 * Caller is responsible for freeing the data.
 534 */
 535GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
 536
 537#endif /* !CONFIG_USER_ONLY */
 538
 539/**
 540 * CPUDumpFlags:
 541 * @CPU_DUMP_CODE:
 542 * @CPU_DUMP_FPU: dump FPU register state, not just integer
 543 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
 544 */
 545enum CPUDumpFlags {
 546    CPU_DUMP_CODE = 0x00010000,
 547    CPU_DUMP_FPU  = 0x00020000,
 548    CPU_DUMP_CCOP = 0x00040000,
 549};
 550
 551/**
 552 * cpu_dump_state:
 553 * @cpu: The CPU whose state is to be dumped.
 554 * @f: If non-null, dump to this stream, else to current print sink.
 555 *
 556 * Dumps CPU state.
 557 */
 558void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
 559
 560#ifndef CONFIG_USER_ONLY
 561/**
 562 * cpu_get_phys_page_attrs_debug:
 563 * @cpu: The CPU to obtain the physical page address for.
 564 * @addr: The virtual address.
 565 * @attrs: Updated on return with the memory transaction attributes to use
 566 *         for this access.
 567 *
 568 * Obtains the physical page corresponding to a virtual one, together
 569 * with the corresponding memory transaction attributes to use for the access.
 570 * Use it only for debugging because no protection checks are done.
 571 *
 572 * Returns: Corresponding physical page address or -1 if no page found.
 573 */
 574hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 575                                     MemTxAttrs *attrs);
 576
 577/**
 578 * cpu_get_phys_page_debug:
 579 * @cpu: The CPU to obtain the physical page address for.
 580 * @addr: The virtual address.
 581 *
 582 * Obtains the physical page corresponding to a virtual one.
 583 * Use it only for debugging because no protection checks are done.
 584 *
 585 * Returns: Corresponding physical page address or -1 if no page found.
 586 */
 587hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
 588
 589/** cpu_asidx_from_attrs:
 590 * @cpu: CPU
 591 * @attrs: memory transaction attributes
 592 *
 593 * Returns the address space index specifying the CPU AddressSpace
 594 * to use for a memory access with the given transaction attributes.
 595 */
 596int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
 597
 598/**
 599 * cpu_virtio_is_big_endian:
 600 * @cpu: CPU
 601
 602 * Returns %true if a CPU which supports runtime configurable endianness
 603 * is currently big-endian.
 604 */
 605bool cpu_virtio_is_big_endian(CPUState *cpu);
 606
 607#endif /* CONFIG_USER_ONLY */
 608
 609/**
 610 * cpu_list_add:
 611 * @cpu: The CPU to be added to the list of CPUs.
 612 */
 613void cpu_list_add(CPUState *cpu);
 614
 615/**
 616 * cpu_list_remove:
 617 * @cpu: The CPU to be removed from the list of CPUs.
 618 */
 619void cpu_list_remove(CPUState *cpu);
 620
 621/**
 622 * cpu_reset:
 623 * @cpu: The CPU whose state is to be reset.
 624 */
 625void cpu_reset(CPUState *cpu);
 626
 627/**
 628 * cpu_class_by_name:
 629 * @typename: The CPU base type.
 630 * @cpu_model: The model string without any parameters.
 631 *
 632 * Looks up a CPU #ObjectClass matching name @cpu_model.
 633 *
 634 * Returns: A #CPUClass or %NULL if not matching class is found.
 635 */
 636ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
 637
 638/**
 639 * cpu_create:
 640 * @typename: The CPU type.
 641 *
 642 * Instantiates a CPU and realizes the CPU.
 643 *
 644 * Returns: A #CPUState or %NULL if an error occurred.
 645 */
 646CPUState *cpu_create(const char *typename);
 647
 648/**
 649 * parse_cpu_option:
 650 * @cpu_option: The -cpu option including optional parameters.
 651 *
 652 * processes optional parameters and registers them as global properties
 653 *
 654 * Returns: type of CPU to create or prints error and terminates process
 655 *          if an error occurred.
 656 */
 657const char *parse_cpu_option(const char *cpu_option);
 658
 659/**
 660 * cpu_has_work:
 661 * @cpu: The vCPU to check.
 662 *
 663 * Checks whether the CPU has work to do.
 664 *
 665 * Returns: %true if the CPU has work, %false otherwise.
 666 */
 667static inline bool cpu_has_work(CPUState *cpu)
 668{
 669    CPUClass *cc = CPU_GET_CLASS(cpu);
 670
 671    g_assert(cc->has_work);
 672    return cc->has_work(cpu);
 673}
 674
 675/**
 676 * qemu_cpu_is_self:
 677 * @cpu: The vCPU to check against.
 678 *
 679 * Checks whether the caller is executing on the vCPU thread.
 680 *
 681 * Returns: %true if called from @cpu's thread, %false otherwise.
 682 */
 683bool qemu_cpu_is_self(CPUState *cpu);
 684
 685/**
 686 * qemu_cpu_kick:
 687 * @cpu: The vCPU to kick.
 688 *
 689 * Kicks @cpu's thread.
 690 */
 691void qemu_cpu_kick(CPUState *cpu);
 692
 693/**
 694 * cpu_is_stopped:
 695 * @cpu: The CPU to check.
 696 *
 697 * Checks whether the CPU is stopped.
 698 *
 699 * Returns: %true if run state is not running or if artificially stopped;
 700 * %false otherwise.
 701 */
 702bool cpu_is_stopped(CPUState *cpu);
 703
 704/**
 705 * do_run_on_cpu:
 706 * @cpu: The vCPU to run on.
 707 * @func: The function to be executed.
 708 * @data: Data to pass to the function.
 709 * @mutex: Mutex to release while waiting for @func to run.
 710 *
 711 * Used internally in the implementation of run_on_cpu.
 712 */
 713void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 714                   QemuMutex *mutex);
 715
 716/**
 717 * run_on_cpu:
 718 * @cpu: The vCPU to run on.
 719 * @func: The function to be executed.
 720 * @data: Data to pass to the function.
 721 *
 722 * Schedules the function @func for execution on the vCPU @cpu.
 723 */
 724void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 725
 726/**
 727 * async_run_on_cpu:
 728 * @cpu: The vCPU to run on.
 729 * @func: The function to be executed.
 730 * @data: Data to pass to the function.
 731 *
 732 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
 733 */
 734void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 735
 736/**
 737 * async_safe_run_on_cpu:
 738 * @cpu: The vCPU to run on.
 739 * @func: The function to be executed.
 740 * @data: Data to pass to the function.
 741 *
 742 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
 743 * while all other vCPUs are sleeping.
 744 *
 745 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
 746 * BQL.
 747 */
 748void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 749
 750/**
 751 * cpu_in_exclusive_context()
 752 * @cpu: The vCPU to check
 753 *
 754 * Returns true if @cpu is an exclusive context, for example running
 755 * something which has previously been queued via async_safe_run_on_cpu().
 756 */
 757static inline bool cpu_in_exclusive_context(const CPUState *cpu)
 758{
 759    return cpu->in_exclusive_context;
 760}
 761
 762/**
 763 * qemu_get_cpu:
 764 * @index: The CPUState@cpu_index value of the CPU to obtain.
 765 *
 766 * Gets a CPU matching @index.
 767 *
 768 * Returns: The CPU or %NULL if there is no matching CPU.
 769 */
 770CPUState *qemu_get_cpu(int index);
 771
 772/**
 773 * cpu_exists:
 774 * @id: Guest-exposed CPU ID to lookup.
 775 *
 776 * Search for CPU with specified ID.
 777 *
 778 * Returns: %true - CPU is found, %false - CPU isn't found.
 779 */
 780bool cpu_exists(int64_t id);
 781
 782/**
 783 * cpu_by_arch_id:
 784 * @id: Guest-exposed CPU ID of the CPU to obtain.
 785 *
 786 * Get a CPU with matching @id.
 787 *
 788 * Returns: The CPU or %NULL if there is no matching CPU.
 789 */
 790CPUState *cpu_by_arch_id(int64_t id);
 791
 792/**
 793 * cpu_interrupt:
 794 * @cpu: The CPU to set an interrupt on.
 795 * @mask: The interrupts to set.
 796 *
 797 * Invokes the interrupt handler.
 798 */
 799
 800void cpu_interrupt(CPUState *cpu, int mask);
 801
 802/**
 803 * cpu_set_pc:
 804 * @cpu: The CPU to set the program counter for.
 805 * @addr: Program counter value.
 806 *
 807 * Sets the program counter for a CPU.
 808 */
 809static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
 810{
 811    CPUClass *cc = CPU_GET_CLASS(cpu);
 812
 813    cc->set_pc(cpu, addr);
 814}
 815
 816/**
 817 * cpu_reset_interrupt:
 818 * @cpu: The CPU to clear the interrupt on.
 819 * @mask: The interrupt mask to clear.
 820 *
 821 * Resets interrupts on the vCPU @cpu.
 822 */
 823void cpu_reset_interrupt(CPUState *cpu, int mask);
 824
 825/**
 826 * cpu_exit:
 827 * @cpu: The CPU to exit.
 828 *
 829 * Requests the CPU @cpu to exit execution.
 830 */
 831void cpu_exit(CPUState *cpu);
 832
 833/**
 834 * cpu_resume:
 835 * @cpu: The CPU to resume.
 836 *
 837 * Resumes CPU, i.e. puts CPU into runnable state.
 838 */
 839void cpu_resume(CPUState *cpu);
 840
 841/**
 842 * cpu_remove_sync:
 843 * @cpu: The CPU to remove.
 844 *
 845 * Requests the CPU to be removed and waits till it is removed.
 846 */
 847void cpu_remove_sync(CPUState *cpu);
 848
 849/**
 850 * process_queued_cpu_work() - process all items on CPU work queue
 851 * @cpu: The CPU which work queue to process.
 852 */
 853void process_queued_cpu_work(CPUState *cpu);
 854
 855/**
 856 * cpu_exec_start:
 857 * @cpu: The CPU for the current thread.
 858 *
 859 * Record that a CPU has started execution and can be interrupted with
 860 * cpu_exit.
 861 */
 862void cpu_exec_start(CPUState *cpu);
 863
 864/**
 865 * cpu_exec_end:
 866 * @cpu: The CPU for the current thread.
 867 *
 868 * Record that a CPU has stopped execution and exclusive sections
 869 * can be executed without interrupting it.
 870 */
 871void cpu_exec_end(CPUState *cpu);
 872
 873/**
 874 * start_exclusive:
 875 *
 876 * Wait for a concurrent exclusive section to end, and then start
 877 * a section of work that is run while other CPUs are not running
 878 * between cpu_exec_start and cpu_exec_end.  CPUs that are running
 879 * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
 880 * during the exclusive section go to sleep until this CPU calls
 881 * end_exclusive.
 882 */
 883void start_exclusive(void);
 884
 885/**
 886 * end_exclusive:
 887 *
 888 * Concludes an exclusive execution section started by start_exclusive.
 889 */
 890void end_exclusive(void);
 891
 892/**
 893 * qemu_init_vcpu:
 894 * @cpu: The vCPU to initialize.
 895 *
 896 * Initializes a vCPU.
 897 */
 898void qemu_init_vcpu(CPUState *cpu);
 899
 900#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 901#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 902#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 903
 904/**
 905 * cpu_single_step:
 906 * @cpu: CPU to the flags for.
 907 * @enabled: Flags to enable.
 908 *
 909 * Enables or disables single-stepping for @cpu.
 910 */
 911void cpu_single_step(CPUState *cpu, int enabled);
 912
 913/* Breakpoint/watchpoint flags */
 914#define BP_MEM_READ           0x01
 915#define BP_MEM_WRITE          0x02
 916#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 917#define BP_STOP_BEFORE_ACCESS 0x04
 918/* 0x08 currently unused */
 919#define BP_GDB                0x10
 920#define BP_CPU                0x20
 921#define BP_ANY                (BP_GDB | BP_CPU)
 922#define BP_WATCHPOINT_HIT_READ 0x40
 923#define BP_WATCHPOINT_HIT_WRITE 0x80
 924#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
 925
 926int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
 927                          CPUBreakpoint **breakpoint);
 928int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
 929void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
 930void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
 931
 932/* Return true if PC matches an installed breakpoint.  */
 933static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
 934{
 935    CPUBreakpoint *bp;
 936
 937    if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
 938        QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
 939            if (bp->pc == pc && (bp->flags & mask)) {
 940                return true;
 941            }
 942        }
 943    }
 944    return false;
 945}
 946
 947#ifdef CONFIG_USER_ONLY
 948static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 949                                        int flags, CPUWatchpoint **watchpoint)
 950{
 951    return -ENOSYS;
 952}
 953
 954static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
 955                                        vaddr len, int flags)
 956{
 957    return -ENOSYS;
 958}
 959
 960static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
 961                                                CPUWatchpoint *wp)
 962{
 963}
 964
 965static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 966{
 967}
 968
 969static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
 970                                        MemTxAttrs atr, int fl, uintptr_t ra)
 971{
 972}
 973
 974static inline int cpu_watchpoint_address_matches(CPUState *cpu,
 975                                                 vaddr addr, vaddr len)
 976{
 977    return 0;
 978}
 979#else
 980int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 981                          int flags, CPUWatchpoint **watchpoint);
 982int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
 983                          vaddr len, int flags);
 984void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
 985void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
 986
 987/**
 988 * cpu_check_watchpoint:
 989 * @cpu: cpu context
 990 * @addr: guest virtual address
 991 * @len: access length
 992 * @attrs: memory access attributes
 993 * @flags: watchpoint access type
 994 * @ra: unwind return address
 995 *
 996 * Check for a watchpoint hit in [addr, addr+len) of the type
 997 * specified by @flags.  Exit via exception with a hit.
 998 */
 999void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1000                          MemTxAttrs attrs, int flags, uintptr_t ra);
1001
1002/**
1003 * cpu_watchpoint_address_matches:
1004 * @cpu: cpu context
1005 * @addr: guest virtual address
1006 * @len: access length
1007 *
1008 * Return the watchpoint flags that apply to [addr, addr+len).
1009 * If no watchpoint is registered for the range, the result is 0.
1010 */
1011int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1012#endif
1013
1014/**
1015 * cpu_get_address_space:
1016 * @cpu: CPU to get address space from
1017 * @asidx: index identifying which address space to get
1018 *
1019 * Return the requested address space of this CPU. @asidx
1020 * specifies which address space to read.
1021 */
1022AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1023
1024G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1025    G_GNUC_PRINTF(2, 3);
1026
1027/* $(top_srcdir)/cpu.c */
1028void cpu_class_init_props(DeviceClass *dc);
1029void cpu_exec_initfn(CPUState *cpu);
1030void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1031void cpu_exec_unrealizefn(CPUState *cpu);
1032
1033/**
1034 * target_words_bigendian:
1035 * Returns true if the (default) endianness of the target is big endian,
1036 * false otherwise. Note that in target-specific code, you can use
1037 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1038 * code should normally never need to know about the endianness of the
1039 * target, so please do *not* use this function unless you know very well
1040 * what you are doing!
1041 */
1042bool target_words_bigendian(void);
1043
1044void page_size_init(void);
1045
1046#ifdef NEED_CPU_H
1047
1048#ifdef CONFIG_SOFTMMU
1049
1050extern const VMStateDescription vmstate_cpu_common;
1051
1052#define VMSTATE_CPU() {                                                     \
1053    .name = "parent_obj",                                                   \
1054    .size = sizeof(CPUState),                                               \
1055    .vmsd = &vmstate_cpu_common,                                            \
1056    .flags = VMS_STRUCT,                                                    \
1057    .offset = 0,                                                            \
1058}
1059#endif /* CONFIG_SOFTMMU */
1060
1061#endif /* NEED_CPU_H */
1062
1063#define UNASSIGNED_CPU_INDEX -1
1064#define UNASSIGNED_CLUSTER_INDEX -1
1065
1066#endif
1067