qemu/include/standard-headers/drm/drm_fourcc.h
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef DRM_FOURCC_H
  25#define DRM_FOURCC_H
  26
  27
  28#if defined(__cplusplus)
  29extern "C" {
  30#endif
  31
  32/**
  33 * DOC: overview
  34 *
  35 * In the DRM subsystem, framebuffer pixel formats are described using the
  36 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  37 * fourcc code, a Format Modifier may optionally be provided, in order to
  38 * further describe the buffer's format - for example tiling or compression.
  39 *
  40 * Format Modifiers
  41 * ----------------
  42 *
  43 * Format modifiers are used in conjunction with a fourcc code, forming a
  44 * unique fourcc:modifier pair. This format:modifier pair must fully define the
  45 * format and data layout of the buffer, and should be the only way to describe
  46 * that particular buffer.
  47 *
  48 * Having multiple fourcc:modifier pairs which describe the same layout should
  49 * be avoided, as such aliases run the risk of different drivers exposing
  50 * different names for the same data format, forcing userspace to understand
  51 * that they are aliases.
  52 *
  53 * Format modifiers may change any property of the buffer, including the number
  54 * of planes and/or the required allocation size. Format modifiers are
  55 * vendor-namespaced, and as such the relationship between a fourcc code and a
  56 * modifier is specific to the modifer being used. For example, some modifiers
  57 * may preserve meaning - such as number of planes - from the fourcc code,
  58 * whereas others may not.
  59 *
  60 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
  61 * match only a single modifier. A modifier must not be a subset of layouts of
  62 * another modifier. For instance, it's incorrect to encode pitch alignment in
  63 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
  64 * aligned modifier. That said, modifiers can have implicit minimal
  65 * requirements.
  66 *
  67 * For modifiers where the combination of fourcc code and modifier can alias,
  68 * a canonical pair needs to be defined and used by all drivers. Preferred
  69 * combinations are also encouraged where all combinations might lead to
  70 * confusion and unnecessarily reduced interoperability. An example for the
  71 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
  72 *
  73 * There are two kinds of modifier users:
  74 *
  75 * - Kernel and user-space drivers: for drivers it's important that modifiers
  76 *   don't alias, otherwise two drivers might support the same format but use
  77 *   different aliases, preventing them from sharing buffers in an efficient
  78 *   format.
  79 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
  80 *   see modifiers as opaque tokens they can check for equality and intersect.
  81 *   These users musn't need to know to reason about the modifier value
  82 *   (i.e. they are not expected to extract information out of the modifier).
  83 *
  84 * Vendors should document their modifier usage in as much detail as
  85 * possible, to ensure maximum compatibility across devices, drivers and
  86 * applications.
  87 *
  88 * The authoritative list of format modifier codes is found in
  89 * `include/uapi/drm/drm_fourcc.h`
  90 */
  91
  92#define fourcc_code(a, b, c, d) ((uint32_t)(a) | ((uint32_t)(b) << 8) | \
  93                                 ((uint32_t)(c) << 16) | ((uint32_t)(d) << 24))
  94
  95#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
  96
  97/* Reserve 0 for the invalid format specifier */
  98#define DRM_FORMAT_INVALID      0
  99
 100/* color index */
 101#define DRM_FORMAT_C8           fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
 102
 103/* 8 bpp Red */
 104#define DRM_FORMAT_R8           fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
 105
 106/* 10 bpp Red */
 107#define DRM_FORMAT_R10          fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
 108
 109/* 12 bpp Red */
 110#define DRM_FORMAT_R12          fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
 111
 112/* 16 bpp Red */
 113#define DRM_FORMAT_R16          fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
 114
 115/* 16 bpp RG */
 116#define DRM_FORMAT_RG88         fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
 117#define DRM_FORMAT_GR88         fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
 118
 119/* 32 bpp RG */
 120#define DRM_FORMAT_RG1616       fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
 121#define DRM_FORMAT_GR1616       fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
 122
 123/* 8 bpp RGB */
 124#define DRM_FORMAT_RGB332       fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
 125#define DRM_FORMAT_BGR233       fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
 126
 127/* 16 bpp RGB */
 128#define DRM_FORMAT_XRGB4444     fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 129#define DRM_FORMAT_XBGR4444     fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 130#define DRM_FORMAT_RGBX4444     fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 131#define DRM_FORMAT_BGRX4444     fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 132
 133#define DRM_FORMAT_ARGB4444     fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 134#define DRM_FORMAT_ABGR4444     fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 135#define DRM_FORMAT_RGBA4444     fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 136#define DRM_FORMAT_BGRA4444     fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 137
 138#define DRM_FORMAT_XRGB1555     fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 139#define DRM_FORMAT_XBGR1555     fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 140#define DRM_FORMAT_RGBX5551     fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 141#define DRM_FORMAT_BGRX5551     fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 142
 143#define DRM_FORMAT_ARGB1555     fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 144#define DRM_FORMAT_ABGR1555     fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 145#define DRM_FORMAT_RGBA5551     fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 146#define DRM_FORMAT_BGRA5551     fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 147
 148#define DRM_FORMAT_RGB565       fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 149#define DRM_FORMAT_BGR565       fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 150
 151/* 24 bpp RGB */
 152#define DRM_FORMAT_RGB888       fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 153#define DRM_FORMAT_BGR888       fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 154
 155/* 32 bpp RGB */
 156#define DRM_FORMAT_XRGB8888     fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 157#define DRM_FORMAT_XBGR8888     fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 158#define DRM_FORMAT_RGBX8888     fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 159#define DRM_FORMAT_BGRX8888     fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 160
 161#define DRM_FORMAT_ARGB8888     fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 162#define DRM_FORMAT_ABGR8888     fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 163#define DRM_FORMAT_RGBA8888     fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 164#define DRM_FORMAT_BGRA8888     fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 165
 166#define DRM_FORMAT_XRGB2101010  fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 167#define DRM_FORMAT_XBGR2101010  fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 168#define DRM_FORMAT_RGBX1010102  fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 169#define DRM_FORMAT_BGRX1010102  fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 170
 171#define DRM_FORMAT_ARGB2101010  fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 172#define DRM_FORMAT_ABGR2101010  fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 173#define DRM_FORMAT_RGBA1010102  fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 174#define DRM_FORMAT_BGRA1010102  fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 175
 176/* 64 bpp RGB */
 177#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 178#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 179
 180#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 181#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 182
 183/*
 184 * Floating point 64bpp RGB
 185 * IEEE 754-2008 binary16 half-precision float
 186 * [15:0] sign:exponent:mantissa 1:5:10
 187 */
 188#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 189#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 190
 191#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 192#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 193
 194/*
 195 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
 196 * of unused padding per component:
 197 */
 198#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
 199
 200/* packed YCbCr */
 201#define DRM_FORMAT_YUYV         fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 202#define DRM_FORMAT_YVYU         fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 203#define DRM_FORMAT_UYVY         fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 204#define DRM_FORMAT_VYUY         fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 205
 206#define DRM_FORMAT_AYUV         fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 207#define DRM_FORMAT_XYUV8888     fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 208#define DRM_FORMAT_VUY888       fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 209#define DRM_FORMAT_VUY101010    fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 210
 211/*
 212 * packed Y2xx indicate for each component, xx valid data occupy msb
 213 * 16-xx padding occupy lsb
 214 */
 215#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 216#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 217#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 218
 219/*
 220 * packed Y4xx indicate for each component, xx valid data occupy msb
 221 * 16-xx padding occupy lsb except Y410
 222 */
 223#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 224#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 225#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 226
 227#define DRM_FORMAT_XVYU2101010  fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 228#define DRM_FORMAT_XVYU12_16161616      fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 229#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 230
 231/*
 232 * packed YCbCr420 2x2 tiled formats
 233 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 234 */
 235/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 236#define DRM_FORMAT_Y0L0         fourcc_code('Y', '0', 'L', '0')
 237/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 238#define DRM_FORMAT_X0L0         fourcc_code('X', '0', 'L', '0')
 239
 240/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 241#define DRM_FORMAT_Y0L2         fourcc_code('Y', '0', 'L', '2')
 242/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 243#define DRM_FORMAT_X0L2         fourcc_code('X', '0', 'L', '2')
 244
 245/*
 246 * 1-plane YUV 4:2:0
 247 * In these formats, the component ordering is specified (Y, followed by U
 248 * then V), but the exact Linear layout is undefined.
 249 * These formats can only be used with a non-Linear modifier.
 250 */
 251#define DRM_FORMAT_YUV420_8BIT  fourcc_code('Y', 'U', '0', '8')
 252#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
 253
 254/*
 255 * 2 plane RGB + A
 256 * index 0 = RGB plane, same format as the corresponding non _A8 format has
 257 * index 1 = A plane, [7:0] A
 258 */
 259#define DRM_FORMAT_XRGB8888_A8  fourcc_code('X', 'R', 'A', '8')
 260#define DRM_FORMAT_XBGR8888_A8  fourcc_code('X', 'B', 'A', '8')
 261#define DRM_FORMAT_RGBX8888_A8  fourcc_code('R', 'X', 'A', '8')
 262#define DRM_FORMAT_BGRX8888_A8  fourcc_code('B', 'X', 'A', '8')
 263#define DRM_FORMAT_RGB888_A8    fourcc_code('R', '8', 'A', '8')
 264#define DRM_FORMAT_BGR888_A8    fourcc_code('B', '8', 'A', '8')
 265#define DRM_FORMAT_RGB565_A8    fourcc_code('R', '5', 'A', '8')
 266#define DRM_FORMAT_BGR565_A8    fourcc_code('B', '5', 'A', '8')
 267
 268/*
 269 * 2 plane YCbCr
 270 * index 0 = Y plane, [7:0] Y
 271 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 272 * or
 273 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 274 */
 275#define DRM_FORMAT_NV12         fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 276#define DRM_FORMAT_NV21         fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 277#define DRM_FORMAT_NV16         fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 278#define DRM_FORMAT_NV61         fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 279#define DRM_FORMAT_NV24         fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 280#define DRM_FORMAT_NV42         fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 281/*
 282 * 2 plane YCbCr
 283 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
 284 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
 285 */
 286#define DRM_FORMAT_NV15         fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
 287
 288/*
 289 * 2 plane YCbCr MSB aligned
 290 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 291 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 292 */
 293#define DRM_FORMAT_P210         fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 294
 295/*
 296 * 2 plane YCbCr MSB aligned
 297 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 298 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 299 */
 300#define DRM_FORMAT_P010         fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 301
 302/*
 303 * 2 plane YCbCr MSB aligned
 304 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 305 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 306 */
 307#define DRM_FORMAT_P012         fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 308
 309/*
 310 * 2 plane YCbCr MSB aligned
 311 * index 0 = Y plane, [15:0] Y little endian
 312 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 313 */
 314#define DRM_FORMAT_P016         fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 315
 316/* 2 plane YCbCr420.
 317 * 3 10 bit components and 2 padding bits packed into 4 bytes.
 318 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
 319 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
 320 */
 321#define DRM_FORMAT_P030         fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
 322
 323/* 3 plane non-subsampled (444) YCbCr
 324 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 325 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 326 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
 327 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
 328 */
 329#define DRM_FORMAT_Q410         fourcc_code('Q', '4', '1', '0')
 330
 331/* 3 plane non-subsampled (444) YCrCb
 332 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 333 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 334 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
 335 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
 336 */
 337#define DRM_FORMAT_Q401         fourcc_code('Q', '4', '0', '1')
 338
 339/*
 340 * 3 plane YCbCr
 341 * index 0: Y plane, [7:0] Y
 342 * index 1: Cb plane, [7:0] Cb
 343 * index 2: Cr plane, [7:0] Cr
 344 * or
 345 * index 1: Cr plane, [7:0] Cr
 346 * index 2: Cb plane, [7:0] Cb
 347 */
 348#define DRM_FORMAT_YUV410       fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 349#define DRM_FORMAT_YVU410       fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 350#define DRM_FORMAT_YUV411       fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 351#define DRM_FORMAT_YVU411       fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 352#define DRM_FORMAT_YUV420       fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 353#define DRM_FORMAT_YVU420       fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 354#define DRM_FORMAT_YUV422       fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 355#define DRM_FORMAT_YVU422       fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 356#define DRM_FORMAT_YUV444       fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 357#define DRM_FORMAT_YVU444       fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 358
 359
 360/*
 361 * Format Modifiers:
 362 *
 363 * Format modifiers describe, typically, a re-ordering or modification
 364 * of the data in a plane of an FB.  This can be used to express tiled/
 365 * swizzled formats, or compression, or a combination of the two.
 366 *
 367 * The upper 8 bits of the format modifier are a vendor-id as assigned
 368 * below.  The lower 56 bits are assigned as vendor sees fit.
 369 */
 370
 371/* Vendor Ids: */
 372#define DRM_FORMAT_MOD_VENDOR_NONE    0
 373#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 374#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 375#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 376#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 377#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 378#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 379#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 380#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 381#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 382#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
 383
 384/* add more to the end as needed */
 385
 386#define DRM_FORMAT_RESERVED           ((1ULL << 56) - 1)
 387
 388#define fourcc_mod_get_vendor(modifier) \
 389        (((modifier) >> 56) & 0xff)
 390
 391#define fourcc_mod_is_vendor(modifier, vendor) \
 392        (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
 393
 394#define fourcc_mod_code(vendor, val) \
 395        ((((uint64_t)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 396
 397/*
 398 * Format Modifier tokens:
 399 *
 400 * When adding a new token please document the layout with a code comment,
 401 * similar to the fourcc codes above. drm_fourcc.h is considered the
 402 * authoritative source for all of these.
 403 *
 404 * Generic modifier names:
 405 *
 406 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
 407 * for layouts which are common across multiple vendors. To preserve
 408 * compatibility, in cases where a vendor-specific definition already exists and
 409 * a generic name for it is desired, the common name is a purely symbolic alias
 410 * and must use the same numerical value as the original definition.
 411 *
 412 * Note that generic names should only be used for modifiers which describe
 413 * generic layouts (such as pixel re-ordering), which may have
 414 * independently-developed support across multiple vendors.
 415 *
 416 * In future cases where a generic layout is identified before merging with a
 417 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
 418 * 'NONE' could be considered. This should only be for obvious, exceptional
 419 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
 420 * apply to a single vendor.
 421 *
 422 * Generic names should not be used for cases where multiple hardware vendors
 423 * have implementations of the same standardised compression scheme (such as
 424 * AFBC). In those cases, all implementations should use the same format
 425 * modifier(s), reflecting the vendor of the standard.
 426 */
 427
 428#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
 429
 430/*
 431 * Invalid Modifier
 432 *
 433 * This modifier can be used as a sentinel to terminate the format modifiers
 434 * list, or to initialize a variable with an invalid modifier. It might also be
 435 * used to report an error back to userspace for certain APIs.
 436 */
 437#define DRM_FORMAT_MOD_INVALID  fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 438
 439/*
 440 * Linear Layout
 441 *
 442 * Just plain linear layout. Note that this is different from no specifying any
 443 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 444 * which tells the driver to also take driver-internal information into account
 445 * and so might actually result in a tiled framebuffer.
 446 */
 447#define DRM_FORMAT_MOD_LINEAR   fourcc_mod_code(NONE, 0)
 448
 449/*
 450 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
 451 *
 452 * The "none" format modifier doesn't actually mean that the modifier is
 453 * implicit, instead it means that the layout is linear. Whether modifiers are
 454 * used is out-of-band information carried in an API-specific way (e.g. in a
 455 * flag for drm_mode_fb_cmd2).
 456 */
 457#define DRM_FORMAT_MOD_NONE     0
 458
 459/* Intel framebuffer modifiers */
 460
 461/*
 462 * Intel X-tiling layout
 463 *
 464 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 465 * in row-major layout. Within the tile bytes are laid out row-major, with
 466 * a platform-dependent stride. On top of that the memory can apply
 467 * platform-depending swizzling of some higher address bits into bit6.
 468 *
 469 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 470 * On earlier platforms the is highly platforms specific and not useful for
 471 * cross-driver sharing. It exists since on a given platform it does uniquely
 472 * identify the layout in a simple way for i915-specific userspace, which
 473 * facilitated conversion of userspace to modifiers. Additionally the exact
 474 * format on some really old platforms is not known.
 475 */
 476#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
 477
 478/*
 479 * Intel Y-tiling layout
 480 *
 481 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 482 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 483 * chunks column-major, with a platform-dependent height. On top of that the
 484 * memory can apply platform-depending swizzling of some higher address bits
 485 * into bit6.
 486 *
 487 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 488 * On earlier platforms the is highly platforms specific and not useful for
 489 * cross-driver sharing. It exists since on a given platform it does uniquely
 490 * identify the layout in a simple way for i915-specific userspace, which
 491 * facilitated conversion of userspace to modifiers. Additionally the exact
 492 * format on some really old platforms is not known.
 493 */
 494#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
 495
 496/*
 497 * Intel Yf-tiling layout
 498 *
 499 * This is a tiled layout using 4Kb tiles in row-major layout.
 500 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 501 * are arranged in four groups (two wide, two high) with column-major layout.
 502 * Each group therefore consits out of four 256 byte units, which are also laid
 503 * out as 2x2 column-major.
 504 * 256 byte units are made out of four 64 byte blocks of pixels, producing
 505 * either a square block or a 2:1 unit.
 506 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 507 * in pixel depends on the pixel depth.
 508 */
 509#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 510
 511/*
 512 * Intel color control surface (CCS) for render compression
 513 *
 514 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 515 * The main surface will be plane index 0 and must be Y/Yf-tiled,
 516 * the CCS will be plane index 1.
 517 *
 518 * Each CCS tile matches a 1024x512 pixel area of the main surface.
 519 * To match certain aspects of the 3D hardware the CCS is
 520 * considered to be made up of normal 128Bx32 Y tiles, Thus
 521 * the CCS pitch must be specified in multiples of 128 bytes.
 522 *
 523 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 524 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 525 * But that fact is not relevant unless the memory is accessed
 526 * directly.
 527 */
 528#define I915_FORMAT_MOD_Y_TILED_CCS     fourcc_mod_code(INTEL, 4)
 529#define I915_FORMAT_MOD_Yf_TILED_CCS    fourcc_mod_code(INTEL, 5)
 530
 531/*
 532 * Intel color control surfaces (CCS) for Gen-12 render compression.
 533 *
 534 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 535 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 536 * main surface. In other words, 4 bits in CCS map to a main surface cache
 537 * line pair. The main surface pitch is required to be a multiple of four
 538 * Y-tile widths.
 539 */
 540#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
 541
 542/*
 543 * Intel color control surfaces (CCS) for Gen-12 media compression
 544 *
 545 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 546 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 547 * main surface. In other words, 4 bits in CCS map to a main surface cache
 548 * line pair. The main surface pitch is required to be a multiple of four
 549 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
 550 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
 551 * planes 2 and 3 for the respective CCS.
 552 */
 553#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
 554
 555/*
 556 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
 557 * compression.
 558 *
 559 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
 560 * and at index 1. The clear color is stored at index 2, and the pitch should
 561 * be ignored. The clear color structure is 256 bits. The first 128 bits
 562 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
 563 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
 564 * the converted clear color of size 64 bits. The first 32 bits store the Lower
 565 * Converted Clear Color value and the next 32 bits store the Higher Converted
 566 * Clear Color value when applicable. The Converted Clear Color values are
 567 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
 568 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
 569 * corresponds to an area of 4x1 tiles in the main surface. The main surface
 570 * pitch is required to be a multiple of 4 tile widths.
 571 */
 572#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
 573
 574/*
 575 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 576 *
 577 * Macroblocks are laid in a Z-shape, and each pixel data is following the
 578 * standard NV12 style.
 579 * As for NV12, an image is the result of two frame buffers: one for Y,
 580 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 581 * Alignment requirements are (for each buffer):
 582 * - multiple of 128 pixels for the width
 583 * - multiple of  32 pixels for the height
 584 *
 585 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 586 */
 587#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE       fourcc_mod_code(SAMSUNG, 1)
 588
 589/*
 590 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 591 *
 592 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 593 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 594 * they correspond to their 16x16 luma block.
 595 */
 596#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE       fourcc_mod_code(SAMSUNG, 2)
 597
 598/*
 599 * Qualcomm Compressed Format
 600 *
 601 * Refers to a compressed variant of the base format that is compressed.
 602 * Implementation may be platform and base-format specific.
 603 *
 604 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 605 * Pixel data pitch/stride is aligned with macrotile width.
 606 * Pixel data height is aligned with macrotile height.
 607 * Entire pixel data buffer is aligned with 4k(bytes).
 608 */
 609#define DRM_FORMAT_MOD_QCOM_COMPRESSED  fourcc_mod_code(QCOM, 1)
 610
 611/* Vivante framebuffer modifiers */
 612
 613/*
 614 * Vivante 4x4 tiling layout
 615 *
 616 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 617 * layout.
 618 */
 619#define DRM_FORMAT_MOD_VIVANTE_TILED            fourcc_mod_code(VIVANTE, 1)
 620
 621/*
 622 * Vivante 64x64 super-tiling layout
 623 *
 624 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 625 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 626 * major layout.
 627 *
 628 * For more information: see
 629 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 630 */
 631#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED      fourcc_mod_code(VIVANTE, 2)
 632
 633/*
 634 * Vivante 4x4 tiling layout for dual-pipe
 635 *
 636 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 637 * different base address. Offsets from the base addresses are therefore halved
 638 * compared to the non-split tiled layout.
 639 */
 640#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED      fourcc_mod_code(VIVANTE, 3)
 641
 642/*
 643 * Vivante 64x64 super-tiling layout for dual-pipe
 644 *
 645 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 646 * starts at a different base address. Offsets from the base addresses are
 647 * therefore halved compared to the non-split super-tiled layout.
 648 */
 649#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 650
 651/* NVIDIA frame buffer modifiers */
 652
 653/*
 654 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 655 *
 656 * Pixels are arranged in simple tiles of 16 x 16 bytes.
 657 */
 658#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 659
 660/*
 661 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
 662 * and Tegra GPUs starting with Tegra K1.
 663 *
 664 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
 665 * based on the architecture generation.  GOBs themselves are then arranged in
 666 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
 667 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
 668 * a block depth or height of "4").
 669 *
 670 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 671 * in full detail.
 672 *
 673 *       Macro
 674 * Bits  Param Description
 675 * ----  ----- -----------------------------------------------------------------
 676 *
 677 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
 678 *             compatibility with the existing
 679 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 680 *
 681 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
 682 *             compatibility with the existing
 683 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 684 *
 685 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
 686 *             size).  Must be zero.
 687 *
 688 *             Note there is no log2(width) parameter.  Some portions of the
 689 *             hardware support a block width of two gobs, but it is impractical
 690 *             to use due to lack of support elsewhere, and has no known
 691 *             benefits.
 692 *
 693 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
 694 *             in blocks, specified via log2(tile width in blocks)).  Must be
 695 *             zero.
 696 *
 697 * 19:12 k     Page Kind.  This value directly maps to a field in the page
 698 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
 699 *             in memory and can be derived from the tuple
 700 *
 701 *               (format, GPU model, compression type, samples per pixel)
 702 *
 703 *             Where compression type is defined below.  If GPU model were
 704 *             implied by the format modifier, format, or memory buffer, page
 705 *             kind would not need to be included in the modifier itself, but
 706 *             since the modifier should define the layout of the associated
 707 *             memory buffer independent from any device or other context, it
 708 *             must be included here.
 709 *
 710 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
 711 *             starting with Fermi GPUs.  Additionally, the mapping between page
 712 *             kind and bit layout has changed at various points.
 713 *
 714 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
 715 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
 716 *               2 = Gob Height 8, Turing+ Page Kind mapping
 717 *               3 = Reserved for future use.
 718 *
 719 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
 720 *             bit remapping step that occurs at an even lower level than the
 721 *             page kind and block linear swizzles.  This causes the layout of
 722 *             surfaces mapped in those SOC's GPUs to be incompatible with the
 723 *             equivalent mapping on other GPUs in the same system.
 724 *
 725 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
 726 *               1 = Desktop GPU and Tegra Xavier+ Layout
 727 *
 728 * 25:23 c     Lossless Framebuffer Compression type.
 729 *
 730 *               0 = none
 731 *               1 = ROP/3D, layout 1, exact compression format implied by Page
 732 *                   Kind field
 733 *               2 = ROP/3D, layout 2, exact compression format implied by Page
 734 *                   Kind field
 735 *               3 = CDE horizontal
 736 *               4 = CDE vertical
 737 *               5 = Reserved for future use
 738 *               6 = Reserved for future use
 739 *               7 = Reserved for future use
 740 *
 741 * 55:25 -     Reserved for future use.  Must be zero.
 742 */
 743#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
 744        fourcc_mod_code(NVIDIA, (0x10 | \
 745                                 ((h) & 0xf) | \
 746                                 (((k) & 0xff) << 12) | \
 747                                 (((g) & 0x3) << 20) | \
 748                                 (((s) & 0x1) << 22) | \
 749                                 (((c) & 0x7) << 23)))
 750
 751/* To grandfather in prior block linear format modifiers to the above layout,
 752 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
 753 * with block-linear layouts, is remapped within drivers to the value 0xfe,
 754 * which corresponds to the "generic" kind used for simple single-sample
 755 * uncompressed color formats on Fermi - Volta GPUs.
 756 */
 757static inline uint64_t
 758drm_fourcc_canonicalize_nvidia_format_mod(uint64_t modifier)
 759{
 760        if (!(modifier & 0x10) || (modifier & (0xff << 12)))
 761                return modifier;
 762        else
 763                return modifier | (0xfe << 12);
 764}
 765
 766/*
 767 * 16Bx2 Block Linear layout, used by Tegra K1 and later
 768 *
 769 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
 770 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
 771 *
 772 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
 773 *
 774 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
 775 * Valid values are:
 776 *
 777 * 0 == ONE_GOB
 778 * 1 == TWO_GOBS
 779 * 2 == FOUR_GOBS
 780 * 3 == EIGHT_GOBS
 781 * 4 == SIXTEEN_GOBS
 782 * 5 == THIRTYTWO_GOBS
 783 *
 784 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 785 * in full detail.
 786 */
 787#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
 788        DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
 789
 790#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
 791        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
 792#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
 793        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
 794#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
 795        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
 796#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
 797        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
 798#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
 799        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
 800#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
 801        DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
 802
 803/*
 804 * Some Broadcom modifiers take parameters, for example the number of
 805 * vertical lines in the image. Reserve the lower 32 bits for modifier
 806 * type, and the next 24 bits for parameters. Top 8 bits are the
 807 * vendor code.
 808 */
 809#define __fourcc_mod_broadcom_param_shift 8
 810#define __fourcc_mod_broadcom_param_bits 48
 811#define fourcc_mod_broadcom_code(val, params) \
 812        fourcc_mod_code(BROADCOM, ((((uint64_t)params) << __fourcc_mod_broadcom_param_shift) | val))
 813#define fourcc_mod_broadcom_param(m) \
 814        ((int)(((m) >> __fourcc_mod_broadcom_param_shift) &     \
 815               ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
 816#define fourcc_mod_broadcom_mod(m) \
 817        ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<    \
 818                 __fourcc_mod_broadcom_param_shift))
 819
 820/*
 821 * Broadcom VC4 "T" format
 822 *
 823 * This is the primary layout that the V3D GPU can texture from (it
 824 * can't do linear).  The T format has:
 825 *
 826 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
 827 *   pixels at 32 bit depth.
 828 *
 829 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
 830 *   16x16 pixels).
 831 *
 832 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
 833 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
 834 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
 835 *
 836 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
 837 *   tiles) or right-to-left (odd rows of 4k tiles).
 838 */
 839#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
 840
 841/*
 842 * Broadcom SAND format
 843 *
 844 * This is the native format that the H.264 codec block uses.  For VC4
 845 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
 846 *
 847 * The image can be considered to be split into columns, and the
 848 * columns are placed consecutively into memory.  The width of those
 849 * columns can be either 32, 64, 128, or 256 pixels, but in practice
 850 * only 128 pixel columns are used.
 851 *
 852 * The pitch between the start of each column is set to optimally
 853 * switch between SDRAM banks. This is passed as the number of lines
 854 * of column width in the modifier (we can't use the stride value due
 855 * to various core checks that look at it , so you should set the
 856 * stride to width*cpp).
 857 *
 858 * Note that the column height for this format modifier is the same
 859 * for all of the planes, assuming that each column contains both Y
 860 * and UV.  Some SAND-using hardware stores UV in a separate tiled
 861 * image from Y to reduce the column height, which is not supported
 862 * with these modifiers.
 863 *
 864 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
 865 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
 866 * wide, but as this is a 10 bpp format that translates to 96 pixels.
 867 */
 868
 869#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
 870        fourcc_mod_broadcom_code(2, v)
 871#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
 872        fourcc_mod_broadcom_code(3, v)
 873#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
 874        fourcc_mod_broadcom_code(4, v)
 875#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
 876        fourcc_mod_broadcom_code(5, v)
 877
 878#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
 879        DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
 880#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
 881        DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
 882#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
 883        DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
 884#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
 885        DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
 886
 887/* Broadcom UIF format
 888 *
 889 * This is the common format for the current Broadcom multimedia
 890 * blocks, including V3D 3.x and newer, newer video codecs, and
 891 * displays.
 892 *
 893 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
 894 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
 895 * stored in columns, with padding between the columns to ensure that
 896 * moving from one column to the next doesn't hit the same SDRAM page
 897 * bank.
 898 *
 899 * To calculate the padding, it is assumed that each hardware block
 900 * and the software driving it knows the platform's SDRAM page size,
 901 * number of banks, and XOR address, and that it's identical between
 902 * all blocks using the format.  This tiling modifier will use XOR as
 903 * necessary to reduce the padding.  If a hardware block can't do XOR,
 904 * the assumption is that a no-XOR tiling modifier will be created.
 905 */
 906#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
 907
 908/*
 909 * Arm Framebuffer Compression (AFBC) modifiers
 910 *
 911 * AFBC is a proprietary lossless image compression protocol and format.
 912 * It provides fine-grained random access and minimizes the amount of data
 913 * transferred between IP blocks.
 914 *
 915 * AFBC has several features which may be supported and/or used, which are
 916 * represented using bits in the modifier. Not all combinations are valid,
 917 * and different devices or use-cases may support different combinations.
 918 *
 919 * Further information on the use of AFBC modifiers can be found in
 920 * Documentation/gpu/afbc.rst
 921 */
 922
 923/*
 924 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
 925 * modifiers) denote the category for modifiers. Currently we have three
 926 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
 927 * sixteen different categories.
 928 */
 929#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
 930        fourcc_mod_code(ARM, ((uint64_t)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
 931
 932#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
 933#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
 934
 935#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
 936        DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
 937
 938/*
 939 * AFBC superblock size
 940 *
 941 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
 942 * size (in pixels) must be aligned to a multiple of the superblock size.
 943 * Four lowest significant bits(LSBs) are reserved for block size.
 944 *
 945 * Where one superblock size is specified, it applies to all planes of the
 946 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
 947 * the first applies to the Luma plane and the second applies to the Chroma
 948 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
 949 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
 950 */
 951#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
 952#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
 953#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
 954#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
 955#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
 956
 957/*
 958 * AFBC lossless colorspace transform
 959 *
 960 * Indicates that the buffer makes use of the AFBC lossless colorspace
 961 * transform.
 962 */
 963#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
 964
 965/*
 966 * AFBC block-split
 967 *
 968 * Indicates that the payload of each superblock is split. The second
 969 * half of the payload is positioned at a predefined offset from the start
 970 * of the superblock payload.
 971 */
 972#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
 973
 974/*
 975 * AFBC sparse layout
 976 *
 977 * This flag indicates that the payload of each superblock must be stored at a
 978 * predefined position relative to the other superblocks in the same AFBC
 979 * buffer. This order is the same order used by the header buffer. In this mode
 980 * each superblock is given the same amount of space as an uncompressed
 981 * superblock of the particular format would require, rounding up to the next
 982 * multiple of 128 bytes in size.
 983 */
 984#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
 985
 986/*
 987 * AFBC copy-block restrict
 988 *
 989 * Buffers with this flag must obey the copy-block restriction. The restriction
 990 * is such that there are no copy-blocks referring across the border of 8x8
 991 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
 992 */
 993#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
 994
 995/*
 996 * AFBC tiled layout
 997 *
 998 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
 999 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1000 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1001 * larger bpp formats. The order between the tiles is scan line.
1002 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1003 * to the tile size.
1004 */
1005#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1006
1007/*
1008 * AFBC solid color blocks
1009 *
1010 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1011 * can be reduced if a whole superblock is a single color.
1012 */
1013#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1014
1015/*
1016 * AFBC double-buffer
1017 *
1018 * Indicates that the buffer is allocated in a layout safe for front-buffer
1019 * rendering.
1020 */
1021#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1022
1023/*
1024 * AFBC buffer content hints
1025 *
1026 * Indicates that the buffer includes per-superblock content hints.
1027 */
1028#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1029
1030/* AFBC uncompressed storage mode
1031 *
1032 * Indicates that the buffer is using AFBC uncompressed storage mode.
1033 * In this mode all superblock payloads in the buffer use the uncompressed
1034 * storage mode, which is usually only used for data which cannot be compressed.
1035 * The buffer layout is the same as for AFBC buffers without USM set, this only
1036 * affects the storage mode of the individual superblocks. Note that even a
1037 * buffer without USM set may use uncompressed storage mode for some or all
1038 * superblocks, USM just guarantees it for all.
1039 */
1040#define AFBC_FORMAT_MOD_USM     (1ULL << 12)
1041
1042/*
1043 * Arm Fixed-Rate Compression (AFRC) modifiers
1044 *
1045 * AFRC is a proprietary fixed rate image compression protocol and format,
1046 * designed to provide guaranteed bandwidth and memory footprint
1047 * reductions in graphics and media use-cases.
1048 *
1049 * AFRC buffers consist of one or more planes, with the same components
1050 * and meaning as an uncompressed buffer using the same pixel format.
1051 *
1052 * Within each plane, the pixel/luma/chroma values are grouped into
1053 * "coding unit" blocks which are individually compressed to a
1054 * fixed size (in bytes). All coding units within a given plane of a buffer
1055 * store the same number of values, and have the same compressed size.
1056 *
1057 * The coding unit size is configurable, allowing different rates of compression.
1058 *
1059 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1060 * depends on the coding unit size.
1061 *
1062 * Coding Unit Size   Plane Alignment
1063 * ----------------   ---------------
1064 * 16 bytes           1024 bytes
1065 * 24 bytes           512  bytes
1066 * 32 bytes           2048 bytes
1067 *
1068 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1069 * to a multiple of the paging tile dimensions.
1070 * The dimensions of each paging tile depend on whether the buffer is optimised for
1071 * scanline (SCAN layout) or rotated (ROT layout) access.
1072 *
1073 * Layout   Paging Tile Width   Paging Tile Height
1074 * ------   -----------------   ------------------
1075 * SCAN     16 coding units     4 coding units
1076 * ROT      8  coding units     8 coding units
1077 *
1078 * The dimensions of each coding unit depend on the number of components
1079 * in the compressed plane and whether the buffer is optimised for
1080 * scanline (SCAN layout) or rotated (ROT layout) access.
1081 *
1082 * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1083 * -----------------------------   ---------   -----------------   ------------------
1084 * 1                               SCAN        16 samples          4 samples
1085 * Example: 16x4 luma samples in a 'Y' plane
1086 *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1087 * -----------------------------   ---------   -----------------   ------------------
1088 * 1                               ROT         8 samples           8 samples
1089 * Example: 8x8 luma samples in a 'Y' plane
1090 *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1091 * -----------------------------   ---------   -----------------   ------------------
1092 * 2                               DONT CARE   8 samples           4 samples
1093 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1094 * -----------------------------   ---------   -----------------   ------------------
1095 * 3                               DONT CARE   4 samples           4 samples
1096 * Example: 4x4 pixels in an RGB buffer without alpha
1097 * -----------------------------   ---------   -----------------   ------------------
1098 * 4                               DONT CARE   4 samples           4 samples
1099 * Example: 4x4 pixels in an RGB buffer with alpha
1100 */
1101
1102#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1103
1104#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1105        DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1106
1107/*
1108 * AFRC coding unit size modifier.
1109 *
1110 * Indicates the number of bytes used to store each compressed coding unit for
1111 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1112 * is the same for both Cb and Cr, which may be stored in separate planes.
1113 *
1114 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1115 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1116 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1117 * this corresponds to the luma plane.
1118 *
1119 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1120 * each compressed coding unit in the second and third planes in the buffer.
1121 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1122 *
1123 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1124 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1125 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1126 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1127 */
1128#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1129#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1130#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1131#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1132
1133#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1134#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1135
1136/*
1137 * AFRC scanline memory layout.
1138 *
1139 * Indicates if the buffer uses the scanline-optimised layout
1140 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1141 * The memory layout is the same for all planes.
1142 */
1143#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1144
1145/*
1146 * Arm 16x16 Block U-Interleaved modifier
1147 *
1148 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1149 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1150 * in the block are reordered.
1151 */
1152#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1153        DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1154
1155/*
1156 * Allwinner tiled modifier
1157 *
1158 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1159 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1160 * planes.
1161 *
1162 * With this tiling, the luminance samples are disposed in tiles representing
1163 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1164 * The pixel order in each tile is linear and the tiles are disposed linearly,
1165 * both in row-major order.
1166 */
1167#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1168
1169/*
1170 * Amlogic Video Framebuffer Compression modifiers
1171 *
1172 * Amlogic uses a proprietary lossless image compression protocol and format
1173 * for their hardware video codec accelerators, either video decoders or
1174 * video input encoders.
1175 *
1176 * It considerably reduces memory bandwidth while writing and reading
1177 * frames in memory.
1178 *
1179 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1180 * per component YCbCr 420, single plane :
1181 * - DRM_FORMAT_YUV420_8BIT
1182 * - DRM_FORMAT_YUV420_10BIT
1183 *
1184 * The first 8 bits of the mode defines the layout, then the following 8 bits
1185 * defines the options changing the layout.
1186 *
1187 * Not all combinations are valid, and different SoCs may support different
1188 * combinations of layout and options.
1189 */
1190#define __fourcc_mod_amlogic_layout_mask 0xff
1191#define __fourcc_mod_amlogic_options_shift 8
1192#define __fourcc_mod_amlogic_options_mask 0xff
1193
1194#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1195        fourcc_mod_code(AMLOGIC, \
1196                        ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1197                        (((__options) & __fourcc_mod_amlogic_options_mask) \
1198                         << __fourcc_mod_amlogic_options_shift))
1199
1200/* Amlogic FBC Layouts */
1201
1202/*
1203 * Amlogic FBC Basic Layout
1204 *
1205 * The basic layout is composed of:
1206 * - a body content organized in 64x32 superblocks with 4096 bytes per
1207 *   superblock in default mode.
1208 * - a 32 bytes per 128x64 header block
1209 *
1210 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1211 */
1212#define AMLOGIC_FBC_LAYOUT_BASIC                (1ULL)
1213
1214/*
1215 * Amlogic FBC Scatter Memory layout
1216 *
1217 * Indicates the header contains IOMMU references to the compressed
1218 * frames content to optimize memory access and layout.
1219 *
1220 * In this mode, only the header memory address is needed, thus the
1221 * content memory organization is tied to the current producer
1222 * execution and cannot be saved/dumped neither transferrable between
1223 * Amlogic SoCs supporting this modifier.
1224 *
1225 * Due to the nature of the layout, these buffers are not expected to
1226 * be accessible by the user-space clients, but only accessible by the
1227 * hardware producers and consumers.
1228 *
1229 * The user-space clients should expect a failure while trying to mmap
1230 * the DMA-BUF handle returned by the producer.
1231 */
1232#define AMLOGIC_FBC_LAYOUT_SCATTER              (2ULL)
1233
1234/* Amlogic FBC Layout Options Bit Mask */
1235
1236/*
1237 * Amlogic FBC Memory Saving mode
1238 *
1239 * Indicates the storage is packed when pixel size is multiple of word
1240 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1241 * memory.
1242 *
1243 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1244 * the basic layout and 3200 bytes per 64x32 superblock combined with
1245 * the scatter layout.
1246 */
1247#define AMLOGIC_FBC_OPTION_MEM_SAVING           (1ULL << 0)
1248
1249/*
1250 * AMD modifiers
1251 *
1252 * Memory layout:
1253 *
1254 * without DCC:
1255 *   - main surface
1256 *
1257 * with DCC & without DCC_RETILE:
1258 *   - main surface in plane 0
1259 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1260 *
1261 * with DCC & DCC_RETILE:
1262 *   - main surface in plane 0
1263 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1264 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1265 *
1266 * For multi-plane formats the above surfaces get merged into one plane for
1267 * each format plane, based on the required alignment only.
1268 *
1269 * Bits  Parameter                Notes
1270 * ----- ------------------------ ---------------------------------------------
1271 *
1272 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1273 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1274 *    13 DCC
1275 *    14 DCC_RETILE
1276 *    15 DCC_PIPE_ALIGN
1277 *    16 DCC_INDEPENDENT_64B
1278 *    17 DCC_INDEPENDENT_128B
1279 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1280 *    20 DCC_CONSTANT_ENCODE
1281 * 23:21 PIPE_XOR_BITS            Only for some chips
1282 * 26:24 BANK_XOR_BITS            Only for some chips
1283 * 29:27 PACKERS                  Only for some chips
1284 * 32:30 RB                       Only for some chips
1285 * 35:33 PIPE                     Only for some chips
1286 * 55:36 -                        Reserved for future use, must be zero
1287 */
1288#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1289
1290#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1291
1292/* Reserve 0 for GFX8 and older */
1293#define AMD_FMT_MOD_TILE_VER_GFX9 1
1294#define AMD_FMT_MOD_TILE_VER_GFX10 2
1295#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1296
1297/*
1298 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1299 * version.
1300 */
1301#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1302
1303/*
1304 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1305 * GFX9 as canonical version.
1306 */
1307#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1308#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1309#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1310#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1311
1312#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1313#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1314#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1315
1316#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1317#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1318#define AMD_FMT_MOD_TILE_SHIFT 8
1319#define AMD_FMT_MOD_TILE_MASK 0x1F
1320
1321/* Whether DCC compression is enabled. */
1322#define AMD_FMT_MOD_DCC_SHIFT 13
1323#define AMD_FMT_MOD_DCC_MASK 0x1
1324
1325/*
1326 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1327 * one which is not-aligned.
1328 */
1329#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1330#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1331
1332/* Only set if DCC_RETILE = false */
1333#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1334#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1335
1336#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1337#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1338#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1339#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1340#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1341#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1342
1343/*
1344 * DCC supports embedding some clear colors directly in the DCC surface.
1345 * However, on older GPUs the rendering HW ignores the embedded clear color
1346 * and prefers the driver provided color. This necessitates doing a fastclear
1347 * eliminate operation before a process transfers control.
1348 *
1349 * If this bit is set that means the fastclear eliminate is not needed for these
1350 * embeddable colors.
1351 */
1352#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1353#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1354
1355/*
1356 * The below fields are for accounting for per GPU differences. These are only
1357 * relevant for GFX9 and later and if the tile field is *_X/_T.
1358 *
1359 * PIPE_XOR_BITS = always needed
1360 * BANK_XOR_BITS = only for TILE_VER_GFX9
1361 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1362 * RB = only for TILE_VER_GFX9 & DCC
1363 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1364 */
1365#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1366#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1367#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1368#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1369#define AMD_FMT_MOD_PACKERS_SHIFT 27
1370#define AMD_FMT_MOD_PACKERS_MASK 0x7
1371#define AMD_FMT_MOD_RB_SHIFT 30
1372#define AMD_FMT_MOD_RB_MASK 0x7
1373#define AMD_FMT_MOD_PIPE_SHIFT 33
1374#define AMD_FMT_MOD_PIPE_MASK 0x7
1375
1376#define AMD_FMT_MOD_SET(field, value) \
1377        ((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1378#define AMD_FMT_MOD_GET(field, value) \
1379        (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1380#define AMD_FMT_MOD_CLEAR(field) \
1381        (~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1382
1383#if defined(__cplusplus)
1384}
1385#endif
1386
1387#endif /* DRM_FOURCC_H */
1388