qemu/linux-headers/linux/vfio.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2/*
   3 * VFIO API definition
   4 *
   5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   6 *     Author: Alex Williamson <alex.williamson@redhat.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12#ifndef VFIO_H
  13#define VFIO_H
  14
  15#include <linux/types.h>
  16#include <linux/ioctl.h>
  17
  18#define VFIO_API_VERSION        0
  19
  20
  21/* Kernel & User level defines for VFIO IOCTLs. */
  22
  23/* Extensions */
  24
  25#define VFIO_TYPE1_IOMMU                1
  26#define VFIO_SPAPR_TCE_IOMMU            2
  27#define VFIO_TYPE1v2_IOMMU              3
  28/*
  29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
  30 * capability is subject to change as groups are added or removed.
  31 */
  32#define VFIO_DMA_CC_IOMMU               4
  33
  34/* Check if EEH is supported */
  35#define VFIO_EEH                        5
  36
  37/* Two-stage IOMMU */
  38#define VFIO_TYPE1_NESTING_IOMMU        6       /* Implies v2 */
  39
  40#define VFIO_SPAPR_TCE_v2_IOMMU         7
  41
  42/*
  43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
  44 * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
  45 * code will taint the host kernel and should be used with extreme caution.
  46 */
  47#define VFIO_NOIOMMU_IOMMU              8
  48
  49/* Supports VFIO_DMA_UNMAP_FLAG_ALL */
  50#define VFIO_UNMAP_ALL                  9
  51
  52/* Supports the vaddr flag for DMA map and unmap */
  53#define VFIO_UPDATE_VADDR               10
  54
  55/*
  56 * The IOCTL interface is designed for extensibility by embedding the
  57 * structure length (argsz) and flags into structures passed between
  58 * kernel and userspace.  We therefore use the _IO() macro for these
  59 * defines to avoid implicitly embedding a size into the ioctl request.
  60 * As structure fields are added, argsz will increase to match and flag
  61 * bits will be defined to indicate additional fields with valid data.
  62 * It's *always* the caller's responsibility to indicate the size of
  63 * the structure passed by setting argsz appropriately.
  64 */
  65
  66#define VFIO_TYPE       (';')
  67#define VFIO_BASE       100
  68
  69/*
  70 * For extension of INFO ioctls, VFIO makes use of a capability chain
  71 * designed after PCI/e capabilities.  A flag bit indicates whether
  72 * this capability chain is supported and a field defined in the fixed
  73 * structure defines the offset of the first capability in the chain.
  74 * This field is only valid when the corresponding bit in the flags
  75 * bitmap is set.  This offset field is relative to the start of the
  76 * INFO buffer, as is the next field within each capability header.
  77 * The id within the header is a shared address space per INFO ioctl,
  78 * while the version field is specific to the capability id.  The
  79 * contents following the header are specific to the capability id.
  80 */
  81struct vfio_info_cap_header {
  82        __u16   id;             /* Identifies capability */
  83        __u16   version;        /* Version specific to the capability ID */
  84        __u32   next;           /* Offset of next capability */
  85};
  86
  87/*
  88 * Callers of INFO ioctls passing insufficiently sized buffers will see
  89 * the capability chain flag bit set, a zero value for the first capability
  90 * offset (if available within the provided argsz), and argsz will be
  91 * updated to report the necessary buffer size.  For compatibility, the
  92 * INFO ioctl will not report error in this case, but the capability chain
  93 * will not be available.
  94 */
  95
  96/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
  97
  98/**
  99 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
 100 *
 101 * Report the version of the VFIO API.  This allows us to bump the entire
 102 * API version should we later need to add or change features in incompatible
 103 * ways.
 104 * Return: VFIO_API_VERSION
 105 * Availability: Always
 106 */
 107#define VFIO_GET_API_VERSION            _IO(VFIO_TYPE, VFIO_BASE + 0)
 108
 109/**
 110 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
 111 *
 112 * Check whether an extension is supported.
 113 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
 114 * Availability: Always
 115 */
 116#define VFIO_CHECK_EXTENSION            _IO(VFIO_TYPE, VFIO_BASE + 1)
 117
 118/**
 119 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
 120 *
 121 * Set the iommu to the given type.  The type must be supported by an
 122 * iommu driver as verified by calling CHECK_EXTENSION using the same
 123 * type.  A group must be set to this file descriptor before this
 124 * ioctl is available.  The IOMMU interfaces enabled by this call are
 125 * specific to the value set.
 126 * Return: 0 on success, -errno on failure
 127 * Availability: When VFIO group attached
 128 */
 129#define VFIO_SET_IOMMU                  _IO(VFIO_TYPE, VFIO_BASE + 2)
 130
 131/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
 132
 133/**
 134 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
 135 *                                              struct vfio_group_status)
 136 *
 137 * Retrieve information about the group.  Fills in provided
 138 * struct vfio_group_info.  Caller sets argsz.
 139 * Return: 0 on succes, -errno on failure.
 140 * Availability: Always
 141 */
 142struct vfio_group_status {
 143        __u32   argsz;
 144        __u32   flags;
 145#define VFIO_GROUP_FLAGS_VIABLE         (1 << 0)
 146#define VFIO_GROUP_FLAGS_CONTAINER_SET  (1 << 1)
 147};
 148#define VFIO_GROUP_GET_STATUS           _IO(VFIO_TYPE, VFIO_BASE + 3)
 149
 150/**
 151 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
 152 *
 153 * Set the container for the VFIO group to the open VFIO file
 154 * descriptor provided.  Groups may only belong to a single
 155 * container.  Containers may, at their discretion, support multiple
 156 * groups.  Only when a container is set are all of the interfaces
 157 * of the VFIO file descriptor and the VFIO group file descriptor
 158 * available to the user.
 159 * Return: 0 on success, -errno on failure.
 160 * Availability: Always
 161 */
 162#define VFIO_GROUP_SET_CONTAINER        _IO(VFIO_TYPE, VFIO_BASE + 4)
 163
 164/**
 165 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
 166 *
 167 * Remove the group from the attached container.  This is the
 168 * opposite of the SET_CONTAINER call and returns the group to
 169 * an initial state.  All device file descriptors must be released
 170 * prior to calling this interface.  When removing the last group
 171 * from a container, the IOMMU will be disabled and all state lost,
 172 * effectively also returning the VFIO file descriptor to an initial
 173 * state.
 174 * Return: 0 on success, -errno on failure.
 175 * Availability: When attached to container
 176 */
 177#define VFIO_GROUP_UNSET_CONTAINER      _IO(VFIO_TYPE, VFIO_BASE + 5)
 178
 179/**
 180 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
 181 *
 182 * Return a new file descriptor for the device object described by
 183 * the provided string.  The string should match a device listed in
 184 * the devices subdirectory of the IOMMU group sysfs entry.  The
 185 * group containing the device must already be added to this context.
 186 * Return: new file descriptor on success, -errno on failure.
 187 * Availability: When attached to container
 188 */
 189#define VFIO_GROUP_GET_DEVICE_FD        _IO(VFIO_TYPE, VFIO_BASE + 6)
 190
 191/* --------------- IOCTLs for DEVICE file descriptors --------------- */
 192
 193/**
 194 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
 195 *                                              struct vfio_device_info)
 196 *
 197 * Retrieve information about the device.  Fills in provided
 198 * struct vfio_device_info.  Caller sets argsz.
 199 * Return: 0 on success, -errno on failure.
 200 */
 201struct vfio_device_info {
 202        __u32   argsz;
 203        __u32   flags;
 204#define VFIO_DEVICE_FLAGS_RESET (1 << 0)        /* Device supports reset */
 205#define VFIO_DEVICE_FLAGS_PCI   (1 << 1)        /* vfio-pci device */
 206#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)     /* vfio-platform device */
 207#define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)        /* vfio-amba device */
 208#define VFIO_DEVICE_FLAGS_CCW   (1 << 4)        /* vfio-ccw device */
 209#define VFIO_DEVICE_FLAGS_AP    (1 << 5)        /* vfio-ap device */
 210#define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)       /* vfio-fsl-mc device */
 211#define VFIO_DEVICE_FLAGS_CAPS  (1 << 7)        /* Info supports caps */
 212        __u32   num_regions;    /* Max region index + 1 */
 213        __u32   num_irqs;       /* Max IRQ index + 1 */
 214        __u32   cap_offset;     /* Offset within info struct of first cap */
 215};
 216#define VFIO_DEVICE_GET_INFO            _IO(VFIO_TYPE, VFIO_BASE + 7)
 217
 218/*
 219 * Vendor driver using Mediated device framework should provide device_api
 220 * attribute in supported type attribute groups. Device API string should be one
 221 * of the following corresponding to device flags in vfio_device_info structure.
 222 */
 223
 224#define VFIO_DEVICE_API_PCI_STRING              "vfio-pci"
 225#define VFIO_DEVICE_API_PLATFORM_STRING         "vfio-platform"
 226#define VFIO_DEVICE_API_AMBA_STRING             "vfio-amba"
 227#define VFIO_DEVICE_API_CCW_STRING              "vfio-ccw"
 228#define VFIO_DEVICE_API_AP_STRING               "vfio-ap"
 229
 230/*
 231 * The following capabilities are unique to s390 zPCI devices.  Their contents
 232 * are further-defined in vfio_zdev.h
 233 */
 234#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE          1
 235#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP         2
 236#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL          3
 237#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP          4
 238
 239/**
 240 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
 241 *                                     struct vfio_region_info)
 242 *
 243 * Retrieve information about a device region.  Caller provides
 244 * struct vfio_region_info with index value set.  Caller sets argsz.
 245 * Implementation of region mapping is bus driver specific.  This is
 246 * intended to describe MMIO, I/O port, as well as bus specific
 247 * regions (ex. PCI config space).  Zero sized regions may be used
 248 * to describe unimplemented regions (ex. unimplemented PCI BARs).
 249 * Return: 0 on success, -errno on failure.
 250 */
 251struct vfio_region_info {
 252        __u32   argsz;
 253        __u32   flags;
 254#define VFIO_REGION_INFO_FLAG_READ      (1 << 0) /* Region supports read */
 255#define VFIO_REGION_INFO_FLAG_WRITE     (1 << 1) /* Region supports write */
 256#define VFIO_REGION_INFO_FLAG_MMAP      (1 << 2) /* Region supports mmap */
 257#define VFIO_REGION_INFO_FLAG_CAPS      (1 << 3) /* Info supports caps */
 258        __u32   index;          /* Region index */
 259        __u32   cap_offset;     /* Offset within info struct of first cap */
 260        __u64   size;           /* Region size (bytes) */
 261        __u64   offset;         /* Region offset from start of device fd */
 262};
 263#define VFIO_DEVICE_GET_REGION_INFO     _IO(VFIO_TYPE, VFIO_BASE + 8)
 264
 265/*
 266 * The sparse mmap capability allows finer granularity of specifying areas
 267 * within a region with mmap support.  When specified, the user should only
 268 * mmap the offset ranges specified by the areas array.  mmaps outside of the
 269 * areas specified may fail (such as the range covering a PCI MSI-X table) or
 270 * may result in improper device behavior.
 271 *
 272 * The structures below define version 1 of this capability.
 273 */
 274#define VFIO_REGION_INFO_CAP_SPARSE_MMAP        1
 275
 276struct vfio_region_sparse_mmap_area {
 277        __u64   offset; /* Offset of mmap'able area within region */
 278        __u64   size;   /* Size of mmap'able area */
 279};
 280
 281struct vfio_region_info_cap_sparse_mmap {
 282        struct vfio_info_cap_header header;
 283        __u32   nr_areas;
 284        __u32   reserved;
 285        struct vfio_region_sparse_mmap_area areas[];
 286};
 287
 288/*
 289 * The device specific type capability allows regions unique to a specific
 290 * device or class of devices to be exposed.  This helps solve the problem for
 291 * vfio bus drivers of defining which region indexes correspond to which region
 292 * on the device, without needing to resort to static indexes, as done by
 293 * vfio-pci.  For instance, if we were to go back in time, we might remove
 294 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
 295 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
 296 * make a "VGA" device specific type to describe the VGA access space.  This
 297 * means that non-VGA devices wouldn't need to waste this index, and thus the
 298 * address space associated with it due to implementation of device file
 299 * descriptor offsets in vfio-pci.
 300 *
 301 * The current implementation is now part of the user ABI, so we can't use this
 302 * for VGA, but there are other upcoming use cases, such as opregions for Intel
 303 * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
 304 * use this for future additions.
 305 *
 306 * The structure below defines version 1 of this capability.
 307 */
 308#define VFIO_REGION_INFO_CAP_TYPE       2
 309
 310struct vfio_region_info_cap_type {
 311        struct vfio_info_cap_header header;
 312        __u32 type;     /* global per bus driver */
 313        __u32 subtype;  /* type specific */
 314};
 315
 316/*
 317 * List of region types, global per bus driver.
 318 * If you introduce a new type, please add it here.
 319 */
 320
 321/* PCI region type containing a PCI vendor part */
 322#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE        (1 << 31)
 323#define VFIO_REGION_TYPE_PCI_VENDOR_MASK        (0xffff)
 324#define VFIO_REGION_TYPE_GFX                    (1)
 325#define VFIO_REGION_TYPE_CCW                    (2)
 326#define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
 327
 328/* sub-types for VFIO_REGION_TYPE_PCI_* */
 329
 330/* 8086 vendor PCI sub-types */
 331#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION  (1)
 332#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG  (2)
 333#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG   (3)
 334
 335/* 10de vendor PCI sub-types */
 336/*
 337 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
 338 *
 339 * Deprecated, region no longer provided
 340 */
 341#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM  (1)
 342
 343/* 1014 vendor PCI sub-types */
 344/*
 345 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
 346 * to do TLB invalidation on a GPU.
 347 *
 348 * Deprecated, region no longer provided
 349 */
 350#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD    (1)
 351
 352/* sub-types for VFIO_REGION_TYPE_GFX */
 353#define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
 354
 355/**
 356 * struct vfio_region_gfx_edid - EDID region layout.
 357 *
 358 * Set display link state and EDID blob.
 359 *
 360 * The EDID blob has monitor information such as brand, name, serial
 361 * number, physical size, supported video modes and more.
 362 *
 363 * This special region allows userspace (typically qemu) set a virtual
 364 * EDID for the virtual monitor, which allows a flexible display
 365 * configuration.
 366 *
 367 * For the edid blob spec look here:
 368 *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
 369 *
 370 * On linux systems you can find the EDID blob in sysfs:
 371 *    /sys/class/drm/${card}/${connector}/edid
 372 *
 373 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
 374 * decode the EDID blob.
 375 *
 376 * @edid_offset: location of the edid blob, relative to the
 377 *               start of the region (readonly).
 378 * @edid_max_size: max size of the edid blob (readonly).
 379 * @edid_size: actual edid size (read/write).
 380 * @link_state: display link state (read/write).
 381 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
 382 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
 383 * @max_xres: max display width (0 == no limitation, readonly).
 384 * @max_yres: max display height (0 == no limitation, readonly).
 385 *
 386 * EDID update protocol:
 387 *   (1) set link-state to down.
 388 *   (2) update edid blob and size.
 389 *   (3) set link-state to up.
 390 */
 391struct vfio_region_gfx_edid {
 392        __u32 edid_offset;
 393        __u32 edid_max_size;
 394        __u32 edid_size;
 395        __u32 max_xres;
 396        __u32 max_yres;
 397        __u32 link_state;
 398#define VFIO_DEVICE_GFX_LINK_STATE_UP    1
 399#define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
 400};
 401
 402/* sub-types for VFIO_REGION_TYPE_CCW */
 403#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD       (1)
 404#define VFIO_REGION_SUBTYPE_CCW_SCHIB           (2)
 405#define VFIO_REGION_SUBTYPE_CCW_CRW             (3)
 406
 407/* sub-types for VFIO_REGION_TYPE_MIGRATION */
 408#define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
 409
 410struct vfio_device_migration_info {
 411        __u32 device_state;         /* VFIO device state */
 412#define VFIO_DEVICE_STATE_V1_STOP      (0)
 413#define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
 414#define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
 415#define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
 416#define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
 417                                     VFIO_DEVICE_STATE_V1_SAVING |  \
 418                                     VFIO_DEVICE_STATE_V1_RESUMING)
 419
 420#define VFIO_DEVICE_STATE_VALID(state) \
 421        (state & VFIO_DEVICE_STATE_V1_RESUMING ? \
 422        (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
 423
 424#define VFIO_DEVICE_STATE_IS_ERROR(state) \
 425        ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
 426                                              VFIO_DEVICE_STATE_V1_RESUMING))
 427
 428#define VFIO_DEVICE_STATE_SET_ERROR(state) \
 429        ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
 430                                             VFIO_DEVICE_STATE_V1_RESUMING)
 431
 432        __u32 reserved;
 433        __u64 pending_bytes;
 434        __u64 data_offset;
 435        __u64 data_size;
 436};
 437
 438/*
 439 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
 440 * which allows direct access to non-MSIX registers which happened to be within
 441 * the same system page.
 442 *
 443 * Even though the userspace gets direct access to the MSIX data, the existing
 444 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
 445 */
 446#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE      3
 447
 448/*
 449 * Capability with compressed real address (aka SSA - small system address)
 450 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
 451 * and by the userspace to associate a NVLink bridge with a GPU.
 452 *
 453 * Deprecated, capability no longer provided
 454 */
 455#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT     4
 456
 457struct vfio_region_info_cap_nvlink2_ssatgt {
 458        struct vfio_info_cap_header header;
 459        __u64 tgt;
 460};
 461
 462/*
 463 * Capability with an NVLink link speed. The value is read by
 464 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
 465 * property in the device tree. The value is fixed in the hardware
 466 * and failing to provide the correct value results in the link
 467 * not working with no indication from the driver why.
 468 *
 469 * Deprecated, capability no longer provided
 470 */
 471#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD     5
 472
 473struct vfio_region_info_cap_nvlink2_lnkspd {
 474        struct vfio_info_cap_header header;
 475        __u32 link_speed;
 476        __u32 __pad;
 477};
 478
 479/**
 480 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
 481 *                                  struct vfio_irq_info)
 482 *
 483 * Retrieve information about a device IRQ.  Caller provides
 484 * struct vfio_irq_info with index value set.  Caller sets argsz.
 485 * Implementation of IRQ mapping is bus driver specific.  Indexes
 486 * using multiple IRQs are primarily intended to support MSI-like
 487 * interrupt blocks.  Zero count irq blocks may be used to describe
 488 * unimplemented interrupt types.
 489 *
 490 * The EVENTFD flag indicates the interrupt index supports eventfd based
 491 * signaling.
 492 *
 493 * The MASKABLE flags indicates the index supports MASK and UNMASK
 494 * actions described below.
 495 *
 496 * AUTOMASKED indicates that after signaling, the interrupt line is
 497 * automatically masked by VFIO and the user needs to unmask the line
 498 * to receive new interrupts.  This is primarily intended to distinguish
 499 * level triggered interrupts.
 500 *
 501 * The NORESIZE flag indicates that the interrupt lines within the index
 502 * are setup as a set and new subindexes cannot be enabled without first
 503 * disabling the entire index.  This is used for interrupts like PCI MSI
 504 * and MSI-X where the driver may only use a subset of the available
 505 * indexes, but VFIO needs to enable a specific number of vectors
 506 * upfront.  In the case of MSI-X, where the user can enable MSI-X and
 507 * then add and unmask vectors, it's up to userspace to make the decision
 508 * whether to allocate the maximum supported number of vectors or tear
 509 * down setup and incrementally increase the vectors as each is enabled.
 510 */
 511struct vfio_irq_info {
 512        __u32   argsz;
 513        __u32   flags;
 514#define VFIO_IRQ_INFO_EVENTFD           (1 << 0)
 515#define VFIO_IRQ_INFO_MASKABLE          (1 << 1)
 516#define VFIO_IRQ_INFO_AUTOMASKED        (1 << 2)
 517#define VFIO_IRQ_INFO_NORESIZE          (1 << 3)
 518        __u32   index;          /* IRQ index */
 519        __u32   count;          /* Number of IRQs within this index */
 520};
 521#define VFIO_DEVICE_GET_IRQ_INFO        _IO(VFIO_TYPE, VFIO_BASE + 9)
 522
 523/**
 524 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
 525 *
 526 * Set signaling, masking, and unmasking of interrupts.  Caller provides
 527 * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
 528 * the range of subindexes being specified.
 529 *
 530 * The DATA flags specify the type of data provided.  If DATA_NONE, the
 531 * operation performs the specified action immediately on the specified
 532 * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
 533 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
 534 *
 535 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
 536 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
 537 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
 538 * data = {1,0,1}
 539 *
 540 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
 541 * A value of -1 can be used to either de-assign interrupts if already
 542 * assigned or skip un-assigned interrupts.  For example, to set an eventfd
 543 * to be trigger for interrupts [0,0] and [0,2]:
 544 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
 545 * data = {fd1, -1, fd2}
 546 * If index [0,1] is previously set, two count = 1 ioctls calls would be
 547 * required to set [0,0] and [0,2] without changing [0,1].
 548 *
 549 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
 550 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
 551 * from userspace (ie. simulate hardware triggering).
 552 *
 553 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
 554 * enables the interrupt index for the device.  Individual subindex interrupts
 555 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
 556 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
 557 *
 558 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
 559 * ACTION_TRIGGER specifies kernel->user signaling.
 560 */
 561struct vfio_irq_set {
 562        __u32   argsz;
 563        __u32   flags;
 564#define VFIO_IRQ_SET_DATA_NONE          (1 << 0) /* Data not present */
 565#define VFIO_IRQ_SET_DATA_BOOL          (1 << 1) /* Data is bool (u8) */
 566#define VFIO_IRQ_SET_DATA_EVENTFD       (1 << 2) /* Data is eventfd (s32) */
 567#define VFIO_IRQ_SET_ACTION_MASK        (1 << 3) /* Mask interrupt */
 568#define VFIO_IRQ_SET_ACTION_UNMASK      (1 << 4) /* Unmask interrupt */
 569#define VFIO_IRQ_SET_ACTION_TRIGGER     (1 << 5) /* Trigger interrupt */
 570        __u32   index;
 571        __u32   start;
 572        __u32   count;
 573        __u8    data[];
 574};
 575#define VFIO_DEVICE_SET_IRQS            _IO(VFIO_TYPE, VFIO_BASE + 10)
 576
 577#define VFIO_IRQ_SET_DATA_TYPE_MASK     (VFIO_IRQ_SET_DATA_NONE | \
 578                                         VFIO_IRQ_SET_DATA_BOOL | \
 579                                         VFIO_IRQ_SET_DATA_EVENTFD)
 580#define VFIO_IRQ_SET_ACTION_TYPE_MASK   (VFIO_IRQ_SET_ACTION_MASK | \
 581                                         VFIO_IRQ_SET_ACTION_UNMASK | \
 582                                         VFIO_IRQ_SET_ACTION_TRIGGER)
 583/**
 584 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
 585 *
 586 * Reset a device.
 587 */
 588#define VFIO_DEVICE_RESET               _IO(VFIO_TYPE, VFIO_BASE + 11)
 589
 590/*
 591 * The VFIO-PCI bus driver makes use of the following fixed region and
 592 * IRQ index mapping.  Unimplemented regions return a size of zero.
 593 * Unimplemented IRQ types return a count of zero.
 594 */
 595
 596enum {
 597        VFIO_PCI_BAR0_REGION_INDEX,
 598        VFIO_PCI_BAR1_REGION_INDEX,
 599        VFIO_PCI_BAR2_REGION_INDEX,
 600        VFIO_PCI_BAR3_REGION_INDEX,
 601        VFIO_PCI_BAR4_REGION_INDEX,
 602        VFIO_PCI_BAR5_REGION_INDEX,
 603        VFIO_PCI_ROM_REGION_INDEX,
 604        VFIO_PCI_CONFIG_REGION_INDEX,
 605        /*
 606         * Expose VGA regions defined for PCI base class 03, subclass 00.
 607         * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
 608         * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
 609         * range is found at it's identity mapped offset from the region
 610         * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
 611         * between described ranges are unimplemented.
 612         */
 613        VFIO_PCI_VGA_REGION_INDEX,
 614        VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
 615                                 /* device specific cap to define content. */
 616};
 617
 618enum {
 619        VFIO_PCI_INTX_IRQ_INDEX,
 620        VFIO_PCI_MSI_IRQ_INDEX,
 621        VFIO_PCI_MSIX_IRQ_INDEX,
 622        VFIO_PCI_ERR_IRQ_INDEX,
 623        VFIO_PCI_REQ_IRQ_INDEX,
 624        VFIO_PCI_NUM_IRQS
 625};
 626
 627/*
 628 * The vfio-ccw bus driver makes use of the following fixed region and
 629 * IRQ index mapping. Unimplemented regions return a size of zero.
 630 * Unimplemented IRQ types return a count of zero.
 631 */
 632
 633enum {
 634        VFIO_CCW_CONFIG_REGION_INDEX,
 635        VFIO_CCW_NUM_REGIONS
 636};
 637
 638enum {
 639        VFIO_CCW_IO_IRQ_INDEX,
 640        VFIO_CCW_CRW_IRQ_INDEX,
 641        VFIO_CCW_REQ_IRQ_INDEX,
 642        VFIO_CCW_NUM_IRQS
 643};
 644
 645/**
 646 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IORW(VFIO_TYPE, VFIO_BASE + 12,
 647 *                                            struct vfio_pci_hot_reset_info)
 648 *
 649 * Return: 0 on success, -errno on failure:
 650 *      -enospc = insufficient buffer, -enodev = unsupported for device.
 651 */
 652struct vfio_pci_dependent_device {
 653        __u32   group_id;
 654        __u16   segment;
 655        __u8    bus;
 656        __u8    devfn; /* Use PCI_SLOT/PCI_FUNC */
 657};
 658
 659struct vfio_pci_hot_reset_info {
 660        __u32   argsz;
 661        __u32   flags;
 662        __u32   count;
 663        struct vfio_pci_dependent_device        devices[];
 664};
 665
 666#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO      _IO(VFIO_TYPE, VFIO_BASE + 12)
 667
 668/**
 669 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
 670 *                                  struct vfio_pci_hot_reset)
 671 *
 672 * Return: 0 on success, -errno on failure.
 673 */
 674struct vfio_pci_hot_reset {
 675        __u32   argsz;
 676        __u32   flags;
 677        __u32   count;
 678        __s32   group_fds[];
 679};
 680
 681#define VFIO_DEVICE_PCI_HOT_RESET       _IO(VFIO_TYPE, VFIO_BASE + 13)
 682
 683/**
 684 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
 685 *                                    struct vfio_device_query_gfx_plane)
 686 *
 687 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
 688 *
 689 * flags supported:
 690 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
 691 *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
 692 *   support for dma-buf.
 693 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
 694 *   to ask if the mdev supports region. 0 on support, -EINVAL on no
 695 *   support for region.
 696 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
 697 *   with each call to query the plane info.
 698 * - Others are invalid and return -EINVAL.
 699 *
 700 * Note:
 701 * 1. Plane could be disabled by guest. In that case, success will be
 702 *    returned with zero-initialized drm_format, size, width and height
 703 *    fields.
 704 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
 705 *
 706 * Return: 0 on success, -errno on other failure.
 707 */
 708struct vfio_device_gfx_plane_info {
 709        __u32 argsz;
 710        __u32 flags;
 711#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
 712#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
 713#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
 714        /* in */
 715        __u32 drm_plane_type;   /* type of plane: DRM_PLANE_TYPE_* */
 716        /* out */
 717        __u32 drm_format;       /* drm format of plane */
 718        __u64 drm_format_mod;   /* tiled mode */
 719        __u32 width;    /* width of plane */
 720        __u32 height;   /* height of plane */
 721        __u32 stride;   /* stride of plane */
 722        __u32 size;     /* size of plane in bytes, align on page*/
 723        __u32 x_pos;    /* horizontal position of cursor plane */
 724        __u32 y_pos;    /* vertical position of cursor plane*/
 725        __u32 x_hot;    /* horizontal position of cursor hotspot */
 726        __u32 y_hot;    /* vertical position of cursor hotspot */
 727        union {
 728                __u32 region_index;     /* region index */
 729                __u32 dmabuf_id;        /* dma-buf id */
 730        };
 731};
 732
 733#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
 734
 735/**
 736 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
 737 *
 738 * Return a new dma-buf file descriptor for an exposed guest framebuffer
 739 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
 740 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
 741 */
 742
 743#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
 744
 745/**
 746 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
 747 *                              struct vfio_device_ioeventfd)
 748 *
 749 * Perform a write to the device at the specified device fd offset, with
 750 * the specified data and width when the provided eventfd is triggered.
 751 * vfio bus drivers may not support this for all regions, for all widths,
 752 * or at all.  vfio-pci currently only enables support for BAR regions,
 753 * excluding the MSI-X vector table.
 754 *
 755 * Return: 0 on success, -errno on failure.
 756 */
 757struct vfio_device_ioeventfd {
 758        __u32   argsz;
 759        __u32   flags;
 760#define VFIO_DEVICE_IOEVENTFD_8         (1 << 0) /* 1-byte write */
 761#define VFIO_DEVICE_IOEVENTFD_16        (1 << 1) /* 2-byte write */
 762#define VFIO_DEVICE_IOEVENTFD_32        (1 << 2) /* 4-byte write */
 763#define VFIO_DEVICE_IOEVENTFD_64        (1 << 3) /* 8-byte write */
 764#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf)
 765        __u64   offset;                 /* device fd offset of write */
 766        __u64   data;                   /* data to be written */
 767        __s32   fd;                     /* -1 for de-assignment */
 768};
 769
 770#define VFIO_DEVICE_IOEVENTFD           _IO(VFIO_TYPE, VFIO_BASE + 16)
 771
 772/**
 773 * VFIO_DEVICE_FEATURE - _IORW(VFIO_TYPE, VFIO_BASE + 17,
 774 *                             struct vfio_device_feature)
 775 *
 776 * Get, set, or probe feature data of the device.  The feature is selected
 777 * using the FEATURE_MASK portion of the flags field.  Support for a feature
 778 * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
 779 * may optionally include the GET and/or SET bits to determine read vs write
 780 * access of the feature respectively.  Probing a feature will return success
 781 * if the feature is supported and all of the optionally indicated GET/SET
 782 * methods are supported.  The format of the data portion of the structure is
 783 * specific to the given feature.  The data portion is not required for
 784 * probing.  GET and SET are mutually exclusive, except for use with PROBE.
 785 *
 786 * Return 0 on success, -errno on failure.
 787 */
 788struct vfio_device_feature {
 789        __u32   argsz;
 790        __u32   flags;
 791#define VFIO_DEVICE_FEATURE_MASK        (0xffff) /* 16-bit feature index */
 792#define VFIO_DEVICE_FEATURE_GET         (1 << 16) /* Get feature into data[] */
 793#define VFIO_DEVICE_FEATURE_SET         (1 << 17) /* Set feature from data[] */
 794#define VFIO_DEVICE_FEATURE_PROBE       (1 << 18) /* Probe feature support */
 795        __u8    data[];
 796};
 797
 798#define VFIO_DEVICE_FEATURE             _IO(VFIO_TYPE, VFIO_BASE + 17)
 799
 800/*
 801 * Provide support for setting a PCI VF Token, which is used as a shared
 802 * secret between PF and VF drivers.  This feature may only be set on a
 803 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
 804 * open VFs.  Data provided when setting this feature is a 16-byte array
 805 * (__u8 b[16]), representing a UUID.
 806 */
 807#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN        (0)
 808
 809/*
 810 * Indicates the device can support the migration API through
 811 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
 812 * ERROR states are always supported. Support for additional states is
 813 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
 814 * set.
 815 *
 816 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
 817 * RESUMING are supported.
 818 *
 819 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
 820 * is supported in addition to the STOP_COPY states.
 821 *
 822 * Other combinations of flags have behavior to be defined in the future.
 823 */
 824struct vfio_device_feature_migration {
 825        __aligned_u64 flags;
 826#define VFIO_MIGRATION_STOP_COPY        (1 << 0)
 827#define VFIO_MIGRATION_P2P              (1 << 1)
 828};
 829#define VFIO_DEVICE_FEATURE_MIGRATION 1
 830
 831/*
 832 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
 833 * device. The new state is supplied in device_state, see enum
 834 * vfio_device_mig_state for details
 835 *
 836 * The kernel migration driver must fully transition the device to the new state
 837 * value before the operation returns to the user.
 838 *
 839 * The kernel migration driver must not generate asynchronous device state
 840 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
 841 * ioctl as described above.
 842 *
 843 * If this function fails then current device_state may be the original
 844 * operating state or some other state along the combination transition path.
 845 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
 846 * to return to the original state, or attempt to return to some other state
 847 * such as RUNNING or STOP.
 848 *
 849 * If the new_state starts a new data transfer session then the FD associated
 850 * with that session is returned in data_fd. The user is responsible to close
 851 * this FD when it is finished. The user must consider the migration data stream
 852 * carried over the FD to be opaque and must preserve the byte order of the
 853 * stream. The user is not required to preserve buffer segmentation when writing
 854 * the data stream during the RESUMING operation.
 855 *
 856 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
 857 * device, data_fd will be -1.
 858 */
 859struct vfio_device_feature_mig_state {
 860        __u32 device_state; /* From enum vfio_device_mig_state */
 861        __s32 data_fd;
 862};
 863#define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
 864
 865/*
 866 * The device migration Finite State Machine is described by the enum
 867 * vfio_device_mig_state. Some of the FSM arcs will create a migration data
 868 * transfer session by returning a FD, in this case the migration data will
 869 * flow over the FD using read() and write() as discussed below.
 870 *
 871 * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
 872 *  RUNNING - The device is running normally
 873 *  STOP - The device does not change the internal or external state
 874 *  STOP_COPY - The device internal state can be read out
 875 *  RESUMING - The device is stopped and is loading a new internal state
 876 *  ERROR - The device has failed and must be reset
 877 *
 878 * And 1 optional state to support VFIO_MIGRATION_P2P:
 879 *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
 880 *
 881 * The FSM takes actions on the arcs between FSM states. The driver implements
 882 * the following behavior for the FSM arcs:
 883 *
 884 * RUNNING_P2P -> STOP
 885 * STOP_COPY -> STOP
 886 *   While in STOP the device must stop the operation of the device. The device
 887 *   must not generate interrupts, DMA, or any other change to external state.
 888 *   It must not change its internal state. When stopped the device and kernel
 889 *   migration driver must accept and respond to interaction to support external
 890 *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
 891 *   Failure by the user to restrict device access while in STOP must not result
 892 *   in error conditions outside the user context (ex. host system faults).
 893 *
 894 *   The STOP_COPY arc will terminate a data transfer session.
 895 *
 896 * RESUMING -> STOP
 897 *   Leaving RESUMING terminates a data transfer session and indicates the
 898 *   device should complete processing of the data delivered by write(). The
 899 *   kernel migration driver should complete the incorporation of data written
 900 *   to the data transfer FD into the device internal state and perform
 901 *   final validity and consistency checking of the new device state. If the
 902 *   user provided data is found to be incomplete, inconsistent, or otherwise
 903 *   invalid, the migration driver must fail the SET_STATE ioctl and
 904 *   optionally go to the ERROR state as described below.
 905 *
 906 *   While in STOP the device has the same behavior as other STOP states
 907 *   described above.
 908 *
 909 *   To abort a RESUMING session the device must be reset.
 910 *
 911 * RUNNING_P2P -> RUNNING
 912 *   While in RUNNING the device is fully operational, the device may generate
 913 *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
 914 *   and the device may advance its internal state.
 915 *
 916 * RUNNING -> RUNNING_P2P
 917 * STOP -> RUNNING_P2P
 918 *   While in RUNNING_P2P the device is partially running in the P2P quiescent
 919 *   state defined below.
 920 *
 921 * STOP -> STOP_COPY
 922 *   This arc begin the process of saving the device state and will return a
 923 *   new data_fd.
 924 *
 925 *   While in the STOP_COPY state the device has the same behavior as STOP
 926 *   with the addition that the data transfers session continues to stream the
 927 *   migration state. End of stream on the FD indicates the entire device
 928 *   state has been transferred.
 929 *
 930 *   The user should take steps to restrict access to vfio device regions while
 931 *   the device is in STOP_COPY or risk corruption of the device migration data
 932 *   stream.
 933 *
 934 * STOP -> RESUMING
 935 *   Entering the RESUMING state starts a process of restoring the device state
 936 *   and will return a new data_fd. The data stream fed into the data_fd should
 937 *   be taken from the data transfer output of a single FD during saving from
 938 *   a compatible device. The migration driver may alter/reset the internal
 939 *   device state for this arc if required to prepare the device to receive the
 940 *   migration data.
 941 *
 942 * any -> ERROR
 943 *   ERROR cannot be specified as a device state, however any transition request
 944 *   can be failed with an errno return and may then move the device_state into
 945 *   ERROR. In this case the device was unable to execute the requested arc and
 946 *   was also unable to restore the device to any valid device_state.
 947 *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
 948 *   device_state back to RUNNING.
 949 *
 950 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
 951 * state for the device for the purposes of managing multiple devices within a
 952 * user context where peer-to-peer DMA between devices may be active. The
 953 * RUNNING_P2P states must prevent the device from initiating
 954 * any new P2P DMA transactions. If the device can identify P2P transactions
 955 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
 956 * driver must complete any such outstanding operations prior to completing the
 957 * FSM arc into a P2P state. For the purpose of specification the states
 958 * behave as though the device was fully running if not supported. Like while in
 959 * STOP or STOP_COPY the user must not touch the device, otherwise the state
 960 * can be exited.
 961 *
 962 * The remaining possible transitions are interpreted as combinations of the
 963 * above FSM arcs. As there are multiple paths through the FSM arcs the path
 964 * should be selected based on the following rules:
 965 *   - Select the shortest path.
 966 * Refer to vfio_mig_get_next_state() for the result of the algorithm.
 967 *
 968 * The automatic transit through the FSM arcs that make up the combination
 969 * transition is invisible to the user. When working with combination arcs the
 970 * user may see any step along the path in the device_state if SET_STATE
 971 * fails. When handling these types of errors users should anticipate future
 972 * revisions of this protocol using new states and those states becoming
 973 * visible in this case.
 974 *
 975 * The optional states cannot be used with SET_STATE if the device does not
 976 * support them. The user can discover if these states are supported by using
 977 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
 978 * avoid knowing about these optional states if the kernel driver supports them.
 979 */
 980enum vfio_device_mig_state {
 981        VFIO_DEVICE_STATE_ERROR = 0,
 982        VFIO_DEVICE_STATE_STOP = 1,
 983        VFIO_DEVICE_STATE_RUNNING = 2,
 984        VFIO_DEVICE_STATE_STOP_COPY = 3,
 985        VFIO_DEVICE_STATE_RESUMING = 4,
 986        VFIO_DEVICE_STATE_RUNNING_P2P = 5,
 987};
 988
 989/* -------- API for Type1 VFIO IOMMU -------- */
 990
 991/**
 992 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
 993 *
 994 * Retrieve information about the IOMMU object. Fills in provided
 995 * struct vfio_iommu_info. Caller sets argsz.
 996 *
 997 * XXX Should we do these by CHECK_EXTENSION too?
 998 */
 999struct vfio_iommu_type1_info {
1000        __u32   argsz;
1001        __u32   flags;
1002#define VFIO_IOMMU_INFO_PGSIZES (1 << 0)        /* supported page sizes info */
1003#define VFIO_IOMMU_INFO_CAPS    (1 << 1)        /* Info supports caps */
1004        __u64   iova_pgsizes;   /* Bitmap of supported page sizes */
1005        __u32   cap_offset;     /* Offset within info struct of first cap */
1006};
1007
1008/*
1009 * The IOVA capability allows to report the valid IOVA range(s)
1010 * excluding any non-relaxable reserved regions exposed by
1011 * devices attached to the container. Any DMA map attempt
1012 * outside the valid iova range will return error.
1013 *
1014 * The structures below define version 1 of this capability.
1015 */
1016#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1017
1018struct vfio_iova_range {
1019        __u64   start;
1020        __u64   end;
1021};
1022
1023struct vfio_iommu_type1_info_cap_iova_range {
1024        struct  vfio_info_cap_header header;
1025        __u32   nr_iovas;
1026        __u32   reserved;
1027        struct  vfio_iova_range iova_ranges[];
1028};
1029
1030/*
1031 * The migration capability allows to report supported features for migration.
1032 *
1033 * The structures below define version 1 of this capability.
1034 *
1035 * The existence of this capability indicates that IOMMU kernel driver supports
1036 * dirty page logging.
1037 *
1038 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1039 * page logging.
1040 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1041 * size in bytes that can be used by user applications when getting the dirty
1042 * bitmap.
1043 */
1044#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1045
1046struct vfio_iommu_type1_info_cap_migration {
1047        struct  vfio_info_cap_header header;
1048        __u32   flags;
1049        __u64   pgsize_bitmap;
1050        __u64   max_dirty_bitmap_size;          /* in bytes */
1051};
1052
1053/*
1054 * The DMA available capability allows to report the current number of
1055 * simultaneously outstanding DMA mappings that are allowed.
1056 *
1057 * The structure below defines version 1 of this capability.
1058 *
1059 * avail: specifies the current number of outstanding DMA mappings allowed.
1060 */
1061#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1062
1063struct vfio_iommu_type1_info_dma_avail {
1064        struct  vfio_info_cap_header header;
1065        __u32   avail;
1066};
1067
1068#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1069
1070/**
1071 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1072 *
1073 * Map process virtual addresses to IO virtual addresses using the
1074 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1075 *
1076 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and
1077 * unblock translation of host virtual addresses in the iova range.  The vaddr
1078 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1079 * maintain memory consistency within the user application, the updated vaddr
1080 * must address the same memory object as originally mapped.  Failure to do so
1081 * will result in user memory corruption and/or device misbehavior.  iova and
1082 * size must match those in the original MAP_DMA call.  Protection is not
1083 * changed, and the READ & WRITE flags must be 0.
1084 */
1085struct vfio_iommu_type1_dma_map {
1086        __u32   argsz;
1087        __u32   flags;
1088#define VFIO_DMA_MAP_FLAG_READ (1 << 0)         /* readable from device */
1089#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)        /* writable from device */
1090#define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1091        __u64   vaddr;                          /* Process virtual address */
1092        __u64   iova;                           /* IO virtual address */
1093        __u64   size;                           /* Size of mapping (bytes) */
1094};
1095
1096#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1097
1098struct vfio_bitmap {
1099        __u64        pgsize;    /* page size for bitmap in bytes */
1100        __u64        size;      /* in bytes */
1101        __u64 *data;    /* one bit per page */
1102};
1103
1104/**
1105 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1106 *                                                      struct vfio_dma_unmap)
1107 *
1108 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1109 * Caller sets argsz.  The actual unmapped size is returned in the size
1110 * field.  No guarantee is made to the user that arbitrary unmaps of iova
1111 * or size different from those used in the original mapping call will
1112 * succeed.
1113 *
1114 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1115 * before unmapping IO virtual addresses. When this flag is set, the user must
1116 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1117 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1118 * A bit in the bitmap represents one page, of user provided page size in
1119 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1120 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1121 * pages in the range of unmapped size is returned in the user-provided
1122 * vfio_bitmap.data.
1123 *
1124 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1125 * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1126 *
1127 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1128 * virtual addresses in the iova range.  Tasks that attempt to translate an
1129 * iova's vaddr will block.  DMA to already-mapped pages continues.  This
1130 * cannot be combined with the get-dirty-bitmap flag.
1131 */
1132struct vfio_iommu_type1_dma_unmap {
1133        __u32   argsz;
1134        __u32   flags;
1135#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1136#define VFIO_DMA_UNMAP_FLAG_ALL              (1 << 1)
1137#define VFIO_DMA_UNMAP_FLAG_VADDR            (1 << 2)
1138        __u64   iova;                           /* IO virtual address */
1139        __u64   size;                           /* Size of mapping (bytes) */
1140        __u8    data[];
1141};
1142
1143#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1144
1145/*
1146 * IOCTLs to enable/disable IOMMU container usage.
1147 * No parameters are supported.
1148 */
1149#define VFIO_IOMMU_ENABLE       _IO(VFIO_TYPE, VFIO_BASE + 15)
1150#define VFIO_IOMMU_DISABLE      _IO(VFIO_TYPE, VFIO_BASE + 16)
1151
1152/**
1153 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1154 *                                     struct vfio_iommu_type1_dirty_bitmap)
1155 * IOCTL is used for dirty pages logging.
1156 * Caller should set flag depending on which operation to perform, details as
1157 * below:
1158 *
1159 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1160 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1161 * the device; designed to be used when a migration is in progress. Dirty pages
1162 * are logged until logging is disabled by user application by calling the IOCTL
1163 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1164 *
1165 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1166 * the IOMMU driver to stop logging dirtied pages.
1167 *
1168 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1169 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1170 * The user must specify the IOVA range and the pgsize through the structure
1171 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1172 * supports getting a bitmap of the smallest supported pgsize only and can be
1173 * modified in future to get a bitmap of any specified supported pgsize. The
1174 * user must provide a zeroed memory area for the bitmap memory and specify its
1175 * size in bitmap.size. One bit is used to represent one page consecutively
1176 * starting from iova offset. The user should provide page size in bitmap.pgsize
1177 * field. A bit set in the bitmap indicates that the page at that offset from
1178 * iova is dirty. The caller must set argsz to a value including the size of
1179 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1180 * actual bitmap. If dirty pages logging is not enabled, an error will be
1181 * returned.
1182 *
1183 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1184 *
1185 */
1186struct vfio_iommu_type1_dirty_bitmap {
1187        __u32        argsz;
1188        __u32        flags;
1189#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START       (1 << 0)
1190#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP        (1 << 1)
1191#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP  (1 << 2)
1192        __u8         data[];
1193};
1194
1195struct vfio_iommu_type1_dirty_bitmap_get {
1196        __u64              iova;        /* IO virtual address */
1197        __u64              size;        /* Size of iova range */
1198        struct vfio_bitmap bitmap;
1199};
1200
1201#define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1202
1203/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1204
1205/*
1206 * The SPAPR TCE DDW info struct provides the information about
1207 * the details of Dynamic DMA window capability.
1208 *
1209 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1210 * @max_dynamic_windows_supported tells the maximum number of windows
1211 * which the platform can create.
1212 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1213 * this allows splitting a table into smaller chunks which reduces
1214 * the amount of physically contiguous memory required for the table.
1215 */
1216struct vfio_iommu_spapr_tce_ddw_info {
1217        __u64 pgsizes;                  /* Bitmap of supported page sizes */
1218        __u32 max_dynamic_windows_supported;
1219        __u32 levels;
1220};
1221
1222/*
1223 * The SPAPR TCE info struct provides the information about the PCI bus
1224 * address ranges available for DMA, these values are programmed into
1225 * the hardware so the guest has to know that information.
1226 *
1227 * The DMA 32 bit window start is an absolute PCI bus address.
1228 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1229 * addresses too so the window works as a filter rather than an offset
1230 * for IOVA addresses.
1231 *
1232 * Flags supported:
1233 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1234 *   (DDW) support is present. @ddw is only supported when DDW is present.
1235 */
1236struct vfio_iommu_spapr_tce_info {
1237        __u32 argsz;
1238        __u32 flags;
1239#define VFIO_IOMMU_SPAPR_INFO_DDW       (1 << 0)        /* DDW supported */
1240        __u32 dma32_window_start;       /* 32 bit window start (bytes) */
1241        __u32 dma32_window_size;        /* 32 bit window size (bytes) */
1242        struct vfio_iommu_spapr_tce_ddw_info ddw;
1243};
1244
1245#define VFIO_IOMMU_SPAPR_TCE_GET_INFO   _IO(VFIO_TYPE, VFIO_BASE + 12)
1246
1247/*
1248 * EEH PE operation struct provides ways to:
1249 * - enable/disable EEH functionality;
1250 * - unfreeze IO/DMA for frozen PE;
1251 * - read PE state;
1252 * - reset PE;
1253 * - configure PE;
1254 * - inject EEH error.
1255 */
1256struct vfio_eeh_pe_err {
1257        __u32 type;
1258        __u32 func;
1259        __u64 addr;
1260        __u64 mask;
1261};
1262
1263struct vfio_eeh_pe_op {
1264        __u32 argsz;
1265        __u32 flags;
1266        __u32 op;
1267        union {
1268                struct vfio_eeh_pe_err err;
1269        };
1270};
1271
1272#define VFIO_EEH_PE_DISABLE             0       /* Disable EEH functionality */
1273#define VFIO_EEH_PE_ENABLE              1       /* Enable EEH functionality  */
1274#define VFIO_EEH_PE_UNFREEZE_IO         2       /* Enable IO for frozen PE   */
1275#define VFIO_EEH_PE_UNFREEZE_DMA        3       /* Enable DMA for frozen PE  */
1276#define VFIO_EEH_PE_GET_STATE           4       /* PE state retrieval        */
1277#define  VFIO_EEH_PE_STATE_NORMAL       0       /* PE in functional state    */
1278#define  VFIO_EEH_PE_STATE_RESET        1       /* PE reset in progress      */
1279#define  VFIO_EEH_PE_STATE_STOPPED      2       /* Stopped DMA and IO        */
1280#define  VFIO_EEH_PE_STATE_STOPPED_DMA  4       /* Stopped DMA only          */
1281#define  VFIO_EEH_PE_STATE_UNAVAIL      5       /* State unavailable         */
1282#define VFIO_EEH_PE_RESET_DEACTIVATE    5       /* Deassert PE reset         */
1283#define VFIO_EEH_PE_RESET_HOT           6       /* Assert hot reset          */
1284#define VFIO_EEH_PE_RESET_FUNDAMENTAL   7       /* Assert fundamental reset  */
1285#define VFIO_EEH_PE_CONFIGURE           8       /* PE configuration          */
1286#define VFIO_EEH_PE_INJECT_ERR          9       /* Inject EEH error          */
1287
1288#define VFIO_EEH_PE_OP                  _IO(VFIO_TYPE, VFIO_BASE + 21)
1289
1290/**
1291 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1292 *
1293 * Registers user space memory where DMA is allowed. It pins
1294 * user pages and does the locked memory accounting so
1295 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1296 * get faster.
1297 */
1298struct vfio_iommu_spapr_register_memory {
1299        __u32   argsz;
1300        __u32   flags;
1301        __u64   vaddr;                          /* Process virtual address */
1302        __u64   size;                           /* Size of mapping (bytes) */
1303};
1304#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY        _IO(VFIO_TYPE, VFIO_BASE + 17)
1305
1306/**
1307 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1308 *
1309 * Unregisters user space memory registered with
1310 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1311 * Uses vfio_iommu_spapr_register_memory for parameters.
1312 */
1313#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY      _IO(VFIO_TYPE, VFIO_BASE + 18)
1314
1315/**
1316 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1317 *
1318 * Creates an additional TCE table and programs it (sets a new DMA window)
1319 * to every IOMMU group in the container. It receives page shift, window
1320 * size and number of levels in the TCE table being created.
1321 *
1322 * It allocates and returns an offset on a PCI bus of the new DMA window.
1323 */
1324struct vfio_iommu_spapr_tce_create {
1325        __u32 argsz;
1326        __u32 flags;
1327        /* in */
1328        __u32 page_shift;
1329        __u32 __resv1;
1330        __u64 window_size;
1331        __u32 levels;
1332        __u32 __resv2;
1333        /* out */
1334        __u64 start_addr;
1335};
1336#define VFIO_IOMMU_SPAPR_TCE_CREATE     _IO(VFIO_TYPE, VFIO_BASE + 19)
1337
1338/**
1339 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1340 *
1341 * Unprograms a TCE table from all groups in the container and destroys it.
1342 * It receives a PCI bus offset as a window id.
1343 */
1344struct vfio_iommu_spapr_tce_remove {
1345        __u32 argsz;
1346        __u32 flags;
1347        /* in */
1348        __u64 start_addr;
1349};
1350#define VFIO_IOMMU_SPAPR_TCE_REMOVE     _IO(VFIO_TYPE, VFIO_BASE + 20)
1351
1352/* ***************************************************************** */
1353
1354#endif /* VFIO_H */
1355