qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "user-internals.h"
  10#include "signal-common.h"
  11#include "loader.h"
  12#include "user-mmap.h"
  13#include "disas/disas.h"
  14#include "qemu/bitops.h"
  15#include "qemu/path.h"
  16#include "qemu/queue.h"
  17#include "qemu/guest-random.h"
  18#include "qemu/units.h"
  19#include "qemu/selfmap.h"
  20#include "qapi/error.h"
  21#include "target_signal.h"
  22
  23#ifdef _ARCH_PPC64
  24#undef ARCH_DLINFO
  25#undef ELF_PLATFORM
  26#undef ELF_HWCAP
  27#undef ELF_HWCAP2
  28#undef ELF_CLASS
  29#undef ELF_DATA
  30#undef ELF_ARCH
  31#endif
  32
  33#define ELF_OSABI   ELFOSABI_SYSV
  34
  35/* from personality.h */
  36
  37/*
  38 * Flags for bug emulation.
  39 *
  40 * These occupy the top three bytes.
  41 */
  42enum {
  43    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  44    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  45                                           descriptors (signal handling) */
  46    MMAP_PAGE_ZERO =    0x0100000,
  47    ADDR_COMPAT_LAYOUT = 0x0200000,
  48    READ_IMPLIES_EXEC = 0x0400000,
  49    ADDR_LIMIT_32BIT =  0x0800000,
  50    SHORT_INODE =       0x1000000,
  51    WHOLE_SECONDS =     0x2000000,
  52    STICKY_TIMEOUTS =   0x4000000,
  53    ADDR_LIMIT_3GB =    0x8000000,
  54};
  55
  56/*
  57 * Personality types.
  58 *
  59 * These go in the low byte.  Avoid using the top bit, it will
  60 * conflict with error returns.
  61 */
  62enum {
  63    PER_LINUX =         0x0000,
  64    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  65    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  66    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  67    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  68    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  69    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  70    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  71    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  72    PER_BSD =           0x0006,
  73    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  74    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  75    PER_LINUX32 =       0x0008,
  76    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  77    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  78    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  79    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  80    PER_RISCOS =        0x000c,
  81    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  82    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  83    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  84    PER_HPUX =          0x0010,
  85    PER_MASK =          0x00ff,
  86};
  87
  88/*
  89 * Return the base personality without flags.
  90 */
  91#define personality(pers)       (pers & PER_MASK)
  92
  93int info_is_fdpic(struct image_info *info)
  94{
  95    return info->personality == PER_LINUX_FDPIC;
  96}
  97
  98/* this flag is uneffective under linux too, should be deleted */
  99#ifndef MAP_DENYWRITE
 100#define MAP_DENYWRITE 0
 101#endif
 102
 103/* should probably go in elf.h */
 104#ifndef ELIBBAD
 105#define ELIBBAD 80
 106#endif
 107
 108#if TARGET_BIG_ENDIAN
 109#define ELF_DATA        ELFDATA2MSB
 110#else
 111#define ELF_DATA        ELFDATA2LSB
 112#endif
 113
 114#ifdef TARGET_ABI_MIPSN32
 115typedef abi_ullong      target_elf_greg_t;
 116#define tswapreg(ptr)   tswap64(ptr)
 117#else
 118typedef abi_ulong       target_elf_greg_t;
 119#define tswapreg(ptr)   tswapal(ptr)
 120#endif
 121
 122#ifdef USE_UID16
 123typedef abi_ushort      target_uid_t;
 124typedef abi_ushort      target_gid_t;
 125#else
 126typedef abi_uint        target_uid_t;
 127typedef abi_uint        target_gid_t;
 128#endif
 129typedef abi_int         target_pid_t;
 130
 131#ifdef TARGET_I386
 132
 133#define ELF_HWCAP get_elf_hwcap()
 134
 135static uint32_t get_elf_hwcap(void)
 136{
 137    X86CPU *cpu = X86_CPU(thread_cpu);
 138
 139    return cpu->env.features[FEAT_1_EDX];
 140}
 141
 142#ifdef TARGET_X86_64
 143#define ELF_START_MMAP 0x2aaaaab000ULL
 144
 145#define ELF_CLASS      ELFCLASS64
 146#define ELF_ARCH       EM_X86_64
 147
 148#define ELF_PLATFORM   "x86_64"
 149
 150static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 151{
 152    regs->rax = 0;
 153    regs->rsp = infop->start_stack;
 154    regs->rip = infop->entry;
 155}
 156
 157#define ELF_NREG    27
 158typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 159
 160/*
 161 * Note that ELF_NREG should be 29 as there should be place for
 162 * TRAPNO and ERR "registers" as well but linux doesn't dump
 163 * those.
 164 *
 165 * See linux kernel: arch/x86/include/asm/elf.h
 166 */
 167static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 168{
 169    (*regs)[0] = tswapreg(env->regs[15]);
 170    (*regs)[1] = tswapreg(env->regs[14]);
 171    (*regs)[2] = tswapreg(env->regs[13]);
 172    (*regs)[3] = tswapreg(env->regs[12]);
 173    (*regs)[4] = tswapreg(env->regs[R_EBP]);
 174    (*regs)[5] = tswapreg(env->regs[R_EBX]);
 175    (*regs)[6] = tswapreg(env->regs[11]);
 176    (*regs)[7] = tswapreg(env->regs[10]);
 177    (*regs)[8] = tswapreg(env->regs[9]);
 178    (*regs)[9] = tswapreg(env->regs[8]);
 179    (*regs)[10] = tswapreg(env->regs[R_EAX]);
 180    (*regs)[11] = tswapreg(env->regs[R_ECX]);
 181    (*regs)[12] = tswapreg(env->regs[R_EDX]);
 182    (*regs)[13] = tswapreg(env->regs[R_ESI]);
 183    (*regs)[14] = tswapreg(env->regs[R_EDI]);
 184    (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
 185    (*regs)[16] = tswapreg(env->eip);
 186    (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
 187    (*regs)[18] = tswapreg(env->eflags);
 188    (*regs)[19] = tswapreg(env->regs[R_ESP]);
 189    (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
 190    (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
 191    (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
 192    (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
 193    (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
 194    (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
 195    (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
 196}
 197
 198#else
 199
 200#define ELF_START_MMAP 0x80000000
 201
 202/*
 203 * This is used to ensure we don't load something for the wrong architecture.
 204 */
 205#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 206
 207/*
 208 * These are used to set parameters in the core dumps.
 209 */
 210#define ELF_CLASS       ELFCLASS32
 211#define ELF_ARCH        EM_386
 212
 213#define ELF_PLATFORM get_elf_platform()
 214
 215static const char *get_elf_platform(void)
 216{
 217    static char elf_platform[] = "i386";
 218    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 219    if (family > 6) {
 220        family = 6;
 221    }
 222    if (family >= 3) {
 223        elf_platform[1] = '0' + family;
 224    }
 225    return elf_platform;
 226}
 227
 228static inline void init_thread(struct target_pt_regs *regs,
 229                               struct image_info *infop)
 230{
 231    regs->esp = infop->start_stack;
 232    regs->eip = infop->entry;
 233
 234    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 235       starts %edx contains a pointer to a function which might be
 236       registered using `atexit'.  This provides a mean for the
 237       dynamic linker to call DT_FINI functions for shared libraries
 238       that have been loaded before the code runs.
 239
 240       A value of 0 tells we have no such handler.  */
 241    regs->edx = 0;
 242}
 243
 244#define ELF_NREG    17
 245typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 246
 247/*
 248 * Note that ELF_NREG should be 19 as there should be place for
 249 * TRAPNO and ERR "registers" as well but linux doesn't dump
 250 * those.
 251 *
 252 * See linux kernel: arch/x86/include/asm/elf.h
 253 */
 254static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 255{
 256    (*regs)[0] = tswapreg(env->regs[R_EBX]);
 257    (*regs)[1] = tswapreg(env->regs[R_ECX]);
 258    (*regs)[2] = tswapreg(env->regs[R_EDX]);
 259    (*regs)[3] = tswapreg(env->regs[R_ESI]);
 260    (*regs)[4] = tswapreg(env->regs[R_EDI]);
 261    (*regs)[5] = tswapreg(env->regs[R_EBP]);
 262    (*regs)[6] = tswapreg(env->regs[R_EAX]);
 263    (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
 264    (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
 265    (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
 266    (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
 267    (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
 268    (*regs)[12] = tswapreg(env->eip);
 269    (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
 270    (*regs)[14] = tswapreg(env->eflags);
 271    (*regs)[15] = tswapreg(env->regs[R_ESP]);
 272    (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
 273}
 274#endif
 275
 276#define USE_ELF_CORE_DUMP
 277#define ELF_EXEC_PAGESIZE       4096
 278
 279#endif
 280
 281#ifdef TARGET_ARM
 282
 283#ifndef TARGET_AARCH64
 284/* 32 bit ARM definitions */
 285
 286#define ELF_START_MMAP 0x80000000
 287
 288#define ELF_ARCH        EM_ARM
 289#define ELF_CLASS       ELFCLASS32
 290
 291static inline void init_thread(struct target_pt_regs *regs,
 292                               struct image_info *infop)
 293{
 294    abi_long stack = infop->start_stack;
 295    memset(regs, 0, sizeof(*regs));
 296
 297    regs->uregs[16] = ARM_CPU_MODE_USR;
 298    if (infop->entry & 1) {
 299        regs->uregs[16] |= CPSR_T;
 300    }
 301    regs->uregs[15] = infop->entry & 0xfffffffe;
 302    regs->uregs[13] = infop->start_stack;
 303    /* FIXME - what to for failure of get_user()? */
 304    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 305    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 306    /* XXX: it seems that r0 is zeroed after ! */
 307    regs->uregs[0] = 0;
 308    /* For uClinux PIC binaries.  */
 309    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 310    regs->uregs[10] = infop->start_data;
 311
 312    /* Support ARM FDPIC.  */
 313    if (info_is_fdpic(infop)) {
 314        /* As described in the ABI document, r7 points to the loadmap info
 315         * prepared by the kernel. If an interpreter is needed, r8 points
 316         * to the interpreter loadmap and r9 points to the interpreter
 317         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 318         * r9 points to the main program PT_DYNAMIC info.
 319         */
 320        regs->uregs[7] = infop->loadmap_addr;
 321        if (infop->interpreter_loadmap_addr) {
 322            /* Executable is dynamically loaded.  */
 323            regs->uregs[8] = infop->interpreter_loadmap_addr;
 324            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 325        } else {
 326            regs->uregs[8] = 0;
 327            regs->uregs[9] = infop->pt_dynamic_addr;
 328        }
 329    }
 330}
 331
 332#define ELF_NREG    18
 333typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 334
 335static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 336{
 337    (*regs)[0] = tswapreg(env->regs[0]);
 338    (*regs)[1] = tswapreg(env->regs[1]);
 339    (*regs)[2] = tswapreg(env->regs[2]);
 340    (*regs)[3] = tswapreg(env->regs[3]);
 341    (*regs)[4] = tswapreg(env->regs[4]);
 342    (*regs)[5] = tswapreg(env->regs[5]);
 343    (*regs)[6] = tswapreg(env->regs[6]);
 344    (*regs)[7] = tswapreg(env->regs[7]);
 345    (*regs)[8] = tswapreg(env->regs[8]);
 346    (*regs)[9] = tswapreg(env->regs[9]);
 347    (*regs)[10] = tswapreg(env->regs[10]);
 348    (*regs)[11] = tswapreg(env->regs[11]);
 349    (*regs)[12] = tswapreg(env->regs[12]);
 350    (*regs)[13] = tswapreg(env->regs[13]);
 351    (*regs)[14] = tswapreg(env->regs[14]);
 352    (*regs)[15] = tswapreg(env->regs[15]);
 353
 354    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 355    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 356}
 357
 358#define USE_ELF_CORE_DUMP
 359#define ELF_EXEC_PAGESIZE       4096
 360
 361enum
 362{
 363    ARM_HWCAP_ARM_SWP       = 1 << 0,
 364    ARM_HWCAP_ARM_HALF      = 1 << 1,
 365    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 366    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 367    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 368    ARM_HWCAP_ARM_FPA       = 1 << 5,
 369    ARM_HWCAP_ARM_VFP       = 1 << 6,
 370    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 371    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 372    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 373    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 374    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 375    ARM_HWCAP_ARM_NEON      = 1 << 12,
 376    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 377    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 378    ARM_HWCAP_ARM_TLS       = 1 << 15,
 379    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 380    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 381    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 382    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 383    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 384    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 385};
 386
 387enum {
 388    ARM_HWCAP2_ARM_AES      = 1 << 0,
 389    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 390    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 391    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 392    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 393};
 394
 395/* The commpage only exists for 32 bit kernels */
 396
 397#define HI_COMMPAGE (intptr_t)0xffff0f00u
 398
 399static bool init_guest_commpage(void)
 400{
 401    void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size);
 402    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
 403                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
 404
 405    if (addr == MAP_FAILED) {
 406        perror("Allocating guest commpage");
 407        exit(EXIT_FAILURE);
 408    }
 409    if (addr != want) {
 410        return false;
 411    }
 412
 413    /* Set kernel helper versions; rest of page is 0.  */
 414    __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
 415
 416    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
 417        perror("Protecting guest commpage");
 418        exit(EXIT_FAILURE);
 419    }
 420    return true;
 421}
 422
 423#define ELF_HWCAP get_elf_hwcap()
 424#define ELF_HWCAP2 get_elf_hwcap2()
 425
 426static uint32_t get_elf_hwcap(void)
 427{
 428    ARMCPU *cpu = ARM_CPU(thread_cpu);
 429    uint32_t hwcaps = 0;
 430
 431    hwcaps |= ARM_HWCAP_ARM_SWP;
 432    hwcaps |= ARM_HWCAP_ARM_HALF;
 433    hwcaps |= ARM_HWCAP_ARM_THUMB;
 434    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 435
 436    /* probe for the extra features */
 437#define GET_FEATURE(feat, hwcap) \
 438    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 439
 440#define GET_FEATURE_ID(feat, hwcap) \
 441    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 442
 443    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 444    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 445    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 446    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 447    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 448    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 449    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 450    GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 451    GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 452    GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 453
 454    if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 455        cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 456        hwcaps |= ARM_HWCAP_ARM_VFPv3;
 457        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 458            hwcaps |= ARM_HWCAP_ARM_VFPD32;
 459        } else {
 460            hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 461        }
 462    }
 463    GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 464
 465    return hwcaps;
 466}
 467
 468static uint32_t get_elf_hwcap2(void)
 469{
 470    ARMCPU *cpu = ARM_CPU(thread_cpu);
 471    uint32_t hwcaps = 0;
 472
 473    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 474    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 475    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 476    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 477    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 478    return hwcaps;
 479}
 480
 481#undef GET_FEATURE
 482#undef GET_FEATURE_ID
 483
 484#define ELF_PLATFORM get_elf_platform()
 485
 486static const char *get_elf_platform(void)
 487{
 488    CPUARMState *env = thread_cpu->env_ptr;
 489
 490#if TARGET_BIG_ENDIAN
 491# define END  "b"
 492#else
 493# define END  "l"
 494#endif
 495
 496    if (arm_feature(env, ARM_FEATURE_V8)) {
 497        return "v8" END;
 498    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 499        if (arm_feature(env, ARM_FEATURE_M)) {
 500            return "v7m" END;
 501        } else {
 502            return "v7" END;
 503        }
 504    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 505        return "v6" END;
 506    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 507        return "v5" END;
 508    } else {
 509        return "v4" END;
 510    }
 511
 512#undef END
 513}
 514
 515#else
 516/* 64 bit ARM definitions */
 517#define ELF_START_MMAP 0x80000000
 518
 519#define ELF_ARCH        EM_AARCH64
 520#define ELF_CLASS       ELFCLASS64
 521#if TARGET_BIG_ENDIAN
 522# define ELF_PLATFORM    "aarch64_be"
 523#else
 524# define ELF_PLATFORM    "aarch64"
 525#endif
 526
 527static inline void init_thread(struct target_pt_regs *regs,
 528                               struct image_info *infop)
 529{
 530    abi_long stack = infop->start_stack;
 531    memset(regs, 0, sizeof(*regs));
 532
 533    regs->pc = infop->entry & ~0x3ULL;
 534    regs->sp = stack;
 535}
 536
 537#define ELF_NREG    34
 538typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 539
 540static void elf_core_copy_regs(target_elf_gregset_t *regs,
 541                               const CPUARMState *env)
 542{
 543    int i;
 544
 545    for (i = 0; i < 32; i++) {
 546        (*regs)[i] = tswapreg(env->xregs[i]);
 547    }
 548    (*regs)[32] = tswapreg(env->pc);
 549    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 550}
 551
 552#define USE_ELF_CORE_DUMP
 553#define ELF_EXEC_PAGESIZE       4096
 554
 555enum {
 556    ARM_HWCAP_A64_FP            = 1 << 0,
 557    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 558    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 559    ARM_HWCAP_A64_AES           = 1 << 3,
 560    ARM_HWCAP_A64_PMULL         = 1 << 4,
 561    ARM_HWCAP_A64_SHA1          = 1 << 5,
 562    ARM_HWCAP_A64_SHA2          = 1 << 6,
 563    ARM_HWCAP_A64_CRC32         = 1 << 7,
 564    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 565    ARM_HWCAP_A64_FPHP          = 1 << 9,
 566    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 567    ARM_HWCAP_A64_CPUID         = 1 << 11,
 568    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 569    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 570    ARM_HWCAP_A64_FCMA          = 1 << 14,
 571    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 572    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 573    ARM_HWCAP_A64_SHA3          = 1 << 17,
 574    ARM_HWCAP_A64_SM3           = 1 << 18,
 575    ARM_HWCAP_A64_SM4           = 1 << 19,
 576    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 577    ARM_HWCAP_A64_SHA512        = 1 << 21,
 578    ARM_HWCAP_A64_SVE           = 1 << 22,
 579    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 580    ARM_HWCAP_A64_DIT           = 1 << 24,
 581    ARM_HWCAP_A64_USCAT         = 1 << 25,
 582    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 583    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 584    ARM_HWCAP_A64_SSBS          = 1 << 28,
 585    ARM_HWCAP_A64_SB            = 1 << 29,
 586    ARM_HWCAP_A64_PACA          = 1 << 30,
 587    ARM_HWCAP_A64_PACG          = 1UL << 31,
 588
 589    ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 590    ARM_HWCAP2_A64_SVE2         = 1 << 1,
 591    ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 592    ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 593    ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 594    ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 595    ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 596    ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 597    ARM_HWCAP2_A64_FRINT        = 1 << 8,
 598    ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
 599    ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
 600    ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
 601    ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
 602    ARM_HWCAP2_A64_I8MM         = 1 << 13,
 603    ARM_HWCAP2_A64_BF16         = 1 << 14,
 604    ARM_HWCAP2_A64_DGH          = 1 << 15,
 605    ARM_HWCAP2_A64_RNG          = 1 << 16,
 606    ARM_HWCAP2_A64_BTI          = 1 << 17,
 607    ARM_HWCAP2_A64_MTE          = 1 << 18,
 608    ARM_HWCAP2_A64_ECV          = 1 << 19,
 609    ARM_HWCAP2_A64_AFP          = 1 << 20,
 610    ARM_HWCAP2_A64_RPRES        = 1 << 21,
 611    ARM_HWCAP2_A64_MTE3         = 1 << 22,
 612    ARM_HWCAP2_A64_SME          = 1 << 23,
 613    ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
 614    ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
 615    ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
 616    ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
 617    ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
 618    ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
 619    ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
 620};
 621
 622#define ELF_HWCAP   get_elf_hwcap()
 623#define ELF_HWCAP2  get_elf_hwcap2()
 624
 625#define GET_FEATURE_ID(feat, hwcap) \
 626    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 627
 628static uint32_t get_elf_hwcap(void)
 629{
 630    ARMCPU *cpu = ARM_CPU(thread_cpu);
 631    uint32_t hwcaps = 0;
 632
 633    hwcaps |= ARM_HWCAP_A64_FP;
 634    hwcaps |= ARM_HWCAP_A64_ASIMD;
 635    hwcaps |= ARM_HWCAP_A64_CPUID;
 636
 637    /* probe for the extra features */
 638
 639    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 640    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 641    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 642    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 643    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 644    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 645    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 646    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 647    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 648    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 649    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 650    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 651    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 652    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 653    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 654    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 655    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 656    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 657    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 658    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 659    GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 660    GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 661    GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 662
 663    return hwcaps;
 664}
 665
 666static uint32_t get_elf_hwcap2(void)
 667{
 668    ARMCPU *cpu = ARM_CPU(thread_cpu);
 669    uint32_t hwcaps = 0;
 670
 671    GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 672    GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
 673    GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
 674    GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
 675    GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
 676    GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
 677    GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
 678    GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 679    GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 680    GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
 681    GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
 682    GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
 683    GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
 684    GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
 685    GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
 686    GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
 687    GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
 688    GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
 689    GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
 690                              ARM_HWCAP2_A64_SME_F32F32 |
 691                              ARM_HWCAP2_A64_SME_B16F32 |
 692                              ARM_HWCAP2_A64_SME_F16F32 |
 693                              ARM_HWCAP2_A64_SME_I8I32));
 694    GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
 695    GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
 696    GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
 697
 698    return hwcaps;
 699}
 700
 701#undef GET_FEATURE_ID
 702
 703#endif /* not TARGET_AARCH64 */
 704#endif /* TARGET_ARM */
 705
 706#ifdef TARGET_SPARC
 707#ifdef TARGET_SPARC64
 708
 709#define ELF_START_MMAP 0x80000000
 710#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 711                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 712#ifndef TARGET_ABI32
 713#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 714#else
 715#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 716#endif
 717
 718#define ELF_CLASS   ELFCLASS64
 719#define ELF_ARCH    EM_SPARCV9
 720#else
 721#define ELF_START_MMAP 0x80000000
 722#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 723                    | HWCAP_SPARC_MULDIV)
 724#define ELF_CLASS   ELFCLASS32
 725#define ELF_ARCH    EM_SPARC
 726#endif /* TARGET_SPARC64 */
 727
 728static inline void init_thread(struct target_pt_regs *regs,
 729                               struct image_info *infop)
 730{
 731    /* Note that target_cpu_copy_regs does not read psr/tstate. */
 732    regs->pc = infop->entry;
 733    regs->npc = regs->pc + 4;
 734    regs->y = 0;
 735    regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
 736                        - TARGET_STACK_BIAS);
 737}
 738#endif /* TARGET_SPARC */
 739
 740#ifdef TARGET_PPC
 741
 742#define ELF_MACHINE    PPC_ELF_MACHINE
 743#define ELF_START_MMAP 0x80000000
 744
 745#if defined(TARGET_PPC64)
 746
 747#define elf_check_arch(x) ( (x) == EM_PPC64 )
 748
 749#define ELF_CLASS       ELFCLASS64
 750
 751#else
 752
 753#define ELF_CLASS       ELFCLASS32
 754
 755#endif
 756
 757#define ELF_ARCH        EM_PPC
 758
 759/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 760   See arch/powerpc/include/asm/cputable.h.  */
 761enum {
 762    QEMU_PPC_FEATURE_32 = 0x80000000,
 763    QEMU_PPC_FEATURE_64 = 0x40000000,
 764    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 765    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 766    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 767    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 768    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 769    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 770    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 771    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 772    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 773    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 774    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 775    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 776    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 777    QEMU_PPC_FEATURE_CELL = 0x00010000,
 778    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 779    QEMU_PPC_FEATURE_SMT = 0x00004000,
 780    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 781    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 782    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 783    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 784    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 785    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 786    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 787    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 788
 789    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 790    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 791
 792    /* Feature definitions in AT_HWCAP2.  */
 793    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 794    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 795    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 796    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 797    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 798    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 799    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 800    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 801    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 802    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 803    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 804    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 805    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 806    QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
 807    QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
 808};
 809
 810#define ELF_HWCAP get_elf_hwcap()
 811
 812static uint32_t get_elf_hwcap(void)
 813{
 814    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 815    uint32_t features = 0;
 816
 817    /* We don't have to be terribly complete here; the high points are
 818       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 819#define GET_FEATURE(flag, feature)                                      \
 820    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 821#define GET_FEATURE2(flags, feature) \
 822    do { \
 823        if ((cpu->env.insns_flags2 & flags) == flags) { \
 824            features |= feature; \
 825        } \
 826    } while (0)
 827    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 828    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 829    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 830    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 831    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 832    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 833    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 834    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 835    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 836    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 837    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 838                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 839                  QEMU_PPC_FEATURE_ARCH_2_06);
 840#undef GET_FEATURE
 841#undef GET_FEATURE2
 842
 843    return features;
 844}
 845
 846#define ELF_HWCAP2 get_elf_hwcap2()
 847
 848static uint32_t get_elf_hwcap2(void)
 849{
 850    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 851    uint32_t features = 0;
 852
 853#define GET_FEATURE(flag, feature)                                      \
 854    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 855#define GET_FEATURE2(flag, feature)                                      \
 856    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 857
 858    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 859    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 860    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 861                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 862                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 863    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 864                 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
 865    GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
 866                 QEMU_PPC_FEATURE2_MMA);
 867
 868#undef GET_FEATURE
 869#undef GET_FEATURE2
 870
 871    return features;
 872}
 873
 874/*
 875 * The requirements here are:
 876 * - keep the final alignment of sp (sp & 0xf)
 877 * - make sure the 32-bit value at the first 16 byte aligned position of
 878 *   AUXV is greater than 16 for glibc compatibility.
 879 *   AT_IGNOREPPC is used for that.
 880 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 881 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 882 */
 883#define DLINFO_ARCH_ITEMS       5
 884#define ARCH_DLINFO                                     \
 885    do {                                                \
 886        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 887        /*                                              \
 888         * Handle glibc compatibility: these magic entries must \
 889         * be at the lowest addresses in the final auxv.        \
 890         */                                             \
 891        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 892        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 893        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 894        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 895        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 896    } while (0)
 897
 898static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 899{
 900    _regs->gpr[1] = infop->start_stack;
 901#if defined(TARGET_PPC64)
 902    if (get_ppc64_abi(infop) < 2) {
 903        uint64_t val;
 904        get_user_u64(val, infop->entry + 8);
 905        _regs->gpr[2] = val + infop->load_bias;
 906        get_user_u64(val, infop->entry);
 907        infop->entry = val + infop->load_bias;
 908    } else {
 909        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 910    }
 911#endif
 912    _regs->nip = infop->entry;
 913}
 914
 915/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 916#define ELF_NREG 48
 917typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 918
 919static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 920{
 921    int i;
 922    target_ulong ccr = 0;
 923
 924    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 925        (*regs)[i] = tswapreg(env->gpr[i]);
 926    }
 927
 928    (*regs)[32] = tswapreg(env->nip);
 929    (*regs)[33] = tswapreg(env->msr);
 930    (*regs)[35] = tswapreg(env->ctr);
 931    (*regs)[36] = tswapreg(env->lr);
 932    (*regs)[37] = tswapreg(cpu_read_xer(env));
 933
 934    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 935        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 936    }
 937    (*regs)[38] = tswapreg(ccr);
 938}
 939
 940#define USE_ELF_CORE_DUMP
 941#define ELF_EXEC_PAGESIZE       4096
 942
 943#endif
 944
 945#ifdef TARGET_LOONGARCH64
 946
 947#define ELF_START_MMAP 0x80000000
 948
 949#define ELF_CLASS   ELFCLASS64
 950#define ELF_ARCH    EM_LOONGARCH
 951
 952#define elf_check_arch(x) ((x) == EM_LOONGARCH)
 953
 954static inline void init_thread(struct target_pt_regs *regs,
 955                               struct image_info *infop)
 956{
 957    /*Set crmd PG,DA = 1,0 */
 958    regs->csr.crmd = 2 << 3;
 959    regs->csr.era = infop->entry;
 960    regs->regs[3] = infop->start_stack;
 961}
 962
 963/* See linux kernel: arch/loongarch/include/asm/elf.h */
 964#define ELF_NREG 45
 965typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 966
 967enum {
 968    TARGET_EF_R0 = 0,
 969    TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
 970    TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
 971};
 972
 973static void elf_core_copy_regs(target_elf_gregset_t *regs,
 974                               const CPULoongArchState *env)
 975{
 976    int i;
 977
 978    (*regs)[TARGET_EF_R0] = 0;
 979
 980    for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
 981        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
 982    }
 983
 984    (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
 985    (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
 986}
 987
 988#define USE_ELF_CORE_DUMP
 989#define ELF_EXEC_PAGESIZE        4096
 990
 991#define ELF_HWCAP get_elf_hwcap()
 992
 993/* See arch/loongarch/include/uapi/asm/hwcap.h */
 994enum {
 995    HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
 996    HWCAP_LOONGARCH_LAM      = (1 << 1),
 997    HWCAP_LOONGARCH_UAL      = (1 << 2),
 998    HWCAP_LOONGARCH_FPU      = (1 << 3),
 999    HWCAP_LOONGARCH_LSX      = (1 << 4),
1000    HWCAP_LOONGARCH_LASX     = (1 << 5),
1001    HWCAP_LOONGARCH_CRC32    = (1 << 6),
1002    HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1003    HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1004    HWCAP_LOONGARCH_LVZ      = (1 << 9),
1005    HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1006    HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1007    HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1008};
1009
1010static uint32_t get_elf_hwcap(void)
1011{
1012    LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1013    uint32_t hwcaps = 0;
1014
1015    hwcaps |= HWCAP_LOONGARCH_CRC32;
1016
1017    if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1018        hwcaps |= HWCAP_LOONGARCH_UAL;
1019    }
1020
1021    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1022        hwcaps |= HWCAP_LOONGARCH_FPU;
1023    }
1024
1025    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1026        hwcaps |= HWCAP_LOONGARCH_LAM;
1027    }
1028
1029    return hwcaps;
1030}
1031
1032#define ELF_PLATFORM "loongarch"
1033
1034#endif /* TARGET_LOONGARCH64 */
1035
1036#ifdef TARGET_MIPS
1037
1038#define ELF_START_MMAP 0x80000000
1039
1040#ifdef TARGET_MIPS64
1041#define ELF_CLASS   ELFCLASS64
1042#else
1043#define ELF_CLASS   ELFCLASS32
1044#endif
1045#define ELF_ARCH    EM_MIPS
1046
1047#ifdef TARGET_ABI_MIPSN32
1048#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1049#else
1050#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1051#endif
1052
1053static inline void init_thread(struct target_pt_regs *regs,
1054                               struct image_info *infop)
1055{
1056    regs->cp0_status = 2 << CP0St_KSU;
1057    regs->cp0_epc = infop->entry;
1058    regs->regs[29] = infop->start_stack;
1059}
1060
1061/* See linux kernel: arch/mips/include/asm/elf.h.  */
1062#define ELF_NREG 45
1063typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1064
1065/* See linux kernel: arch/mips/include/asm/reg.h.  */
1066enum {
1067#ifdef TARGET_MIPS64
1068    TARGET_EF_R0 = 0,
1069#else
1070    TARGET_EF_R0 = 6,
1071#endif
1072    TARGET_EF_R26 = TARGET_EF_R0 + 26,
1073    TARGET_EF_R27 = TARGET_EF_R0 + 27,
1074    TARGET_EF_LO = TARGET_EF_R0 + 32,
1075    TARGET_EF_HI = TARGET_EF_R0 + 33,
1076    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1077    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1078    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1079    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1080};
1081
1082/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1083static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1084{
1085    int i;
1086
1087    for (i = 0; i < TARGET_EF_R0; i++) {
1088        (*regs)[i] = 0;
1089    }
1090    (*regs)[TARGET_EF_R0] = 0;
1091
1092    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1093        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1094    }
1095
1096    (*regs)[TARGET_EF_R26] = 0;
1097    (*regs)[TARGET_EF_R27] = 0;
1098    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1099    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1100    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1101    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1102    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1103    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1104}
1105
1106#define USE_ELF_CORE_DUMP
1107#define ELF_EXEC_PAGESIZE        4096
1108
1109/* See arch/mips/include/uapi/asm/hwcap.h.  */
1110enum {
1111    HWCAP_MIPS_R6           = (1 << 0),
1112    HWCAP_MIPS_MSA          = (1 << 1),
1113    HWCAP_MIPS_CRC32        = (1 << 2),
1114    HWCAP_MIPS_MIPS16       = (1 << 3),
1115    HWCAP_MIPS_MDMX         = (1 << 4),
1116    HWCAP_MIPS_MIPS3D       = (1 << 5),
1117    HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1118    HWCAP_MIPS_DSP          = (1 << 7),
1119    HWCAP_MIPS_DSP2         = (1 << 8),
1120    HWCAP_MIPS_DSP3         = (1 << 9),
1121    HWCAP_MIPS_MIPS16E2     = (1 << 10),
1122    HWCAP_LOONGSON_MMI      = (1 << 11),
1123    HWCAP_LOONGSON_EXT      = (1 << 12),
1124    HWCAP_LOONGSON_EXT2     = (1 << 13),
1125    HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1126};
1127
1128#define ELF_HWCAP get_elf_hwcap()
1129
1130#define GET_FEATURE_INSN(_flag, _hwcap) \
1131    do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1132
1133#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1134    do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1135
1136#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1137    do { \
1138        if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1139            hwcaps |= _hwcap; \
1140        } \
1141    } while (0)
1142
1143static uint32_t get_elf_hwcap(void)
1144{
1145    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1146    uint32_t hwcaps = 0;
1147
1148    GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1149                        2, HWCAP_MIPS_R6);
1150    GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1151    GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1152    GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1153
1154    return hwcaps;
1155}
1156
1157#undef GET_FEATURE_REG_EQU
1158#undef GET_FEATURE_REG_SET
1159#undef GET_FEATURE_INSN
1160
1161#endif /* TARGET_MIPS */
1162
1163#ifdef TARGET_MICROBLAZE
1164
1165#define ELF_START_MMAP 0x80000000
1166
1167#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1168
1169#define ELF_CLASS   ELFCLASS32
1170#define ELF_ARCH    EM_MICROBLAZE
1171
1172static inline void init_thread(struct target_pt_regs *regs,
1173                               struct image_info *infop)
1174{
1175    regs->pc = infop->entry;
1176    regs->r1 = infop->start_stack;
1177
1178}
1179
1180#define ELF_EXEC_PAGESIZE        4096
1181
1182#define USE_ELF_CORE_DUMP
1183#define ELF_NREG 38
1184typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1185
1186/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1187static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1188{
1189    int i, pos = 0;
1190
1191    for (i = 0; i < 32; i++) {
1192        (*regs)[pos++] = tswapreg(env->regs[i]);
1193    }
1194
1195    (*regs)[pos++] = tswapreg(env->pc);
1196    (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1197    (*regs)[pos++] = 0;
1198    (*regs)[pos++] = tswapreg(env->ear);
1199    (*regs)[pos++] = 0;
1200    (*regs)[pos++] = tswapreg(env->esr);
1201}
1202
1203#endif /* TARGET_MICROBLAZE */
1204
1205#ifdef TARGET_NIOS2
1206
1207#define ELF_START_MMAP 0x80000000
1208
1209#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1210
1211#define ELF_CLASS   ELFCLASS32
1212#define ELF_ARCH    EM_ALTERA_NIOS2
1213
1214static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1215{
1216    regs->ea = infop->entry;
1217    regs->sp = infop->start_stack;
1218}
1219
1220#define LO_COMMPAGE  TARGET_PAGE_SIZE
1221
1222static bool init_guest_commpage(void)
1223{
1224    static const uint8_t kuser_page[4 + 2 * 64] = {
1225        /* __kuser_helper_version */
1226        [0x00] = 0x02, 0x00, 0x00, 0x00,
1227
1228        /* __kuser_cmpxchg */
1229        [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1230                 0x3a, 0x28, 0x00, 0xf8,  /* ret */
1231
1232        /* __kuser_sigtramp */
1233        [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1234                 0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1235    };
1236
1237    void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1238    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1239                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1240
1241    if (addr == MAP_FAILED) {
1242        perror("Allocating guest commpage");
1243        exit(EXIT_FAILURE);
1244    }
1245    if (addr != want) {
1246        return false;
1247    }
1248
1249    memcpy(addr, kuser_page, sizeof(kuser_page));
1250
1251    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1252        perror("Protecting guest commpage");
1253        exit(EXIT_FAILURE);
1254    }
1255
1256    page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE,
1257                   PAGE_READ | PAGE_EXEC | PAGE_VALID);
1258    return true;
1259}
1260
1261#define ELF_EXEC_PAGESIZE        4096
1262
1263#define USE_ELF_CORE_DUMP
1264#define ELF_NREG 49
1265typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1266
1267/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1268static void elf_core_copy_regs(target_elf_gregset_t *regs,
1269                               const CPUNios2State *env)
1270{
1271    int i;
1272
1273    (*regs)[0] = -1;
1274    for (i = 1; i < 8; i++)    /* r0-r7 */
1275        (*regs)[i] = tswapreg(env->regs[i + 7]);
1276
1277    for (i = 8; i < 16; i++)   /* r8-r15 */
1278        (*regs)[i] = tswapreg(env->regs[i - 8]);
1279
1280    for (i = 16; i < 24; i++)  /* r16-r23 */
1281        (*regs)[i] = tswapreg(env->regs[i + 7]);
1282    (*regs)[24] = -1;    /* R_ET */
1283    (*regs)[25] = -1;    /* R_BT */
1284    (*regs)[26] = tswapreg(env->regs[R_GP]);
1285    (*regs)[27] = tswapreg(env->regs[R_SP]);
1286    (*regs)[28] = tswapreg(env->regs[R_FP]);
1287    (*regs)[29] = tswapreg(env->regs[R_EA]);
1288    (*regs)[30] = -1;    /* R_SSTATUS */
1289    (*regs)[31] = tswapreg(env->regs[R_RA]);
1290
1291    (*regs)[32] = tswapreg(env->pc);
1292
1293    (*regs)[33] = -1; /* R_STATUS */
1294    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1295
1296    for (i = 35; i < 49; i++)    /* ... */
1297        (*regs)[i] = -1;
1298}
1299
1300#endif /* TARGET_NIOS2 */
1301
1302#ifdef TARGET_OPENRISC
1303
1304#define ELF_START_MMAP 0x08000000
1305
1306#define ELF_ARCH EM_OPENRISC
1307#define ELF_CLASS ELFCLASS32
1308#define ELF_DATA  ELFDATA2MSB
1309
1310static inline void init_thread(struct target_pt_regs *regs,
1311                               struct image_info *infop)
1312{
1313    regs->pc = infop->entry;
1314    regs->gpr[1] = infop->start_stack;
1315}
1316
1317#define USE_ELF_CORE_DUMP
1318#define ELF_EXEC_PAGESIZE 8192
1319
1320/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1321#define ELF_NREG 34 /* gprs and pc, sr */
1322typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1323
1324static void elf_core_copy_regs(target_elf_gregset_t *regs,
1325                               const CPUOpenRISCState *env)
1326{
1327    int i;
1328
1329    for (i = 0; i < 32; i++) {
1330        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1331    }
1332    (*regs)[32] = tswapreg(env->pc);
1333    (*regs)[33] = tswapreg(cpu_get_sr(env));
1334}
1335#define ELF_HWCAP 0
1336#define ELF_PLATFORM NULL
1337
1338#endif /* TARGET_OPENRISC */
1339
1340#ifdef TARGET_SH4
1341
1342#define ELF_START_MMAP 0x80000000
1343
1344#define ELF_CLASS ELFCLASS32
1345#define ELF_ARCH  EM_SH
1346
1347static inline void init_thread(struct target_pt_regs *regs,
1348                               struct image_info *infop)
1349{
1350    /* Check other registers XXXXX */
1351    regs->pc = infop->entry;
1352    regs->regs[15] = infop->start_stack;
1353}
1354
1355/* See linux kernel: arch/sh/include/asm/elf.h.  */
1356#define ELF_NREG 23
1357typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1358
1359/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1360enum {
1361    TARGET_REG_PC = 16,
1362    TARGET_REG_PR = 17,
1363    TARGET_REG_SR = 18,
1364    TARGET_REG_GBR = 19,
1365    TARGET_REG_MACH = 20,
1366    TARGET_REG_MACL = 21,
1367    TARGET_REG_SYSCALL = 22
1368};
1369
1370static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1371                                      const CPUSH4State *env)
1372{
1373    int i;
1374
1375    for (i = 0; i < 16; i++) {
1376        (*regs)[i] = tswapreg(env->gregs[i]);
1377    }
1378
1379    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1380    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1381    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1382    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1383    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1384    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1385    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1386}
1387
1388#define USE_ELF_CORE_DUMP
1389#define ELF_EXEC_PAGESIZE        4096
1390
1391enum {
1392    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1393    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1394    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1395    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1396    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1397    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1398    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1399    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1400    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1401    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1402};
1403
1404#define ELF_HWCAP get_elf_hwcap()
1405
1406static uint32_t get_elf_hwcap(void)
1407{
1408    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1409    uint32_t hwcap = 0;
1410
1411    hwcap |= SH_CPU_HAS_FPU;
1412
1413    if (cpu->env.features & SH_FEATURE_SH4A) {
1414        hwcap |= SH_CPU_HAS_LLSC;
1415    }
1416
1417    return hwcap;
1418}
1419
1420#endif
1421
1422#ifdef TARGET_CRIS
1423
1424#define ELF_START_MMAP 0x80000000
1425
1426#define ELF_CLASS ELFCLASS32
1427#define ELF_ARCH  EM_CRIS
1428
1429static inline void init_thread(struct target_pt_regs *regs,
1430                               struct image_info *infop)
1431{
1432    regs->erp = infop->entry;
1433}
1434
1435#define ELF_EXEC_PAGESIZE        8192
1436
1437#endif
1438
1439#ifdef TARGET_M68K
1440
1441#define ELF_START_MMAP 0x80000000
1442
1443#define ELF_CLASS       ELFCLASS32
1444#define ELF_ARCH        EM_68K
1445
1446/* ??? Does this need to do anything?
1447   #define ELF_PLAT_INIT(_r) */
1448
1449static inline void init_thread(struct target_pt_regs *regs,
1450                               struct image_info *infop)
1451{
1452    regs->usp = infop->start_stack;
1453    regs->sr = 0;
1454    regs->pc = infop->entry;
1455}
1456
1457/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1458#define ELF_NREG 20
1459typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1460
1461static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1462{
1463    (*regs)[0] = tswapreg(env->dregs[1]);
1464    (*regs)[1] = tswapreg(env->dregs[2]);
1465    (*regs)[2] = tswapreg(env->dregs[3]);
1466    (*regs)[3] = tswapreg(env->dregs[4]);
1467    (*regs)[4] = tswapreg(env->dregs[5]);
1468    (*regs)[5] = tswapreg(env->dregs[6]);
1469    (*regs)[6] = tswapreg(env->dregs[7]);
1470    (*regs)[7] = tswapreg(env->aregs[0]);
1471    (*regs)[8] = tswapreg(env->aregs[1]);
1472    (*regs)[9] = tswapreg(env->aregs[2]);
1473    (*regs)[10] = tswapreg(env->aregs[3]);
1474    (*regs)[11] = tswapreg(env->aregs[4]);
1475    (*regs)[12] = tswapreg(env->aregs[5]);
1476    (*regs)[13] = tswapreg(env->aregs[6]);
1477    (*regs)[14] = tswapreg(env->dregs[0]);
1478    (*regs)[15] = tswapreg(env->aregs[7]);
1479    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1480    (*regs)[17] = tswapreg(env->sr);
1481    (*regs)[18] = tswapreg(env->pc);
1482    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1483}
1484
1485#define USE_ELF_CORE_DUMP
1486#define ELF_EXEC_PAGESIZE       8192
1487
1488#endif
1489
1490#ifdef TARGET_ALPHA
1491
1492#define ELF_START_MMAP (0x30000000000ULL)
1493
1494#define ELF_CLASS      ELFCLASS64
1495#define ELF_ARCH       EM_ALPHA
1496
1497static inline void init_thread(struct target_pt_regs *regs,
1498                               struct image_info *infop)
1499{
1500    regs->pc = infop->entry;
1501    regs->ps = 8;
1502    regs->usp = infop->start_stack;
1503}
1504
1505#define ELF_EXEC_PAGESIZE        8192
1506
1507#endif /* TARGET_ALPHA */
1508
1509#ifdef TARGET_S390X
1510
1511#define ELF_START_MMAP (0x20000000000ULL)
1512
1513#define ELF_CLASS       ELFCLASS64
1514#define ELF_DATA        ELFDATA2MSB
1515#define ELF_ARCH        EM_S390
1516
1517#include "elf.h"
1518
1519#define ELF_HWCAP get_elf_hwcap()
1520
1521#define GET_FEATURE(_feat, _hwcap) \
1522    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1523
1524static uint32_t get_elf_hwcap(void)
1525{
1526    /*
1527     * Let's assume we always have esan3 and zarch.
1528     * 31-bit processes can use 64-bit registers (high gprs).
1529     */
1530    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1531
1532    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1533    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1534    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1535    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1536    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1537        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1538        hwcap |= HWCAP_S390_ETF3EH;
1539    }
1540    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1541    GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1542
1543    return hwcap;
1544}
1545
1546static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1547{
1548    regs->psw.addr = infop->entry;
1549    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1550    regs->gprs[15] = infop->start_stack;
1551}
1552
1553/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1554#define ELF_NREG 27
1555typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1556
1557enum {
1558    TARGET_REG_PSWM = 0,
1559    TARGET_REG_PSWA = 1,
1560    TARGET_REG_GPRS = 2,
1561    TARGET_REG_ARS = 18,
1562    TARGET_REG_ORIG_R2 = 26,
1563};
1564
1565static void elf_core_copy_regs(target_elf_gregset_t *regs,
1566                               const CPUS390XState *env)
1567{
1568    int i;
1569    uint32_t *aregs;
1570
1571    (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1572    (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1573    for (i = 0; i < 16; i++) {
1574        (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1575    }
1576    aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1577    for (i = 0; i < 16; i++) {
1578        aregs[i] = tswap32(env->aregs[i]);
1579    }
1580    (*regs)[TARGET_REG_ORIG_R2] = 0;
1581}
1582
1583#define USE_ELF_CORE_DUMP
1584#define ELF_EXEC_PAGESIZE 4096
1585
1586#endif /* TARGET_S390X */
1587
1588#ifdef TARGET_RISCV
1589
1590#define ELF_START_MMAP 0x80000000
1591#define ELF_ARCH  EM_RISCV
1592
1593#ifdef TARGET_RISCV32
1594#define ELF_CLASS ELFCLASS32
1595#else
1596#define ELF_CLASS ELFCLASS64
1597#endif
1598
1599#define ELF_HWCAP get_elf_hwcap()
1600
1601static uint32_t get_elf_hwcap(void)
1602{
1603#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1604    RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1605    uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1606                    | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1607
1608    return cpu->env.misa_ext & mask;
1609#undef MISA_BIT
1610}
1611
1612static inline void init_thread(struct target_pt_regs *regs,
1613                               struct image_info *infop)
1614{
1615    regs->sepc = infop->entry;
1616    regs->sp = infop->start_stack;
1617}
1618
1619#define ELF_EXEC_PAGESIZE 4096
1620
1621#endif /* TARGET_RISCV */
1622
1623#ifdef TARGET_HPPA
1624
1625#define ELF_START_MMAP  0x80000000
1626#define ELF_CLASS       ELFCLASS32
1627#define ELF_ARCH        EM_PARISC
1628#define ELF_PLATFORM    "PARISC"
1629#define STACK_GROWS_DOWN 0
1630#define STACK_ALIGNMENT  64
1631
1632static inline void init_thread(struct target_pt_regs *regs,
1633                               struct image_info *infop)
1634{
1635    regs->iaoq[0] = infop->entry;
1636    regs->iaoq[1] = infop->entry + 4;
1637    regs->gr[23] = 0;
1638    regs->gr[24] = infop->argv;
1639    regs->gr[25] = infop->argc;
1640    /* The top-of-stack contains a linkage buffer.  */
1641    regs->gr[30] = infop->start_stack + 64;
1642    regs->gr[31] = infop->entry;
1643}
1644
1645#endif /* TARGET_HPPA */
1646
1647#ifdef TARGET_XTENSA
1648
1649#define ELF_START_MMAP 0x20000000
1650
1651#define ELF_CLASS       ELFCLASS32
1652#define ELF_ARCH        EM_XTENSA
1653
1654static inline void init_thread(struct target_pt_regs *regs,
1655                               struct image_info *infop)
1656{
1657    regs->windowbase = 0;
1658    regs->windowstart = 1;
1659    regs->areg[1] = infop->start_stack;
1660    regs->pc = infop->entry;
1661}
1662
1663/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1664#define ELF_NREG 128
1665typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1666
1667enum {
1668    TARGET_REG_PC,
1669    TARGET_REG_PS,
1670    TARGET_REG_LBEG,
1671    TARGET_REG_LEND,
1672    TARGET_REG_LCOUNT,
1673    TARGET_REG_SAR,
1674    TARGET_REG_WINDOWSTART,
1675    TARGET_REG_WINDOWBASE,
1676    TARGET_REG_THREADPTR,
1677    TARGET_REG_AR0 = 64,
1678};
1679
1680static void elf_core_copy_regs(target_elf_gregset_t *regs,
1681                               const CPUXtensaState *env)
1682{
1683    unsigned i;
1684
1685    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1686    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1687    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1688    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1689    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1690    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1691    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1692    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1693    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1694    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1695    for (i = 0; i < env->config->nareg; ++i) {
1696        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1697    }
1698}
1699
1700#define USE_ELF_CORE_DUMP
1701#define ELF_EXEC_PAGESIZE       4096
1702
1703#endif /* TARGET_XTENSA */
1704
1705#ifdef TARGET_HEXAGON
1706
1707#define ELF_START_MMAP 0x20000000
1708
1709#define ELF_CLASS       ELFCLASS32
1710#define ELF_ARCH        EM_HEXAGON
1711
1712static inline void init_thread(struct target_pt_regs *regs,
1713                               struct image_info *infop)
1714{
1715    regs->sepc = infop->entry;
1716    regs->sp = infop->start_stack;
1717}
1718
1719#endif /* TARGET_HEXAGON */
1720
1721#ifndef ELF_PLATFORM
1722#define ELF_PLATFORM (NULL)
1723#endif
1724
1725#ifndef ELF_MACHINE
1726#define ELF_MACHINE ELF_ARCH
1727#endif
1728
1729#ifndef elf_check_arch
1730#define elf_check_arch(x) ((x) == ELF_ARCH)
1731#endif
1732
1733#ifndef elf_check_abi
1734#define elf_check_abi(x) (1)
1735#endif
1736
1737#ifndef ELF_HWCAP
1738#define ELF_HWCAP 0
1739#endif
1740
1741#ifndef STACK_GROWS_DOWN
1742#define STACK_GROWS_DOWN 1
1743#endif
1744
1745#ifndef STACK_ALIGNMENT
1746#define STACK_ALIGNMENT 16
1747#endif
1748
1749#ifdef TARGET_ABI32
1750#undef ELF_CLASS
1751#define ELF_CLASS ELFCLASS32
1752#undef bswaptls
1753#define bswaptls(ptr) bswap32s(ptr)
1754#endif
1755
1756#include "elf.h"
1757
1758/* We must delay the following stanzas until after "elf.h". */
1759#if defined(TARGET_AARCH64)
1760
1761static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1762                                    const uint32_t *data,
1763                                    struct image_info *info,
1764                                    Error **errp)
1765{
1766    if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1767        if (pr_datasz != sizeof(uint32_t)) {
1768            error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1769            return false;
1770        }
1771        /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1772        info->note_flags = *data;
1773    }
1774    return true;
1775}
1776#define ARCH_USE_GNU_PROPERTY 1
1777
1778#else
1779
1780static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1781                                    const uint32_t *data,
1782                                    struct image_info *info,
1783                                    Error **errp)
1784{
1785    g_assert_not_reached();
1786}
1787#define ARCH_USE_GNU_PROPERTY 0
1788
1789#endif
1790
1791struct exec
1792{
1793    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1794    unsigned int a_text;   /* length of text, in bytes */
1795    unsigned int a_data;   /* length of data, in bytes */
1796    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1797    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1798    unsigned int a_entry;  /* start address */
1799    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1800    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1801};
1802
1803
1804#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1805#define OMAGIC 0407
1806#define NMAGIC 0410
1807#define ZMAGIC 0413
1808#define QMAGIC 0314
1809
1810/* Necessary parameters */
1811#define TARGET_ELF_EXEC_PAGESIZE \
1812        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1813         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1814#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1815#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1816                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1817#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1818
1819#define DLINFO_ITEMS 16
1820
1821static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1822{
1823    memcpy(to, from, n);
1824}
1825
1826#ifdef BSWAP_NEEDED
1827static void bswap_ehdr(struct elfhdr *ehdr)
1828{
1829    bswap16s(&ehdr->e_type);            /* Object file type */
1830    bswap16s(&ehdr->e_machine);         /* Architecture */
1831    bswap32s(&ehdr->e_version);         /* Object file version */
1832    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1833    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1834    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1835    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1836    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1837    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1838    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1839    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1840    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1841    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1842}
1843
1844static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1845{
1846    int i;
1847    for (i = 0; i < phnum; ++i, ++phdr) {
1848        bswap32s(&phdr->p_type);        /* Segment type */
1849        bswap32s(&phdr->p_flags);       /* Segment flags */
1850        bswaptls(&phdr->p_offset);      /* Segment file offset */
1851        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1852        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1853        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1854        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1855        bswaptls(&phdr->p_align);       /* Segment alignment */
1856    }
1857}
1858
1859static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1860{
1861    int i;
1862    for (i = 0; i < shnum; ++i, ++shdr) {
1863        bswap32s(&shdr->sh_name);
1864        bswap32s(&shdr->sh_type);
1865        bswaptls(&shdr->sh_flags);
1866        bswaptls(&shdr->sh_addr);
1867        bswaptls(&shdr->sh_offset);
1868        bswaptls(&shdr->sh_size);
1869        bswap32s(&shdr->sh_link);
1870        bswap32s(&shdr->sh_info);
1871        bswaptls(&shdr->sh_addralign);
1872        bswaptls(&shdr->sh_entsize);
1873    }
1874}
1875
1876static void bswap_sym(struct elf_sym *sym)
1877{
1878    bswap32s(&sym->st_name);
1879    bswaptls(&sym->st_value);
1880    bswaptls(&sym->st_size);
1881    bswap16s(&sym->st_shndx);
1882}
1883
1884#ifdef TARGET_MIPS
1885static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1886{
1887    bswap16s(&abiflags->version);
1888    bswap32s(&abiflags->ases);
1889    bswap32s(&abiflags->isa_ext);
1890    bswap32s(&abiflags->flags1);
1891    bswap32s(&abiflags->flags2);
1892}
1893#endif
1894#else
1895static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1896static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1897static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1898static inline void bswap_sym(struct elf_sym *sym) { }
1899#ifdef TARGET_MIPS
1900static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1901#endif
1902#endif
1903
1904#ifdef USE_ELF_CORE_DUMP
1905static int elf_core_dump(int, const CPUArchState *);
1906#endif /* USE_ELF_CORE_DUMP */
1907static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1908
1909/* Verify the portions of EHDR within E_IDENT for the target.
1910   This can be performed before bswapping the entire header.  */
1911static bool elf_check_ident(struct elfhdr *ehdr)
1912{
1913    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1914            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1915            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1916            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1917            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1918            && ehdr->e_ident[EI_DATA] == ELF_DATA
1919            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1920}
1921
1922/* Verify the portions of EHDR outside of E_IDENT for the target.
1923   This has to wait until after bswapping the header.  */
1924static bool elf_check_ehdr(struct elfhdr *ehdr)
1925{
1926    return (elf_check_arch(ehdr->e_machine)
1927            && elf_check_abi(ehdr->e_flags)
1928            && ehdr->e_ehsize == sizeof(struct elfhdr)
1929            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1930            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1931}
1932
1933/*
1934 * 'copy_elf_strings()' copies argument/envelope strings from user
1935 * memory to free pages in kernel mem. These are in a format ready
1936 * to be put directly into the top of new user memory.
1937 *
1938 */
1939static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1940                                  abi_ulong p, abi_ulong stack_limit)
1941{
1942    char *tmp;
1943    int len, i;
1944    abi_ulong top = p;
1945
1946    if (!p) {
1947        return 0;       /* bullet-proofing */
1948    }
1949
1950    if (STACK_GROWS_DOWN) {
1951        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1952        for (i = argc - 1; i >= 0; --i) {
1953            tmp = argv[i];
1954            if (!tmp) {
1955                fprintf(stderr, "VFS: argc is wrong");
1956                exit(-1);
1957            }
1958            len = strlen(tmp) + 1;
1959            tmp += len;
1960
1961            if (len > (p - stack_limit)) {
1962                return 0;
1963            }
1964            while (len) {
1965                int bytes_to_copy = (len > offset) ? offset : len;
1966                tmp -= bytes_to_copy;
1967                p -= bytes_to_copy;
1968                offset -= bytes_to_copy;
1969                len -= bytes_to_copy;
1970
1971                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1972
1973                if (offset == 0) {
1974                    memcpy_to_target(p, scratch, top - p);
1975                    top = p;
1976                    offset = TARGET_PAGE_SIZE;
1977                }
1978            }
1979        }
1980        if (p != top) {
1981            memcpy_to_target(p, scratch + offset, top - p);
1982        }
1983    } else {
1984        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1985        for (i = 0; i < argc; ++i) {
1986            tmp = argv[i];
1987            if (!tmp) {
1988                fprintf(stderr, "VFS: argc is wrong");
1989                exit(-1);
1990            }
1991            len = strlen(tmp) + 1;
1992            if (len > (stack_limit - p)) {
1993                return 0;
1994            }
1995            while (len) {
1996                int bytes_to_copy = (len > remaining) ? remaining : len;
1997
1998                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1999
2000                tmp += bytes_to_copy;
2001                remaining -= bytes_to_copy;
2002                p += bytes_to_copy;
2003                len -= bytes_to_copy;
2004
2005                if (remaining == 0) {
2006                    memcpy_to_target(top, scratch, p - top);
2007                    top = p;
2008                    remaining = TARGET_PAGE_SIZE;
2009                }
2010            }
2011        }
2012        if (p != top) {
2013            memcpy_to_target(top, scratch, p - top);
2014        }
2015    }
2016
2017    return p;
2018}
2019
2020/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2021 * argument/environment space. Newer kernels (>2.6.33) allow more,
2022 * dependent on stack size, but guarantee at least 32 pages for
2023 * backwards compatibility.
2024 */
2025#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2026
2027static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2028                                 struct image_info *info)
2029{
2030    abi_ulong size, error, guard;
2031
2032    size = guest_stack_size;
2033    if (size < STACK_LOWER_LIMIT) {
2034        size = STACK_LOWER_LIMIT;
2035    }
2036    guard = TARGET_PAGE_SIZE;
2037    if (guard < qemu_real_host_page_size()) {
2038        guard = qemu_real_host_page_size();
2039    }
2040
2041    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
2042                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2043    if (error == -1) {
2044        perror("mmap stack");
2045        exit(-1);
2046    }
2047
2048    /* We reserve one extra page at the top of the stack as guard.  */
2049    if (STACK_GROWS_DOWN) {
2050        target_mprotect(error, guard, PROT_NONE);
2051        info->stack_limit = error + guard;
2052        return info->stack_limit + size - sizeof(void *);
2053    } else {
2054        target_mprotect(error + size, guard, PROT_NONE);
2055        info->stack_limit = error + size;
2056        return error;
2057    }
2058}
2059
2060/* Map and zero the bss.  We need to explicitly zero any fractional pages
2061   after the data section (i.e. bss).  */
2062static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2063{
2064    uintptr_t host_start, host_map_start, host_end;
2065
2066    last_bss = TARGET_PAGE_ALIGN(last_bss);
2067
2068    /* ??? There is confusion between qemu_real_host_page_size and
2069       qemu_host_page_size here and elsewhere in target_mmap, which
2070       may lead to the end of the data section mapping from the file
2071       not being mapped.  At least there was an explicit test and
2072       comment for that here, suggesting that "the file size must
2073       be known".  The comment probably pre-dates the introduction
2074       of the fstat system call in target_mmap which does in fact
2075       find out the size.  What isn't clear is if the workaround
2076       here is still actually needed.  For now, continue with it,
2077       but merge it with the "normal" mmap that would allocate the bss.  */
2078
2079    host_start = (uintptr_t) g2h_untagged(elf_bss);
2080    host_end = (uintptr_t) g2h_untagged(last_bss);
2081    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2082
2083    if (host_map_start < host_end) {
2084        void *p = mmap((void *)host_map_start, host_end - host_map_start,
2085                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2086        if (p == MAP_FAILED) {
2087            perror("cannot mmap brk");
2088            exit(-1);
2089        }
2090    }
2091
2092    /* Ensure that the bss page(s) are valid */
2093    if ((page_get_flags(last_bss-1) & prot) != prot) {
2094        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
2095    }
2096
2097    if (host_start < host_map_start) {
2098        memset((void *)host_start, 0, host_map_start - host_start);
2099    }
2100}
2101
2102#ifdef TARGET_ARM
2103static int elf_is_fdpic(struct elfhdr *exec)
2104{
2105    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2106}
2107#else
2108/* Default implementation, always false.  */
2109static int elf_is_fdpic(struct elfhdr *exec)
2110{
2111    return 0;
2112}
2113#endif
2114
2115static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2116{
2117    uint16_t n;
2118    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2119
2120    /* elf32_fdpic_loadseg */
2121    n = info->nsegs;
2122    while (n--) {
2123        sp -= 12;
2124        put_user_u32(loadsegs[n].addr, sp+0);
2125        put_user_u32(loadsegs[n].p_vaddr, sp+4);
2126        put_user_u32(loadsegs[n].p_memsz, sp+8);
2127    }
2128
2129    /* elf32_fdpic_loadmap */
2130    sp -= 4;
2131    put_user_u16(0, sp+0); /* version */
2132    put_user_u16(info->nsegs, sp+2); /* nsegs */
2133
2134    info->personality = PER_LINUX_FDPIC;
2135    info->loadmap_addr = sp;
2136
2137    return sp;
2138}
2139
2140static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2141                                   struct elfhdr *exec,
2142                                   struct image_info *info,
2143                                   struct image_info *interp_info)
2144{
2145    abi_ulong sp;
2146    abi_ulong u_argc, u_argv, u_envp, u_auxv;
2147    int size;
2148    int i;
2149    abi_ulong u_rand_bytes;
2150    uint8_t k_rand_bytes[16];
2151    abi_ulong u_platform;
2152    const char *k_platform;
2153    const int n = sizeof(elf_addr_t);
2154
2155    sp = p;
2156
2157    /* Needs to be before we load the env/argc/... */
2158    if (elf_is_fdpic(exec)) {
2159        /* Need 4 byte alignment for these structs */
2160        sp &= ~3;
2161        sp = loader_build_fdpic_loadmap(info, sp);
2162        info->other_info = interp_info;
2163        if (interp_info) {
2164            interp_info->other_info = info;
2165            sp = loader_build_fdpic_loadmap(interp_info, sp);
2166            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2167            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2168        } else {
2169            info->interpreter_loadmap_addr = 0;
2170            info->interpreter_pt_dynamic_addr = 0;
2171        }
2172    }
2173
2174    u_platform = 0;
2175    k_platform = ELF_PLATFORM;
2176    if (k_platform) {
2177        size_t len = strlen(k_platform) + 1;
2178        if (STACK_GROWS_DOWN) {
2179            sp -= (len + n - 1) & ~(n - 1);
2180            u_platform = sp;
2181            /* FIXME - check return value of memcpy_to_target() for failure */
2182            memcpy_to_target(sp, k_platform, len);
2183        } else {
2184            memcpy_to_target(sp, k_platform, len);
2185            u_platform = sp;
2186            sp += len + 1;
2187        }
2188    }
2189
2190    /* Provide 16 byte alignment for the PRNG, and basic alignment for
2191     * the argv and envp pointers.
2192     */
2193    if (STACK_GROWS_DOWN) {
2194        sp = QEMU_ALIGN_DOWN(sp, 16);
2195    } else {
2196        sp = QEMU_ALIGN_UP(sp, 16);
2197    }
2198
2199    /*
2200     * Generate 16 random bytes for userspace PRNG seeding.
2201     */
2202    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2203    if (STACK_GROWS_DOWN) {
2204        sp -= 16;
2205        u_rand_bytes = sp;
2206        /* FIXME - check return value of memcpy_to_target() for failure */
2207        memcpy_to_target(sp, k_rand_bytes, 16);
2208    } else {
2209        memcpy_to_target(sp, k_rand_bytes, 16);
2210        u_rand_bytes = sp;
2211        sp += 16;
2212    }
2213
2214    size = (DLINFO_ITEMS + 1) * 2;
2215    if (k_platform)
2216        size += 2;
2217#ifdef DLINFO_ARCH_ITEMS
2218    size += DLINFO_ARCH_ITEMS * 2;
2219#endif
2220#ifdef ELF_HWCAP2
2221    size += 2;
2222#endif
2223    info->auxv_len = size * n;
2224
2225    size += envc + argc + 2;
2226    size += 1;  /* argc itself */
2227    size *= n;
2228
2229    /* Allocate space and finalize stack alignment for entry now.  */
2230    if (STACK_GROWS_DOWN) {
2231        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2232        sp = u_argc;
2233    } else {
2234        u_argc = sp;
2235        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2236    }
2237
2238    u_argv = u_argc + n;
2239    u_envp = u_argv + (argc + 1) * n;
2240    u_auxv = u_envp + (envc + 1) * n;
2241    info->saved_auxv = u_auxv;
2242    info->argc = argc;
2243    info->envc = envc;
2244    info->argv = u_argv;
2245    info->envp = u_envp;
2246
2247    /* This is correct because Linux defines
2248     * elf_addr_t as Elf32_Off / Elf64_Off
2249     */
2250#define NEW_AUX_ENT(id, val) do {               \
2251        put_user_ual(id, u_auxv);  u_auxv += n; \
2252        put_user_ual(val, u_auxv); u_auxv += n; \
2253    } while(0)
2254
2255#ifdef ARCH_DLINFO
2256    /*
2257     * ARCH_DLINFO must come first so platform specific code can enforce
2258     * special alignment requirements on the AUXV if necessary (eg. PPC).
2259     */
2260    ARCH_DLINFO;
2261#endif
2262    /* There must be exactly DLINFO_ITEMS entries here, or the assert
2263     * on info->auxv_len will trigger.
2264     */
2265    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2266    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2267    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2268    if ((info->alignment & ~qemu_host_page_mask) != 0) {
2269        /* Target doesn't support host page size alignment */
2270        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2271    } else {
2272        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2273                                               qemu_host_page_size)));
2274    }
2275    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2276    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2277    NEW_AUX_ENT(AT_ENTRY, info->entry);
2278    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2279    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2280    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2281    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2282    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2283    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2284    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2285    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2286    NEW_AUX_ENT(AT_EXECFN, info->file_string);
2287
2288#ifdef ELF_HWCAP2
2289    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2290#endif
2291
2292    if (u_platform) {
2293        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2294    }
2295    NEW_AUX_ENT (AT_NULL, 0);
2296#undef NEW_AUX_ENT
2297
2298    /* Check that our initial calculation of the auxv length matches how much
2299     * we actually put into it.
2300     */
2301    assert(info->auxv_len == u_auxv - info->saved_auxv);
2302
2303    put_user_ual(argc, u_argc);
2304
2305    p = info->arg_strings;
2306    for (i = 0; i < argc; ++i) {
2307        put_user_ual(p, u_argv);
2308        u_argv += n;
2309        p += target_strlen(p) + 1;
2310    }
2311    put_user_ual(0, u_argv);
2312
2313    p = info->env_strings;
2314    for (i = 0; i < envc; ++i) {
2315        put_user_ual(p, u_envp);
2316        u_envp += n;
2317        p += target_strlen(p) + 1;
2318    }
2319    put_user_ual(0, u_envp);
2320
2321    return sp;
2322}
2323
2324#if defined(HI_COMMPAGE)
2325#define LO_COMMPAGE 0
2326#elif defined(LO_COMMPAGE)
2327#define HI_COMMPAGE 0
2328#else
2329#define HI_COMMPAGE 0
2330#define LO_COMMPAGE 0
2331#define init_guest_commpage() true
2332#endif
2333
2334static void pgb_fail_in_use(const char *image_name)
2335{
2336    error_report("%s: requires virtual address space that is in use "
2337                 "(omit the -B option or choose a different value)",
2338                 image_name);
2339    exit(EXIT_FAILURE);
2340}
2341
2342static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2343                                abi_ulong guest_hiaddr, long align)
2344{
2345    const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2346    void *addr, *test;
2347
2348    if (!QEMU_IS_ALIGNED(guest_base, align)) {
2349        fprintf(stderr, "Requested guest base %p does not satisfy "
2350                "host minimum alignment (0x%lx)\n",
2351                (void *)guest_base, align);
2352        exit(EXIT_FAILURE);
2353    }
2354
2355    /* Sanity check the guest binary. */
2356    if (reserved_va) {
2357        if (guest_hiaddr > reserved_va) {
2358            error_report("%s: requires more than reserved virtual "
2359                         "address space (0x%" PRIx64 " > 0x%lx)",
2360                         image_name, (uint64_t)guest_hiaddr, reserved_va);
2361            exit(EXIT_FAILURE);
2362        }
2363    } else {
2364#if HOST_LONG_BITS < TARGET_ABI_BITS
2365        if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2366            error_report("%s: requires more virtual address space "
2367                         "than the host can provide (0x%" PRIx64 ")",
2368                         image_name, (uint64_t)guest_hiaddr - guest_base);
2369            exit(EXIT_FAILURE);
2370        }
2371#endif
2372    }
2373
2374    /*
2375     * Expand the allocation to the entire reserved_va.
2376     * Exclude the mmap_min_addr hole.
2377     */
2378    if (reserved_va) {
2379        guest_loaddr = (guest_base >= mmap_min_addr ? 0
2380                        : mmap_min_addr - guest_base);
2381        guest_hiaddr = reserved_va;
2382    }
2383
2384    /* Reserve the address space for the binary, or reserved_va. */
2385    test = g2h_untagged(guest_loaddr);
2386    addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2387    if (test != addr) {
2388        pgb_fail_in_use(image_name);
2389    }
2390    qemu_log_mask(CPU_LOG_PAGE,
2391                  "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n",
2392                  __func__, addr, guest_hiaddr - guest_loaddr);
2393}
2394
2395/**
2396 * pgd_find_hole_fallback: potential mmap address
2397 * @guest_size: size of available space
2398 * @brk: location of break
2399 * @align: memory alignment
2400 *
2401 * This is a fallback method for finding a hole in the host address
2402 * space if we don't have the benefit of being able to access
2403 * /proc/self/map. It can potentially take a very long time as we can
2404 * only dumbly iterate up the host address space seeing if the
2405 * allocation would work.
2406 */
2407static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2408                                        long align, uintptr_t offset)
2409{
2410    uintptr_t base;
2411
2412    /* Start (aligned) at the bottom and work our way up */
2413    base = ROUND_UP(mmap_min_addr, align);
2414
2415    while (true) {
2416        uintptr_t align_start, end;
2417        align_start = ROUND_UP(base, align);
2418        end = align_start + guest_size + offset;
2419
2420        /* if brk is anywhere in the range give ourselves some room to grow. */
2421        if (align_start <= brk && brk < end) {
2422            base = brk + (16 * MiB);
2423            continue;
2424        } else if (align_start + guest_size < align_start) {
2425            /* we have run out of space */
2426            return -1;
2427        } else {
2428            int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2429                MAP_FIXED_NOREPLACE;
2430            void * mmap_start = mmap((void *) align_start, guest_size,
2431                                     PROT_NONE, flags, -1, 0);
2432            if (mmap_start != MAP_FAILED) {
2433                munmap(mmap_start, guest_size);
2434                if (mmap_start == (void *) align_start) {
2435                    qemu_log_mask(CPU_LOG_PAGE,
2436                                  "%s: base @ %p for %" PRIdPTR" bytes\n",
2437                                  __func__, mmap_start + offset, guest_size);
2438                    return (uintptr_t) mmap_start + offset;
2439                }
2440            }
2441            base += qemu_host_page_size;
2442        }
2443    }
2444}
2445
2446/* Return value for guest_base, or -1 if no hole found. */
2447static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2448                               long align, uintptr_t offset)
2449{
2450    GSList *maps, *iter;
2451    uintptr_t this_start, this_end, next_start, brk;
2452    intptr_t ret = -1;
2453
2454    assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2455
2456    maps = read_self_maps();
2457
2458    /* Read brk after we've read the maps, which will malloc. */
2459    brk = (uintptr_t)sbrk(0);
2460
2461    if (!maps) {
2462        return pgd_find_hole_fallback(guest_size, brk, align, offset);
2463    }
2464
2465    /* The first hole is before the first map entry. */
2466    this_start = mmap_min_addr;
2467
2468    for (iter = maps; iter;
2469         this_start = next_start, iter = g_slist_next(iter)) {
2470        uintptr_t align_start, hole_size;
2471
2472        this_end = ((MapInfo *)iter->data)->start;
2473        next_start = ((MapInfo *)iter->data)->end;
2474        align_start = ROUND_UP(this_start + offset, align);
2475
2476        /* Skip holes that are too small. */
2477        if (align_start >= this_end) {
2478            continue;
2479        }
2480        hole_size = this_end - align_start;
2481        if (hole_size < guest_size) {
2482            continue;
2483        }
2484
2485        /* If this hole contains brk, give ourselves some room to grow. */
2486        if (this_start <= brk && brk < this_end) {
2487            hole_size -= guest_size;
2488            if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2489                align_start += 1 * GiB;
2490            } else if (hole_size >= 16 * MiB) {
2491                align_start += 16 * MiB;
2492            } else {
2493                align_start = (this_end - guest_size) & -align;
2494                if (align_start < this_start) {
2495                    continue;
2496                }
2497            }
2498        }
2499
2500        /* Record the lowest successful match. */
2501        if (ret < 0) {
2502            ret = align_start;
2503        }
2504        /* If this hole contains the identity map, select it. */
2505        if (align_start <= guest_loaddr &&
2506            guest_loaddr + guest_size <= this_end) {
2507            ret = 0;
2508        }
2509        /* If this hole ends above the identity map, stop looking. */
2510        if (this_end >= guest_loaddr) {
2511            break;
2512        }
2513    }
2514    free_self_maps(maps);
2515
2516    if (ret != -1) {
2517        qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2518                      " for %" PRIuPTR " bytes\n",
2519                      __func__, ret, guest_size);
2520    }
2521
2522    return ret;
2523}
2524
2525static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2526                       abi_ulong orig_hiaddr, long align)
2527{
2528    uintptr_t loaddr = orig_loaddr;
2529    uintptr_t hiaddr = orig_hiaddr;
2530    uintptr_t offset = 0;
2531    uintptr_t addr;
2532
2533    if (hiaddr != orig_hiaddr) {
2534        error_report("%s: requires virtual address space that the "
2535                     "host cannot provide (0x%" PRIx64 ")",
2536                     image_name, (uint64_t)orig_hiaddr);
2537        exit(EXIT_FAILURE);
2538    }
2539
2540    loaddr &= -align;
2541    if (HI_COMMPAGE) {
2542        /*
2543         * Extend the allocation to include the commpage.
2544         * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2545         * need to ensure there is space bellow the guest_base so we
2546         * can map the commpage in the place needed when the address
2547         * arithmetic wraps around.
2548         */
2549        if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2550            hiaddr = (uintptr_t) 4 << 30;
2551        } else {
2552            offset = -(HI_COMMPAGE & -align);
2553        }
2554    } else if (LO_COMMPAGE != 0) {
2555        loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2556    }
2557
2558    addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2559    if (addr == -1) {
2560        /*
2561         * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2562         * that can satisfy both.  But as the normal arm32 link base address
2563         * is ~32k, and we extend down to include the commpage, making the
2564         * overhead only ~96k, this is unlikely.
2565         */
2566        error_report("%s: Unable to allocate %#zx bytes of "
2567                     "virtual address space", image_name,
2568                     (size_t)(hiaddr - loaddr));
2569        exit(EXIT_FAILURE);
2570    }
2571
2572    guest_base = addr;
2573
2574    qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2575                  __func__, addr, hiaddr - loaddr);
2576}
2577
2578static void pgb_dynamic(const char *image_name, long align)
2579{
2580    /*
2581     * The executable is dynamic and does not require a fixed address.
2582     * All we need is a commpage that satisfies align.
2583     * If we do not need a commpage, leave guest_base == 0.
2584     */
2585    if (HI_COMMPAGE) {
2586        uintptr_t addr, commpage;
2587
2588        /* 64-bit hosts should have used reserved_va. */
2589        assert(sizeof(uintptr_t) == 4);
2590
2591        /*
2592         * By putting the commpage at the first hole, that puts guest_base
2593         * just above that, and maximises the positive guest addresses.
2594         */
2595        commpage = HI_COMMPAGE & -align;
2596        addr = pgb_find_hole(commpage, -commpage, align, 0);
2597        assert(addr != -1);
2598        guest_base = addr;
2599    }
2600}
2601
2602static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2603                            abi_ulong guest_hiaddr, long align)
2604{
2605    int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2606    void *addr, *test;
2607
2608    if (guest_hiaddr > reserved_va) {
2609        error_report("%s: requires more than reserved virtual "
2610                     "address space (0x%" PRIx64 " > 0x%lx)",
2611                     image_name, (uint64_t)guest_hiaddr, reserved_va);
2612        exit(EXIT_FAILURE);
2613    }
2614
2615    /* Widen the "image" to the entire reserved address space. */
2616    pgb_static(image_name, 0, reserved_va, align);
2617
2618    /* osdep.h defines this as 0 if it's missing */
2619    flags |= MAP_FIXED_NOREPLACE;
2620
2621    /* Reserve the memory on the host. */
2622    assert(guest_base != 0);
2623    test = g2h_untagged(0);
2624    addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2625    if (addr == MAP_FAILED || addr != test) {
2626        error_report("Unable to reserve 0x%lx bytes of virtual address "
2627                     "space at %p (%s) for use as guest address space (check your "
2628                     "virtual memory ulimit setting, min_mmap_addr or reserve less "
2629                     "using -R option)", reserved_va, test, strerror(errno));
2630        exit(EXIT_FAILURE);
2631    }
2632
2633    qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2634                  __func__, addr, reserved_va);
2635}
2636
2637void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2638                      abi_ulong guest_hiaddr)
2639{
2640    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2641    uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2642
2643    if (have_guest_base) {
2644        pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2645    } else if (reserved_va) {
2646        pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2647    } else if (guest_loaddr) {
2648        pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2649    } else {
2650        pgb_dynamic(image_name, align);
2651    }
2652
2653    /* Reserve and initialize the commpage. */
2654    if (!init_guest_commpage()) {
2655        /*
2656         * With have_guest_base, the user has selected the address and
2657         * we are trying to work with that.  Otherwise, we have selected
2658         * free space and init_guest_commpage must succeeded.
2659         */
2660        assert(have_guest_base);
2661        pgb_fail_in_use(image_name);
2662    }
2663
2664    assert(QEMU_IS_ALIGNED(guest_base, align));
2665    qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2666                  "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2667}
2668
2669enum {
2670    /* The string "GNU\0" as a magic number. */
2671    GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2672    NOTE_DATA_SZ = 1 * KiB,
2673    NOTE_NAME_SZ = 4,
2674    ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2675};
2676
2677/*
2678 * Process a single gnu_property entry.
2679 * Return false for error.
2680 */
2681static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2682                               struct image_info *info, bool have_prev_type,
2683                               uint32_t *prev_type, Error **errp)
2684{
2685    uint32_t pr_type, pr_datasz, step;
2686
2687    if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2688        goto error_data;
2689    }
2690    datasz -= *off;
2691    data += *off / sizeof(uint32_t);
2692
2693    if (datasz < 2 * sizeof(uint32_t)) {
2694        goto error_data;
2695    }
2696    pr_type = data[0];
2697    pr_datasz = data[1];
2698    data += 2;
2699    datasz -= 2 * sizeof(uint32_t);
2700    step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2701    if (step > datasz) {
2702        goto error_data;
2703    }
2704
2705    /* Properties are supposed to be unique and sorted on pr_type. */
2706    if (have_prev_type && pr_type <= *prev_type) {
2707        if (pr_type == *prev_type) {
2708            error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2709        } else {
2710            error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2711        }
2712        return false;
2713    }
2714    *prev_type = pr_type;
2715
2716    if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2717        return false;
2718    }
2719
2720    *off += 2 * sizeof(uint32_t) + step;
2721    return true;
2722
2723 error_data:
2724    error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2725    return false;
2726}
2727
2728/* Process NT_GNU_PROPERTY_TYPE_0. */
2729static bool parse_elf_properties(int image_fd,
2730                                 struct image_info *info,
2731                                 const struct elf_phdr *phdr,
2732                                 char bprm_buf[BPRM_BUF_SIZE],
2733                                 Error **errp)
2734{
2735    union {
2736        struct elf_note nhdr;
2737        uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2738    } note;
2739
2740    int n, off, datasz;
2741    bool have_prev_type;
2742    uint32_t prev_type;
2743
2744    /* Unless the arch requires properties, ignore them. */
2745    if (!ARCH_USE_GNU_PROPERTY) {
2746        return true;
2747    }
2748
2749    /* If the properties are crazy large, that's too bad. */
2750    n = phdr->p_filesz;
2751    if (n > sizeof(note)) {
2752        error_setg(errp, "PT_GNU_PROPERTY too large");
2753        return false;
2754    }
2755    if (n < sizeof(note.nhdr)) {
2756        error_setg(errp, "PT_GNU_PROPERTY too small");
2757        return false;
2758    }
2759
2760    if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2761        memcpy(&note, bprm_buf + phdr->p_offset, n);
2762    } else {
2763        ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2764        if (len != n) {
2765            error_setg_errno(errp, errno, "Error reading file header");
2766            return false;
2767        }
2768    }
2769
2770    /*
2771     * The contents of a valid PT_GNU_PROPERTY is a sequence
2772     * of uint32_t -- swap them all now.
2773     */
2774#ifdef BSWAP_NEEDED
2775    for (int i = 0; i < n / 4; i++) {
2776        bswap32s(note.data + i);
2777    }
2778#endif
2779
2780    /*
2781     * Note that nhdr is 3 words, and that the "name" described by namesz
2782     * immediately follows nhdr and is thus at the 4th word.  Further, all
2783     * of the inputs to the kernel's round_up are multiples of 4.
2784     */
2785    if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2786        note.nhdr.n_namesz != NOTE_NAME_SZ ||
2787        note.data[3] != GNU0_MAGIC) {
2788        error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2789        return false;
2790    }
2791    off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2792
2793    datasz = note.nhdr.n_descsz + off;
2794    if (datasz > n) {
2795        error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2796        return false;
2797    }
2798
2799    have_prev_type = false;
2800    prev_type = 0;
2801    while (1) {
2802        if (off == datasz) {
2803            return true;  /* end, exit ok */
2804        }
2805        if (!parse_elf_property(note.data, &off, datasz, info,
2806                                have_prev_type, &prev_type, errp)) {
2807            return false;
2808        }
2809        have_prev_type = true;
2810    }
2811}
2812
2813/* Load an ELF image into the address space.
2814
2815   IMAGE_NAME is the filename of the image, to use in error messages.
2816   IMAGE_FD is the open file descriptor for the image.
2817
2818   BPRM_BUF is a copy of the beginning of the file; this of course
2819   contains the elf file header at offset 0.  It is assumed that this
2820   buffer is sufficiently aligned to present no problems to the host
2821   in accessing data at aligned offsets within the buffer.
2822
2823   On return: INFO values will be filled in, as necessary or available.  */
2824
2825static void load_elf_image(const char *image_name, int image_fd,
2826                           struct image_info *info, char **pinterp_name,
2827                           char bprm_buf[BPRM_BUF_SIZE])
2828{
2829    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2830    struct elf_phdr *phdr;
2831    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2832    int i, retval, prot_exec;
2833    Error *err = NULL;
2834
2835    /* First of all, some simple consistency checks */
2836    if (!elf_check_ident(ehdr)) {
2837        error_setg(&err, "Invalid ELF image for this architecture");
2838        goto exit_errmsg;
2839    }
2840    bswap_ehdr(ehdr);
2841    if (!elf_check_ehdr(ehdr)) {
2842        error_setg(&err, "Invalid ELF image for this architecture");
2843        goto exit_errmsg;
2844    }
2845
2846    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2847    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2848        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2849    } else {
2850        phdr = (struct elf_phdr *) alloca(i);
2851        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2852        if (retval != i) {
2853            goto exit_read;
2854        }
2855    }
2856    bswap_phdr(phdr, ehdr->e_phnum);
2857
2858    info->nsegs = 0;
2859    info->pt_dynamic_addr = 0;
2860
2861    mmap_lock();
2862
2863    /*
2864     * Find the maximum size of the image and allocate an appropriate
2865     * amount of memory to handle that.  Locate the interpreter, if any.
2866     */
2867    loaddr = -1, hiaddr = 0;
2868    info->alignment = 0;
2869    for (i = 0; i < ehdr->e_phnum; ++i) {
2870        struct elf_phdr *eppnt = phdr + i;
2871        if (eppnt->p_type == PT_LOAD) {
2872            abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2873            if (a < loaddr) {
2874                loaddr = a;
2875            }
2876            a = eppnt->p_vaddr + eppnt->p_memsz;
2877            if (a > hiaddr) {
2878                hiaddr = a;
2879            }
2880            ++info->nsegs;
2881            info->alignment |= eppnt->p_align;
2882        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2883            g_autofree char *interp_name = NULL;
2884
2885            if (*pinterp_name) {
2886                error_setg(&err, "Multiple PT_INTERP entries");
2887                goto exit_errmsg;
2888            }
2889
2890            interp_name = g_malloc(eppnt->p_filesz);
2891
2892            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2893                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2894                       eppnt->p_filesz);
2895            } else {
2896                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2897                               eppnt->p_offset);
2898                if (retval != eppnt->p_filesz) {
2899                    goto exit_read;
2900                }
2901            }
2902            if (interp_name[eppnt->p_filesz - 1] != 0) {
2903                error_setg(&err, "Invalid PT_INTERP entry");
2904                goto exit_errmsg;
2905            }
2906            *pinterp_name = g_steal_pointer(&interp_name);
2907        } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2908            if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2909                goto exit_errmsg;
2910            }
2911        }
2912    }
2913
2914    if (pinterp_name != NULL) {
2915        /*
2916         * This is the main executable.
2917         *
2918         * Reserve extra space for brk.
2919         * We hold on to this space while placing the interpreter
2920         * and the stack, lest they be placed immediately after
2921         * the data segment and block allocation from the brk.
2922         *
2923         * 16MB is chosen as "large enough" without being so large as
2924         * to allow the result to not fit with a 32-bit guest on a
2925         * 32-bit host. However some 64 bit guests (e.g. s390x)
2926         * attempt to place their heap further ahead and currently
2927         * nothing stops them smashing into QEMUs address space.
2928         */
2929#if TARGET_LONG_BITS == 64
2930        info->reserve_brk = 32 * MiB;
2931#else
2932        info->reserve_brk = 16 * MiB;
2933#endif
2934        hiaddr += info->reserve_brk;
2935
2936        if (ehdr->e_type == ET_EXEC) {
2937            /*
2938             * Make sure that the low address does not conflict with
2939             * MMAP_MIN_ADDR or the QEMU application itself.
2940             */
2941            probe_guest_base(image_name, loaddr, hiaddr);
2942        } else {
2943            /*
2944             * The binary is dynamic, but we still need to
2945             * select guest_base.  In this case we pass a size.
2946             */
2947            probe_guest_base(image_name, 0, hiaddr - loaddr);
2948        }
2949    }
2950
2951    /*
2952     * Reserve address space for all of this.
2953     *
2954     * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2955     * exactly the address range that is required.
2956     *
2957     * Otherwise this is ET_DYN, and we are searching for a location
2958     * that can hold the memory space required.  If the image is
2959     * pre-linked, LOADDR will be non-zero, and the kernel should
2960     * honor that address if it happens to be free.
2961     *
2962     * In both cases, we will overwrite pages in this range with mappings
2963     * from the executable.
2964     */
2965    load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2966                            MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2967                            (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2968                            -1, 0);
2969    if (load_addr == -1) {
2970        goto exit_mmap;
2971    }
2972    load_bias = load_addr - loaddr;
2973
2974    if (elf_is_fdpic(ehdr)) {
2975        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2976            g_malloc(sizeof(*loadsegs) * info->nsegs);
2977
2978        for (i = 0; i < ehdr->e_phnum; ++i) {
2979            switch (phdr[i].p_type) {
2980            case PT_DYNAMIC:
2981                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2982                break;
2983            case PT_LOAD:
2984                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2985                loadsegs->p_vaddr = phdr[i].p_vaddr;
2986                loadsegs->p_memsz = phdr[i].p_memsz;
2987                ++loadsegs;
2988                break;
2989            }
2990        }
2991    }
2992
2993    info->load_bias = load_bias;
2994    info->code_offset = load_bias;
2995    info->data_offset = load_bias;
2996    info->load_addr = load_addr;
2997    info->entry = ehdr->e_entry + load_bias;
2998    info->start_code = -1;
2999    info->end_code = 0;
3000    info->start_data = -1;
3001    info->end_data = 0;
3002    info->brk = 0;
3003    info->elf_flags = ehdr->e_flags;
3004
3005    prot_exec = PROT_EXEC;
3006#ifdef TARGET_AARCH64
3007    /*
3008     * If the BTI feature is present, this indicates that the executable
3009     * pages of the startup binary should be mapped with PROT_BTI, so that
3010     * branch targets are enforced.
3011     *
3012     * The startup binary is either the interpreter or the static executable.
3013     * The interpreter is responsible for all pages of a dynamic executable.
3014     *
3015     * Elf notes are backward compatible to older cpus.
3016     * Do not enable BTI unless it is supported.
3017     */
3018    if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3019        && (pinterp_name == NULL || *pinterp_name == 0)
3020        && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3021        prot_exec |= TARGET_PROT_BTI;
3022    }
3023#endif
3024
3025    for (i = 0; i < ehdr->e_phnum; i++) {
3026        struct elf_phdr *eppnt = phdr + i;
3027        if (eppnt->p_type == PT_LOAD) {
3028            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3029            int elf_prot = 0;
3030
3031            if (eppnt->p_flags & PF_R) {
3032                elf_prot |= PROT_READ;
3033            }
3034            if (eppnt->p_flags & PF_W) {
3035                elf_prot |= PROT_WRITE;
3036            }
3037            if (eppnt->p_flags & PF_X) {
3038                elf_prot |= prot_exec;
3039            }
3040
3041            vaddr = load_bias + eppnt->p_vaddr;
3042            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3043            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3044
3045            vaddr_ef = vaddr + eppnt->p_filesz;
3046            vaddr_em = vaddr + eppnt->p_memsz;
3047
3048            /*
3049             * Some segments may be completely empty, with a non-zero p_memsz
3050             * but no backing file segment.
3051             */
3052            if (eppnt->p_filesz != 0) {
3053                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3054                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3055                                    MAP_PRIVATE | MAP_FIXED,
3056                                    image_fd, eppnt->p_offset - vaddr_po);
3057
3058                if (error == -1) {
3059                    goto exit_mmap;
3060                }
3061
3062                /*
3063                 * If the load segment requests extra zeros (e.g. bss), map it.
3064                 */
3065                if (eppnt->p_filesz < eppnt->p_memsz) {
3066                    zero_bss(vaddr_ef, vaddr_em, elf_prot);
3067                }
3068            } else if (eppnt->p_memsz != 0) {
3069                vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3070                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3071                                    MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3072                                    -1, 0);
3073
3074                if (error == -1) {
3075                    goto exit_mmap;
3076                }
3077            }
3078
3079            /* Find the full program boundaries.  */
3080            if (elf_prot & PROT_EXEC) {
3081                if (vaddr < info->start_code) {
3082                    info->start_code = vaddr;
3083                }
3084                if (vaddr_ef > info->end_code) {
3085                    info->end_code = vaddr_ef;
3086                }
3087            }
3088            if (elf_prot & PROT_WRITE) {
3089                if (vaddr < info->start_data) {
3090                    info->start_data = vaddr;
3091                }
3092                if (vaddr_ef > info->end_data) {
3093                    info->end_data = vaddr_ef;
3094                }
3095            }
3096            if (vaddr_em > info->brk) {
3097                info->brk = vaddr_em;
3098            }
3099#ifdef TARGET_MIPS
3100        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3101            Mips_elf_abiflags_v0 abiflags;
3102            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3103                error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3104                goto exit_errmsg;
3105            }
3106            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3107                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3108                       sizeof(Mips_elf_abiflags_v0));
3109            } else {
3110                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3111                               eppnt->p_offset);
3112                if (retval != sizeof(Mips_elf_abiflags_v0)) {
3113                    goto exit_read;
3114                }
3115            }
3116            bswap_mips_abiflags(&abiflags);
3117            info->fp_abi = abiflags.fp_abi;
3118#endif
3119        }
3120    }
3121
3122    if (info->end_data == 0) {
3123        info->start_data = info->end_code;
3124        info->end_data = info->end_code;
3125    }
3126
3127    if (qemu_log_enabled()) {
3128        load_symbols(ehdr, image_fd, load_bias);
3129    }
3130
3131    mmap_unlock();
3132
3133    close(image_fd);
3134    return;
3135
3136 exit_read:
3137    if (retval >= 0) {
3138        error_setg(&err, "Incomplete read of file header");
3139    } else {
3140        error_setg_errno(&err, errno, "Error reading file header");
3141    }
3142    goto exit_errmsg;
3143 exit_mmap:
3144    error_setg_errno(&err, errno, "Error mapping file");
3145    goto exit_errmsg;
3146 exit_errmsg:
3147    error_reportf_err(err, "%s: ", image_name);
3148    exit(-1);
3149}
3150
3151static void load_elf_interp(const char *filename, struct image_info *info,
3152                            char bprm_buf[BPRM_BUF_SIZE])
3153{
3154    int fd, retval;
3155    Error *err = NULL;
3156
3157    fd = open(path(filename), O_RDONLY);
3158    if (fd < 0) {
3159        error_setg_file_open(&err, errno, filename);
3160        error_report_err(err);
3161        exit(-1);
3162    }
3163
3164    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3165    if (retval < 0) {
3166        error_setg_errno(&err, errno, "Error reading file header");
3167        error_reportf_err(err, "%s: ", filename);
3168        exit(-1);
3169    }
3170
3171    if (retval < BPRM_BUF_SIZE) {
3172        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3173    }
3174
3175    load_elf_image(filename, fd, info, NULL, bprm_buf);
3176}
3177
3178static int symfind(const void *s0, const void *s1)
3179{
3180    target_ulong addr = *(target_ulong *)s0;
3181    struct elf_sym *sym = (struct elf_sym *)s1;
3182    int result = 0;
3183    if (addr < sym->st_value) {
3184        result = -1;
3185    } else if (addr >= sym->st_value + sym->st_size) {
3186        result = 1;
3187    }
3188    return result;
3189}
3190
3191static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3192{
3193#if ELF_CLASS == ELFCLASS32
3194    struct elf_sym *syms = s->disas_symtab.elf32;
3195#else
3196    struct elf_sym *syms = s->disas_symtab.elf64;
3197#endif
3198
3199    // binary search
3200    struct elf_sym *sym;
3201
3202    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3203    if (sym != NULL) {
3204        return s->disas_strtab + sym->st_name;
3205    }
3206
3207    return "";
3208}
3209
3210/* FIXME: This should use elf_ops.h  */
3211static int symcmp(const void *s0, const void *s1)
3212{
3213    struct elf_sym *sym0 = (struct elf_sym *)s0;
3214    struct elf_sym *sym1 = (struct elf_sym *)s1;
3215    return (sym0->st_value < sym1->st_value)
3216        ? -1
3217        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3218}
3219
3220/* Best attempt to load symbols from this ELF object. */
3221static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3222{
3223    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3224    uint64_t segsz;
3225    struct elf_shdr *shdr;
3226    char *strings = NULL;
3227    struct syminfo *s = NULL;
3228    struct elf_sym *new_syms, *syms = NULL;
3229
3230    shnum = hdr->e_shnum;
3231    i = shnum * sizeof(struct elf_shdr);
3232    shdr = (struct elf_shdr *)alloca(i);
3233    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3234        return;
3235    }
3236
3237    bswap_shdr(shdr, shnum);
3238    for (i = 0; i < shnum; ++i) {
3239        if (shdr[i].sh_type == SHT_SYMTAB) {
3240            sym_idx = i;
3241            str_idx = shdr[i].sh_link;
3242            goto found;
3243        }
3244    }
3245
3246    /* There will be no symbol table if the file was stripped.  */
3247    return;
3248
3249 found:
3250    /* Now know where the strtab and symtab are.  Snarf them.  */
3251    s = g_try_new(struct syminfo, 1);
3252    if (!s) {
3253        goto give_up;
3254    }
3255
3256    segsz = shdr[str_idx].sh_size;
3257    s->disas_strtab = strings = g_try_malloc(segsz);
3258    if (!strings ||
3259        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3260        goto give_up;
3261    }
3262
3263    segsz = shdr[sym_idx].sh_size;
3264    syms = g_try_malloc(segsz);
3265    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3266        goto give_up;
3267    }
3268
3269    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3270        /* Implausibly large symbol table: give up rather than ploughing
3271         * on with the number of symbols calculation overflowing
3272         */
3273        goto give_up;
3274    }
3275    nsyms = segsz / sizeof(struct elf_sym);
3276    for (i = 0; i < nsyms; ) {
3277        bswap_sym(syms + i);
3278        /* Throw away entries which we do not need.  */
3279        if (syms[i].st_shndx == SHN_UNDEF
3280            || syms[i].st_shndx >= SHN_LORESERVE
3281            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3282            if (i < --nsyms) {
3283                syms[i] = syms[nsyms];
3284            }
3285        } else {
3286#if defined(TARGET_ARM) || defined (TARGET_MIPS)
3287            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3288            syms[i].st_value &= ~(target_ulong)1;
3289#endif
3290            syms[i].st_value += load_bias;
3291            i++;
3292        }
3293    }
3294
3295    /* No "useful" symbol.  */
3296    if (nsyms == 0) {
3297        goto give_up;
3298    }
3299
3300    /* Attempt to free the storage associated with the local symbols
3301       that we threw away.  Whether or not this has any effect on the
3302       memory allocation depends on the malloc implementation and how
3303       many symbols we managed to discard.  */
3304    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3305    if (new_syms == NULL) {
3306        goto give_up;
3307    }
3308    syms = new_syms;
3309
3310    qsort(syms, nsyms, sizeof(*syms), symcmp);
3311
3312    s->disas_num_syms = nsyms;
3313#if ELF_CLASS == ELFCLASS32
3314    s->disas_symtab.elf32 = syms;
3315#else
3316    s->disas_symtab.elf64 = syms;
3317#endif
3318    s->lookup_symbol = lookup_symbolxx;
3319    s->next = syminfos;
3320    syminfos = s;
3321
3322    return;
3323
3324give_up:
3325    g_free(s);
3326    g_free(strings);
3327    g_free(syms);
3328}
3329
3330uint32_t get_elf_eflags(int fd)
3331{
3332    struct elfhdr ehdr;
3333    off_t offset;
3334    int ret;
3335
3336    /* Read ELF header */
3337    offset = lseek(fd, 0, SEEK_SET);
3338    if (offset == (off_t) -1) {
3339        return 0;
3340    }
3341    ret = read(fd, &ehdr, sizeof(ehdr));
3342    if (ret < sizeof(ehdr)) {
3343        return 0;
3344    }
3345    offset = lseek(fd, offset, SEEK_SET);
3346    if (offset == (off_t) -1) {
3347        return 0;
3348    }
3349
3350    /* Check ELF signature */
3351    if (!elf_check_ident(&ehdr)) {
3352        return 0;
3353    }
3354
3355    /* check header */
3356    bswap_ehdr(&ehdr);
3357    if (!elf_check_ehdr(&ehdr)) {
3358        return 0;
3359    }
3360
3361    /* return architecture id */
3362    return ehdr.e_flags;
3363}
3364
3365int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3366{
3367    struct image_info interp_info;
3368    struct elfhdr elf_ex;
3369    char *elf_interpreter = NULL;
3370    char *scratch;
3371
3372    memset(&interp_info, 0, sizeof(interp_info));
3373#ifdef TARGET_MIPS
3374    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3375#endif
3376
3377    info->start_mmap = (abi_ulong)ELF_START_MMAP;
3378
3379    load_elf_image(bprm->filename, bprm->fd, info,
3380                   &elf_interpreter, bprm->buf);
3381
3382    /* ??? We need a copy of the elf header for passing to create_elf_tables.
3383       If we do nothing, we'll have overwritten this when we re-use bprm->buf
3384       when we load the interpreter.  */
3385    elf_ex = *(struct elfhdr *)bprm->buf;
3386
3387    /* Do this so that we can load the interpreter, if need be.  We will
3388       change some of these later */
3389    bprm->p = setup_arg_pages(bprm, info);
3390
3391    scratch = g_new0(char, TARGET_PAGE_SIZE);
3392    if (STACK_GROWS_DOWN) {
3393        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3394                                   bprm->p, info->stack_limit);
3395        info->file_string = bprm->p;
3396        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3397                                   bprm->p, info->stack_limit);
3398        info->env_strings = bprm->p;
3399        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3400                                   bprm->p, info->stack_limit);
3401        info->arg_strings = bprm->p;
3402    } else {
3403        info->arg_strings = bprm->p;
3404        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3405                                   bprm->p, info->stack_limit);
3406        info->env_strings = bprm->p;
3407        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3408                                   bprm->p, info->stack_limit);
3409        info->file_string = bprm->p;
3410        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3411                                   bprm->p, info->stack_limit);
3412    }
3413
3414    g_free(scratch);
3415
3416    if (!bprm->p) {
3417        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3418        exit(-1);
3419    }
3420
3421    if (elf_interpreter) {
3422        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3423
3424        /* If the program interpreter is one of these two, then assume
3425           an iBCS2 image.  Otherwise assume a native linux image.  */
3426
3427        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3428            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3429            info->personality = PER_SVR4;
3430
3431            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3432               and some applications "depend" upon this behavior.  Since
3433               we do not have the power to recompile these, we emulate
3434               the SVr4 behavior.  Sigh.  */
3435            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3436                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3437        }
3438#ifdef TARGET_MIPS
3439        info->interp_fp_abi = interp_info.fp_abi;
3440#endif
3441    }
3442
3443    /*
3444     * TODO: load a vdso, which would also contain the signal trampolines.
3445     * Otherwise, allocate a private page to hold them.
3446     */
3447    if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3448        abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3449                                          PROT_READ | PROT_WRITE,
3450                                          MAP_PRIVATE | MAP_ANON, -1, 0);
3451        if (tramp_page == -1) {
3452            return -errno;
3453        }
3454
3455        setup_sigtramp(tramp_page);
3456        target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3457    }
3458
3459    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3460                                info, (elf_interpreter ? &interp_info : NULL));
3461    info->start_stack = bprm->p;
3462
3463    /* If we have an interpreter, set that as the program's entry point.
3464       Copy the load_bias as well, to help PPC64 interpret the entry
3465       point as a function descriptor.  Do this after creating elf tables
3466       so that we copy the original program entry point into the AUXV.  */
3467    if (elf_interpreter) {
3468        info->load_bias = interp_info.load_bias;
3469        info->entry = interp_info.entry;
3470        g_free(elf_interpreter);
3471    }
3472
3473#ifdef USE_ELF_CORE_DUMP
3474    bprm->core_dump = &elf_core_dump;
3475#endif
3476
3477    /*
3478     * If we reserved extra space for brk, release it now.
3479     * The implementation of do_brk in syscalls.c expects to be able
3480     * to mmap pages in this space.
3481     */
3482    if (info->reserve_brk) {
3483        abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3484        abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3485        target_munmap(start_brk, end_brk - start_brk);
3486    }
3487
3488    return 0;
3489}
3490
3491#ifdef USE_ELF_CORE_DUMP
3492/*
3493 * Definitions to generate Intel SVR4-like core files.
3494 * These mostly have the same names as the SVR4 types with "target_elf_"
3495 * tacked on the front to prevent clashes with linux definitions,
3496 * and the typedef forms have been avoided.  This is mostly like
3497 * the SVR4 structure, but more Linuxy, with things that Linux does
3498 * not support and which gdb doesn't really use excluded.
3499 *
3500 * Fields we don't dump (their contents is zero) in linux-user qemu
3501 * are marked with XXX.
3502 *
3503 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3504 *
3505 * Porting ELF coredump for target is (quite) simple process.  First you
3506 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3507 * the target resides):
3508 *
3509 * #define USE_ELF_CORE_DUMP
3510 *
3511 * Next you define type of register set used for dumping.  ELF specification
3512 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3513 *
3514 * typedef <target_regtype> target_elf_greg_t;
3515 * #define ELF_NREG <number of registers>
3516 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3517 *
3518 * Last step is to implement target specific function that copies registers
3519 * from given cpu into just specified register set.  Prototype is:
3520 *
3521 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3522 *                                const CPUArchState *env);
3523 *
3524 * Parameters:
3525 *     regs - copy register values into here (allocated and zeroed by caller)
3526 *     env - copy registers from here
3527 *
3528 * Example for ARM target is provided in this file.
3529 */
3530
3531/* An ELF note in memory */
3532struct memelfnote {
3533    const char *name;
3534    size_t     namesz;
3535    size_t     namesz_rounded;
3536    int        type;
3537    size_t     datasz;
3538    size_t     datasz_rounded;
3539    void       *data;
3540    size_t     notesz;
3541};
3542
3543struct target_elf_siginfo {
3544    abi_int    si_signo; /* signal number */
3545    abi_int    si_code;  /* extra code */
3546    abi_int    si_errno; /* errno */
3547};
3548
3549struct target_elf_prstatus {
3550    struct target_elf_siginfo pr_info;      /* Info associated with signal */
3551    abi_short          pr_cursig;    /* Current signal */
3552    abi_ulong          pr_sigpend;   /* XXX */
3553    abi_ulong          pr_sighold;   /* XXX */
3554    target_pid_t       pr_pid;
3555    target_pid_t       pr_ppid;
3556    target_pid_t       pr_pgrp;
3557    target_pid_t       pr_sid;
3558    struct target_timeval pr_utime;  /* XXX User time */
3559    struct target_timeval pr_stime;  /* XXX System time */
3560    struct target_timeval pr_cutime; /* XXX Cumulative user time */
3561    struct target_timeval pr_cstime; /* XXX Cumulative system time */
3562    target_elf_gregset_t      pr_reg;       /* GP registers */
3563    abi_int            pr_fpvalid;   /* XXX */
3564};
3565
3566#define ELF_PRARGSZ     (80) /* Number of chars for args */
3567
3568struct target_elf_prpsinfo {
3569    char         pr_state;       /* numeric process state */
3570    char         pr_sname;       /* char for pr_state */
3571    char         pr_zomb;        /* zombie */
3572    char         pr_nice;        /* nice val */
3573    abi_ulong    pr_flag;        /* flags */
3574    target_uid_t pr_uid;
3575    target_gid_t pr_gid;
3576    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3577    /* Lots missing */
3578    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3579    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3580};
3581
3582/* Here is the structure in which status of each thread is captured. */
3583struct elf_thread_status {
3584    QTAILQ_ENTRY(elf_thread_status)  ets_link;
3585    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3586#if 0
3587    elf_fpregset_t fpu;             /* NT_PRFPREG */
3588    struct task_struct *thread;
3589    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3590#endif
3591    struct memelfnote notes[1];
3592    int num_notes;
3593};
3594
3595struct elf_note_info {
3596    struct memelfnote   *notes;
3597    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3598    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3599
3600    QTAILQ_HEAD(, elf_thread_status) thread_list;
3601#if 0
3602    /*
3603     * Current version of ELF coredump doesn't support
3604     * dumping fp regs etc.
3605     */
3606    elf_fpregset_t *fpu;
3607    elf_fpxregset_t *xfpu;
3608    int thread_status_size;
3609#endif
3610    int notes_size;
3611    int numnote;
3612};
3613
3614struct vm_area_struct {
3615    target_ulong   vma_start;  /* start vaddr of memory region */
3616    target_ulong   vma_end;    /* end vaddr of memory region */
3617    abi_ulong      vma_flags;  /* protection etc. flags for the region */
3618    QTAILQ_ENTRY(vm_area_struct) vma_link;
3619};
3620
3621struct mm_struct {
3622    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3623    int mm_count;           /* number of mappings */
3624};
3625
3626static struct mm_struct *vma_init(void);
3627static void vma_delete(struct mm_struct *);
3628static int vma_add_mapping(struct mm_struct *, target_ulong,
3629                           target_ulong, abi_ulong);
3630static int vma_get_mapping_count(const struct mm_struct *);
3631static struct vm_area_struct *vma_first(const struct mm_struct *);
3632static struct vm_area_struct *vma_next(struct vm_area_struct *);
3633static abi_ulong vma_dump_size(const struct vm_area_struct *);
3634static int vma_walker(void *priv, target_ulong start, target_ulong end,
3635                      unsigned long flags);
3636
3637static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3638static void fill_note(struct memelfnote *, const char *, int,
3639                      unsigned int, void *);
3640static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3641static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3642static void fill_auxv_note(struct memelfnote *, const TaskState *);
3643static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3644static size_t note_size(const struct memelfnote *);
3645static void free_note_info(struct elf_note_info *);
3646static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3647static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3648
3649static int dump_write(int, const void *, size_t);
3650static int write_note(struct memelfnote *, int);
3651static int write_note_info(struct elf_note_info *, int);
3652
3653#ifdef BSWAP_NEEDED
3654static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3655{
3656    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3657    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3658    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3659    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3660    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3661    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3662    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3663    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3664    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3665    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3666    /* cpu times are not filled, so we skip them */
3667    /* regs should be in correct format already */
3668    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3669}
3670
3671static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3672{
3673    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3674    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3675    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3676    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3677    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3678    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3679    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3680}
3681
3682static void bswap_note(struct elf_note *en)
3683{
3684    bswap32s(&en->n_namesz);
3685    bswap32s(&en->n_descsz);
3686    bswap32s(&en->n_type);
3687}
3688#else
3689static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3690static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3691static inline void bswap_note(struct elf_note *en) { }
3692#endif /* BSWAP_NEEDED */
3693
3694/*
3695 * Minimal support for linux memory regions.  These are needed
3696 * when we are finding out what memory exactly belongs to
3697 * emulated process.  No locks needed here, as long as
3698 * thread that received the signal is stopped.
3699 */
3700
3701static struct mm_struct *vma_init(void)
3702{
3703    struct mm_struct *mm;
3704
3705    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3706        return (NULL);
3707
3708    mm->mm_count = 0;
3709    QTAILQ_INIT(&mm->mm_mmap);
3710
3711    return (mm);
3712}
3713
3714static void vma_delete(struct mm_struct *mm)
3715{
3716    struct vm_area_struct *vma;
3717
3718    while ((vma = vma_first(mm)) != NULL) {
3719        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3720        g_free(vma);
3721    }
3722    g_free(mm);
3723}
3724
3725static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3726                           target_ulong end, abi_ulong flags)
3727{
3728    struct vm_area_struct *vma;
3729
3730    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3731        return (-1);
3732
3733    vma->vma_start = start;
3734    vma->vma_end = end;
3735    vma->vma_flags = flags;
3736
3737    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3738    mm->mm_count++;
3739
3740    return (0);
3741}
3742
3743static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3744{
3745    return (QTAILQ_FIRST(&mm->mm_mmap));
3746}
3747
3748static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3749{
3750    return (QTAILQ_NEXT(vma, vma_link));
3751}
3752
3753static int vma_get_mapping_count(const struct mm_struct *mm)
3754{
3755    return (mm->mm_count);
3756}
3757
3758/*
3759 * Calculate file (dump) size of given memory region.
3760 */
3761static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3762{
3763    /* if we cannot even read the first page, skip it */
3764    if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3765        return (0);
3766
3767    /*
3768     * Usually we don't dump executable pages as they contain
3769     * non-writable code that debugger can read directly from
3770     * target library etc.  However, thread stacks are marked
3771     * also executable so we read in first page of given region
3772     * and check whether it contains elf header.  If there is
3773     * no elf header, we dump it.
3774     */
3775    if (vma->vma_flags & PROT_EXEC) {
3776        char page[TARGET_PAGE_SIZE];
3777
3778        if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3779            return 0;
3780        }
3781        if ((page[EI_MAG0] == ELFMAG0) &&
3782            (page[EI_MAG1] == ELFMAG1) &&
3783            (page[EI_MAG2] == ELFMAG2) &&
3784            (page[EI_MAG3] == ELFMAG3)) {
3785            /*
3786             * Mappings are possibly from ELF binary.  Don't dump
3787             * them.
3788             */
3789            return (0);
3790        }
3791    }
3792
3793    return (vma->vma_end - vma->vma_start);
3794}
3795
3796static int vma_walker(void *priv, target_ulong start, target_ulong end,
3797                      unsigned long flags)
3798{
3799    struct mm_struct *mm = (struct mm_struct *)priv;
3800
3801    vma_add_mapping(mm, start, end, flags);
3802    return (0);
3803}
3804
3805static void fill_note(struct memelfnote *note, const char *name, int type,
3806                      unsigned int sz, void *data)
3807{
3808    unsigned int namesz;
3809
3810    namesz = strlen(name) + 1;
3811    note->name = name;
3812    note->namesz = namesz;
3813    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3814    note->type = type;
3815    note->datasz = sz;
3816    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3817
3818    note->data = data;
3819
3820    /*
3821     * We calculate rounded up note size here as specified by
3822     * ELF document.
3823     */
3824    note->notesz = sizeof (struct elf_note) +
3825        note->namesz_rounded + note->datasz_rounded;
3826}
3827
3828static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3829                            uint32_t flags)
3830{
3831    (void) memset(elf, 0, sizeof(*elf));
3832
3833    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3834    elf->e_ident[EI_CLASS] = ELF_CLASS;
3835    elf->e_ident[EI_DATA] = ELF_DATA;
3836    elf->e_ident[EI_VERSION] = EV_CURRENT;
3837    elf->e_ident[EI_OSABI] = ELF_OSABI;
3838
3839    elf->e_type = ET_CORE;
3840    elf->e_machine = machine;
3841    elf->e_version = EV_CURRENT;
3842    elf->e_phoff = sizeof(struct elfhdr);
3843    elf->e_flags = flags;
3844    elf->e_ehsize = sizeof(struct elfhdr);
3845    elf->e_phentsize = sizeof(struct elf_phdr);
3846    elf->e_phnum = segs;
3847
3848    bswap_ehdr(elf);
3849}
3850
3851static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3852{
3853    phdr->p_type = PT_NOTE;
3854    phdr->p_offset = offset;
3855    phdr->p_vaddr = 0;
3856    phdr->p_paddr = 0;
3857    phdr->p_filesz = sz;
3858    phdr->p_memsz = 0;
3859    phdr->p_flags = 0;
3860    phdr->p_align = 0;
3861
3862    bswap_phdr(phdr, 1);
3863}
3864
3865static size_t note_size(const struct memelfnote *note)
3866{
3867    return (note->notesz);
3868}
3869
3870static void fill_prstatus(struct target_elf_prstatus *prstatus,
3871                          const TaskState *ts, int signr)
3872{
3873    (void) memset(prstatus, 0, sizeof (*prstatus));
3874    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3875    prstatus->pr_pid = ts->ts_tid;
3876    prstatus->pr_ppid = getppid();
3877    prstatus->pr_pgrp = getpgrp();
3878    prstatus->pr_sid = getsid(0);
3879
3880    bswap_prstatus(prstatus);
3881}
3882
3883static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3884{
3885    char *base_filename;
3886    unsigned int i, len;
3887
3888    (void) memset(psinfo, 0, sizeof (*psinfo));
3889
3890    len = ts->info->env_strings - ts->info->arg_strings;
3891    if (len >= ELF_PRARGSZ)
3892        len = ELF_PRARGSZ - 1;
3893    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3894        return -EFAULT;
3895    }
3896    for (i = 0; i < len; i++)
3897        if (psinfo->pr_psargs[i] == 0)
3898            psinfo->pr_psargs[i] = ' ';
3899    psinfo->pr_psargs[len] = 0;
3900
3901    psinfo->pr_pid = getpid();
3902    psinfo->pr_ppid = getppid();
3903    psinfo->pr_pgrp = getpgrp();
3904    psinfo->pr_sid = getsid(0);
3905    psinfo->pr_uid = getuid();
3906    psinfo->pr_gid = getgid();
3907
3908    base_filename = g_path_get_basename(ts->bprm->filename);
3909    /*
3910     * Using strncpy here is fine: at max-length,
3911     * this field is not NUL-terminated.
3912     */
3913    (void) strncpy(psinfo->pr_fname, base_filename,
3914                   sizeof(psinfo->pr_fname));
3915
3916    g_free(base_filename);
3917    bswap_psinfo(psinfo);
3918    return (0);
3919}
3920
3921static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3922{
3923    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3924    elf_addr_t orig_auxv = auxv;
3925    void *ptr;
3926    int len = ts->info->auxv_len;
3927
3928    /*
3929     * Auxiliary vector is stored in target process stack.  It contains
3930     * {type, value} pairs that we need to dump into note.  This is not
3931     * strictly necessary but we do it here for sake of completeness.
3932     */
3933
3934    /* read in whole auxv vector and copy it to memelfnote */
3935    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3936    if (ptr != NULL) {
3937        fill_note(note, "CORE", NT_AUXV, len, ptr);
3938        unlock_user(ptr, auxv, len);
3939    }
3940}
3941
3942/*
3943 * Constructs name of coredump file.  We have following convention
3944 * for the name:
3945 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3946 *
3947 * Returns the filename
3948 */
3949static char *core_dump_filename(const TaskState *ts)
3950{
3951    g_autoptr(GDateTime) now = g_date_time_new_now_local();
3952    g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3953    g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3954
3955    return g_strdup_printf("qemu_%s_%s_%d.core",
3956                           base_filename, nowstr, (int)getpid());
3957}
3958
3959static int dump_write(int fd, const void *ptr, size_t size)
3960{
3961    const char *bufp = (const char *)ptr;
3962    ssize_t bytes_written, bytes_left;
3963    struct rlimit dumpsize;
3964    off_t pos;
3965
3966    bytes_written = 0;
3967    getrlimit(RLIMIT_CORE, &dumpsize);
3968    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3969        if (errno == ESPIPE) { /* not a seekable stream */
3970            bytes_left = size;
3971        } else {
3972            return pos;
3973        }
3974    } else {
3975        if (dumpsize.rlim_cur <= pos) {
3976            return -1;
3977        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3978            bytes_left = size;
3979        } else {
3980            size_t limit_left=dumpsize.rlim_cur - pos;
3981            bytes_left = limit_left >= size ? size : limit_left ;
3982        }
3983    }
3984
3985    /*
3986     * In normal conditions, single write(2) should do but
3987     * in case of socket etc. this mechanism is more portable.
3988     */
3989    do {
3990        bytes_written = write(fd, bufp, bytes_left);
3991        if (bytes_written < 0) {
3992            if (errno == EINTR)
3993                continue;
3994            return (-1);
3995        } else if (bytes_written == 0) { /* eof */
3996            return (-1);
3997        }
3998        bufp += bytes_written;
3999        bytes_left -= bytes_written;
4000    } while (bytes_left > 0);
4001
4002    return (0);
4003}
4004
4005static int write_note(struct memelfnote *men, int fd)
4006{
4007    struct elf_note en;
4008
4009    en.n_namesz = men->namesz;
4010    en.n_type = men->type;
4011    en.n_descsz = men->datasz;
4012
4013    bswap_note(&en);
4014
4015    if (dump_write(fd, &en, sizeof(en)) != 0)
4016        return (-1);
4017    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4018        return (-1);
4019    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4020        return (-1);
4021
4022    return (0);
4023}
4024
4025static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4026{
4027    CPUState *cpu = env_cpu((CPUArchState *)env);
4028    TaskState *ts = (TaskState *)cpu->opaque;
4029    struct elf_thread_status *ets;
4030
4031    ets = g_malloc0(sizeof (*ets));
4032    ets->num_notes = 1; /* only prstatus is dumped */
4033    fill_prstatus(&ets->prstatus, ts, 0);
4034    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4035    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4036              &ets->prstatus);
4037
4038    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4039
4040    info->notes_size += note_size(&ets->notes[0]);
4041}
4042
4043static void init_note_info(struct elf_note_info *info)
4044{
4045    /* Initialize the elf_note_info structure so that it is at
4046     * least safe to call free_note_info() on it. Must be
4047     * called before calling fill_note_info().
4048     */
4049    memset(info, 0, sizeof (*info));
4050    QTAILQ_INIT(&info->thread_list);
4051}
4052
4053static int fill_note_info(struct elf_note_info *info,
4054                          long signr, const CPUArchState *env)
4055{
4056#define NUMNOTES 3
4057    CPUState *cpu = env_cpu((CPUArchState *)env);
4058    TaskState *ts = (TaskState *)cpu->opaque;
4059    int i;
4060
4061    info->notes = g_new0(struct memelfnote, NUMNOTES);
4062    if (info->notes == NULL)
4063        return (-ENOMEM);
4064    info->prstatus = g_malloc0(sizeof (*info->prstatus));
4065    if (info->prstatus == NULL)
4066        return (-ENOMEM);
4067    info->psinfo = g_malloc0(sizeof (*info->psinfo));
4068    if (info->prstatus == NULL)
4069        return (-ENOMEM);
4070
4071    /*
4072     * First fill in status (and registers) of current thread
4073     * including process info & aux vector.
4074     */
4075    fill_prstatus(info->prstatus, ts, signr);
4076    elf_core_copy_regs(&info->prstatus->pr_reg, env);
4077    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4078              sizeof (*info->prstatus), info->prstatus);
4079    fill_psinfo(info->psinfo, ts);
4080    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4081              sizeof (*info->psinfo), info->psinfo);
4082    fill_auxv_note(&info->notes[2], ts);
4083    info->numnote = 3;
4084
4085    info->notes_size = 0;
4086    for (i = 0; i < info->numnote; i++)
4087        info->notes_size += note_size(&info->notes[i]);
4088
4089    /* read and fill status of all threads */
4090    cpu_list_lock();
4091    CPU_FOREACH(cpu) {
4092        if (cpu == thread_cpu) {
4093            continue;
4094        }
4095        fill_thread_info(info, cpu->env_ptr);
4096    }
4097    cpu_list_unlock();
4098
4099    return (0);
4100}
4101
4102static void free_note_info(struct elf_note_info *info)
4103{
4104    struct elf_thread_status *ets;
4105
4106    while (!QTAILQ_EMPTY(&info->thread_list)) {
4107        ets = QTAILQ_FIRST(&info->thread_list);
4108        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4109        g_free(ets);
4110    }
4111
4112    g_free(info->prstatus);
4113    g_free(info->psinfo);
4114    g_free(info->notes);
4115}
4116
4117static int write_note_info(struct elf_note_info *info, int fd)
4118{
4119    struct elf_thread_status *ets;
4120    int i, error = 0;
4121
4122    /* write prstatus, psinfo and auxv for current thread */
4123    for (i = 0; i < info->numnote; i++)
4124        if ((error = write_note(&info->notes[i], fd)) != 0)
4125            return (error);
4126
4127    /* write prstatus for each thread */
4128    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4129        if ((error = write_note(&ets->notes[0], fd)) != 0)
4130            return (error);
4131    }
4132
4133    return (0);
4134}
4135
4136/*
4137 * Write out ELF coredump.
4138 *
4139 * See documentation of ELF object file format in:
4140 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4141 *
4142 * Coredump format in linux is following:
4143 *
4144 * 0   +----------------------+         \
4145 *     | ELF header           | ET_CORE  |
4146 *     +----------------------+          |
4147 *     | ELF program headers  |          |--- headers
4148 *     | - NOTE section       |          |
4149 *     | - PT_LOAD sections   |          |
4150 *     +----------------------+         /
4151 *     | NOTEs:               |
4152 *     | - NT_PRSTATUS        |
4153 *     | - NT_PRSINFO         |
4154 *     | - NT_AUXV            |
4155 *     +----------------------+ <-- aligned to target page
4156 *     | Process memory dump  |
4157 *     :                      :
4158 *     .                      .
4159 *     :                      :
4160 *     |                      |
4161 *     +----------------------+
4162 *
4163 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4164 * NT_PRSINFO  -> struct elf_prpsinfo
4165 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4166 *
4167 * Format follows System V format as close as possible.  Current
4168 * version limitations are as follows:
4169 *     - no floating point registers are dumped
4170 *
4171 * Function returns 0 in case of success, negative errno otherwise.
4172 *
4173 * TODO: make this work also during runtime: it should be
4174 * possible to force coredump from running process and then
4175 * continue processing.  For example qemu could set up SIGUSR2
4176 * handler (provided that target process haven't registered
4177 * handler for that) that does the dump when signal is received.
4178 */
4179static int elf_core_dump(int signr, const CPUArchState *env)
4180{
4181    const CPUState *cpu = env_cpu((CPUArchState *)env);
4182    const TaskState *ts = (const TaskState *)cpu->opaque;
4183    struct vm_area_struct *vma = NULL;
4184    g_autofree char *corefile = NULL;
4185    struct elf_note_info info;
4186    struct elfhdr elf;
4187    struct elf_phdr phdr;
4188    struct rlimit dumpsize;
4189    struct mm_struct *mm = NULL;
4190    off_t offset = 0, data_offset = 0;
4191    int segs = 0;
4192    int fd = -1;
4193
4194    init_note_info(&info);
4195
4196    errno = 0;
4197    getrlimit(RLIMIT_CORE, &dumpsize);
4198    if (dumpsize.rlim_cur == 0)
4199        return 0;
4200
4201    corefile = core_dump_filename(ts);
4202
4203    if ((fd = open(corefile, O_WRONLY | O_CREAT,
4204                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4205        return (-errno);
4206
4207    /*
4208     * Walk through target process memory mappings and
4209     * set up structure containing this information.  After
4210     * this point vma_xxx functions can be used.
4211     */
4212    if ((mm = vma_init()) == NULL)
4213        goto out;
4214
4215    walk_memory_regions(mm, vma_walker);
4216    segs = vma_get_mapping_count(mm);
4217
4218    /*
4219     * Construct valid coredump ELF header.  We also
4220     * add one more segment for notes.
4221     */
4222    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4223    if (dump_write(fd, &elf, sizeof (elf)) != 0)
4224        goto out;
4225
4226    /* fill in the in-memory version of notes */
4227    if (fill_note_info(&info, signr, env) < 0)
4228        goto out;
4229
4230    offset += sizeof (elf);                             /* elf header */
4231    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4232
4233    /* write out notes program header */
4234    fill_elf_note_phdr(&phdr, info.notes_size, offset);
4235
4236    offset += info.notes_size;
4237    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4238        goto out;
4239
4240    /*
4241     * ELF specification wants data to start at page boundary so
4242     * we align it here.
4243     */
4244    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4245
4246    /*
4247     * Write program headers for memory regions mapped in
4248     * the target process.
4249     */
4250    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4251        (void) memset(&phdr, 0, sizeof (phdr));
4252
4253        phdr.p_type = PT_LOAD;
4254        phdr.p_offset = offset;
4255        phdr.p_vaddr = vma->vma_start;
4256        phdr.p_paddr = 0;
4257        phdr.p_filesz = vma_dump_size(vma);
4258        offset += phdr.p_filesz;
4259        phdr.p_memsz = vma->vma_end - vma->vma_start;
4260        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4261        if (vma->vma_flags & PROT_WRITE)
4262            phdr.p_flags |= PF_W;
4263        if (vma->vma_flags & PROT_EXEC)
4264            phdr.p_flags |= PF_X;
4265        phdr.p_align = ELF_EXEC_PAGESIZE;
4266
4267        bswap_phdr(&phdr, 1);
4268        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4269            goto out;
4270        }
4271    }
4272
4273    /*
4274     * Next we write notes just after program headers.  No
4275     * alignment needed here.
4276     */
4277    if (write_note_info(&info, fd) < 0)
4278        goto out;
4279
4280    /* align data to page boundary */
4281    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4282        goto out;
4283
4284    /*
4285     * Finally we can dump process memory into corefile as well.
4286     */
4287    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4288        abi_ulong addr;
4289        abi_ulong end;
4290
4291        end = vma->vma_start + vma_dump_size(vma);
4292
4293        for (addr = vma->vma_start; addr < end;
4294             addr += TARGET_PAGE_SIZE) {
4295            char page[TARGET_PAGE_SIZE];
4296            int error;
4297
4298            /*
4299             *  Read in page from target process memory and
4300             *  write it to coredump file.
4301             */
4302            error = copy_from_user(page, addr, sizeof (page));
4303            if (error != 0) {
4304                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4305                               addr);
4306                errno = -error;
4307                goto out;
4308            }
4309            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4310                goto out;
4311        }
4312    }
4313
4314 out:
4315    free_note_info(&info);
4316    if (mm != NULL)
4317        vma_delete(mm);
4318    (void) close(fd);
4319
4320    if (errno != 0)
4321        return (-errno);
4322    return (0);
4323}
4324#endif /* USE_ELF_CORE_DUMP */
4325
4326void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4327{
4328    init_thread(regs, infop);
4329}
4330