qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu/timer.h"
  24#include "qemu/log.h"
  25#include "exec/page-vary.h"
  26#include "target/arm/idau.h"
  27#include "qemu/module.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "cpu.h"
  31#ifdef CONFIG_TCG
  32#include "hw/core/tcg-cpu-ops.h"
  33#endif /* CONFIG_TCG */
  34#include "internals.h"
  35#include "exec/exec-all.h"
  36#include "hw/qdev-properties.h"
  37#if !defined(CONFIG_USER_ONLY)
  38#include "hw/loader.h"
  39#include "hw/boards.h"
  40#endif
  41#include "sysemu/tcg.h"
  42#include "sysemu/qtest.h"
  43#include "sysemu/hw_accel.h"
  44#include "kvm_arm.h"
  45#include "disas/capstone.h"
  46#include "fpu/softfloat.h"
  47#include "cpregs.h"
  48
  49static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  50{
  51    ARMCPU *cpu = ARM_CPU(cs);
  52    CPUARMState *env = &cpu->env;
  53
  54    if (is_a64(env)) {
  55        env->pc = value;
  56        env->thumb = false;
  57    } else {
  58        env->regs[15] = value & ~1;
  59        env->thumb = value & 1;
  60    }
  61}
  62
  63#ifdef CONFIG_TCG
  64void arm_cpu_synchronize_from_tb(CPUState *cs,
  65                                 const TranslationBlock *tb)
  66{
  67    ARMCPU *cpu = ARM_CPU(cs);
  68    CPUARMState *env = &cpu->env;
  69
  70    /*
  71     * It's OK to look at env for the current mode here, because it's
  72     * never possible for an AArch64 TB to chain to an AArch32 TB.
  73     */
  74    if (is_a64(env)) {
  75        env->pc = tb->pc;
  76    } else {
  77        env->regs[15] = tb->pc;
  78    }
  79}
  80#endif /* CONFIG_TCG */
  81
  82static bool arm_cpu_has_work(CPUState *cs)
  83{
  84    ARMCPU *cpu = ARM_CPU(cs);
  85
  86    return (cpu->power_state != PSCI_OFF)
  87        && cs->interrupt_request &
  88        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  89         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
  90         | CPU_INTERRUPT_EXITTB);
  91}
  92
  93void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  94                                 void *opaque)
  95{
  96    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  97
  98    entry->hook = hook;
  99    entry->opaque = opaque;
 100
 101    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
 102}
 103
 104void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 105                                 void *opaque)
 106{
 107    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 108
 109    entry->hook = hook;
 110    entry->opaque = opaque;
 111
 112    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 113}
 114
 115static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 116{
 117    /* Reset a single ARMCPRegInfo register */
 118    ARMCPRegInfo *ri = value;
 119    ARMCPU *cpu = opaque;
 120
 121    if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
 122        return;
 123    }
 124
 125    if (ri->resetfn) {
 126        ri->resetfn(&cpu->env, ri);
 127        return;
 128    }
 129
 130    /* A zero offset is never possible as it would be regs[0]
 131     * so we use it to indicate that reset is being handled elsewhere.
 132     * This is basically only used for fields in non-core coprocessors
 133     * (like the pxa2xx ones).
 134     */
 135    if (!ri->fieldoffset) {
 136        return;
 137    }
 138
 139    if (cpreg_field_is_64bit(ri)) {
 140        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 141    } else {
 142        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 143    }
 144}
 145
 146static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 147{
 148    /* Purely an assertion check: we've already done reset once,
 149     * so now check that running the reset for the cpreg doesn't
 150     * change its value. This traps bugs where two different cpregs
 151     * both try to reset the same state field but to different values.
 152     */
 153    ARMCPRegInfo *ri = value;
 154    ARMCPU *cpu = opaque;
 155    uint64_t oldvalue, newvalue;
 156
 157    if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 158        return;
 159    }
 160
 161    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 162    cp_reg_reset(key, value, opaque);
 163    newvalue = read_raw_cp_reg(&cpu->env, ri);
 164    assert(oldvalue == newvalue);
 165}
 166
 167static void arm_cpu_reset(DeviceState *dev)
 168{
 169    CPUState *s = CPU(dev);
 170    ARMCPU *cpu = ARM_CPU(s);
 171    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 172    CPUARMState *env = &cpu->env;
 173
 174    acc->parent_reset(dev);
 175
 176    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 177
 178    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 179    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 180
 181    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 182    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 183    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 184    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 185
 186    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 187
 188    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 189        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 190    }
 191
 192    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 193        /* 64 bit CPUs always start in 64 bit mode */
 194        env->aarch64 = true;
 195#if defined(CONFIG_USER_ONLY)
 196        env->pstate = PSTATE_MODE_EL0t;
 197        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 198        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 199        /* Enable all PAC keys.  */
 200        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 201                                  SCTLR_EnDA | SCTLR_EnDB);
 202        /* Trap on btype=3 for PACIxSP. */
 203        env->cp15.sctlr_el[1] |= SCTLR_BT0;
 204        /* and to the FP/Neon instructions */
 205        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 206                                         CPACR_EL1, FPEN, 3);
 207        /* and to the SVE instructions, with default vector length */
 208        if (cpu_isar_feature(aa64_sve, cpu)) {
 209            env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 210                                             CPACR_EL1, ZEN, 3);
 211            env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
 212        }
 213        /* and for SME instructions, with default vector length, and TPIDR2 */
 214        if (cpu_isar_feature(aa64_sme, cpu)) {
 215            env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
 216            env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 217                                             CPACR_EL1, SMEN, 3);
 218            env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
 219            if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
 220                env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
 221                                                 SMCR, FA64, 1);
 222            }
 223        }
 224        /*
 225         * Enable 48-bit address space (TODO: take reserved_va into account).
 226         * Enable TBI0 but not TBI1.
 227         * Note that this must match useronly_clean_ptr.
 228         */
 229        env->cp15.tcr_el[1] = 5 | (1ULL << 37);
 230
 231        /* Enable MTE */
 232        if (cpu_isar_feature(aa64_mte, cpu)) {
 233            /* Enable tag access, but leave TCF0 as No Effect (0). */
 234            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 235            /*
 236             * Exclude all tags, so that tag 0 is always used.
 237             * This corresponds to Linux current->thread.gcr_incl = 0.
 238             *
 239             * Set RRND, so that helper_irg() will generate a seed later.
 240             * Here in cpu_reset(), the crypto subsystem has not yet been
 241             * initialized.
 242             */
 243            env->cp15.gcr_el1 = 0x1ffff;
 244        }
 245        /*
 246         * Disable access to SCXTNUM_EL0 from CSV2_1p2.
 247         * This is not yet exposed from the Linux kernel in any way.
 248         */
 249        env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
 250#else
 251        /* Reset into the highest available EL */
 252        if (arm_feature(env, ARM_FEATURE_EL3)) {
 253            env->pstate = PSTATE_MODE_EL3h;
 254        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 255            env->pstate = PSTATE_MODE_EL2h;
 256        } else {
 257            env->pstate = PSTATE_MODE_EL1h;
 258        }
 259
 260        /* Sample rvbar at reset.  */
 261        env->cp15.rvbar = cpu->rvbar_prop;
 262        env->pc = env->cp15.rvbar;
 263#endif
 264    } else {
 265#if defined(CONFIG_USER_ONLY)
 266        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 267        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 268                                         CPACR, CP10, 3);
 269        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 270                                         CPACR, CP11, 3);
 271#endif
 272    }
 273
 274#if defined(CONFIG_USER_ONLY)
 275    env->uncached_cpsr = ARM_CPU_MODE_USR;
 276    /* For user mode we must enable access to coprocessors */
 277    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 278    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 279        env->cp15.c15_cpar = 3;
 280    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 281        env->cp15.c15_cpar = 1;
 282    }
 283#else
 284
 285    /*
 286     * If the highest available EL is EL2, AArch32 will start in Hyp
 287     * mode; otherwise it starts in SVC. Note that if we start in
 288     * AArch64 then these values in the uncached_cpsr will be ignored.
 289     */
 290    if (arm_feature(env, ARM_FEATURE_EL2) &&
 291        !arm_feature(env, ARM_FEATURE_EL3)) {
 292        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 293    } else {
 294        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 295    }
 296    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 297
 298    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 299     * executing as AArch32 then check if highvecs are enabled and
 300     * adjust the PC accordingly.
 301     */
 302    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 303        env->regs[15] = 0xFFFF0000;
 304    }
 305
 306    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 307#endif
 308
 309    if (arm_feature(env, ARM_FEATURE_M)) {
 310#ifndef CONFIG_USER_ONLY
 311        uint32_t initial_msp; /* Loaded from 0x0 */
 312        uint32_t initial_pc; /* Loaded from 0x4 */
 313        uint8_t *rom;
 314        uint32_t vecbase;
 315#endif
 316
 317        if (cpu_isar_feature(aa32_lob, cpu)) {
 318            /*
 319             * LTPSIZE is constant 4 if MVE not implemented, and resets
 320             * to an UNKNOWN value if MVE is implemented. We choose to
 321             * always reset to 4.
 322             */
 323            env->v7m.ltpsize = 4;
 324            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 325            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 326            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 327        }
 328
 329        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 330            env->v7m.secure = true;
 331        } else {
 332            /* This bit resets to 0 if security is supported, but 1 if
 333             * it is not. The bit is not present in v7M, but we set it
 334             * here so we can avoid having to make checks on it conditional
 335             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 336             */
 337            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 338            /*
 339             * Set NSACR to indicate "NS access permitted to everything";
 340             * this avoids having to have all the tests of it being
 341             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 342             * v8.1M the guest-visible value of NSACR in a CPU without the
 343             * Security Extension is 0xcff.
 344             */
 345            env->v7m.nsacr = 0xcff;
 346        }
 347
 348        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 349         * that it resets to 1, so QEMU always does that rather than making
 350         * it dependent on CPU model. In v8M it is RES1.
 351         */
 352        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 353        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 354        if (arm_feature(env, ARM_FEATURE_V8)) {
 355            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 356            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 357            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 358        }
 359        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 360            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 361            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 362        }
 363
 364        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 365            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 366            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 367                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 368        }
 369
 370#ifndef CONFIG_USER_ONLY
 371        /* Unlike A/R profile, M profile defines the reset LR value */
 372        env->regs[14] = 0xffffffff;
 373
 374        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 375        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 376
 377        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 378        vecbase = env->v7m.vecbase[env->v7m.secure];
 379        rom = rom_ptr_for_as(s->as, vecbase, 8);
 380        if (rom) {
 381            /* Address zero is covered by ROM which hasn't yet been
 382             * copied into physical memory.
 383             */
 384            initial_msp = ldl_p(rom);
 385            initial_pc = ldl_p(rom + 4);
 386        } else {
 387            /* Address zero not covered by a ROM blob, or the ROM blob
 388             * is in non-modifiable memory and this is a second reset after
 389             * it got copied into memory. In the latter case, rom_ptr
 390             * will return a NULL pointer and we should use ldl_phys instead.
 391             */
 392            initial_msp = ldl_phys(s->as, vecbase);
 393            initial_pc = ldl_phys(s->as, vecbase + 4);
 394        }
 395
 396        qemu_log_mask(CPU_LOG_INT,
 397                      "Loaded reset SP 0x%x PC 0x%x from vector table\n",
 398                      initial_msp, initial_pc);
 399
 400        env->regs[13] = initial_msp & 0xFFFFFFFC;
 401        env->regs[15] = initial_pc & ~1;
 402        env->thumb = initial_pc & 1;
 403#else
 404        /*
 405         * For user mode we run non-secure and with access to the FPU.
 406         * The FPU context is active (ie does not need further setup)
 407         * and is owned by non-secure.
 408         */
 409        env->v7m.secure = false;
 410        env->v7m.nsacr = 0xcff;
 411        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 412        env->v7m.fpccr[M_REG_S] &=
 413            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 414        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 415#endif
 416    }
 417
 418    /* M profile requires that reset clears the exclusive monitor;
 419     * A profile does not, but clearing it makes more sense than having it
 420     * set with an exclusive access on address zero.
 421     */
 422    arm_clear_exclusive(env);
 423
 424    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 425        if (cpu->pmsav7_dregion > 0) {
 426            if (arm_feature(env, ARM_FEATURE_V8)) {
 427                memset(env->pmsav8.rbar[M_REG_NS], 0,
 428                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 429                       * cpu->pmsav7_dregion);
 430                memset(env->pmsav8.rlar[M_REG_NS], 0,
 431                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 432                       * cpu->pmsav7_dregion);
 433                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 434                    memset(env->pmsav8.rbar[M_REG_S], 0,
 435                           sizeof(*env->pmsav8.rbar[M_REG_S])
 436                           * cpu->pmsav7_dregion);
 437                    memset(env->pmsav8.rlar[M_REG_S], 0,
 438                           sizeof(*env->pmsav8.rlar[M_REG_S])
 439                           * cpu->pmsav7_dregion);
 440                }
 441            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 442                memset(env->pmsav7.drbar, 0,
 443                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 444                memset(env->pmsav7.drsr, 0,
 445                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 446                memset(env->pmsav7.dracr, 0,
 447                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 448            }
 449        }
 450        env->pmsav7.rnr[M_REG_NS] = 0;
 451        env->pmsav7.rnr[M_REG_S] = 0;
 452        env->pmsav8.mair0[M_REG_NS] = 0;
 453        env->pmsav8.mair0[M_REG_S] = 0;
 454        env->pmsav8.mair1[M_REG_NS] = 0;
 455        env->pmsav8.mair1[M_REG_S] = 0;
 456    }
 457
 458    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 459        if (cpu->sau_sregion > 0) {
 460            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 461            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 462        }
 463        env->sau.rnr = 0;
 464        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 465         * the Cortex-M33 does.
 466         */
 467        env->sau.ctrl = 0;
 468    }
 469
 470    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 471    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 472    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 473    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 474    set_float_detect_tininess(float_tininess_before_rounding,
 475                              &env->vfp.fp_status);
 476    set_float_detect_tininess(float_tininess_before_rounding,
 477                              &env->vfp.standard_fp_status);
 478    set_float_detect_tininess(float_tininess_before_rounding,
 479                              &env->vfp.fp_status_f16);
 480    set_float_detect_tininess(float_tininess_before_rounding,
 481                              &env->vfp.standard_fp_status_f16);
 482#ifndef CONFIG_USER_ONLY
 483    if (kvm_enabled()) {
 484        kvm_arm_reset_vcpu(cpu);
 485    }
 486#endif
 487
 488    hw_breakpoint_update_all(cpu);
 489    hw_watchpoint_update_all(cpu);
 490    arm_rebuild_hflags(env);
 491}
 492
 493#ifndef CONFIG_USER_ONLY
 494
 495static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 496                                     unsigned int target_el,
 497                                     unsigned int cur_el, bool secure,
 498                                     uint64_t hcr_el2)
 499{
 500    CPUARMState *env = cs->env_ptr;
 501    bool pstate_unmasked;
 502    bool unmasked = false;
 503
 504    /*
 505     * Don't take exceptions if they target a lower EL.
 506     * This check should catch any exceptions that would not be taken
 507     * but left pending.
 508     */
 509    if (cur_el > target_el) {
 510        return false;
 511    }
 512
 513    switch (excp_idx) {
 514    case EXCP_FIQ:
 515        pstate_unmasked = !(env->daif & PSTATE_F);
 516        break;
 517
 518    case EXCP_IRQ:
 519        pstate_unmasked = !(env->daif & PSTATE_I);
 520        break;
 521
 522    case EXCP_VFIQ:
 523        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 524            /* VFIQs are only taken when hypervized.  */
 525            return false;
 526        }
 527        return !(env->daif & PSTATE_F);
 528    case EXCP_VIRQ:
 529        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 530            /* VIRQs are only taken when hypervized.  */
 531            return false;
 532        }
 533        return !(env->daif & PSTATE_I);
 534    case EXCP_VSERR:
 535        if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
 536            /* VIRQs are only taken when hypervized.  */
 537            return false;
 538        }
 539        return !(env->daif & PSTATE_A);
 540    default:
 541        g_assert_not_reached();
 542    }
 543
 544    /*
 545     * Use the target EL, current execution state and SCR/HCR settings to
 546     * determine whether the corresponding CPSR bit is used to mask the
 547     * interrupt.
 548     */
 549    if ((target_el > cur_el) && (target_el != 1)) {
 550        /* Exceptions targeting a higher EL may not be maskable */
 551        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 552            /*
 553             * 64-bit masking rules are simple: exceptions to EL3
 554             * can't be masked, and exceptions to EL2 can only be
 555             * masked from Secure state. The HCR and SCR settings
 556             * don't affect the masking logic, only the interrupt routing.
 557             */
 558            if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
 559                unmasked = true;
 560            }
 561        } else {
 562            /*
 563             * The old 32-bit-only environment has a more complicated
 564             * masking setup. HCR and SCR bits not only affect interrupt
 565             * routing but also change the behaviour of masking.
 566             */
 567            bool hcr, scr;
 568
 569            switch (excp_idx) {
 570            case EXCP_FIQ:
 571                /*
 572                 * If FIQs are routed to EL3 or EL2 then there are cases where
 573                 * we override the CPSR.F in determining if the exception is
 574                 * masked or not. If neither of these are set then we fall back
 575                 * to the CPSR.F setting otherwise we further assess the state
 576                 * below.
 577                 */
 578                hcr = hcr_el2 & HCR_FMO;
 579                scr = (env->cp15.scr_el3 & SCR_FIQ);
 580
 581                /*
 582                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 583                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 584                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 585                 * when non-secure but only when FIQs are only routed to EL3.
 586                 */
 587                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 588                break;
 589            case EXCP_IRQ:
 590                /*
 591                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 592                 * we may override the CPSR.I masking when in non-secure state.
 593                 * The SCR.IRQ setting has already been taken into consideration
 594                 * when setting the target EL, so it does not have a further
 595                 * affect here.
 596                 */
 597                hcr = hcr_el2 & HCR_IMO;
 598                scr = false;
 599                break;
 600            default:
 601                g_assert_not_reached();
 602            }
 603
 604            if ((scr || hcr) && !secure) {
 605                unmasked = true;
 606            }
 607        }
 608    }
 609
 610    /*
 611     * The PSTATE bits only mask the interrupt if we have not overriden the
 612     * ability above.
 613     */
 614    return unmasked || pstate_unmasked;
 615}
 616
 617static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 618{
 619    CPUClass *cc = CPU_GET_CLASS(cs);
 620    CPUARMState *env = cs->env_ptr;
 621    uint32_t cur_el = arm_current_el(env);
 622    bool secure = arm_is_secure(env);
 623    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 624    uint32_t target_el;
 625    uint32_t excp_idx;
 626
 627    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 628
 629    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 630        excp_idx = EXCP_FIQ;
 631        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 632        if (arm_excp_unmasked(cs, excp_idx, target_el,
 633                              cur_el, secure, hcr_el2)) {
 634            goto found;
 635        }
 636    }
 637    if (interrupt_request & CPU_INTERRUPT_HARD) {
 638        excp_idx = EXCP_IRQ;
 639        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 640        if (arm_excp_unmasked(cs, excp_idx, target_el,
 641                              cur_el, secure, hcr_el2)) {
 642            goto found;
 643        }
 644    }
 645    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 646        excp_idx = EXCP_VIRQ;
 647        target_el = 1;
 648        if (arm_excp_unmasked(cs, excp_idx, target_el,
 649                              cur_el, secure, hcr_el2)) {
 650            goto found;
 651        }
 652    }
 653    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 654        excp_idx = EXCP_VFIQ;
 655        target_el = 1;
 656        if (arm_excp_unmasked(cs, excp_idx, target_el,
 657                              cur_el, secure, hcr_el2)) {
 658            goto found;
 659        }
 660    }
 661    if (interrupt_request & CPU_INTERRUPT_VSERR) {
 662        excp_idx = EXCP_VSERR;
 663        target_el = 1;
 664        if (arm_excp_unmasked(cs, excp_idx, target_el,
 665                              cur_el, secure, hcr_el2)) {
 666            /* Taking a virtual abort clears HCR_EL2.VSE */
 667            env->cp15.hcr_el2 &= ~HCR_VSE;
 668            cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 669            goto found;
 670        }
 671    }
 672    return false;
 673
 674 found:
 675    cs->exception_index = excp_idx;
 676    env->exception.target_el = target_el;
 677    cc->tcg_ops->do_interrupt(cs);
 678    return true;
 679}
 680#endif /* !CONFIG_USER_ONLY */
 681
 682void arm_cpu_update_virq(ARMCPU *cpu)
 683{
 684    /*
 685     * Update the interrupt level for VIRQ, which is the logical OR of
 686     * the HCR_EL2.VI bit and the input line level from the GIC.
 687     */
 688    CPUARMState *env = &cpu->env;
 689    CPUState *cs = CPU(cpu);
 690
 691    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 692        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 693
 694    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 695        if (new_state) {
 696            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 697        } else {
 698            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 699        }
 700    }
 701}
 702
 703void arm_cpu_update_vfiq(ARMCPU *cpu)
 704{
 705    /*
 706     * Update the interrupt level for VFIQ, which is the logical OR of
 707     * the HCR_EL2.VF bit and the input line level from the GIC.
 708     */
 709    CPUARMState *env = &cpu->env;
 710    CPUState *cs = CPU(cpu);
 711
 712    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 713        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 714
 715    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 716        if (new_state) {
 717            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 718        } else {
 719            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 720        }
 721    }
 722}
 723
 724void arm_cpu_update_vserr(ARMCPU *cpu)
 725{
 726    /*
 727     * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
 728     */
 729    CPUARMState *env = &cpu->env;
 730    CPUState *cs = CPU(cpu);
 731
 732    bool new_state = env->cp15.hcr_el2 & HCR_VSE;
 733
 734    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
 735        if (new_state) {
 736            cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
 737        } else {
 738            cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 739        }
 740    }
 741}
 742
 743#ifndef CONFIG_USER_ONLY
 744static void arm_cpu_set_irq(void *opaque, int irq, int level)
 745{
 746    ARMCPU *cpu = opaque;
 747    CPUARMState *env = &cpu->env;
 748    CPUState *cs = CPU(cpu);
 749    static const int mask[] = {
 750        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 751        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 752        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 753        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 754    };
 755
 756    if (!arm_feature(env, ARM_FEATURE_EL2) &&
 757        (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
 758        /*
 759         * The GIC might tell us about VIRQ and VFIQ state, but if we don't
 760         * have EL2 support we don't care. (Unless the guest is doing something
 761         * silly this will only be calls saying "level is still 0".)
 762         */
 763        return;
 764    }
 765
 766    if (level) {
 767        env->irq_line_state |= mask[irq];
 768    } else {
 769        env->irq_line_state &= ~mask[irq];
 770    }
 771
 772    switch (irq) {
 773    case ARM_CPU_VIRQ:
 774        arm_cpu_update_virq(cpu);
 775        break;
 776    case ARM_CPU_VFIQ:
 777        arm_cpu_update_vfiq(cpu);
 778        break;
 779    case ARM_CPU_IRQ:
 780    case ARM_CPU_FIQ:
 781        if (level) {
 782            cpu_interrupt(cs, mask[irq]);
 783        } else {
 784            cpu_reset_interrupt(cs, mask[irq]);
 785        }
 786        break;
 787    default:
 788        g_assert_not_reached();
 789    }
 790}
 791
 792static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 793{
 794#ifdef CONFIG_KVM
 795    ARMCPU *cpu = opaque;
 796    CPUARMState *env = &cpu->env;
 797    CPUState *cs = CPU(cpu);
 798    uint32_t linestate_bit;
 799    int irq_id;
 800
 801    switch (irq) {
 802    case ARM_CPU_IRQ:
 803        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 804        linestate_bit = CPU_INTERRUPT_HARD;
 805        break;
 806    case ARM_CPU_FIQ:
 807        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 808        linestate_bit = CPU_INTERRUPT_FIQ;
 809        break;
 810    default:
 811        g_assert_not_reached();
 812    }
 813
 814    if (level) {
 815        env->irq_line_state |= linestate_bit;
 816    } else {
 817        env->irq_line_state &= ~linestate_bit;
 818    }
 819    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 820#endif
 821}
 822
 823static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 824{
 825    ARMCPU *cpu = ARM_CPU(cs);
 826    CPUARMState *env = &cpu->env;
 827
 828    cpu_synchronize_state(cs);
 829    return arm_cpu_data_is_big_endian(env);
 830}
 831
 832#endif
 833
 834static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 835{
 836    ARMCPU *ac = ARM_CPU(cpu);
 837    CPUARMState *env = &ac->env;
 838    bool sctlr_b;
 839
 840    if (is_a64(env)) {
 841        info->cap_arch = CS_ARCH_ARM64;
 842        info->cap_insn_unit = 4;
 843        info->cap_insn_split = 4;
 844    } else {
 845        int cap_mode;
 846        if (env->thumb) {
 847            info->cap_insn_unit = 2;
 848            info->cap_insn_split = 4;
 849            cap_mode = CS_MODE_THUMB;
 850        } else {
 851            info->cap_insn_unit = 4;
 852            info->cap_insn_split = 4;
 853            cap_mode = CS_MODE_ARM;
 854        }
 855        if (arm_feature(env, ARM_FEATURE_V8)) {
 856            cap_mode |= CS_MODE_V8;
 857        }
 858        if (arm_feature(env, ARM_FEATURE_M)) {
 859            cap_mode |= CS_MODE_MCLASS;
 860        }
 861        info->cap_arch = CS_ARCH_ARM;
 862        info->cap_mode = cap_mode;
 863    }
 864
 865    sctlr_b = arm_sctlr_b(env);
 866    if (bswap_code(sctlr_b)) {
 867#if TARGET_BIG_ENDIAN
 868        info->endian = BFD_ENDIAN_LITTLE;
 869#else
 870        info->endian = BFD_ENDIAN_BIG;
 871#endif
 872    }
 873    info->flags &= ~INSN_ARM_BE32;
 874#ifndef CONFIG_USER_ONLY
 875    if (sctlr_b) {
 876        info->flags |= INSN_ARM_BE32;
 877    }
 878#endif
 879}
 880
 881#ifdef TARGET_AARCH64
 882
 883static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 884{
 885    ARMCPU *cpu = ARM_CPU(cs);
 886    CPUARMState *env = &cpu->env;
 887    uint32_t psr = pstate_read(env);
 888    int i;
 889    int el = arm_current_el(env);
 890    const char *ns_status;
 891    bool sve;
 892
 893    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 894    for (i = 0; i < 32; i++) {
 895        if (i == 31) {
 896            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 897        } else {
 898            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 899                         (i + 2) % 3 ? " " : "\n");
 900        }
 901    }
 902
 903    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 904        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 905    } else {
 906        ns_status = "";
 907    }
 908    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 909                 psr,
 910                 psr & PSTATE_N ? 'N' : '-',
 911                 psr & PSTATE_Z ? 'Z' : '-',
 912                 psr & PSTATE_C ? 'C' : '-',
 913                 psr & PSTATE_V ? 'V' : '-',
 914                 ns_status,
 915                 el,
 916                 psr & PSTATE_SP ? 'h' : 't');
 917
 918    if (cpu_isar_feature(aa64_sme, cpu)) {
 919        qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
 920                     env->svcr,
 921                     (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
 922                     (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
 923    }
 924    if (cpu_isar_feature(aa64_bti, cpu)) {
 925        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 926    }
 927    if (!(flags & CPU_DUMP_FPU)) {
 928        qemu_fprintf(f, "\n");
 929        return;
 930    }
 931    if (fp_exception_el(env, el) != 0) {
 932        qemu_fprintf(f, "    FPU disabled\n");
 933        return;
 934    }
 935    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
 936                 vfp_get_fpcr(env), vfp_get_fpsr(env));
 937
 938    if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
 939        sve = sme_exception_el(env, el) == 0;
 940    } else if (cpu_isar_feature(aa64_sve, cpu)) {
 941        sve = sve_exception_el(env, el) == 0;
 942    } else {
 943        sve = false;
 944    }
 945
 946    if (sve) {
 947        int j, zcr_len = sve_vqm1_for_el(env, el);
 948
 949        for (i = 0; i <= FFR_PRED_NUM; i++) {
 950            bool eol;
 951            if (i == FFR_PRED_NUM) {
 952                qemu_fprintf(f, "FFR=");
 953                /* It's last, so end the line.  */
 954                eol = true;
 955            } else {
 956                qemu_fprintf(f, "P%02d=", i);
 957                switch (zcr_len) {
 958                case 0:
 959                    eol = i % 8 == 7;
 960                    break;
 961                case 1:
 962                    eol = i % 6 == 5;
 963                    break;
 964                case 2:
 965                case 3:
 966                    eol = i % 3 == 2;
 967                    break;
 968                default:
 969                    /* More than one quadword per predicate.  */
 970                    eol = true;
 971                    break;
 972                }
 973            }
 974            for (j = zcr_len / 4; j >= 0; j--) {
 975                int digits;
 976                if (j * 4 + 4 <= zcr_len + 1) {
 977                    digits = 16;
 978                } else {
 979                    digits = (zcr_len % 4 + 1) * 4;
 980                }
 981                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
 982                             env->vfp.pregs[i].p[j],
 983                             j ? ":" : eol ? "\n" : " ");
 984            }
 985        }
 986
 987        for (i = 0; i < 32; i++) {
 988            if (zcr_len == 0) {
 989                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
 990                             i, env->vfp.zregs[i].d[1],
 991                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
 992            } else if (zcr_len == 1) {
 993                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
 994                             ":%016" PRIx64 ":%016" PRIx64 "\n",
 995                             i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
 996                             env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
 997            } else {
 998                for (j = zcr_len; j >= 0; j--) {
 999                    bool odd = (zcr_len - j) % 2 != 0;
1000                    if (j == zcr_len) {
1001                        qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1002                    } else if (!odd) {
1003                        if (j > 0) {
1004                            qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1005                        } else {
1006                            qemu_fprintf(f, "     [%x]=", j);
1007                        }
1008                    }
1009                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1010                                 env->vfp.zregs[i].d[j * 2 + 1],
1011                                 env->vfp.zregs[i].d[j * 2],
1012                                 odd || j == 0 ? "\n" : ":");
1013                }
1014            }
1015        }
1016    } else {
1017        for (i = 0; i < 32; i++) {
1018            uint64_t *q = aa64_vfp_qreg(env, i);
1019            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1020                         i, q[1], q[0], (i & 1 ? "\n" : " "));
1021        }
1022    }
1023}
1024
1025#else
1026
1027static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1028{
1029    g_assert_not_reached();
1030}
1031
1032#endif
1033
1034static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1035{
1036    ARMCPU *cpu = ARM_CPU(cs);
1037    CPUARMState *env = &cpu->env;
1038    int i;
1039
1040    if (is_a64(env)) {
1041        aarch64_cpu_dump_state(cs, f, flags);
1042        return;
1043    }
1044
1045    for (i = 0; i < 16; i++) {
1046        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1047        if ((i % 4) == 3) {
1048            qemu_fprintf(f, "\n");
1049        } else {
1050            qemu_fprintf(f, " ");
1051        }
1052    }
1053
1054    if (arm_feature(env, ARM_FEATURE_M)) {
1055        uint32_t xpsr = xpsr_read(env);
1056        const char *mode;
1057        const char *ns_status = "";
1058
1059        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1060            ns_status = env->v7m.secure ? "S " : "NS ";
1061        }
1062
1063        if (xpsr & XPSR_EXCP) {
1064            mode = "handler";
1065        } else {
1066            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1067                mode = "unpriv-thread";
1068            } else {
1069                mode = "priv-thread";
1070            }
1071        }
1072
1073        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1074                     xpsr,
1075                     xpsr & XPSR_N ? 'N' : '-',
1076                     xpsr & XPSR_Z ? 'Z' : '-',
1077                     xpsr & XPSR_C ? 'C' : '-',
1078                     xpsr & XPSR_V ? 'V' : '-',
1079                     xpsr & XPSR_T ? 'T' : 'A',
1080                     ns_status,
1081                     mode);
1082    } else {
1083        uint32_t psr = cpsr_read(env);
1084        const char *ns_status = "";
1085
1086        if (arm_feature(env, ARM_FEATURE_EL3) &&
1087            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1088            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1089        }
1090
1091        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1092                     psr,
1093                     psr & CPSR_N ? 'N' : '-',
1094                     psr & CPSR_Z ? 'Z' : '-',
1095                     psr & CPSR_C ? 'C' : '-',
1096                     psr & CPSR_V ? 'V' : '-',
1097                     psr & CPSR_T ? 'T' : 'A',
1098                     ns_status,
1099                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1100    }
1101
1102    if (flags & CPU_DUMP_FPU) {
1103        int numvfpregs = 0;
1104        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1105            numvfpregs = 32;
1106        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1107            numvfpregs = 16;
1108        }
1109        for (i = 0; i < numvfpregs; i++) {
1110            uint64_t v = *aa32_vfp_dreg(env, i);
1111            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1112                         i * 2, (uint32_t)v,
1113                         i * 2 + 1, (uint32_t)(v >> 32),
1114                         i, v);
1115        }
1116        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1117        if (cpu_isar_feature(aa32_mve, cpu)) {
1118            qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1119        }
1120    }
1121}
1122
1123uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1124{
1125    uint32_t Aff1 = idx / clustersz;
1126    uint32_t Aff0 = idx % clustersz;
1127    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1128}
1129
1130static void arm_cpu_initfn(Object *obj)
1131{
1132    ARMCPU *cpu = ARM_CPU(obj);
1133
1134    cpu_set_cpustate_pointers(cpu);
1135    cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1136                                         NULL, g_free);
1137
1138    QLIST_INIT(&cpu->pre_el_change_hooks);
1139    QLIST_INIT(&cpu->el_change_hooks);
1140
1141#ifdef CONFIG_USER_ONLY
1142# ifdef TARGET_AARCH64
1143    /*
1144     * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1145     * These values were chosen to fit within the default signal frame.
1146     * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1147     * and our corresponding cpu property.
1148     */
1149    cpu->sve_default_vq = 4;
1150    cpu->sme_default_vq = 2;
1151# endif
1152#else
1153    /* Our inbound IRQ and FIQ lines */
1154    if (kvm_enabled()) {
1155        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1156         * the same interface as non-KVM CPUs.
1157         */
1158        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1159    } else {
1160        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1161    }
1162
1163    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1164                       ARRAY_SIZE(cpu->gt_timer_outputs));
1165
1166    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1167                             "gicv3-maintenance-interrupt", 1);
1168    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1169                             "pmu-interrupt", 1);
1170#endif
1171
1172    /* DTB consumers generally don't in fact care what the 'compatible'
1173     * string is, so always provide some string and trust that a hypothetical
1174     * picky DTB consumer will also provide a helpful error message.
1175     */
1176    cpu->dtb_compatible = "qemu,unknown";
1177    cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1178    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1179
1180    if (tcg_enabled() || hvf_enabled()) {
1181        /* TCG and HVF implement PSCI 1.1 */
1182        cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1183    }
1184}
1185
1186static Property arm_cpu_gt_cntfrq_property =
1187            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1188                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1189
1190static Property arm_cpu_reset_cbar_property =
1191            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1192
1193static Property arm_cpu_reset_hivecs_property =
1194            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1195
1196#ifndef CONFIG_USER_ONLY
1197static Property arm_cpu_has_el2_property =
1198            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1199
1200static Property arm_cpu_has_el3_property =
1201            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1202#endif
1203
1204static Property arm_cpu_cfgend_property =
1205            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1206
1207static Property arm_cpu_has_vfp_property =
1208            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1209
1210static Property arm_cpu_has_neon_property =
1211            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1212
1213static Property arm_cpu_has_dsp_property =
1214            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1215
1216static Property arm_cpu_has_mpu_property =
1217            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1218
1219/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1220 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1221 * the right value for that particular CPU type, and we don't want
1222 * to override that with an incorrect constant value.
1223 */
1224static Property arm_cpu_pmsav7_dregion_property =
1225            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1226                                           pmsav7_dregion,
1227                                           qdev_prop_uint32, uint32_t);
1228
1229static bool arm_get_pmu(Object *obj, Error **errp)
1230{
1231    ARMCPU *cpu = ARM_CPU(obj);
1232
1233    return cpu->has_pmu;
1234}
1235
1236static void arm_set_pmu(Object *obj, bool value, Error **errp)
1237{
1238    ARMCPU *cpu = ARM_CPU(obj);
1239
1240    if (value) {
1241        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1242            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1243            return;
1244        }
1245        set_feature(&cpu->env, ARM_FEATURE_PMU);
1246    } else {
1247        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1248    }
1249    cpu->has_pmu = value;
1250}
1251
1252unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1253{
1254    /*
1255     * The exact approach to calculating guest ticks is:
1256     *
1257     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1258     *              NANOSECONDS_PER_SECOND);
1259     *
1260     * We don't do that. Rather we intentionally use integer division
1261     * truncation below and in the caller for the conversion of host monotonic
1262     * time to guest ticks to provide the exact inverse for the semantics of
1263     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1264     * it loses precision when representing frequencies where
1265     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1266     * provide an exact inverse leads to scheduling timers with negative
1267     * periods, which in turn leads to sticky behaviour in the guest.
1268     *
1269     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1270     * cannot become zero.
1271     */
1272    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1273      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1274}
1275
1276void arm_cpu_post_init(Object *obj)
1277{
1278    ARMCPU *cpu = ARM_CPU(obj);
1279
1280    /* M profile implies PMSA. We have to do this here rather than
1281     * in realize with the other feature-implication checks because
1282     * we look at the PMSA bit to see if we should add some properties.
1283     */
1284    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1285        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1286    }
1287
1288    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1289        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1290        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1291    }
1292
1293    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1294        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1295    }
1296
1297    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1298        object_property_add_uint64_ptr(obj, "rvbar",
1299                                       &cpu->rvbar_prop,
1300                                       OBJ_PROP_FLAG_READWRITE);
1301    }
1302
1303#ifndef CONFIG_USER_ONLY
1304    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1305        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1306         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1307         */
1308        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1309
1310        object_property_add_link(obj, "secure-memory",
1311                                 TYPE_MEMORY_REGION,
1312                                 (Object **)&cpu->secure_memory,
1313                                 qdev_prop_allow_set_link_before_realize,
1314                                 OBJ_PROP_LINK_STRONG);
1315    }
1316
1317    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1318        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1319    }
1320#endif
1321
1322    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1323        cpu->has_pmu = true;
1324        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1325    }
1326
1327    /*
1328     * Allow user to turn off VFP and Neon support, but only for TCG --
1329     * KVM does not currently allow us to lie to the guest about its
1330     * ID/feature registers, so the guest always sees what the host has.
1331     */
1332    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1333        ? cpu_isar_feature(aa64_fp_simd, cpu)
1334        : cpu_isar_feature(aa32_vfp, cpu)) {
1335        cpu->has_vfp = true;
1336        if (!kvm_enabled()) {
1337            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1338        }
1339    }
1340
1341    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1342        cpu->has_neon = true;
1343        if (!kvm_enabled()) {
1344            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1345        }
1346    }
1347
1348    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1349        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1350        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1351    }
1352
1353    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1354        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1355        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1356            qdev_property_add_static(DEVICE(obj),
1357                                     &arm_cpu_pmsav7_dregion_property);
1358        }
1359    }
1360
1361    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1362        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1363                                 qdev_prop_allow_set_link_before_realize,
1364                                 OBJ_PROP_LINK_STRONG);
1365        /*
1366         * M profile: initial value of the Secure VTOR. We can't just use
1367         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1368         * the property to be set after realize.
1369         */
1370        object_property_add_uint32_ptr(obj, "init-svtor",
1371                                       &cpu->init_svtor,
1372                                       OBJ_PROP_FLAG_READWRITE);
1373    }
1374    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1375        /*
1376         * Initial value of the NS VTOR (for cores without the Security
1377         * extension, this is the only VTOR)
1378         */
1379        object_property_add_uint32_ptr(obj, "init-nsvtor",
1380                                       &cpu->init_nsvtor,
1381                                       OBJ_PROP_FLAG_READWRITE);
1382    }
1383
1384    /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1385    object_property_add_uint32_ptr(obj, "psci-conduit",
1386                                   &cpu->psci_conduit,
1387                                   OBJ_PROP_FLAG_READWRITE);
1388
1389    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1390
1391    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1392        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1393    }
1394
1395    if (kvm_enabled()) {
1396        kvm_arm_add_vcpu_properties(obj);
1397    }
1398
1399#ifndef CONFIG_USER_ONLY
1400    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1401        cpu_isar_feature(aa64_mte, cpu)) {
1402        object_property_add_link(obj, "tag-memory",
1403                                 TYPE_MEMORY_REGION,
1404                                 (Object **)&cpu->tag_memory,
1405                                 qdev_prop_allow_set_link_before_realize,
1406                                 OBJ_PROP_LINK_STRONG);
1407
1408        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1409            object_property_add_link(obj, "secure-tag-memory",
1410                                     TYPE_MEMORY_REGION,
1411                                     (Object **)&cpu->secure_tag_memory,
1412                                     qdev_prop_allow_set_link_before_realize,
1413                                     OBJ_PROP_LINK_STRONG);
1414        }
1415    }
1416#endif
1417}
1418
1419static void arm_cpu_finalizefn(Object *obj)
1420{
1421    ARMCPU *cpu = ARM_CPU(obj);
1422    ARMELChangeHook *hook, *next;
1423
1424    g_hash_table_destroy(cpu->cp_regs);
1425
1426    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1427        QLIST_REMOVE(hook, node);
1428        g_free(hook);
1429    }
1430    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1431        QLIST_REMOVE(hook, node);
1432        g_free(hook);
1433    }
1434#ifndef CONFIG_USER_ONLY
1435    if (cpu->pmu_timer) {
1436        timer_free(cpu->pmu_timer);
1437    }
1438#endif
1439}
1440
1441void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1442{
1443    Error *local_err = NULL;
1444
1445#ifdef TARGET_AARCH64
1446    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1447        arm_cpu_sve_finalize(cpu, &local_err);
1448        if (local_err != NULL) {
1449            error_propagate(errp, local_err);
1450            return;
1451        }
1452
1453        arm_cpu_sme_finalize(cpu, &local_err);
1454        if (local_err != NULL) {
1455            error_propagate(errp, local_err);
1456            return;
1457        }
1458
1459        arm_cpu_pauth_finalize(cpu, &local_err);
1460        if (local_err != NULL) {
1461            error_propagate(errp, local_err);
1462            return;
1463        }
1464
1465        arm_cpu_lpa2_finalize(cpu, &local_err);
1466        if (local_err != NULL) {
1467            error_propagate(errp, local_err);
1468            return;
1469        }
1470    }
1471#endif
1472
1473    if (kvm_enabled()) {
1474        kvm_arm_steal_time_finalize(cpu, &local_err);
1475        if (local_err != NULL) {
1476            error_propagate(errp, local_err);
1477            return;
1478        }
1479    }
1480}
1481
1482static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1483{
1484    CPUState *cs = CPU(dev);
1485    ARMCPU *cpu = ARM_CPU(dev);
1486    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1487    CPUARMState *env = &cpu->env;
1488    int pagebits;
1489    Error *local_err = NULL;
1490    bool no_aa32 = false;
1491
1492    /* If we needed to query the host kernel for the CPU features
1493     * then it's possible that might have failed in the initfn, but
1494     * this is the first point where we can report it.
1495     */
1496    if (cpu->host_cpu_probe_failed) {
1497        if (!kvm_enabled() && !hvf_enabled()) {
1498            error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1499        } else {
1500            error_setg(errp, "Failed to retrieve host CPU features");
1501        }
1502        return;
1503    }
1504
1505#ifndef CONFIG_USER_ONLY
1506    /* The NVIC and M-profile CPU are two halves of a single piece of
1507     * hardware; trying to use one without the other is a command line
1508     * error and will result in segfaults if not caught here.
1509     */
1510    if (arm_feature(env, ARM_FEATURE_M)) {
1511        if (!env->nvic) {
1512            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1513            return;
1514        }
1515    } else {
1516        if (env->nvic) {
1517            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1518            return;
1519        }
1520    }
1521
1522    if (!tcg_enabled() && !qtest_enabled()) {
1523        /*
1524         * We assume that no accelerator except TCG (and the "not really an
1525         * accelerator" qtest) can handle these features, because Arm hardware
1526         * virtualization can't virtualize them.
1527         *
1528         * Catch all the cases which might cause us to create more than one
1529         * address space for the CPU (otherwise we will assert() later in
1530         * cpu_address_space_init()).
1531         */
1532        if (arm_feature(env, ARM_FEATURE_M)) {
1533            error_setg(errp,
1534                       "Cannot enable %s when using an M-profile guest CPU",
1535                       current_accel_name());
1536            return;
1537        }
1538        if (cpu->has_el3) {
1539            error_setg(errp,
1540                       "Cannot enable %s when guest CPU has EL3 enabled",
1541                       current_accel_name());
1542            return;
1543        }
1544        if (cpu->tag_memory) {
1545            error_setg(errp,
1546                       "Cannot enable %s when guest CPUs has MTE enabled",
1547                       current_accel_name());
1548            return;
1549        }
1550    }
1551
1552    {
1553        uint64_t scale;
1554
1555        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1556            if (!cpu->gt_cntfrq_hz) {
1557                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1558                           cpu->gt_cntfrq_hz);
1559                return;
1560            }
1561            scale = gt_cntfrq_period_ns(cpu);
1562        } else {
1563            scale = GTIMER_SCALE;
1564        }
1565
1566        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1567                                               arm_gt_ptimer_cb, cpu);
1568        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1569                                               arm_gt_vtimer_cb, cpu);
1570        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1571                                              arm_gt_htimer_cb, cpu);
1572        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1573                                              arm_gt_stimer_cb, cpu);
1574        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1575                                                  arm_gt_hvtimer_cb, cpu);
1576    }
1577#endif
1578
1579    cpu_exec_realizefn(cs, &local_err);
1580    if (local_err != NULL) {
1581        error_propagate(errp, local_err);
1582        return;
1583    }
1584
1585    arm_cpu_finalize_features(cpu, &local_err);
1586    if (local_err != NULL) {
1587        error_propagate(errp, local_err);
1588        return;
1589    }
1590
1591    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1592        cpu->has_vfp != cpu->has_neon) {
1593        /*
1594         * This is an architectural requirement for AArch64; AArch32 is
1595         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1596         */
1597        error_setg(errp,
1598                   "AArch64 CPUs must have both VFP and Neon or neither");
1599        return;
1600    }
1601
1602    if (!cpu->has_vfp) {
1603        uint64_t t;
1604        uint32_t u;
1605
1606        t = cpu->isar.id_aa64isar1;
1607        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1608        cpu->isar.id_aa64isar1 = t;
1609
1610        t = cpu->isar.id_aa64pfr0;
1611        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1612        cpu->isar.id_aa64pfr0 = t;
1613
1614        u = cpu->isar.id_isar6;
1615        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1616        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1617        cpu->isar.id_isar6 = u;
1618
1619        u = cpu->isar.mvfr0;
1620        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1621        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1622        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1623        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1624        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1625        if (!arm_feature(env, ARM_FEATURE_M)) {
1626            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1627            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1628        }
1629        cpu->isar.mvfr0 = u;
1630
1631        u = cpu->isar.mvfr1;
1632        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1633        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1634        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1635        if (arm_feature(env, ARM_FEATURE_M)) {
1636            u = FIELD_DP32(u, MVFR1, FP16, 0);
1637        }
1638        cpu->isar.mvfr1 = u;
1639
1640        u = cpu->isar.mvfr2;
1641        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1642        cpu->isar.mvfr2 = u;
1643    }
1644
1645    if (!cpu->has_neon) {
1646        uint64_t t;
1647        uint32_t u;
1648
1649        unset_feature(env, ARM_FEATURE_NEON);
1650
1651        t = cpu->isar.id_aa64isar0;
1652        t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1653        t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1654        t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1655        t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1656        t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1657        t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1658        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1659        cpu->isar.id_aa64isar0 = t;
1660
1661        t = cpu->isar.id_aa64isar1;
1662        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1663        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1664        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1665        cpu->isar.id_aa64isar1 = t;
1666
1667        t = cpu->isar.id_aa64pfr0;
1668        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1669        cpu->isar.id_aa64pfr0 = t;
1670
1671        u = cpu->isar.id_isar5;
1672        u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1673        u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1674        u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1675        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1676        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1677        cpu->isar.id_isar5 = u;
1678
1679        u = cpu->isar.id_isar6;
1680        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1681        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1682        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1683        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1684        cpu->isar.id_isar6 = u;
1685
1686        if (!arm_feature(env, ARM_FEATURE_M)) {
1687            u = cpu->isar.mvfr1;
1688            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1689            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1690            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1691            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1692            cpu->isar.mvfr1 = u;
1693
1694            u = cpu->isar.mvfr2;
1695            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1696            cpu->isar.mvfr2 = u;
1697        }
1698    }
1699
1700    if (!cpu->has_neon && !cpu->has_vfp) {
1701        uint64_t t;
1702        uint32_t u;
1703
1704        t = cpu->isar.id_aa64isar0;
1705        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1706        cpu->isar.id_aa64isar0 = t;
1707
1708        t = cpu->isar.id_aa64isar1;
1709        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1710        cpu->isar.id_aa64isar1 = t;
1711
1712        u = cpu->isar.mvfr0;
1713        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1714        cpu->isar.mvfr0 = u;
1715
1716        /* Despite the name, this field covers both VFP and Neon */
1717        u = cpu->isar.mvfr1;
1718        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1719        cpu->isar.mvfr1 = u;
1720    }
1721
1722    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1723        uint32_t u;
1724
1725        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1726
1727        u = cpu->isar.id_isar1;
1728        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1729        cpu->isar.id_isar1 = u;
1730
1731        u = cpu->isar.id_isar2;
1732        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1733        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1734        cpu->isar.id_isar2 = u;
1735
1736        u = cpu->isar.id_isar3;
1737        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1738        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1739        cpu->isar.id_isar3 = u;
1740    }
1741
1742    /* Some features automatically imply others: */
1743    if (arm_feature(env, ARM_FEATURE_V8)) {
1744        if (arm_feature(env, ARM_FEATURE_M)) {
1745            set_feature(env, ARM_FEATURE_V7);
1746        } else {
1747            set_feature(env, ARM_FEATURE_V7VE);
1748        }
1749    }
1750
1751    /*
1752     * There exist AArch64 cpus without AArch32 support.  When KVM
1753     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1754     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1755     * As a general principle, we also do not make ID register
1756     * consistency checks anywhere unless using TCG, because only
1757     * for TCG would a consistency-check failure be a QEMU bug.
1758     */
1759    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1760        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1761    }
1762
1763    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1764        /* v7 Virtualization Extensions. In real hardware this implies
1765         * EL2 and also the presence of the Security Extensions.
1766         * For QEMU, for backwards-compatibility we implement some
1767         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1768         * include the various other features that V7VE implies.
1769         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1770         * Security Extensions is ARM_FEATURE_EL3.
1771         */
1772        assert(!tcg_enabled() || no_aa32 ||
1773               cpu_isar_feature(aa32_arm_div, cpu));
1774        set_feature(env, ARM_FEATURE_LPAE);
1775        set_feature(env, ARM_FEATURE_V7);
1776    }
1777    if (arm_feature(env, ARM_FEATURE_V7)) {
1778        set_feature(env, ARM_FEATURE_VAPA);
1779        set_feature(env, ARM_FEATURE_THUMB2);
1780        set_feature(env, ARM_FEATURE_MPIDR);
1781        if (!arm_feature(env, ARM_FEATURE_M)) {
1782            set_feature(env, ARM_FEATURE_V6K);
1783        } else {
1784            set_feature(env, ARM_FEATURE_V6);
1785        }
1786
1787        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1788         * non-EL3 configs. This is needed by some legacy boards.
1789         */
1790        set_feature(env, ARM_FEATURE_VBAR);
1791    }
1792    if (arm_feature(env, ARM_FEATURE_V6K)) {
1793        set_feature(env, ARM_FEATURE_V6);
1794        set_feature(env, ARM_FEATURE_MVFR);
1795    }
1796    if (arm_feature(env, ARM_FEATURE_V6)) {
1797        set_feature(env, ARM_FEATURE_V5);
1798        if (!arm_feature(env, ARM_FEATURE_M)) {
1799            assert(!tcg_enabled() || no_aa32 ||
1800                   cpu_isar_feature(aa32_jazelle, cpu));
1801            set_feature(env, ARM_FEATURE_AUXCR);
1802        }
1803    }
1804    if (arm_feature(env, ARM_FEATURE_V5)) {
1805        set_feature(env, ARM_FEATURE_V4T);
1806    }
1807    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1808        set_feature(env, ARM_FEATURE_V7MP);
1809    }
1810    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1811        set_feature(env, ARM_FEATURE_CBAR);
1812    }
1813    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1814        !arm_feature(env, ARM_FEATURE_M)) {
1815        set_feature(env, ARM_FEATURE_THUMB_DSP);
1816    }
1817
1818    /*
1819     * We rely on no XScale CPU having VFP so we can use the same bits in the
1820     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1821     */
1822    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1823           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1824           !arm_feature(env, ARM_FEATURE_XSCALE));
1825
1826    if (arm_feature(env, ARM_FEATURE_V7) &&
1827        !arm_feature(env, ARM_FEATURE_M) &&
1828        !arm_feature(env, ARM_FEATURE_PMSA)) {
1829        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1830         * can use 4K pages.
1831         */
1832        pagebits = 12;
1833    } else {
1834        /* For CPUs which might have tiny 1K pages, or which have an
1835         * MPU and might have small region sizes, stick with 1K pages.
1836         */
1837        pagebits = 10;
1838    }
1839    if (!set_preferred_target_page_bits(pagebits)) {
1840        /* This can only ever happen for hotplugging a CPU, or if
1841         * the board code incorrectly creates a CPU which it has
1842         * promised via minimum_page_size that it will not.
1843         */
1844        error_setg(errp, "This CPU requires a smaller page size than the "
1845                   "system is using");
1846        return;
1847    }
1848
1849    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1850     * We don't support setting cluster ID ([16..23]) (known as Aff2
1851     * in later ARM ARM versions), or any of the higher affinity level fields,
1852     * so these bits always RAZ.
1853     */
1854    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1855        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1856                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1857    }
1858
1859    if (cpu->reset_hivecs) {
1860            cpu->reset_sctlr |= (1 << 13);
1861    }
1862
1863    if (cpu->cfgend) {
1864        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1865            cpu->reset_sctlr |= SCTLR_EE;
1866        } else {
1867            cpu->reset_sctlr |= SCTLR_B;
1868        }
1869    }
1870
1871    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1872        /* If the has_el3 CPU property is disabled then we need to disable the
1873         * feature.
1874         */
1875        unset_feature(env, ARM_FEATURE_EL3);
1876
1877        /*
1878         * Disable the security extension feature bits in the processor
1879         * feature registers as well.
1880         */
1881        cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1882        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1883        cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1884                                           ID_AA64PFR0, EL3, 0);
1885    }
1886
1887    if (!cpu->has_el2) {
1888        unset_feature(env, ARM_FEATURE_EL2);
1889    }
1890
1891    if (!cpu->has_pmu) {
1892        unset_feature(env, ARM_FEATURE_PMU);
1893    }
1894    if (arm_feature(env, ARM_FEATURE_PMU)) {
1895        pmu_init(cpu);
1896
1897        if (!kvm_enabled()) {
1898            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1899            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1900        }
1901
1902#ifndef CONFIG_USER_ONLY
1903        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1904                cpu);
1905#endif
1906    } else {
1907        cpu->isar.id_aa64dfr0 =
1908            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1909        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1910        cpu->pmceid0 = 0;
1911        cpu->pmceid1 = 0;
1912    }
1913
1914    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1915        /*
1916         * Disable the hypervisor feature bits in the processor feature
1917         * registers if we don't have EL2.
1918         */
1919        cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1920                                           ID_AA64PFR0, EL2, 0);
1921        cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1922                                       ID_PFR1, VIRTUALIZATION, 0);
1923    }
1924
1925#ifndef CONFIG_USER_ONLY
1926    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1927        /*
1928         * Disable the MTE feature bits if we do not have tag-memory
1929         * provided by the machine.
1930         */
1931        cpu->isar.id_aa64pfr1 =
1932            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1933    }
1934#endif
1935
1936    if (tcg_enabled()) {
1937        /*
1938         * Don't report the Statistical Profiling Extension in the ID
1939         * registers, because TCG doesn't implement it yet (not even a
1940         * minimal stub version) and guests will fall over when they
1941         * try to access the non-existent system registers for it.
1942         */
1943        cpu->isar.id_aa64dfr0 =
1944            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
1945    }
1946
1947    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1948     * to false or by setting pmsav7-dregion to 0.
1949     */
1950    if (!cpu->has_mpu) {
1951        cpu->pmsav7_dregion = 0;
1952    }
1953    if (cpu->pmsav7_dregion == 0) {
1954        cpu->has_mpu = false;
1955    }
1956
1957    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1958        arm_feature(env, ARM_FEATURE_V7)) {
1959        uint32_t nr = cpu->pmsav7_dregion;
1960
1961        if (nr > 0xff) {
1962            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1963            return;
1964        }
1965
1966        if (nr) {
1967            if (arm_feature(env, ARM_FEATURE_V8)) {
1968                /* PMSAv8 */
1969                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1970                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1971                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1972                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1973                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1974                }
1975            } else {
1976                env->pmsav7.drbar = g_new0(uint32_t, nr);
1977                env->pmsav7.drsr = g_new0(uint32_t, nr);
1978                env->pmsav7.dracr = g_new0(uint32_t, nr);
1979            }
1980        }
1981    }
1982
1983    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1984        uint32_t nr = cpu->sau_sregion;
1985
1986        if (nr > 0xff) {
1987            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1988            return;
1989        }
1990
1991        if (nr) {
1992            env->sau.rbar = g_new0(uint32_t, nr);
1993            env->sau.rlar = g_new0(uint32_t, nr);
1994        }
1995    }
1996
1997    if (arm_feature(env, ARM_FEATURE_EL3)) {
1998        set_feature(env, ARM_FEATURE_VBAR);
1999    }
2000
2001    register_cp_regs_for_features(cpu);
2002    arm_cpu_register_gdb_regs_for_features(cpu);
2003
2004    init_cpreg_list(cpu);
2005
2006#ifndef CONFIG_USER_ONLY
2007    MachineState *ms = MACHINE(qdev_get_machine());
2008    unsigned int smp_cpus = ms->smp.cpus;
2009    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2010
2011    /*
2012     * We must set cs->num_ases to the final value before
2013     * the first call to cpu_address_space_init.
2014     */
2015    if (cpu->tag_memory != NULL) {
2016        cs->num_ases = 3 + has_secure;
2017    } else {
2018        cs->num_ases = 1 + has_secure;
2019    }
2020
2021    if (has_secure) {
2022        if (!cpu->secure_memory) {
2023            cpu->secure_memory = cs->memory;
2024        }
2025        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2026                               cpu->secure_memory);
2027    }
2028
2029    if (cpu->tag_memory != NULL) {
2030        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2031                               cpu->tag_memory);
2032        if (has_secure) {
2033            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2034                                   cpu->secure_tag_memory);
2035        }
2036    }
2037
2038    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2039
2040    /* No core_count specified, default to smp_cpus. */
2041    if (cpu->core_count == -1) {
2042        cpu->core_count = smp_cpus;
2043    }
2044#endif
2045
2046    if (tcg_enabled()) {
2047        int dcz_blocklen = 4 << cpu->dcz_blocksize;
2048
2049        /*
2050         * We only support DCZ blocklen that fits on one page.
2051         *
2052         * Architectually this is always true.  However TARGET_PAGE_SIZE
2053         * is variable and, for compatibility with -machine virt-2.7,
2054         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2055         * But even then, while the largest architectural DCZ blocklen
2056         * is 2KiB, no cpu actually uses such a large blocklen.
2057         */
2058        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2059
2060        /*
2061         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2062         * both nibbles of each byte storing tag data may be written at once.
2063         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2064         */
2065        if (cpu_isar_feature(aa64_mte, cpu)) {
2066            assert(dcz_blocklen >= 2 * TAG_GRANULE);
2067        }
2068    }
2069
2070    qemu_init_vcpu(cs);
2071    cpu_reset(cs);
2072
2073    acc->parent_realize(dev, errp);
2074}
2075
2076static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2077{
2078    ObjectClass *oc;
2079    char *typename;
2080    char **cpuname;
2081    const char *cpunamestr;
2082
2083    cpuname = g_strsplit(cpu_model, ",", 1);
2084    cpunamestr = cpuname[0];
2085#ifdef CONFIG_USER_ONLY
2086    /* For backwards compatibility usermode emulation allows "-cpu any",
2087     * which has the same semantics as "-cpu max".
2088     */
2089    if (!strcmp(cpunamestr, "any")) {
2090        cpunamestr = "max";
2091    }
2092#endif
2093    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2094    oc = object_class_by_name(typename);
2095    g_strfreev(cpuname);
2096    g_free(typename);
2097    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2098        object_class_is_abstract(oc)) {
2099        return NULL;
2100    }
2101    return oc;
2102}
2103
2104static Property arm_cpu_properties[] = {
2105    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2106    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2107                        mp_affinity, ARM64_AFFINITY_INVALID),
2108    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2109    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2110    DEFINE_PROP_END_OF_LIST()
2111};
2112
2113static gchar *arm_gdb_arch_name(CPUState *cs)
2114{
2115    ARMCPU *cpu = ARM_CPU(cs);
2116    CPUARMState *env = &cpu->env;
2117
2118    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2119        return g_strdup("iwmmxt");
2120    }
2121    return g_strdup("arm");
2122}
2123
2124#ifndef CONFIG_USER_ONLY
2125#include "hw/core/sysemu-cpu-ops.h"
2126
2127static const struct SysemuCPUOps arm_sysemu_ops = {
2128    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2129    .asidx_from_attrs = arm_asidx_from_attrs,
2130    .write_elf32_note = arm_cpu_write_elf32_note,
2131    .write_elf64_note = arm_cpu_write_elf64_note,
2132    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2133    .legacy_vmsd = &vmstate_arm_cpu,
2134};
2135#endif
2136
2137#ifdef CONFIG_TCG
2138static const struct TCGCPUOps arm_tcg_ops = {
2139    .initialize = arm_translate_init,
2140    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2141    .debug_excp_handler = arm_debug_excp_handler,
2142
2143#ifdef CONFIG_USER_ONLY
2144    .record_sigsegv = arm_cpu_record_sigsegv,
2145    .record_sigbus = arm_cpu_record_sigbus,
2146#else
2147    .tlb_fill = arm_cpu_tlb_fill,
2148    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2149    .do_interrupt = arm_cpu_do_interrupt,
2150    .do_transaction_failed = arm_cpu_do_transaction_failed,
2151    .do_unaligned_access = arm_cpu_do_unaligned_access,
2152    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2153    .debug_check_watchpoint = arm_debug_check_watchpoint,
2154    .debug_check_breakpoint = arm_debug_check_breakpoint,
2155#endif /* !CONFIG_USER_ONLY */
2156};
2157#endif /* CONFIG_TCG */
2158
2159static void arm_cpu_class_init(ObjectClass *oc, void *data)
2160{
2161    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2162    CPUClass *cc = CPU_CLASS(acc);
2163    DeviceClass *dc = DEVICE_CLASS(oc);
2164
2165    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2166                                    &acc->parent_realize);
2167
2168    device_class_set_props(dc, arm_cpu_properties);
2169    device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2170
2171    cc->class_by_name = arm_cpu_class_by_name;
2172    cc->has_work = arm_cpu_has_work;
2173    cc->dump_state = arm_cpu_dump_state;
2174    cc->set_pc = arm_cpu_set_pc;
2175    cc->gdb_read_register = arm_cpu_gdb_read_register;
2176    cc->gdb_write_register = arm_cpu_gdb_write_register;
2177#ifndef CONFIG_USER_ONLY
2178    cc->sysemu_ops = &arm_sysemu_ops;
2179#endif
2180    cc->gdb_num_core_regs = 26;
2181    cc->gdb_core_xml_file = "arm-core.xml";
2182    cc->gdb_arch_name = arm_gdb_arch_name;
2183    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2184    cc->gdb_stop_before_watchpoint = true;
2185    cc->disas_set_info = arm_disas_set_info;
2186
2187#ifdef CONFIG_TCG
2188    cc->tcg_ops = &arm_tcg_ops;
2189#endif /* CONFIG_TCG */
2190}
2191
2192static void arm_cpu_instance_init(Object *obj)
2193{
2194    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2195
2196    acc->info->initfn(obj);
2197    arm_cpu_post_init(obj);
2198}
2199
2200static void cpu_register_class_init(ObjectClass *oc, void *data)
2201{
2202    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2203
2204    acc->info = data;
2205}
2206
2207void arm_cpu_register(const ARMCPUInfo *info)
2208{
2209    TypeInfo type_info = {
2210        .parent = TYPE_ARM_CPU,
2211        .instance_size = sizeof(ARMCPU),
2212        .instance_align = __alignof__(ARMCPU),
2213        .instance_init = arm_cpu_instance_init,
2214        .class_size = sizeof(ARMCPUClass),
2215        .class_init = info->class_init ?: cpu_register_class_init,
2216        .class_data = (void *)info,
2217    };
2218
2219    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2220    type_register(&type_info);
2221    g_free((void *)type_info.name);
2222}
2223
2224static const TypeInfo arm_cpu_type_info = {
2225    .name = TYPE_ARM_CPU,
2226    .parent = TYPE_CPU,
2227    .instance_size = sizeof(ARMCPU),
2228    .instance_align = __alignof__(ARMCPU),
2229    .instance_init = arm_cpu_initfn,
2230    .instance_finalize = arm_cpu_finalizefn,
2231    .abstract = true,
2232    .class_size = sizeof(ARMCPUClass),
2233    .class_init = arm_cpu_class_init,
2234};
2235
2236static void arm_cpu_register_types(void)
2237{
2238    type_register_static(&arm_cpu_type_info);
2239}
2240
2241type_init(arm_cpu_register_types)
2242