qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "qemu/cpu-float.h"
  25#include "hw/registerfields.h"
  26#include "cpu-qom.h"
  27#include "exec/cpu-defs.h"
  28#include "qapi/qapi-types-common.h"
  29
  30/* ARM processors have a weak memory model */
  31#define TCG_GUEST_DEFAULT_MO      (0)
  32
  33#ifdef TARGET_AARCH64
  34#define KVM_HAVE_MCE_INJECTION 1
  35#endif
  36
  37#define EXCP_UDEF            1   /* undefined instruction */
  38#define EXCP_SWI             2   /* software interrupt */
  39#define EXCP_PREFETCH_ABORT  3
  40#define EXCP_DATA_ABORT      4
  41#define EXCP_IRQ             5
  42#define EXCP_FIQ             6
  43#define EXCP_BKPT            7
  44#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  45#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  46#define EXCP_HVC            11   /* HyperVisor Call */
  47#define EXCP_HYP_TRAP       12
  48#define EXCP_SMC            13   /* Secure Monitor Call */
  49#define EXCP_VIRQ           14
  50#define EXCP_VFIQ           15
  51#define EXCP_SEMIHOST       16   /* semihosting call */
  52#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  53#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  54#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  55#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  56#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  57#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  58#define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
  59#define EXCP_VSERR          24
  60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  61
  62#define ARMV7M_EXCP_RESET   1
  63#define ARMV7M_EXCP_NMI     2
  64#define ARMV7M_EXCP_HARD    3
  65#define ARMV7M_EXCP_MEM     4
  66#define ARMV7M_EXCP_BUS     5
  67#define ARMV7M_EXCP_USAGE   6
  68#define ARMV7M_EXCP_SECURE  7
  69#define ARMV7M_EXCP_SVC     11
  70#define ARMV7M_EXCP_DEBUG   12
  71#define ARMV7M_EXCP_PENDSV  14
  72#define ARMV7M_EXCP_SYSTICK 15
  73
  74/* For M profile, some registers are banked secure vs non-secure;
  75 * these are represented as a 2-element array where the first element
  76 * is the non-secure copy and the second is the secure copy.
  77 * When the CPU does not have implement the security extension then
  78 * only the first element is used.
  79 * This means that the copy for the current security state can be
  80 * accessed via env->registerfield[env->v7m.secure] (whether the security
  81 * extension is implemented or not).
  82 */
  83enum {
  84    M_REG_NS = 0,
  85    M_REG_S = 1,
  86    M_REG_NUM_BANKS = 2,
  87};
  88
  89/* ARM-specific interrupt pending bits.  */
  90#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  91#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  92#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  93#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
  94
  95/* The usual mapping for an AArch64 system register to its AArch32
  96 * counterpart is for the 32 bit world to have access to the lower
  97 * half only (with writes leaving the upper half untouched). It's
  98 * therefore useful to be able to pass TCG the offset of the least
  99 * significant half of a uint64_t struct member.
 100 */
 101#if HOST_BIG_ENDIAN
 102#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 103#define offsetofhigh32(S, M) offsetof(S, M)
 104#else
 105#define offsetoflow32(S, M) offsetof(S, M)
 106#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 107#endif
 108
 109/* Meanings of the ARMCPU object's four inbound GPIO lines */
 110#define ARM_CPU_IRQ 0
 111#define ARM_CPU_FIQ 1
 112#define ARM_CPU_VIRQ 2
 113#define ARM_CPU_VFIQ 3
 114
 115/* ARM-specific extra insn start words:
 116 * 1: Conditional execution bits
 117 * 2: Partial exception syndrome for data aborts
 118 */
 119#define TARGET_INSN_START_EXTRA_WORDS 2
 120
 121/* The 2nd extra word holding syndrome info for data aborts does not use
 122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 123 * help the sleb128 encoder do a better job.
 124 * When restoring the CPU state, we shift it back up.
 125 */
 126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 127#define ARM_INSN_START_WORD2_SHIFT 14
 128
 129/* We currently assume float and double are IEEE single and double
 130   precision respectively.
 131   Doing runtime conversions is tricky because VFP registers may contain
 132   integer values (eg. as the result of a FTOSI instruction).
 133   s<2n> maps to the least significant half of d<n>
 134   s<2n+1> maps to the most significant half of d<n>
 135 */
 136
 137/**
 138 * DynamicGDBXMLInfo:
 139 * @desc: Contains the XML descriptions.
 140 * @num: Number of the registers in this XML seen by GDB.
 141 * @data: A union with data specific to the set of registers
 142 *    @cpregs_keys: Array that contains the corresponding Key of
 143 *                  a given cpreg with the same order of the cpreg
 144 *                  in the XML description.
 145 */
 146typedef struct DynamicGDBXMLInfo {
 147    char *desc;
 148    int num;
 149    union {
 150        struct {
 151            uint32_t *keys;
 152        } cpregs;
 153    } data;
 154} DynamicGDBXMLInfo;
 155
 156/* CPU state for each instance of a generic timer (in cp15 c14) */
 157typedef struct ARMGenericTimer {
 158    uint64_t cval; /* Timer CompareValue register */
 159    uint64_t ctl; /* Timer Control register */
 160} ARMGenericTimer;
 161
 162#define GTIMER_PHYS     0
 163#define GTIMER_VIRT     1
 164#define GTIMER_HYP      2
 165#define GTIMER_SEC      3
 166#define GTIMER_HYPVIRT  4
 167#define NUM_GTIMERS     5
 168
 169#define VTCR_NSW (1u << 29)
 170#define VTCR_NSA (1u << 30)
 171#define VSTCR_SW VTCR_NSW
 172#define VSTCR_SA VTCR_NSA
 173
 174/* Define a maximum sized vector register.
 175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 176 * For 64-bit, this is a 2048-bit SVE register.
 177 *
 178 * Note that the mapping between S, D, and Q views of the register bank
 179 * differs between AArch64 and AArch32.
 180 * In AArch32:
 181 *  Qn = regs[n].d[1]:regs[n].d[0]
 182 *  Dn = regs[n / 2].d[n & 1]
 183 *  Sn = regs[n / 4].d[n % 4 / 2],
 184 *       bits 31..0 for even n, and bits 63..32 for odd n
 185 *       (and regs[16] to regs[31] are inaccessible)
 186 * In AArch64:
 187 *  Zn = regs[n].d[*]
 188 *  Qn = regs[n].d[1]:regs[n].d[0]
 189 *  Dn = regs[n].d[0]
 190 *  Sn = regs[n].d[0] bits 31..0
 191 *  Hn = regs[n].d[0] bits 15..0
 192 *
 193 * This corresponds to the architecturally defined mapping between
 194 * the two execution states, and means we do not need to explicitly
 195 * map these registers when changing states.
 196 *
 197 * Align the data for use with TCG host vector operations.
 198 */
 199
 200#ifdef TARGET_AARCH64
 201# define ARM_MAX_VQ    16
 202#else
 203# define ARM_MAX_VQ    1
 204#endif
 205
 206typedef struct ARMVectorReg {
 207    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 208} ARMVectorReg;
 209
 210#ifdef TARGET_AARCH64
 211/* In AArch32 mode, predicate registers do not exist at all.  */
 212typedef struct ARMPredicateReg {
 213    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 214} ARMPredicateReg;
 215
 216/* In AArch32 mode, PAC keys do not exist at all.  */
 217typedef struct ARMPACKey {
 218    uint64_t lo, hi;
 219} ARMPACKey;
 220#endif
 221
 222/* See the commentary above the TBFLAG field definitions.  */
 223typedef struct CPUARMTBFlags {
 224    uint32_t flags;
 225    target_ulong flags2;
 226} CPUARMTBFlags;
 227
 228typedef struct CPUArchState {
 229    /* Regs for current mode.  */
 230    uint32_t regs[16];
 231
 232    /* 32/64 switch only happens when taking and returning from
 233     * exceptions so the overlap semantics are taken care of then
 234     * instead of having a complicated union.
 235     */
 236    /* Regs for A64 mode.  */
 237    uint64_t xregs[32];
 238    uint64_t pc;
 239    /* PSTATE isn't an architectural register for ARMv8. However, it is
 240     * convenient for us to assemble the underlying state into a 32 bit format
 241     * identical to the architectural format used for the SPSR. (This is also
 242     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 243     * 'pstate' register are.) Of the PSTATE bits:
 244     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 245     *    semantics as for AArch32, as described in the comments on each field)
 246     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 247     *  DAIF (exception masks) are kept in env->daif
 248     *  BTYPE is kept in env->btype
 249     *  SM and ZA are kept in env->svcr
 250     *  all other bits are stored in their correct places in env->pstate
 251     */
 252    uint32_t pstate;
 253    bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
 254    bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
 255
 256    /* Cached TBFLAGS state.  See below for which bits are included.  */
 257    CPUARMTBFlags hflags;
 258
 259    /* Frequently accessed CPSR bits are stored separately for efficiency.
 260       This contains all the other bits.  Use cpsr_{read,write} to access
 261       the whole CPSR.  */
 262    uint32_t uncached_cpsr;
 263    uint32_t spsr;
 264
 265    /* Banked registers.  */
 266    uint64_t banked_spsr[8];
 267    uint32_t banked_r13[8];
 268    uint32_t banked_r14[8];
 269
 270    /* These hold r8-r12.  */
 271    uint32_t usr_regs[5];
 272    uint32_t fiq_regs[5];
 273
 274    /* cpsr flag cache for faster execution */
 275    uint32_t CF; /* 0 or 1 */
 276    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 277    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 278    uint32_t ZF; /* Z set if zero.  */
 279    uint32_t QF; /* 0 or 1 */
 280    uint32_t GE; /* cpsr[19:16] */
 281    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 282    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 283    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 284    uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
 285
 286    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 287    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 288
 289    /* System control coprocessor (cp15) */
 290    struct {
 291        uint32_t c0_cpuid;
 292        union { /* Cache size selection */
 293            struct {
 294                uint64_t _unused_csselr0;
 295                uint64_t csselr_ns;
 296                uint64_t _unused_csselr1;
 297                uint64_t csselr_s;
 298            };
 299            uint64_t csselr_el[4];
 300        };
 301        union { /* System control register. */
 302            struct {
 303                uint64_t _unused_sctlr;
 304                uint64_t sctlr_ns;
 305                uint64_t hsctlr;
 306                uint64_t sctlr_s;
 307            };
 308            uint64_t sctlr_el[4];
 309        };
 310        uint64_t cpacr_el1; /* Architectural feature access control register */
 311        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 312        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 313        uint64_t sder; /* Secure debug enable register. */
 314        uint32_t nsacr; /* Non-secure access control register. */
 315        union { /* MMU translation table base 0. */
 316            struct {
 317                uint64_t _unused_ttbr0_0;
 318                uint64_t ttbr0_ns;
 319                uint64_t _unused_ttbr0_1;
 320                uint64_t ttbr0_s;
 321            };
 322            uint64_t ttbr0_el[4];
 323        };
 324        union { /* MMU translation table base 1. */
 325            struct {
 326                uint64_t _unused_ttbr1_0;
 327                uint64_t ttbr1_ns;
 328                uint64_t _unused_ttbr1_1;
 329                uint64_t ttbr1_s;
 330            };
 331            uint64_t ttbr1_el[4];
 332        };
 333        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 334        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 335        /* MMU translation table base control. */
 336        uint64_t tcr_el[4];
 337        uint64_t vtcr_el2; /* Virtualization Translation Control.  */
 338        uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
 339        uint32_t c2_data; /* MPU data cacheable bits.  */
 340        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 341        union { /* MMU domain access control register
 342                 * MPU write buffer control.
 343                 */
 344            struct {
 345                uint64_t dacr_ns;
 346                uint64_t dacr_s;
 347            };
 348            struct {
 349                uint64_t dacr32_el2;
 350            };
 351        };
 352        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 353        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 354        uint64_t hcr_el2; /* Hypervisor configuration register */
 355        uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
 356        uint64_t scr_el3; /* Secure configuration register.  */
 357        union { /* Fault status registers.  */
 358            struct {
 359                uint64_t ifsr_ns;
 360                uint64_t ifsr_s;
 361            };
 362            struct {
 363                uint64_t ifsr32_el2;
 364            };
 365        };
 366        union {
 367            struct {
 368                uint64_t _unused_dfsr;
 369                uint64_t dfsr_ns;
 370                uint64_t hsr;
 371                uint64_t dfsr_s;
 372            };
 373            uint64_t esr_el[4];
 374        };
 375        uint32_t c6_region[8]; /* MPU base/size registers.  */
 376        union { /* Fault address registers. */
 377            struct {
 378                uint64_t _unused_far0;
 379#if HOST_BIG_ENDIAN
 380                uint32_t ifar_ns;
 381                uint32_t dfar_ns;
 382                uint32_t ifar_s;
 383                uint32_t dfar_s;
 384#else
 385                uint32_t dfar_ns;
 386                uint32_t ifar_ns;
 387                uint32_t dfar_s;
 388                uint32_t ifar_s;
 389#endif
 390                uint64_t _unused_far3;
 391            };
 392            uint64_t far_el[4];
 393        };
 394        uint64_t hpfar_el2;
 395        uint64_t hstr_el2;
 396        union { /* Translation result. */
 397            struct {
 398                uint64_t _unused_par_0;
 399                uint64_t par_ns;
 400                uint64_t _unused_par_1;
 401                uint64_t par_s;
 402            };
 403            uint64_t par_el[4];
 404        };
 405
 406        uint32_t c9_insn; /* Cache lockdown registers.  */
 407        uint32_t c9_data;
 408        uint64_t c9_pmcr; /* performance monitor control register */
 409        uint64_t c9_pmcnten; /* perf monitor counter enables */
 410        uint64_t c9_pmovsr; /* perf monitor overflow status */
 411        uint64_t c9_pmuserenr; /* perf monitor user enable */
 412        uint64_t c9_pmselr; /* perf monitor counter selection register */
 413        uint64_t c9_pminten; /* perf monitor interrupt enables */
 414        union { /* Memory attribute redirection */
 415            struct {
 416#if HOST_BIG_ENDIAN
 417                uint64_t _unused_mair_0;
 418                uint32_t mair1_ns;
 419                uint32_t mair0_ns;
 420                uint64_t _unused_mair_1;
 421                uint32_t mair1_s;
 422                uint32_t mair0_s;
 423#else
 424                uint64_t _unused_mair_0;
 425                uint32_t mair0_ns;
 426                uint32_t mair1_ns;
 427                uint64_t _unused_mair_1;
 428                uint32_t mair0_s;
 429                uint32_t mair1_s;
 430#endif
 431            };
 432            uint64_t mair_el[4];
 433        };
 434        union { /* vector base address register */
 435            struct {
 436                uint64_t _unused_vbar;
 437                uint64_t vbar_ns;
 438                uint64_t hvbar;
 439                uint64_t vbar_s;
 440            };
 441            uint64_t vbar_el[4];
 442        };
 443        uint32_t mvbar; /* (monitor) vector base address register */
 444        uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
 445        struct { /* FCSE PID. */
 446            uint32_t fcseidr_ns;
 447            uint32_t fcseidr_s;
 448        };
 449        union { /* Context ID. */
 450            struct {
 451                uint64_t _unused_contextidr_0;
 452                uint64_t contextidr_ns;
 453                uint64_t _unused_contextidr_1;
 454                uint64_t contextidr_s;
 455            };
 456            uint64_t contextidr_el[4];
 457        };
 458        union { /* User RW Thread register. */
 459            struct {
 460                uint64_t tpidrurw_ns;
 461                uint64_t tpidrprw_ns;
 462                uint64_t htpidr;
 463                uint64_t _tpidr_el3;
 464            };
 465            uint64_t tpidr_el[4];
 466        };
 467        uint64_t tpidr2_el0;
 468        /* The secure banks of these registers don't map anywhere */
 469        uint64_t tpidrurw_s;
 470        uint64_t tpidrprw_s;
 471        uint64_t tpidruro_s;
 472
 473        union { /* User RO Thread register. */
 474            uint64_t tpidruro_ns;
 475            uint64_t tpidrro_el[1];
 476        };
 477        uint64_t c14_cntfrq; /* Counter Frequency register */
 478        uint64_t c14_cntkctl; /* Timer Control register */
 479        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 480        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 481        ARMGenericTimer c14_timer[NUM_GTIMERS];
 482        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 483        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 484        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 485        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 486        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 487        uint32_t c15_config_base_address; /* SCU base address.  */
 488        uint32_t c15_diagnostic; /* diagnostic register */
 489        uint32_t c15_power_diagnostic;
 490        uint32_t c15_power_control; /* power control */
 491        uint64_t dbgbvr[16]; /* breakpoint value registers */
 492        uint64_t dbgbcr[16]; /* breakpoint control registers */
 493        uint64_t dbgwvr[16]; /* watchpoint value registers */
 494        uint64_t dbgwcr[16]; /* watchpoint control registers */
 495        uint64_t mdscr_el1;
 496        uint64_t oslsr_el1; /* OS Lock Status */
 497        uint64_t osdlr_el1; /* OS DoubleLock status */
 498        uint64_t mdcr_el2;
 499        uint64_t mdcr_el3;
 500        /* Stores the architectural value of the counter *the last time it was
 501         * updated* by pmccntr_op_start. Accesses should always be surrounded
 502         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 503         * architecturally-correct value is being read/set.
 504         */
 505        uint64_t c15_ccnt;
 506        /* Stores the delta between the architectural value and the underlying
 507         * cycle count during normal operation. It is used to update c15_ccnt
 508         * to be the correct architectural value before accesses. During
 509         * accesses, c15_ccnt_delta contains the underlying count being used
 510         * for the access, after which it reverts to the delta value in
 511         * pmccntr_op_finish.
 512         */
 513        uint64_t c15_ccnt_delta;
 514        uint64_t c14_pmevcntr[31];
 515        uint64_t c14_pmevcntr_delta[31];
 516        uint64_t c14_pmevtyper[31];
 517        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 518        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 519        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 520        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 521        uint64_t gcr_el1;
 522        uint64_t rgsr_el1;
 523
 524        /* Minimal RAS registers */
 525        uint64_t disr_el1;
 526        uint64_t vdisr_el2;
 527        uint64_t vsesr_el2;
 528    } cp15;
 529
 530    struct {
 531        /* M profile has up to 4 stack pointers:
 532         * a Main Stack Pointer and a Process Stack Pointer for each
 533         * of the Secure and Non-Secure states. (If the CPU doesn't support
 534         * the security extension then it has only two SPs.)
 535         * In QEMU we always store the currently active SP in regs[13],
 536         * and the non-active SP for the current security state in
 537         * v7m.other_sp. The stack pointers for the inactive security state
 538         * are stored in other_ss_msp and other_ss_psp.
 539         * switch_v7m_security_state() is responsible for rearranging them
 540         * when we change security state.
 541         */
 542        uint32_t other_sp;
 543        uint32_t other_ss_msp;
 544        uint32_t other_ss_psp;
 545        uint32_t vecbase[M_REG_NUM_BANKS];
 546        uint32_t basepri[M_REG_NUM_BANKS];
 547        uint32_t control[M_REG_NUM_BANKS];
 548        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 549        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 550        uint32_t hfsr; /* HardFault Status */
 551        uint32_t dfsr; /* Debug Fault Status Register */
 552        uint32_t sfsr; /* Secure Fault Status Register */
 553        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 554        uint32_t bfar; /* BusFault Address */
 555        uint32_t sfar; /* Secure Fault Address Register */
 556        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 557        int exception;
 558        uint32_t primask[M_REG_NUM_BANKS];
 559        uint32_t faultmask[M_REG_NUM_BANKS];
 560        uint32_t aircr; /* only holds r/w state if security extn implemented */
 561        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 562        uint32_t csselr[M_REG_NUM_BANKS];
 563        uint32_t scr[M_REG_NUM_BANKS];
 564        uint32_t msplim[M_REG_NUM_BANKS];
 565        uint32_t psplim[M_REG_NUM_BANKS];
 566        uint32_t fpcar[M_REG_NUM_BANKS];
 567        uint32_t fpccr[M_REG_NUM_BANKS];
 568        uint32_t fpdscr[M_REG_NUM_BANKS];
 569        uint32_t cpacr[M_REG_NUM_BANKS];
 570        uint32_t nsacr;
 571        uint32_t ltpsize;
 572        uint32_t vpr;
 573    } v7m;
 574
 575    /* Information associated with an exception about to be taken:
 576     * code which raises an exception must set cs->exception_index and
 577     * the relevant parts of this structure; the cpu_do_interrupt function
 578     * will then set the guest-visible registers as part of the exception
 579     * entry process.
 580     */
 581    struct {
 582        uint32_t syndrome; /* AArch64 format syndrome register */
 583        uint32_t fsr; /* AArch32 format fault status register info */
 584        uint64_t vaddress; /* virtual addr associated with exception, if any */
 585        uint32_t target_el; /* EL the exception should be targeted for */
 586        /* If we implement EL2 we will also need to store information
 587         * about the intermediate physical address for stage 2 faults.
 588         */
 589    } exception;
 590
 591    /* Information associated with an SError */
 592    struct {
 593        uint8_t pending;
 594        uint8_t has_esr;
 595        uint64_t esr;
 596    } serror;
 597
 598    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 599
 600    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 601    uint32_t irq_line_state;
 602
 603    /* Thumb-2 EE state.  */
 604    uint32_t teecr;
 605    uint32_t teehbr;
 606
 607    /* VFP coprocessor state.  */
 608    struct {
 609        ARMVectorReg zregs[32];
 610
 611#ifdef TARGET_AARCH64
 612        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 613#define FFR_PRED_NUM 16
 614        ARMPredicateReg pregs[17];
 615        /* Scratch space for aa64 sve predicate temporary.  */
 616        ARMPredicateReg preg_tmp;
 617#endif
 618
 619        /* We store these fpcsr fields separately for convenience.  */
 620        uint32_t qc[4] QEMU_ALIGNED(16);
 621        int vec_len;
 622        int vec_stride;
 623
 624        uint32_t xregs[16];
 625
 626        /* Scratch space for aa32 neon expansion.  */
 627        uint32_t scratch[8];
 628
 629        /* There are a number of distinct float control structures:
 630         *
 631         *  fp_status: is the "normal" fp status.
 632         *  fp_status_fp16: used for half-precision calculations
 633         *  standard_fp_status : the ARM "Standard FPSCR Value"
 634         *  standard_fp_status_fp16 : used for half-precision
 635         *       calculations with the ARM "Standard FPSCR Value"
 636         *
 637         * Half-precision operations are governed by a separate
 638         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 639         * status structure to control this.
 640         *
 641         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 642         * round-to-nearest and is used by any operations (generally
 643         * Neon) which the architecture defines as controlled by the
 644         * standard FPSCR value rather than the FPSCR.
 645         *
 646         * The "standard FPSCR but for fp16 ops" is needed because
 647         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 648         * using a fixed value for it.
 649         *
 650         * To avoid having to transfer exception bits around, we simply
 651         * say that the FPSCR cumulative exception flags are the logical
 652         * OR of the flags in the four fp statuses. This relies on the
 653         * only thing which needs to read the exception flags being
 654         * an explicit FPSCR read.
 655         */
 656        float_status fp_status;
 657        float_status fp_status_f16;
 658        float_status standard_fp_status;
 659        float_status standard_fp_status_f16;
 660
 661        uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
 662        uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
 663    } vfp;
 664    uint64_t exclusive_addr;
 665    uint64_t exclusive_val;
 666    uint64_t exclusive_high;
 667
 668    /* iwMMXt coprocessor state.  */
 669    struct {
 670        uint64_t regs[16];
 671        uint64_t val;
 672
 673        uint32_t cregs[16];
 674    } iwmmxt;
 675
 676#ifdef TARGET_AARCH64
 677    struct {
 678        ARMPACKey apia;
 679        ARMPACKey apib;
 680        ARMPACKey apda;
 681        ARMPACKey apdb;
 682        ARMPACKey apga;
 683    } keys;
 684
 685    uint64_t scxtnum_el[4];
 686
 687    /*
 688     * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
 689     * as we do with vfp.zregs[].  This corresponds to the architectural ZA
 690     * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
 691     * When SVL is less than the architectural maximum, the accessible
 692     * storage is restricted, such that if the SVL is X bytes the guest can
 693     * see only the bottom X elements of zarray[], and only the least
 694     * significant X bytes of each element of the array. (In other words,
 695     * the observable part is always square.)
 696     *
 697     * The ZA storage can also be considered as a set of square tiles of
 698     * elements of different sizes. The mapping from tiles to the ZA array
 699     * is architecturally defined, such that for tiles of elements of esz
 700     * bytes, the Nth row (or "horizontal slice") of tile T is in
 701     * ZA[T + N * esz]. Note that this means that each tile is not contiguous
 702     * in the ZA storage, because its rows are striped through the ZA array.
 703     *
 704     * Because this is so large, keep this toward the end of the reset area,
 705     * to keep the offsets into the rest of the structure smaller.
 706     */
 707    ARMVectorReg zarray[ARM_MAX_VQ * 16];
 708#endif
 709
 710#if defined(CONFIG_USER_ONLY)
 711    /* For usermode syscall translation.  */
 712    int eabi;
 713#endif
 714
 715    struct CPUBreakpoint *cpu_breakpoint[16];
 716    struct CPUWatchpoint *cpu_watchpoint[16];
 717
 718    /* Fields up to this point are cleared by a CPU reset */
 719    struct {} end_reset_fields;
 720
 721    /* Fields after this point are preserved across CPU reset. */
 722
 723    /* Internal CPU feature flags.  */
 724    uint64_t features;
 725
 726    /* PMSAv7 MPU */
 727    struct {
 728        uint32_t *drbar;
 729        uint32_t *drsr;
 730        uint32_t *dracr;
 731        uint32_t rnr[M_REG_NUM_BANKS];
 732    } pmsav7;
 733
 734    /* PMSAv8 MPU */
 735    struct {
 736        /* The PMSAv8 implementation also shares some PMSAv7 config
 737         * and state:
 738         *  pmsav7.rnr (region number register)
 739         *  pmsav7_dregion (number of configured regions)
 740         */
 741        uint32_t *rbar[M_REG_NUM_BANKS];
 742        uint32_t *rlar[M_REG_NUM_BANKS];
 743        uint32_t mair0[M_REG_NUM_BANKS];
 744        uint32_t mair1[M_REG_NUM_BANKS];
 745    } pmsav8;
 746
 747    /* v8M SAU */
 748    struct {
 749        uint32_t *rbar;
 750        uint32_t *rlar;
 751        uint32_t rnr;
 752        uint32_t ctrl;
 753    } sau;
 754
 755    void *nvic;
 756    const struct arm_boot_info *boot_info;
 757    /* Store GICv3CPUState to access from this struct */
 758    void *gicv3state;
 759
 760#ifdef TARGET_TAGGED_ADDRESSES
 761    /* Linux syscall tagged address support */
 762    bool tagged_addr_enable;
 763#endif
 764} CPUARMState;
 765
 766static inline void set_feature(CPUARMState *env, int feature)
 767{
 768    env->features |= 1ULL << feature;
 769}
 770
 771static inline void unset_feature(CPUARMState *env, int feature)
 772{
 773    env->features &= ~(1ULL << feature);
 774}
 775
 776/**
 777 * ARMELChangeHookFn:
 778 * type of a function which can be registered via arm_register_el_change_hook()
 779 * to get callbacks when the CPU changes its exception level or mode.
 780 */
 781typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 782typedef struct ARMELChangeHook ARMELChangeHook;
 783struct ARMELChangeHook {
 784    ARMELChangeHookFn *hook;
 785    void *opaque;
 786    QLIST_ENTRY(ARMELChangeHook) node;
 787};
 788
 789/* These values map onto the return values for
 790 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 791typedef enum ARMPSCIState {
 792    PSCI_ON = 0,
 793    PSCI_OFF = 1,
 794    PSCI_ON_PENDING = 2
 795} ARMPSCIState;
 796
 797typedef struct ARMISARegisters ARMISARegisters;
 798
 799/*
 800 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
 801 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
 802 *
 803 * While processing properties during initialization, corresponding init bits
 804 * are set for bits in sve_vq_map that have been set by properties.
 805 *
 806 * Bits set in supported represent valid vector lengths for the CPU type.
 807 */
 808typedef struct {
 809    uint32_t map, init, supported;
 810} ARMVQMap;
 811
 812/**
 813 * ARMCPU:
 814 * @env: #CPUARMState
 815 *
 816 * An ARM CPU core.
 817 */
 818struct ArchCPU {
 819    /*< private >*/
 820    CPUState parent_obj;
 821    /*< public >*/
 822
 823    CPUNegativeOffsetState neg;
 824    CPUARMState env;
 825
 826    /* Coprocessor information */
 827    GHashTable *cp_regs;
 828    /* For marshalling (mostly coprocessor) register state between the
 829     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 830     * we use these arrays.
 831     */
 832    /* List of register indexes managed via these arrays; (full KVM style
 833     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 834     */
 835    uint64_t *cpreg_indexes;
 836    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 837    uint64_t *cpreg_values;
 838    /* Length of the indexes, values, reset_values arrays */
 839    int32_t cpreg_array_len;
 840    /* These are used only for migration: incoming data arrives in
 841     * these fields and is sanity checked in post_load before copying
 842     * to the working data structures above.
 843     */
 844    uint64_t *cpreg_vmstate_indexes;
 845    uint64_t *cpreg_vmstate_values;
 846    int32_t cpreg_vmstate_array_len;
 847
 848    DynamicGDBXMLInfo dyn_sysreg_xml;
 849    DynamicGDBXMLInfo dyn_svereg_xml;
 850
 851    /* Timers used by the generic (architected) timer */
 852    QEMUTimer *gt_timer[NUM_GTIMERS];
 853    /*
 854     * Timer used by the PMU. Its state is restored after migration by
 855     * pmu_op_finish() - it does not need other handling during migration
 856     */
 857    QEMUTimer *pmu_timer;
 858    /* GPIO outputs for generic timer */
 859    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 860    /* GPIO output for GICv3 maintenance interrupt signal */
 861    qemu_irq gicv3_maintenance_interrupt;
 862    /* GPIO output for the PMU interrupt */
 863    qemu_irq pmu_interrupt;
 864
 865    /* MemoryRegion to use for secure physical accesses */
 866    MemoryRegion *secure_memory;
 867
 868    /* MemoryRegion to use for allocation tag accesses */
 869    MemoryRegion *tag_memory;
 870    MemoryRegion *secure_tag_memory;
 871
 872    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 873    Object *idau;
 874
 875    /* 'compatible' string for this CPU for Linux device trees */
 876    const char *dtb_compatible;
 877
 878    /* PSCI version for this CPU
 879     * Bits[31:16] = Major Version
 880     * Bits[15:0] = Minor Version
 881     */
 882    uint32_t psci_version;
 883
 884    /* Current power state, access guarded by BQL */
 885    ARMPSCIState power_state;
 886
 887    /* CPU has virtualization extension */
 888    bool has_el2;
 889    /* CPU has security extension */
 890    bool has_el3;
 891    /* CPU has PMU (Performance Monitor Unit) */
 892    bool has_pmu;
 893    /* CPU has VFP */
 894    bool has_vfp;
 895    /* CPU has Neon */
 896    bool has_neon;
 897    /* CPU has M-profile DSP extension */
 898    bool has_dsp;
 899
 900    /* CPU has memory protection unit */
 901    bool has_mpu;
 902    /* PMSAv7 MPU number of supported regions */
 903    uint32_t pmsav7_dregion;
 904    /* v8M SAU number of supported regions */
 905    uint32_t sau_sregion;
 906
 907    /* PSCI conduit used to invoke PSCI methods
 908     * 0 - disabled, 1 - smc, 2 - hvc
 909     */
 910    uint32_t psci_conduit;
 911
 912    /* For v8M, initial value of the Secure VTOR */
 913    uint32_t init_svtor;
 914    /* For v8M, initial value of the Non-secure VTOR */
 915    uint32_t init_nsvtor;
 916
 917    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 918     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 919     */
 920    uint32_t kvm_target;
 921
 922    /* KVM init features for this CPU */
 923    uint32_t kvm_init_features[7];
 924
 925    /* KVM CPU state */
 926
 927    /* KVM virtual time adjustment */
 928    bool kvm_adjvtime;
 929    bool kvm_vtime_dirty;
 930    uint64_t kvm_vtime;
 931
 932    /* KVM steal time */
 933    OnOffAuto kvm_steal_time;
 934
 935    /* Uniprocessor system with MP extensions */
 936    bool mp_is_up;
 937
 938    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 939     * and the probe failed (so we need to report the error in realize)
 940     */
 941    bool host_cpu_probe_failed;
 942
 943    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 944     * register.
 945     */
 946    int32_t core_count;
 947
 948    /* The instance init functions for implementation-specific subclasses
 949     * set these fields to specify the implementation-dependent values of
 950     * various constant registers and reset values of non-constant
 951     * registers.
 952     * Some of these might become QOM properties eventually.
 953     * Field names match the official register names as defined in the
 954     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 955     * is used for reset values of non-constant registers; no reset_
 956     * prefix means a constant register.
 957     * Some of these registers are split out into a substructure that
 958     * is shared with the translators to control the ISA.
 959     *
 960     * Note that if you add an ID register to the ARMISARegisters struct
 961     * you need to also update the 32-bit and 64-bit versions of the
 962     * kvm_arm_get_host_cpu_features() function to correctly populate the
 963     * field by reading the value from the KVM vCPU.
 964     */
 965    struct ARMISARegisters {
 966        uint32_t id_isar0;
 967        uint32_t id_isar1;
 968        uint32_t id_isar2;
 969        uint32_t id_isar3;
 970        uint32_t id_isar4;
 971        uint32_t id_isar5;
 972        uint32_t id_isar6;
 973        uint32_t id_mmfr0;
 974        uint32_t id_mmfr1;
 975        uint32_t id_mmfr2;
 976        uint32_t id_mmfr3;
 977        uint32_t id_mmfr4;
 978        uint32_t id_pfr0;
 979        uint32_t id_pfr1;
 980        uint32_t id_pfr2;
 981        uint32_t mvfr0;
 982        uint32_t mvfr1;
 983        uint32_t mvfr2;
 984        uint32_t id_dfr0;
 985        uint32_t dbgdidr;
 986        uint32_t dbgdevid;
 987        uint32_t dbgdevid1;
 988        uint64_t id_aa64isar0;
 989        uint64_t id_aa64isar1;
 990        uint64_t id_aa64pfr0;
 991        uint64_t id_aa64pfr1;
 992        uint64_t id_aa64mmfr0;
 993        uint64_t id_aa64mmfr1;
 994        uint64_t id_aa64mmfr2;
 995        uint64_t id_aa64dfr0;
 996        uint64_t id_aa64dfr1;
 997        uint64_t id_aa64zfr0;
 998        uint64_t id_aa64smfr0;
 999        uint64_t reset_pmcr_el0;
1000    } isar;
1001    uint64_t midr;
1002    uint32_t revidr;
1003    uint32_t reset_fpsid;
1004    uint64_t ctr;
1005    uint32_t reset_sctlr;
1006    uint64_t pmceid0;
1007    uint64_t pmceid1;
1008    uint32_t id_afr0;
1009    uint64_t id_aa64afr0;
1010    uint64_t id_aa64afr1;
1011    uint64_t clidr;
1012    uint64_t mp_affinity; /* MP ID without feature bits */
1013    /* The elements of this array are the CCSIDR values for each cache,
1014     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1015     */
1016    uint64_t ccsidr[16];
1017    uint64_t reset_cbar;
1018    uint32_t reset_auxcr;
1019    bool reset_hivecs;
1020
1021    /*
1022     * Intermediate values used during property parsing.
1023     * Once finalized, the values should be read from ID_AA64*.
1024     */
1025    bool prop_pauth;
1026    bool prop_pauth_impdef;
1027    bool prop_lpa2;
1028
1029    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1030    uint32_t dcz_blocksize;
1031    uint64_t rvbar_prop; /* Property/input signals.  */
1032
1033    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1034    int gic_num_lrs; /* number of list registers */
1035    int gic_vpribits; /* number of virtual priority bits */
1036    int gic_vprebits; /* number of virtual preemption bits */
1037    int gic_pribits; /* number of physical priority bits */
1038
1039    /* Whether the cfgend input is high (i.e. this CPU should reset into
1040     * big-endian mode).  This setting isn't used directly: instead it modifies
1041     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1042     * architecture version.
1043     */
1044    bool cfgend;
1045
1046    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1047    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1048
1049    int32_t node_id; /* NUMA node this CPU belongs to */
1050
1051    /* Used to synchronize KVM and QEMU in-kernel device levels */
1052    uint8_t device_irq_level;
1053
1054    /* Used to set the maximum vector length the cpu will support.  */
1055    uint32_t sve_max_vq;
1056
1057#ifdef CONFIG_USER_ONLY
1058    /* Used to set the default vector length at process start. */
1059    uint32_t sve_default_vq;
1060    uint32_t sme_default_vq;
1061#endif
1062
1063    ARMVQMap sve_vq;
1064    ARMVQMap sme_vq;
1065
1066    /* Generic timer counter frequency, in Hz */
1067    uint64_t gt_cntfrq_hz;
1068};
1069
1070unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1071
1072void arm_cpu_post_init(Object *obj);
1073
1074uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1075
1076#ifndef CONFIG_USER_ONLY
1077extern const VMStateDescription vmstate_arm_cpu;
1078
1079void arm_cpu_do_interrupt(CPUState *cpu);
1080void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1081#endif /* !CONFIG_USER_ONLY */
1082
1083hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1084                                         MemTxAttrs *attrs);
1085
1086int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1087int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1088
1089/*
1090 * Helpers to dynamically generates XML descriptions of the sysregs
1091 * and SVE registers. Returns the number of registers in each set.
1092 */
1093int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1094int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1095
1096/* Returns the dynamically generated XML for the gdb stub.
1097 * Returns a pointer to the XML contents for the specified XML file or NULL
1098 * if the XML name doesn't match the predefined one.
1099 */
1100const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1101
1102int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1103                             int cpuid, void *opaque);
1104int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1105                             int cpuid, void *opaque);
1106
1107#ifdef TARGET_AARCH64
1108int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1109int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1110void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1111void aarch64_sve_change_el(CPUARMState *env, int old_el,
1112                           int new_el, bool el0_a64);
1113void arm_reset_sve_state(CPUARMState *env);
1114
1115/*
1116 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1117 * The byte at offset i from the start of the in-memory representation contains
1118 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1119 * lowest offsets are stored in the lowest memory addresses, then that nearly
1120 * matches QEMU's representation, which is to use an array of host-endian
1121 * uint64_t's, where the lower offsets are at the lower indices. To complete
1122 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1123 */
1124static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1125{
1126#if HOST_BIG_ENDIAN
1127    int i;
1128
1129    for (i = 0; i < nr; ++i) {
1130        dst[i] = bswap64(src[i]);
1131    }
1132
1133    return dst;
1134#else
1135    return src;
1136#endif
1137}
1138
1139#else
1140static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1141static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1142                                         int n, bool a)
1143{ }
1144#endif
1145
1146void aarch64_sync_32_to_64(CPUARMState *env);
1147void aarch64_sync_64_to_32(CPUARMState *env);
1148
1149int fp_exception_el(CPUARMState *env, int cur_el);
1150int sve_exception_el(CPUARMState *env, int cur_el);
1151int sme_exception_el(CPUARMState *env, int cur_el);
1152
1153/**
1154 * sve_vqm1_for_el_sm:
1155 * @env: CPUARMState
1156 * @el: exception level
1157 * @sm: streaming mode
1158 *
1159 * Compute the current vector length for @el & @sm, in units of
1160 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1161 * If @sm, compute for SVL, otherwise NVL.
1162 */
1163uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1164
1165/* Likewise, but using @sm = PSTATE.SM. */
1166uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1167
1168static inline bool is_a64(CPUARMState *env)
1169{
1170    return env->aarch64;
1171}
1172
1173/**
1174 * pmu_op_start/finish
1175 * @env: CPUARMState
1176 *
1177 * Convert all PMU counters between their delta form (the typical mode when
1178 * they are enabled) and the guest-visible values. These two calls must
1179 * surround any action which might affect the counters.
1180 */
1181void pmu_op_start(CPUARMState *env);
1182void pmu_op_finish(CPUARMState *env);
1183
1184/*
1185 * Called when a PMU counter is due to overflow
1186 */
1187void arm_pmu_timer_cb(void *opaque);
1188
1189/**
1190 * Functions to register as EL change hooks for PMU mode filtering
1191 */
1192void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1193void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1194
1195/*
1196 * pmu_init
1197 * @cpu: ARMCPU
1198 *
1199 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1200 * for the current configuration
1201 */
1202void pmu_init(ARMCPU *cpu);
1203
1204/* SCTLR bit meanings. Several bits have been reused in newer
1205 * versions of the architecture; in that case we define constants
1206 * for both old and new bit meanings. Code which tests against those
1207 * bits should probably check or otherwise arrange that the CPU
1208 * is the architectural version it expects.
1209 */
1210#define SCTLR_M       (1U << 0)
1211#define SCTLR_A       (1U << 1)
1212#define SCTLR_C       (1U << 2)
1213#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1214#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1215#define SCTLR_SA      (1U << 3) /* AArch64 only */
1216#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1217#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1218#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1219#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1220#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1221#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1222#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1223#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1224#define SCTLR_ITD     (1U << 7) /* v8 onward */
1225#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1226#define SCTLR_SED     (1U << 8) /* v8 onward */
1227#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1228#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1229#define SCTLR_F       (1U << 10) /* up to v6 */
1230#define SCTLR_SW      (1U << 10) /* v7 */
1231#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1232#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1233#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1234#define SCTLR_I       (1U << 12)
1235#define SCTLR_V       (1U << 13) /* AArch32 only */
1236#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1237#define SCTLR_RR      (1U << 14) /* up to v7 */
1238#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1239#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1240#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1241#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1242#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1243#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1244#define SCTLR_BR      (1U << 17) /* PMSA only */
1245#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1246#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1247#define SCTLR_WXN     (1U << 19)
1248#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1249#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1250#define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1251#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1252#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1253#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1254#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1255#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1256#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1257#define SCTLR_VE      (1U << 24) /* up to v7 */
1258#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1259#define SCTLR_EE      (1U << 25)
1260#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1261#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1262#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1263#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1264#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1265#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1266#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1267#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1268#define SCTLR_TE      (1U << 30) /* AArch32 only */
1269#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1270#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1271#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1272#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1273#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1274#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1275#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1276#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1277#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1278#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1279#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1280#define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1281#define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1282#define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1283#define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1284#define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1285#define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1286#define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1287#define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1288#define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1289#define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1290#define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1291#define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1292#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1293#define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1294
1295/* Bit definitions for CPACR (AArch32 only) */
1296FIELD(CPACR, CP10, 20, 2)
1297FIELD(CPACR, CP11, 22, 2)
1298FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1299FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1300FIELD(CPACR, ASEDIS, 31, 1)
1301
1302/* Bit definitions for CPACR_EL1 (AArch64 only) */
1303FIELD(CPACR_EL1, ZEN, 16, 2)
1304FIELD(CPACR_EL1, FPEN, 20, 2)
1305FIELD(CPACR_EL1, SMEN, 24, 2)
1306FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1307
1308/* Bit definitions for HCPTR (AArch32 only) */
1309FIELD(HCPTR, TCP10, 10, 1)
1310FIELD(HCPTR, TCP11, 11, 1)
1311FIELD(HCPTR, TASE, 15, 1)
1312FIELD(HCPTR, TTA, 20, 1)
1313FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1314FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1315
1316/* Bit definitions for CPTR_EL2 (AArch64 only) */
1317FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1318FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1319FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1320FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1321FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1322FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1323FIELD(CPTR_EL2, TTA, 28, 1)
1324FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1325FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1326
1327/* Bit definitions for CPTR_EL3 (AArch64 only) */
1328FIELD(CPTR_EL3, EZ, 8, 1)
1329FIELD(CPTR_EL3, TFP, 10, 1)
1330FIELD(CPTR_EL3, ESM, 12, 1)
1331FIELD(CPTR_EL3, TTA, 20, 1)
1332FIELD(CPTR_EL3, TAM, 30, 1)
1333FIELD(CPTR_EL3, TCPAC, 31, 1)
1334
1335#define MDCR_EPMAD    (1U << 21)
1336#define MDCR_EDAD     (1U << 20)
1337#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1338#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1339#define MDCR_SDD      (1U << 16)
1340#define MDCR_SPD      (3U << 14)
1341#define MDCR_TDRA     (1U << 11)
1342#define MDCR_TDOSA    (1U << 10)
1343#define MDCR_TDA      (1U << 9)
1344#define MDCR_TDE      (1U << 8)
1345#define MDCR_HPME     (1U << 7)
1346#define MDCR_TPM      (1U << 6)
1347#define MDCR_TPMCR    (1U << 5)
1348#define MDCR_HPMN     (0x1fU)
1349
1350/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1351#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1352
1353#define CPSR_M (0x1fU)
1354#define CPSR_T (1U << 5)
1355#define CPSR_F (1U << 6)
1356#define CPSR_I (1U << 7)
1357#define CPSR_A (1U << 8)
1358#define CPSR_E (1U << 9)
1359#define CPSR_IT_2_7 (0xfc00U)
1360#define CPSR_GE (0xfU << 16)
1361#define CPSR_IL (1U << 20)
1362#define CPSR_DIT (1U << 21)
1363#define CPSR_PAN (1U << 22)
1364#define CPSR_SSBS (1U << 23)
1365#define CPSR_J (1U << 24)
1366#define CPSR_IT_0_1 (3U << 25)
1367#define CPSR_Q (1U << 27)
1368#define CPSR_V (1U << 28)
1369#define CPSR_C (1U << 29)
1370#define CPSR_Z (1U << 30)
1371#define CPSR_N (1U << 31)
1372#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1373#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1374
1375#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1376#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1377    | CPSR_NZCV)
1378/* Bits writable in user mode.  */
1379#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1380/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1381#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1382
1383/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1384#define XPSR_EXCP 0x1ffU
1385#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1386#define XPSR_IT_2_7 CPSR_IT_2_7
1387#define XPSR_GE CPSR_GE
1388#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1389#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1390#define XPSR_IT_0_1 CPSR_IT_0_1
1391#define XPSR_Q CPSR_Q
1392#define XPSR_V CPSR_V
1393#define XPSR_C CPSR_C
1394#define XPSR_Z CPSR_Z
1395#define XPSR_N CPSR_N
1396#define XPSR_NZCV CPSR_NZCV
1397#define XPSR_IT CPSR_IT
1398
1399#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1400#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1401#define TTBCR_PD0    (1U << 4)
1402#define TTBCR_PD1    (1U << 5)
1403#define TTBCR_EPD0   (1U << 7)
1404#define TTBCR_IRGN0  (3U << 8)
1405#define TTBCR_ORGN0  (3U << 10)
1406#define TTBCR_SH0    (3U << 12)
1407#define TTBCR_T1SZ   (3U << 16)
1408#define TTBCR_A1     (1U << 22)
1409#define TTBCR_EPD1   (1U << 23)
1410#define TTBCR_IRGN1  (3U << 24)
1411#define TTBCR_ORGN1  (3U << 26)
1412#define TTBCR_SH1    (1U << 28)
1413#define TTBCR_EAE    (1U << 31)
1414
1415FIELD(VTCR, T0SZ, 0, 6)
1416FIELD(VTCR, SL0, 6, 2)
1417FIELD(VTCR, IRGN0, 8, 2)
1418FIELD(VTCR, ORGN0, 10, 2)
1419FIELD(VTCR, SH0, 12, 2)
1420FIELD(VTCR, TG0, 14, 2)
1421FIELD(VTCR, PS, 16, 3)
1422FIELD(VTCR, VS, 19, 1)
1423FIELD(VTCR, HA, 21, 1)
1424FIELD(VTCR, HD, 22, 1)
1425FIELD(VTCR, HWU59, 25, 1)
1426FIELD(VTCR, HWU60, 26, 1)
1427FIELD(VTCR, HWU61, 27, 1)
1428FIELD(VTCR, HWU62, 28, 1)
1429FIELD(VTCR, NSW, 29, 1)
1430FIELD(VTCR, NSA, 30, 1)
1431FIELD(VTCR, DS, 32, 1)
1432FIELD(VTCR, SL2, 33, 1)
1433
1434/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1435 * Only these are valid when in AArch64 mode; in
1436 * AArch32 mode SPSRs are basically CPSR-format.
1437 */
1438#define PSTATE_SP (1U)
1439#define PSTATE_M (0xFU)
1440#define PSTATE_nRW (1U << 4)
1441#define PSTATE_F (1U << 6)
1442#define PSTATE_I (1U << 7)
1443#define PSTATE_A (1U << 8)
1444#define PSTATE_D (1U << 9)
1445#define PSTATE_BTYPE (3U << 10)
1446#define PSTATE_SSBS (1U << 12)
1447#define PSTATE_IL (1U << 20)
1448#define PSTATE_SS (1U << 21)
1449#define PSTATE_PAN (1U << 22)
1450#define PSTATE_UAO (1U << 23)
1451#define PSTATE_DIT (1U << 24)
1452#define PSTATE_TCO (1U << 25)
1453#define PSTATE_V (1U << 28)
1454#define PSTATE_C (1U << 29)
1455#define PSTATE_Z (1U << 30)
1456#define PSTATE_N (1U << 31)
1457#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1458#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1459#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1460/* Mode values for AArch64 */
1461#define PSTATE_MODE_EL3h 13
1462#define PSTATE_MODE_EL3t 12
1463#define PSTATE_MODE_EL2h 9
1464#define PSTATE_MODE_EL2t 8
1465#define PSTATE_MODE_EL1h 5
1466#define PSTATE_MODE_EL1t 4
1467#define PSTATE_MODE_EL0t 0
1468
1469/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1470FIELD(SVCR, SM, 0, 1)
1471FIELD(SVCR, ZA, 1, 1)
1472
1473/* Fields for SMCR_ELx. */
1474FIELD(SMCR, LEN, 0, 4)
1475FIELD(SMCR, FA64, 31, 1)
1476
1477/* Write a new value to v7m.exception, thus transitioning into or out
1478 * of Handler mode; this may result in a change of active stack pointer.
1479 */
1480void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1481
1482/* Map EL and handler into a PSTATE_MODE.  */
1483static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1484{
1485    return (el << 2) | handler;
1486}
1487
1488/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1489 * interprocessing, so we don't attempt to sync with the cpsr state used by
1490 * the 32 bit decoder.
1491 */
1492static inline uint32_t pstate_read(CPUARMState *env)
1493{
1494    int ZF;
1495
1496    ZF = (env->ZF == 0);
1497    return (env->NF & 0x80000000) | (ZF << 30)
1498        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1499        | env->pstate | env->daif | (env->btype << 10);
1500}
1501
1502static inline void pstate_write(CPUARMState *env, uint32_t val)
1503{
1504    env->ZF = (~val) & PSTATE_Z;
1505    env->NF = val;
1506    env->CF = (val >> 29) & 1;
1507    env->VF = (val << 3) & 0x80000000;
1508    env->daif = val & PSTATE_DAIF;
1509    env->btype = (val >> 10) & 3;
1510    env->pstate = val & ~CACHED_PSTATE_BITS;
1511}
1512
1513/* Return the current CPSR value.  */
1514uint32_t cpsr_read(CPUARMState *env);
1515
1516typedef enum CPSRWriteType {
1517    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1518    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1519    CPSRWriteRaw = 2,
1520        /* trust values, no reg bank switch, no hflags rebuild */
1521    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1522} CPSRWriteType;
1523
1524/*
1525 * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1526 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1527 * correspond to TB flags bits cached in the hflags, unless @write_type
1528 * is CPSRWriteRaw.
1529 */
1530void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1531                CPSRWriteType write_type);
1532
1533/* Return the current xPSR value.  */
1534static inline uint32_t xpsr_read(CPUARMState *env)
1535{
1536    int ZF;
1537    ZF = (env->ZF == 0);
1538    return (env->NF & 0x80000000) | (ZF << 30)
1539        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1540        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1541        | ((env->condexec_bits & 0xfc) << 8)
1542        | (env->GE << 16)
1543        | env->v7m.exception;
1544}
1545
1546/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1547static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1548{
1549    if (mask & XPSR_NZCV) {
1550        env->ZF = (~val) & XPSR_Z;
1551        env->NF = val;
1552        env->CF = (val >> 29) & 1;
1553        env->VF = (val << 3) & 0x80000000;
1554    }
1555    if (mask & XPSR_Q) {
1556        env->QF = ((val & XPSR_Q) != 0);
1557    }
1558    if (mask & XPSR_GE) {
1559        env->GE = (val & XPSR_GE) >> 16;
1560    }
1561#ifndef CONFIG_USER_ONLY
1562    if (mask & XPSR_T) {
1563        env->thumb = ((val & XPSR_T) != 0);
1564    }
1565    if (mask & XPSR_IT_0_1) {
1566        env->condexec_bits &= ~3;
1567        env->condexec_bits |= (val >> 25) & 3;
1568    }
1569    if (mask & XPSR_IT_2_7) {
1570        env->condexec_bits &= 3;
1571        env->condexec_bits |= (val >> 8) & 0xfc;
1572    }
1573    if (mask & XPSR_EXCP) {
1574        /* Note that this only happens on exception exit */
1575        write_v7m_exception(env, val & XPSR_EXCP);
1576    }
1577#endif
1578}
1579
1580#define HCR_VM        (1ULL << 0)
1581#define HCR_SWIO      (1ULL << 1)
1582#define HCR_PTW       (1ULL << 2)
1583#define HCR_FMO       (1ULL << 3)
1584#define HCR_IMO       (1ULL << 4)
1585#define HCR_AMO       (1ULL << 5)
1586#define HCR_VF        (1ULL << 6)
1587#define HCR_VI        (1ULL << 7)
1588#define HCR_VSE       (1ULL << 8)
1589#define HCR_FB        (1ULL << 9)
1590#define HCR_BSU_MASK  (3ULL << 10)
1591#define HCR_DC        (1ULL << 12)
1592#define HCR_TWI       (1ULL << 13)
1593#define HCR_TWE       (1ULL << 14)
1594#define HCR_TID0      (1ULL << 15)
1595#define HCR_TID1      (1ULL << 16)
1596#define HCR_TID2      (1ULL << 17)
1597#define HCR_TID3      (1ULL << 18)
1598#define HCR_TSC       (1ULL << 19)
1599#define HCR_TIDCP     (1ULL << 20)
1600#define HCR_TACR      (1ULL << 21)
1601#define HCR_TSW       (1ULL << 22)
1602#define HCR_TPCP      (1ULL << 23)
1603#define HCR_TPU       (1ULL << 24)
1604#define HCR_TTLB      (1ULL << 25)
1605#define HCR_TVM       (1ULL << 26)
1606#define HCR_TGE       (1ULL << 27)
1607#define HCR_TDZ       (1ULL << 28)
1608#define HCR_HCD       (1ULL << 29)
1609#define HCR_TRVM      (1ULL << 30)
1610#define HCR_RW        (1ULL << 31)
1611#define HCR_CD        (1ULL << 32)
1612#define HCR_ID        (1ULL << 33)
1613#define HCR_E2H       (1ULL << 34)
1614#define HCR_TLOR      (1ULL << 35)
1615#define HCR_TERR      (1ULL << 36)
1616#define HCR_TEA       (1ULL << 37)
1617#define HCR_MIOCNCE   (1ULL << 38)
1618/* RES0 bit 39 */
1619#define HCR_APK       (1ULL << 40)
1620#define HCR_API       (1ULL << 41)
1621#define HCR_NV        (1ULL << 42)
1622#define HCR_NV1       (1ULL << 43)
1623#define HCR_AT        (1ULL << 44)
1624#define HCR_NV2       (1ULL << 45)
1625#define HCR_FWB       (1ULL << 46)
1626#define HCR_FIEN      (1ULL << 47)
1627/* RES0 bit 48 */
1628#define HCR_TID4      (1ULL << 49)
1629#define HCR_TICAB     (1ULL << 50)
1630#define HCR_AMVOFFEN  (1ULL << 51)
1631#define HCR_TOCU      (1ULL << 52)
1632#define HCR_ENSCXT    (1ULL << 53)
1633#define HCR_TTLBIS    (1ULL << 54)
1634#define HCR_TTLBOS    (1ULL << 55)
1635#define HCR_ATA       (1ULL << 56)
1636#define HCR_DCT       (1ULL << 57)
1637#define HCR_TID5      (1ULL << 58)
1638#define HCR_TWEDEN    (1ULL << 59)
1639#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1640
1641#define HCRX_ENAS0    (1ULL << 0)
1642#define HCRX_ENALS    (1ULL << 1)
1643#define HCRX_ENASR    (1ULL << 2)
1644#define HCRX_FNXS     (1ULL << 3)
1645#define HCRX_FGTNXS   (1ULL << 4)
1646#define HCRX_SMPME    (1ULL << 5)
1647#define HCRX_TALLINT  (1ULL << 6)
1648#define HCRX_VINMI    (1ULL << 7)
1649#define HCRX_VFNMI    (1ULL << 8)
1650#define HCRX_CMOW     (1ULL << 9)
1651#define HCRX_MCE2     (1ULL << 10)
1652#define HCRX_MSCEN    (1ULL << 11)
1653
1654#define HPFAR_NS      (1ULL << 63)
1655
1656#define SCR_NS                (1U << 0)
1657#define SCR_IRQ               (1U << 1)
1658#define SCR_FIQ               (1U << 2)
1659#define SCR_EA                (1U << 3)
1660#define SCR_FW                (1U << 4)
1661#define SCR_AW                (1U << 5)
1662#define SCR_NET               (1U << 6)
1663#define SCR_SMD               (1U << 7)
1664#define SCR_HCE               (1U << 8)
1665#define SCR_SIF               (1U << 9)
1666#define SCR_RW                (1U << 10)
1667#define SCR_ST                (1U << 11)
1668#define SCR_TWI               (1U << 12)
1669#define SCR_TWE               (1U << 13)
1670#define SCR_TLOR              (1U << 14)
1671#define SCR_TERR              (1U << 15)
1672#define SCR_APK               (1U << 16)
1673#define SCR_API               (1U << 17)
1674#define SCR_EEL2              (1U << 18)
1675#define SCR_EASE              (1U << 19)
1676#define SCR_NMEA              (1U << 20)
1677#define SCR_FIEN              (1U << 21)
1678#define SCR_ENSCXT            (1U << 25)
1679#define SCR_ATA               (1U << 26)
1680#define SCR_FGTEN             (1U << 27)
1681#define SCR_ECVEN             (1U << 28)
1682#define SCR_TWEDEN            (1U << 29)
1683#define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1684#define SCR_TME               (1ULL << 34)
1685#define SCR_AMVOFFEN          (1ULL << 35)
1686#define SCR_ENAS0             (1ULL << 36)
1687#define SCR_ADEN              (1ULL << 37)
1688#define SCR_HXEN              (1ULL << 38)
1689#define SCR_TRNDR             (1ULL << 40)
1690#define SCR_ENTP2             (1ULL << 41)
1691#define SCR_GPF               (1ULL << 48)
1692
1693#define HSTR_TTEE (1 << 16)
1694#define HSTR_TJDBX (1 << 17)
1695
1696/* Return the current FPSCR value.  */
1697uint32_t vfp_get_fpscr(CPUARMState *env);
1698void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1699
1700/* FPCR, Floating Point Control Register
1701 * FPSR, Floating Poiht Status Register
1702 *
1703 * For A64 the FPSCR is split into two logically distinct registers,
1704 * FPCR and FPSR. However since they still use non-overlapping bits
1705 * we store the underlying state in fpscr and just mask on read/write.
1706 */
1707#define FPSR_MASK 0xf800009f
1708#define FPCR_MASK 0x07ff9f00
1709
1710#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1711#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1712#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1713#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1714#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1715#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1716#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1717#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1718#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1719#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1720#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1721#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1722#define FPCR_V      (1 << 28)   /* FP overflow flag */
1723#define FPCR_C      (1 << 29)   /* FP carry flag */
1724#define FPCR_Z      (1 << 30)   /* FP zero flag */
1725#define FPCR_N      (1 << 31)   /* FP negative flag */
1726
1727#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1728#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1729#define FPCR_LTPSIZE_LENGTH 3
1730
1731#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1732#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1733
1734static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1735{
1736    return vfp_get_fpscr(env) & FPSR_MASK;
1737}
1738
1739static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1740{
1741    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1742    vfp_set_fpscr(env, new_fpscr);
1743}
1744
1745static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1746{
1747    return vfp_get_fpscr(env) & FPCR_MASK;
1748}
1749
1750static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1751{
1752    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1753    vfp_set_fpscr(env, new_fpscr);
1754}
1755
1756enum arm_cpu_mode {
1757  ARM_CPU_MODE_USR = 0x10,
1758  ARM_CPU_MODE_FIQ = 0x11,
1759  ARM_CPU_MODE_IRQ = 0x12,
1760  ARM_CPU_MODE_SVC = 0x13,
1761  ARM_CPU_MODE_MON = 0x16,
1762  ARM_CPU_MODE_ABT = 0x17,
1763  ARM_CPU_MODE_HYP = 0x1a,
1764  ARM_CPU_MODE_UND = 0x1b,
1765  ARM_CPU_MODE_SYS = 0x1f
1766};
1767
1768/* VFP system registers.  */
1769#define ARM_VFP_FPSID   0
1770#define ARM_VFP_FPSCR   1
1771#define ARM_VFP_MVFR2   5
1772#define ARM_VFP_MVFR1   6
1773#define ARM_VFP_MVFR0   7
1774#define ARM_VFP_FPEXC   8
1775#define ARM_VFP_FPINST  9
1776#define ARM_VFP_FPINST2 10
1777/* These ones are M-profile only */
1778#define ARM_VFP_FPSCR_NZCVQC 2
1779#define ARM_VFP_VPR 12
1780#define ARM_VFP_P0 13
1781#define ARM_VFP_FPCXT_NS 14
1782#define ARM_VFP_FPCXT_S 15
1783
1784/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1785#define QEMU_VFP_FPSCR_NZCV 0xffff
1786
1787/* iwMMXt coprocessor control registers.  */
1788#define ARM_IWMMXT_wCID  0
1789#define ARM_IWMMXT_wCon  1
1790#define ARM_IWMMXT_wCSSF 2
1791#define ARM_IWMMXT_wCASF 3
1792#define ARM_IWMMXT_wCGR0 8
1793#define ARM_IWMMXT_wCGR1 9
1794#define ARM_IWMMXT_wCGR2 10
1795#define ARM_IWMMXT_wCGR3 11
1796
1797/* V7M CCR bits */
1798FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1799FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1800FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1801FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1802FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1803FIELD(V7M_CCR, STKALIGN, 9, 1)
1804FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1805FIELD(V7M_CCR, DC, 16, 1)
1806FIELD(V7M_CCR, IC, 17, 1)
1807FIELD(V7M_CCR, BP, 18, 1)
1808FIELD(V7M_CCR, LOB, 19, 1)
1809FIELD(V7M_CCR, TRD, 20, 1)
1810
1811/* V7M SCR bits */
1812FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1813FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1814FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1815FIELD(V7M_SCR, SEVONPEND, 4, 1)
1816
1817/* V7M AIRCR bits */
1818FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1819FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1820FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1821FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1822FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1823FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1824FIELD(V7M_AIRCR, PRIS, 14, 1)
1825FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1826FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1827
1828/* V7M CFSR bits for MMFSR */
1829FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1830FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1831FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1832FIELD(V7M_CFSR, MSTKERR, 4, 1)
1833FIELD(V7M_CFSR, MLSPERR, 5, 1)
1834FIELD(V7M_CFSR, MMARVALID, 7, 1)
1835
1836/* V7M CFSR bits for BFSR */
1837FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1838FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1839FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1840FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1841FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1842FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1843FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1844
1845/* V7M CFSR bits for UFSR */
1846FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1847FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1848FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1849FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1850FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1851FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1852FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1853
1854/* V7M CFSR bit masks covering all of the subregister bits */
1855FIELD(V7M_CFSR, MMFSR, 0, 8)
1856FIELD(V7M_CFSR, BFSR, 8, 8)
1857FIELD(V7M_CFSR, UFSR, 16, 16)
1858
1859/* V7M HFSR bits */
1860FIELD(V7M_HFSR, VECTTBL, 1, 1)
1861FIELD(V7M_HFSR, FORCED, 30, 1)
1862FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1863
1864/* V7M DFSR bits */
1865FIELD(V7M_DFSR, HALTED, 0, 1)
1866FIELD(V7M_DFSR, BKPT, 1, 1)
1867FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1868FIELD(V7M_DFSR, VCATCH, 3, 1)
1869FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1870
1871/* V7M SFSR bits */
1872FIELD(V7M_SFSR, INVEP, 0, 1)
1873FIELD(V7M_SFSR, INVIS, 1, 1)
1874FIELD(V7M_SFSR, INVER, 2, 1)
1875FIELD(V7M_SFSR, AUVIOL, 3, 1)
1876FIELD(V7M_SFSR, INVTRAN, 4, 1)
1877FIELD(V7M_SFSR, LSPERR, 5, 1)
1878FIELD(V7M_SFSR, SFARVALID, 6, 1)
1879FIELD(V7M_SFSR, LSERR, 7, 1)
1880
1881/* v7M MPU_CTRL bits */
1882FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1883FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1884FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1885
1886/* v7M CLIDR bits */
1887FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1888FIELD(V7M_CLIDR, LOUIS, 21, 3)
1889FIELD(V7M_CLIDR, LOC, 24, 3)
1890FIELD(V7M_CLIDR, LOUU, 27, 3)
1891FIELD(V7M_CLIDR, ICB, 30, 2)
1892
1893FIELD(V7M_CSSELR, IND, 0, 1)
1894FIELD(V7M_CSSELR, LEVEL, 1, 3)
1895/* We use the combination of InD and Level to index into cpu->ccsidr[];
1896 * define a mask for this and check that it doesn't permit running off
1897 * the end of the array.
1898 */
1899FIELD(V7M_CSSELR, INDEX, 0, 4)
1900
1901/* v7M FPCCR bits */
1902FIELD(V7M_FPCCR, LSPACT, 0, 1)
1903FIELD(V7M_FPCCR, USER, 1, 1)
1904FIELD(V7M_FPCCR, S, 2, 1)
1905FIELD(V7M_FPCCR, THREAD, 3, 1)
1906FIELD(V7M_FPCCR, HFRDY, 4, 1)
1907FIELD(V7M_FPCCR, MMRDY, 5, 1)
1908FIELD(V7M_FPCCR, BFRDY, 6, 1)
1909FIELD(V7M_FPCCR, SFRDY, 7, 1)
1910FIELD(V7M_FPCCR, MONRDY, 8, 1)
1911FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1912FIELD(V7M_FPCCR, UFRDY, 10, 1)
1913FIELD(V7M_FPCCR, RES0, 11, 15)
1914FIELD(V7M_FPCCR, TS, 26, 1)
1915FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1916FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1917FIELD(V7M_FPCCR, LSPENS, 29, 1)
1918FIELD(V7M_FPCCR, LSPEN, 30, 1)
1919FIELD(V7M_FPCCR, ASPEN, 31, 1)
1920/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1921#define R_V7M_FPCCR_BANKED_MASK                 \
1922    (R_V7M_FPCCR_LSPACT_MASK |                  \
1923     R_V7M_FPCCR_USER_MASK |                    \
1924     R_V7M_FPCCR_THREAD_MASK |                  \
1925     R_V7M_FPCCR_MMRDY_MASK |                   \
1926     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1927     R_V7M_FPCCR_UFRDY_MASK |                   \
1928     R_V7M_FPCCR_ASPEN_MASK)
1929
1930/* v7M VPR bits */
1931FIELD(V7M_VPR, P0, 0, 16)
1932FIELD(V7M_VPR, MASK01, 16, 4)
1933FIELD(V7M_VPR, MASK23, 20, 4)
1934
1935/*
1936 * System register ID fields.
1937 */
1938FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1939FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1940FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1941FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1942FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1943FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1944FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1945FIELD(CLIDR_EL1, LOUIS, 21, 3)
1946FIELD(CLIDR_EL1, LOC, 24, 3)
1947FIELD(CLIDR_EL1, LOUU, 27, 3)
1948FIELD(CLIDR_EL1, ICB, 30, 3)
1949
1950/* When FEAT_CCIDX is implemented */
1951FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1952FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1953FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1954
1955/* When FEAT_CCIDX is not implemented */
1956FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1957FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1958FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1959
1960FIELD(CTR_EL0,  IMINLINE, 0, 4)
1961FIELD(CTR_EL0,  L1IP, 14, 2)
1962FIELD(CTR_EL0,  DMINLINE, 16, 4)
1963FIELD(CTR_EL0,  ERG, 20, 4)
1964FIELD(CTR_EL0,  CWG, 24, 4)
1965FIELD(CTR_EL0,  IDC, 28, 1)
1966FIELD(CTR_EL0,  DIC, 29, 1)
1967FIELD(CTR_EL0,  TMINLINE, 32, 6)
1968
1969FIELD(MIDR_EL1, REVISION, 0, 4)
1970FIELD(MIDR_EL1, PARTNUM, 4, 12)
1971FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1972FIELD(MIDR_EL1, VARIANT, 20, 4)
1973FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1974
1975FIELD(ID_ISAR0, SWAP, 0, 4)
1976FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1977FIELD(ID_ISAR0, BITFIELD, 8, 4)
1978FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1979FIELD(ID_ISAR0, COPROC, 16, 4)
1980FIELD(ID_ISAR0, DEBUG, 20, 4)
1981FIELD(ID_ISAR0, DIVIDE, 24, 4)
1982
1983FIELD(ID_ISAR1, ENDIAN, 0, 4)
1984FIELD(ID_ISAR1, EXCEPT, 4, 4)
1985FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1986FIELD(ID_ISAR1, EXTEND, 12, 4)
1987FIELD(ID_ISAR1, IFTHEN, 16, 4)
1988FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1989FIELD(ID_ISAR1, INTERWORK, 24, 4)
1990FIELD(ID_ISAR1, JAZELLE, 28, 4)
1991
1992FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1993FIELD(ID_ISAR2, MEMHINT, 4, 4)
1994FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1995FIELD(ID_ISAR2, MULT, 12, 4)
1996FIELD(ID_ISAR2, MULTS, 16, 4)
1997FIELD(ID_ISAR2, MULTU, 20, 4)
1998FIELD(ID_ISAR2, PSR_AR, 24, 4)
1999FIELD(ID_ISAR2, REVERSAL, 28, 4)
2000
2001FIELD(ID_ISAR3, SATURATE, 0, 4)
2002FIELD(ID_ISAR3, SIMD, 4, 4)
2003FIELD(ID_ISAR3, SVC, 8, 4)
2004FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2005FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2006FIELD(ID_ISAR3, T32COPY, 20, 4)
2007FIELD(ID_ISAR3, TRUENOP, 24, 4)
2008FIELD(ID_ISAR3, T32EE, 28, 4)
2009
2010FIELD(ID_ISAR4, UNPRIV, 0, 4)
2011FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2012FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2013FIELD(ID_ISAR4, SMC, 12, 4)
2014FIELD(ID_ISAR4, BARRIER, 16, 4)
2015FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2016FIELD(ID_ISAR4, PSR_M, 24, 4)
2017FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2018
2019FIELD(ID_ISAR5, SEVL, 0, 4)
2020FIELD(ID_ISAR5, AES, 4, 4)
2021FIELD(ID_ISAR5, SHA1, 8, 4)
2022FIELD(ID_ISAR5, SHA2, 12, 4)
2023FIELD(ID_ISAR5, CRC32, 16, 4)
2024FIELD(ID_ISAR5, RDM, 24, 4)
2025FIELD(ID_ISAR5, VCMA, 28, 4)
2026
2027FIELD(ID_ISAR6, JSCVT, 0, 4)
2028FIELD(ID_ISAR6, DP, 4, 4)
2029FIELD(ID_ISAR6, FHM, 8, 4)
2030FIELD(ID_ISAR6, SB, 12, 4)
2031FIELD(ID_ISAR6, SPECRES, 16, 4)
2032FIELD(ID_ISAR6, BF16, 20, 4)
2033FIELD(ID_ISAR6, I8MM, 24, 4)
2034
2035FIELD(ID_MMFR0, VMSA, 0, 4)
2036FIELD(ID_MMFR0, PMSA, 4, 4)
2037FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2038FIELD(ID_MMFR0, SHARELVL, 12, 4)
2039FIELD(ID_MMFR0, TCM, 16, 4)
2040FIELD(ID_MMFR0, AUXREG, 20, 4)
2041FIELD(ID_MMFR0, FCSE, 24, 4)
2042FIELD(ID_MMFR0, INNERSHR, 28, 4)
2043
2044FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2045FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2046FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2047FIELD(ID_MMFR1, L1UNISW, 12, 4)
2048FIELD(ID_MMFR1, L1HVD, 16, 4)
2049FIELD(ID_MMFR1, L1UNI, 20, 4)
2050FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2051FIELD(ID_MMFR1, BPRED, 28, 4)
2052
2053FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2054FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2055FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2056FIELD(ID_MMFR2, HVDTLB, 12, 4)
2057FIELD(ID_MMFR2, UNITLB, 16, 4)
2058FIELD(ID_MMFR2, MEMBARR, 20, 4)
2059FIELD(ID_MMFR2, WFISTALL, 24, 4)
2060FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2061
2062FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2063FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2064FIELD(ID_MMFR3, BPMAINT, 8, 4)
2065FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2066FIELD(ID_MMFR3, PAN, 16, 4)
2067FIELD(ID_MMFR3, COHWALK, 20, 4)
2068FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2069FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2070
2071FIELD(ID_MMFR4, SPECSEI, 0, 4)
2072FIELD(ID_MMFR4, AC2, 4, 4)
2073FIELD(ID_MMFR4, XNX, 8, 4)
2074FIELD(ID_MMFR4, CNP, 12, 4)
2075FIELD(ID_MMFR4, HPDS, 16, 4)
2076FIELD(ID_MMFR4, LSM, 20, 4)
2077FIELD(ID_MMFR4, CCIDX, 24, 4)
2078FIELD(ID_MMFR4, EVT, 28, 4)
2079
2080FIELD(ID_MMFR5, ETS, 0, 4)
2081FIELD(ID_MMFR5, NTLBPA, 4, 4)
2082
2083FIELD(ID_PFR0, STATE0, 0, 4)
2084FIELD(ID_PFR0, STATE1, 4, 4)
2085FIELD(ID_PFR0, STATE2, 8, 4)
2086FIELD(ID_PFR0, STATE3, 12, 4)
2087FIELD(ID_PFR0, CSV2, 16, 4)
2088FIELD(ID_PFR0, AMU, 20, 4)
2089FIELD(ID_PFR0, DIT, 24, 4)
2090FIELD(ID_PFR0, RAS, 28, 4)
2091
2092FIELD(ID_PFR1, PROGMOD, 0, 4)
2093FIELD(ID_PFR1, SECURITY, 4, 4)
2094FIELD(ID_PFR1, MPROGMOD, 8, 4)
2095FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2096FIELD(ID_PFR1, GENTIMER, 16, 4)
2097FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2098FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2099FIELD(ID_PFR1, GIC, 28, 4)
2100
2101FIELD(ID_PFR2, CSV3, 0, 4)
2102FIELD(ID_PFR2, SSBS, 4, 4)
2103FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2104
2105FIELD(ID_AA64ISAR0, AES, 4, 4)
2106FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2107FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2108FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2109FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2110FIELD(ID_AA64ISAR0, RDM, 28, 4)
2111FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2112FIELD(ID_AA64ISAR0, SM3, 36, 4)
2113FIELD(ID_AA64ISAR0, SM4, 40, 4)
2114FIELD(ID_AA64ISAR0, DP, 44, 4)
2115FIELD(ID_AA64ISAR0, FHM, 48, 4)
2116FIELD(ID_AA64ISAR0, TS, 52, 4)
2117FIELD(ID_AA64ISAR0, TLB, 56, 4)
2118FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2119
2120FIELD(ID_AA64ISAR1, DPB, 0, 4)
2121FIELD(ID_AA64ISAR1, APA, 4, 4)
2122FIELD(ID_AA64ISAR1, API, 8, 4)
2123FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2124FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2125FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2126FIELD(ID_AA64ISAR1, GPA, 24, 4)
2127FIELD(ID_AA64ISAR1, GPI, 28, 4)
2128FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2129FIELD(ID_AA64ISAR1, SB, 36, 4)
2130FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2131FIELD(ID_AA64ISAR1, BF16, 44, 4)
2132FIELD(ID_AA64ISAR1, DGH, 48, 4)
2133FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2134FIELD(ID_AA64ISAR1, XS, 56, 4)
2135FIELD(ID_AA64ISAR1, LS64, 60, 4)
2136
2137FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2138FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2139FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2140FIELD(ID_AA64ISAR2, APA3, 12, 4)
2141FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2142FIELD(ID_AA64ISAR2, BC, 20, 4)
2143FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2144
2145FIELD(ID_AA64PFR0, EL0, 0, 4)
2146FIELD(ID_AA64PFR0, EL1, 4, 4)
2147FIELD(ID_AA64PFR0, EL2, 8, 4)
2148FIELD(ID_AA64PFR0, EL3, 12, 4)
2149FIELD(ID_AA64PFR0, FP, 16, 4)
2150FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2151FIELD(ID_AA64PFR0, GIC, 24, 4)
2152FIELD(ID_AA64PFR0, RAS, 28, 4)
2153FIELD(ID_AA64PFR0, SVE, 32, 4)
2154FIELD(ID_AA64PFR0, SEL2, 36, 4)
2155FIELD(ID_AA64PFR0, MPAM, 40, 4)
2156FIELD(ID_AA64PFR0, AMU, 44, 4)
2157FIELD(ID_AA64PFR0, DIT, 48, 4)
2158FIELD(ID_AA64PFR0, CSV2, 56, 4)
2159FIELD(ID_AA64PFR0, CSV3, 60, 4)
2160
2161FIELD(ID_AA64PFR1, BT, 0, 4)
2162FIELD(ID_AA64PFR1, SSBS, 4, 4)
2163FIELD(ID_AA64PFR1, MTE, 8, 4)
2164FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2165FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2166FIELD(ID_AA64PFR1, SME, 24, 4)
2167FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2168FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2169FIELD(ID_AA64PFR1, NMI, 36, 4)
2170
2171FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2172FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2173FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2174FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2175FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2176FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2177FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2178FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2179FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2180FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2181FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2182FIELD(ID_AA64MMFR0, EXS, 44, 4)
2183FIELD(ID_AA64MMFR0, FGT, 56, 4)
2184FIELD(ID_AA64MMFR0, ECV, 60, 4)
2185
2186FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2187FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2188FIELD(ID_AA64MMFR1, VH, 8, 4)
2189FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2190FIELD(ID_AA64MMFR1, LO, 16, 4)
2191FIELD(ID_AA64MMFR1, PAN, 20, 4)
2192FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2193FIELD(ID_AA64MMFR1, XNX, 28, 4)
2194FIELD(ID_AA64MMFR1, TWED, 32, 4)
2195FIELD(ID_AA64MMFR1, ETS, 36, 4)
2196FIELD(ID_AA64MMFR1, HCX, 40, 4)
2197FIELD(ID_AA64MMFR1, AFP, 44, 4)
2198FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2199FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2200FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2201
2202FIELD(ID_AA64MMFR2, CNP, 0, 4)
2203FIELD(ID_AA64MMFR2, UAO, 4, 4)
2204FIELD(ID_AA64MMFR2, LSM, 8, 4)
2205FIELD(ID_AA64MMFR2, IESB, 12, 4)
2206FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2207FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2208FIELD(ID_AA64MMFR2, NV, 24, 4)
2209FIELD(ID_AA64MMFR2, ST, 28, 4)
2210FIELD(ID_AA64MMFR2, AT, 32, 4)
2211FIELD(ID_AA64MMFR2, IDS, 36, 4)
2212FIELD(ID_AA64MMFR2, FWB, 40, 4)
2213FIELD(ID_AA64MMFR2, TTL, 48, 4)
2214FIELD(ID_AA64MMFR2, BBM, 52, 4)
2215FIELD(ID_AA64MMFR2, EVT, 56, 4)
2216FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2217
2218FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2219FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2220FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2221FIELD(ID_AA64DFR0, BRPS, 12, 4)
2222FIELD(ID_AA64DFR0, WRPS, 20, 4)
2223FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2224FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2225FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2226FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2227FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2228FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2229FIELD(ID_AA64DFR0, BRBE, 52, 4)
2230FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2231
2232FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2233FIELD(ID_AA64ZFR0, AES, 4, 4)
2234FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2235FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2236FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2237FIELD(ID_AA64ZFR0, SM4, 40, 4)
2238FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2239FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2240FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2241
2242FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2243FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2244FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2245FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2246FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2247FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2248FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2249FIELD(ID_AA64SMFR0, FA64, 63, 1)
2250
2251FIELD(ID_DFR0, COPDBG, 0, 4)
2252FIELD(ID_DFR0, COPSDBG, 4, 4)
2253FIELD(ID_DFR0, MMAPDBG, 8, 4)
2254FIELD(ID_DFR0, COPTRC, 12, 4)
2255FIELD(ID_DFR0, MMAPTRC, 16, 4)
2256FIELD(ID_DFR0, MPROFDBG, 20, 4)
2257FIELD(ID_DFR0, PERFMON, 24, 4)
2258FIELD(ID_DFR0, TRACEFILT, 28, 4)
2259
2260FIELD(ID_DFR1, MTPMU, 0, 4)
2261FIELD(ID_DFR1, HPMN0, 4, 4)
2262
2263FIELD(DBGDIDR, SE_IMP, 12, 1)
2264FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2265FIELD(DBGDIDR, VERSION, 16, 4)
2266FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2267FIELD(DBGDIDR, BRPS, 24, 4)
2268FIELD(DBGDIDR, WRPS, 28, 4)
2269
2270FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2271FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2272FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2273FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2274FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2275FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2276FIELD(DBGDEVID, AUXREGS, 24, 4)
2277FIELD(DBGDEVID, CIDMASK, 28, 4)
2278
2279FIELD(MVFR0, SIMDREG, 0, 4)
2280FIELD(MVFR0, FPSP, 4, 4)
2281FIELD(MVFR0, FPDP, 8, 4)
2282FIELD(MVFR0, FPTRAP, 12, 4)
2283FIELD(MVFR0, FPDIVIDE, 16, 4)
2284FIELD(MVFR0, FPSQRT, 20, 4)
2285FIELD(MVFR0, FPSHVEC, 24, 4)
2286FIELD(MVFR0, FPROUND, 28, 4)
2287
2288FIELD(MVFR1, FPFTZ, 0, 4)
2289FIELD(MVFR1, FPDNAN, 4, 4)
2290FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2291FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2292FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2293FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2294FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2295FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2296FIELD(MVFR1, FPHP, 24, 4)
2297FIELD(MVFR1, SIMDFMAC, 28, 4)
2298
2299FIELD(MVFR2, SIMDMISC, 0, 4)
2300FIELD(MVFR2, FPMISC, 4, 4)
2301
2302QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2303
2304/* If adding a feature bit which corresponds to a Linux ELF
2305 * HWCAP bit, remember to update the feature-bit-to-hwcap
2306 * mapping in linux-user/elfload.c:get_elf_hwcap().
2307 */
2308enum arm_features {
2309    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2310    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2311    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2312    ARM_FEATURE_V6,
2313    ARM_FEATURE_V6K,
2314    ARM_FEATURE_V7,
2315    ARM_FEATURE_THUMB2,
2316    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2317    ARM_FEATURE_NEON,
2318    ARM_FEATURE_M, /* Microcontroller profile.  */
2319    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2320    ARM_FEATURE_THUMB2EE,
2321    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2322    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2323    ARM_FEATURE_V4T,
2324    ARM_FEATURE_V5,
2325    ARM_FEATURE_STRONGARM,
2326    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2327    ARM_FEATURE_GENERIC_TIMER,
2328    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2329    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2330    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2331    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2332    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2333    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2334    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2335    ARM_FEATURE_V8,
2336    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2337    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2338    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2339    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2340    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2341    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2342    ARM_FEATURE_PMU, /* has PMU support */
2343    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2344    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2345    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2346    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2347};
2348
2349static inline int arm_feature(CPUARMState *env, int feature)
2350{
2351    return (env->features & (1ULL << feature)) != 0;
2352}
2353
2354void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2355
2356#if !defined(CONFIG_USER_ONLY)
2357/* Return true if exception levels below EL3 are in secure state,
2358 * or would be following an exception return to that level.
2359 * Unlike arm_is_secure() (which is always a question about the
2360 * _current_ state of the CPU) this doesn't care about the current
2361 * EL or mode.
2362 */
2363static inline bool arm_is_secure_below_el3(CPUARMState *env)
2364{
2365    if (arm_feature(env, ARM_FEATURE_EL3)) {
2366        return !(env->cp15.scr_el3 & SCR_NS);
2367    } else {
2368        /* If EL3 is not supported then the secure state is implementation
2369         * defined, in which case QEMU defaults to non-secure.
2370         */
2371        return false;
2372    }
2373}
2374
2375/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2376static inline bool arm_is_el3_or_mon(CPUARMState *env)
2377{
2378    if (arm_feature(env, ARM_FEATURE_EL3)) {
2379        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2380            /* CPU currently in AArch64 state and EL3 */
2381            return true;
2382        } else if (!is_a64(env) &&
2383                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2384            /* CPU currently in AArch32 state and monitor mode */
2385            return true;
2386        }
2387    }
2388    return false;
2389}
2390
2391/* Return true if the processor is in secure state */
2392static inline bool arm_is_secure(CPUARMState *env)
2393{
2394    if (arm_is_el3_or_mon(env)) {
2395        return true;
2396    }
2397    return arm_is_secure_below_el3(env);
2398}
2399
2400/*
2401 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2402 * This corresponds to the pseudocode EL2Enabled()
2403 */
2404static inline bool arm_is_el2_enabled(CPUARMState *env)
2405{
2406    if (arm_feature(env, ARM_FEATURE_EL2)) {
2407        if (arm_is_secure_below_el3(env)) {
2408            return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2409        }
2410        return true;
2411    }
2412    return false;
2413}
2414
2415#else
2416static inline bool arm_is_secure_below_el3(CPUARMState *env)
2417{
2418    return false;
2419}
2420
2421static inline bool arm_is_secure(CPUARMState *env)
2422{
2423    return false;
2424}
2425
2426static inline bool arm_is_el2_enabled(CPUARMState *env)
2427{
2428    return false;
2429}
2430#endif
2431
2432/**
2433 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2434 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2435 * "for all purposes other than a direct read or write access of HCR_EL2."
2436 * Not included here is HCR_RW.
2437 */
2438uint64_t arm_hcr_el2_eff(CPUARMState *env);
2439uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2440
2441/* Return true if the specified exception level is running in AArch64 state. */
2442static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2443{
2444    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2445     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2446     */
2447    assert(el >= 1 && el <= 3);
2448    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2449
2450    /* The highest exception level is always at the maximum supported
2451     * register width, and then lower levels have a register width controlled
2452     * by bits in the SCR or HCR registers.
2453     */
2454    if (el == 3) {
2455        return aa64;
2456    }
2457
2458    if (arm_feature(env, ARM_FEATURE_EL3) &&
2459        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2460        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2461    }
2462
2463    if (el == 2) {
2464        return aa64;
2465    }
2466
2467    if (arm_is_el2_enabled(env)) {
2468        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2469    }
2470
2471    return aa64;
2472}
2473
2474/* Function for determing whether guest cp register reads and writes should
2475 * access the secure or non-secure bank of a cp register.  When EL3 is
2476 * operating in AArch32 state, the NS-bit determines whether the secure
2477 * instance of a cp register should be used. When EL3 is AArch64 (or if
2478 * it doesn't exist at all) then there is no register banking, and all
2479 * accesses are to the non-secure version.
2480 */
2481static inline bool access_secure_reg(CPUARMState *env)
2482{
2483    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2484                !arm_el_is_aa64(env, 3) &&
2485                !(env->cp15.scr_el3 & SCR_NS));
2486
2487    return ret;
2488}
2489
2490/* Macros for accessing a specified CP register bank */
2491#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2492    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2493
2494#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2495    do {                                                \
2496        if (_secure) {                                   \
2497            (_env)->cp15._regname##_s = (_val);            \
2498        } else {                                        \
2499            (_env)->cp15._regname##_ns = (_val);           \
2500        }                                               \
2501    } while (0)
2502
2503/* Macros for automatically accessing a specific CP register bank depending on
2504 * the current secure state of the system.  These macros are not intended for
2505 * supporting instruction translation reads/writes as these are dependent
2506 * solely on the SCR.NS bit and not the mode.
2507 */
2508#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2509    A32_BANKED_REG_GET((_env), _regname,                \
2510                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2511
2512#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2513    A32_BANKED_REG_SET((_env), _regname,                                    \
2514                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2515                       (_val))
2516
2517void arm_cpu_list(void);
2518uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2519                                 uint32_t cur_el, bool secure);
2520
2521/* Interface between CPU and Interrupt controller.  */
2522#ifndef CONFIG_USER_ONLY
2523bool armv7m_nvic_can_take_pending_exception(void *opaque);
2524#else
2525static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2526{
2527    return true;
2528}
2529#endif
2530/**
2531 * armv7m_nvic_set_pending: mark the specified exception as pending
2532 * @opaque: the NVIC
2533 * @irq: the exception number to mark pending
2534 * @secure: false for non-banked exceptions or for the nonsecure
2535 * version of a banked exception, true for the secure version of a banked
2536 * exception.
2537 *
2538 * Marks the specified exception as pending. Note that we will assert()
2539 * if @secure is true and @irq does not specify one of the fixed set
2540 * of architecturally banked exceptions.
2541 */
2542void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2543/**
2544 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2545 * @opaque: the NVIC
2546 * @irq: the exception number to mark pending
2547 * @secure: false for non-banked exceptions or for the nonsecure
2548 * version of a banked exception, true for the secure version of a banked
2549 * exception.
2550 *
2551 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2552 * exceptions (exceptions generated in the course of trying to take
2553 * a different exception).
2554 */
2555void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2556/**
2557 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2558 * @opaque: the NVIC
2559 * @irq: the exception number to mark pending
2560 * @secure: false for non-banked exceptions or for the nonsecure
2561 * version of a banked exception, true for the secure version of a banked
2562 * exception.
2563 *
2564 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2565 * generated in the course of lazy stacking of FP registers.
2566 */
2567void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2568/**
2569 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2570 *    exception, and whether it targets Secure state
2571 * @opaque: the NVIC
2572 * @pirq: set to pending exception number
2573 * @ptargets_secure: set to whether pending exception targets Secure
2574 *
2575 * This function writes the number of the highest priority pending
2576 * exception (the one which would be made active by
2577 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2578 * to true if the current highest priority pending exception should
2579 * be taken to Secure state, false for NS.
2580 */
2581void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2582                                      bool *ptargets_secure);
2583/**
2584 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2585 * @opaque: the NVIC
2586 *
2587 * Move the current highest priority pending exception from the pending
2588 * state to the active state, and update v7m.exception to indicate that
2589 * it is the exception currently being handled.
2590 */
2591void armv7m_nvic_acknowledge_irq(void *opaque);
2592/**
2593 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2594 * @opaque: the NVIC
2595 * @irq: the exception number to complete
2596 * @secure: true if this exception was secure
2597 *
2598 * Returns: -1 if the irq was not active
2599 *           1 if completing this irq brought us back to base (no active irqs)
2600 *           0 if there is still an irq active after this one was completed
2601 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2602 */
2603int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2604/**
2605 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2606 * @opaque: the NVIC
2607 * @irq: the exception number to mark pending
2608 * @secure: false for non-banked exceptions or for the nonsecure
2609 * version of a banked exception, true for the secure version of a banked
2610 * exception.
2611 *
2612 * Return whether an exception is "ready", i.e. whether the exception is
2613 * enabled and is configured at a priority which would allow it to
2614 * interrupt the current execution priority. This controls whether the
2615 * RDY bit for it in the FPCCR is set.
2616 */
2617bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2618/**
2619 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2620 * @opaque: the NVIC
2621 *
2622 * Returns: the raw execution priority as defined by the v8M architecture.
2623 * This is the execution priority minus the effects of AIRCR.PRIS,
2624 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2625 * (v8M ARM ARM I_PKLD.)
2626 */
2627int armv7m_nvic_raw_execution_priority(void *opaque);
2628/**
2629 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2630 * priority is negative for the specified security state.
2631 * @opaque: the NVIC
2632 * @secure: the security state to test
2633 * This corresponds to the pseudocode IsReqExecPriNeg().
2634 */
2635#ifndef CONFIG_USER_ONLY
2636bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2637#else
2638static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2639{
2640    return false;
2641}
2642#endif
2643
2644/* Interface for defining coprocessor registers.
2645 * Registers are defined in tables of arm_cp_reginfo structs
2646 * which are passed to define_arm_cp_regs().
2647 */
2648
2649/* When looking up a coprocessor register we look for it
2650 * via an integer which encodes all of:
2651 *  coprocessor number
2652 *  Crn, Crm, opc1, opc2 fields
2653 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2654 *    or via MRRC/MCRR?)
2655 *  non-secure/secure bank (AArch32 only)
2656 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2657 * (In this case crn and opc2 should be zero.)
2658 * For AArch64, there is no 32/64 bit size distinction;
2659 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2660 * and 4 bit CRn and CRm. The encoding patterns are chosen
2661 * to be easy to convert to and from the KVM encodings, and also
2662 * so that the hashtable can contain both AArch32 and AArch64
2663 * registers (to allow for interprocessing where we might run
2664 * 32 bit code on a 64 bit core).
2665 */
2666/* This bit is private to our hashtable cpreg; in KVM register
2667 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2668 * in the upper bits of the 64 bit ID.
2669 */
2670#define CP_REG_AA64_SHIFT 28
2671#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2672
2673/* To enable banking of coprocessor registers depending on ns-bit we
2674 * add a bit to distinguish between secure and non-secure cpregs in the
2675 * hashtable.
2676 */
2677#define CP_REG_NS_SHIFT 29
2678#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2679
2680#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2681    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2682     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2683
2684#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2685    (CP_REG_AA64_MASK |                                 \
2686     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2687     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2688     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2689     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2690     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2691     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2692
2693/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2694 * version used as a key for the coprocessor register hashtable
2695 */
2696static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2697{
2698    uint32_t cpregid = kvmid;
2699    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2700        cpregid |= CP_REG_AA64_MASK;
2701    } else {
2702        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2703            cpregid |= (1 << 15);
2704        }
2705
2706        /* KVM is always non-secure so add the NS flag on AArch32 register
2707         * entries.
2708         */
2709         cpregid |= 1 << CP_REG_NS_SHIFT;
2710    }
2711    return cpregid;
2712}
2713
2714/* Convert a truncated 32 bit hashtable key into the full
2715 * 64 bit KVM register ID.
2716 */
2717static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2718{
2719    uint64_t kvmid;
2720
2721    if (cpregid & CP_REG_AA64_MASK) {
2722        kvmid = cpregid & ~CP_REG_AA64_MASK;
2723        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2724    } else {
2725        kvmid = cpregid & ~(1 << 15);
2726        if (cpregid & (1 << 15)) {
2727            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2728        } else {
2729            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2730        }
2731    }
2732    return kvmid;
2733}
2734
2735/* Return the highest implemented Exception Level */
2736static inline int arm_highest_el(CPUARMState *env)
2737{
2738    if (arm_feature(env, ARM_FEATURE_EL3)) {
2739        return 3;
2740    }
2741    if (arm_feature(env, ARM_FEATURE_EL2)) {
2742        return 2;
2743    }
2744    return 1;
2745}
2746
2747/* Return true if a v7M CPU is in Handler mode */
2748static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2749{
2750    return env->v7m.exception != 0;
2751}
2752
2753/* Return the current Exception Level (as per ARMv8; note that this differs
2754 * from the ARMv7 Privilege Level).
2755 */
2756static inline int arm_current_el(CPUARMState *env)
2757{
2758    if (arm_feature(env, ARM_FEATURE_M)) {
2759        return arm_v7m_is_handler_mode(env) ||
2760            !(env->v7m.control[env->v7m.secure] & 1);
2761    }
2762
2763    if (is_a64(env)) {
2764        return extract32(env->pstate, 2, 2);
2765    }
2766
2767    switch (env->uncached_cpsr & 0x1f) {
2768    case ARM_CPU_MODE_USR:
2769        return 0;
2770    case ARM_CPU_MODE_HYP:
2771        return 2;
2772    case ARM_CPU_MODE_MON:
2773        return 3;
2774    default:
2775        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2776            /* If EL3 is 32-bit then all secure privileged modes run in
2777             * EL3
2778             */
2779            return 3;
2780        }
2781
2782        return 1;
2783    }
2784}
2785
2786/**
2787 * write_list_to_cpustate
2788 * @cpu: ARMCPU
2789 *
2790 * For each register listed in the ARMCPU cpreg_indexes list, write
2791 * its value from the cpreg_values list into the ARMCPUState structure.
2792 * This updates TCG's working data structures from KVM data or
2793 * from incoming migration state.
2794 *
2795 * Returns: true if all register values were updated correctly,
2796 * false if some register was unknown or could not be written.
2797 * Note that we do not stop early on failure -- we will attempt
2798 * writing all registers in the list.
2799 */
2800bool write_list_to_cpustate(ARMCPU *cpu);
2801
2802/**
2803 * write_cpustate_to_list:
2804 * @cpu: ARMCPU
2805 * @kvm_sync: true if this is for syncing back to KVM
2806 *
2807 * For each register listed in the ARMCPU cpreg_indexes list, write
2808 * its value from the ARMCPUState structure into the cpreg_values list.
2809 * This is used to copy info from TCG's working data structures into
2810 * KVM or for outbound migration.
2811 *
2812 * @kvm_sync is true if we are doing this in order to sync the
2813 * register state back to KVM. In this case we will only update
2814 * values in the list if the previous list->cpustate sync actually
2815 * successfully wrote the CPU state. Otherwise we will keep the value
2816 * that is in the list.
2817 *
2818 * Returns: true if all register values were read correctly,
2819 * false if some register was unknown or could not be read.
2820 * Note that we do not stop early on failure -- we will attempt
2821 * reading all registers in the list.
2822 */
2823bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2824
2825#define ARM_CPUID_TI915T      0x54029152
2826#define ARM_CPUID_TI925T      0x54029252
2827
2828#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2829#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2830#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2831
2832#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2833
2834#define cpu_list arm_cpu_list
2835
2836/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2837 *
2838 * If EL3 is 64-bit:
2839 *  + NonSecure EL1 & 0 stage 1
2840 *  + NonSecure EL1 & 0 stage 2
2841 *  + NonSecure EL2
2842 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2843 *  + Secure EL1 & 0
2844 *  + Secure EL3
2845 * If EL3 is 32-bit:
2846 *  + NonSecure PL1 & 0 stage 1
2847 *  + NonSecure PL1 & 0 stage 2
2848 *  + NonSecure PL2
2849 *  + Secure PL0
2850 *  + Secure PL1
2851 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2852 *
2853 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2854 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2855 *     because they may differ in access permissions even if the VA->PA map is
2856 *     the same
2857 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2858 *     translation, which means that we have one mmu_idx that deals with two
2859 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2860 *     architecturally permitted]
2861 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2862 *     handling via the TLB. The only way to do a stage 1 translation without
2863 *     the immediate stage 2 translation is via the ATS or AT system insns,
2864 *     which can be slow-pathed and always do a page table walk.
2865 *     The only use of stage 2 translations is either as part of an s1+2
2866 *     lookup or when loading the descriptors during a stage 1 page table walk,
2867 *     and in both those cases we don't use the TLB.
2868 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2869 *     translation regimes, because they map reasonably well to each other
2870 *     and they can't both be active at the same time.
2871 *  5. we want to be able to use the TLB for accesses done as part of a
2872 *     stage1 page table walk, rather than having to walk the stage2 page
2873 *     table over and over.
2874 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2875 *     Never (PAN) bit within PSTATE.
2876 *
2877 * This gives us the following list of cases:
2878 *
2879 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2880 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2881 * NS EL1 EL1&0 stage 1+2 +PAN
2882 * NS EL0 EL2&0
2883 * NS EL2 EL2&0
2884 * NS EL2 EL2&0 +PAN
2885 * NS EL2 (aka NS PL2)
2886 * S EL0 EL1&0 (aka S PL0)
2887 * S EL1 EL1&0 (not used if EL3 is 32 bit)
2888 * S EL1 EL1&0 +PAN
2889 * S EL3 (aka S PL1)
2890 *
2891 * for a total of 11 different mmu_idx.
2892 *
2893 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2894 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2895 * NS EL2 if we ever model a Cortex-R52).
2896 *
2897 * M profile CPUs are rather different as they do not have a true MMU.
2898 * They have the following different MMU indexes:
2899 *  User
2900 *  Privileged
2901 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2902 *  Privileged, execution priority negative (ditto)
2903 * If the CPU supports the v8M Security Extension then there are also:
2904 *  Secure User
2905 *  Secure Privileged
2906 *  Secure User, execution priority negative
2907 *  Secure Privileged, execution priority negative
2908 *
2909 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2910 * are not quite the same -- different CPU types (most notably M profile
2911 * vs A/R profile) would like to use MMU indexes with different semantics,
2912 * but since we don't ever need to use all of those in a single CPU we
2913 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2914 * modes + total number of M profile MMU modes". The lower bits of
2915 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2916 * the same for any particular CPU.
2917 * Variables of type ARMMUIdx are always full values, and the core
2918 * index values are in variables of type 'int'.
2919 *
2920 * Our enumeration includes at the end some entries which are not "true"
2921 * mmu_idx values in that they don't have corresponding TLBs and are only
2922 * valid for doing slow path page table walks.
2923 *
2924 * The constant names here are patterned after the general style of the names
2925 * of the AT/ATS operations.
2926 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2927 * For M profile we arrange them to have a bit for priv, a bit for negpri
2928 * and a bit for secure.
2929 */
2930#define ARM_MMU_IDX_A     0x10  /* A profile */
2931#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2932#define ARM_MMU_IDX_M     0x40  /* M profile */
2933
2934/* Meanings of the bits for A profile mmu idx values */
2935#define ARM_MMU_IDX_A_NS     0x8
2936
2937/* Meanings of the bits for M profile mmu idx values */
2938#define ARM_MMU_IDX_M_PRIV   0x1
2939#define ARM_MMU_IDX_M_NEGPRI 0x2
2940#define ARM_MMU_IDX_M_S      0x4  /* Secure */
2941
2942#define ARM_MMU_IDX_TYPE_MASK \
2943    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2944#define ARM_MMU_IDX_COREIDX_MASK 0xf
2945
2946typedef enum ARMMMUIdx {
2947    /*
2948     * A-profile.
2949     */
2950    ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2951    ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2952    ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2953    ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2954    ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2955    ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2956    ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2957    ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2958
2959    ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2960    ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2961    ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2962    ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2963    ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2964    ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2965    ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2966
2967    /*
2968     * These are not allocated TLBs and are used only for AT system
2969     * instructions or for the first stage of an S12 page table walk.
2970     */
2971    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2972    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2973    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2974    ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2975    ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2976    ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2977    /*
2978     * Not allocated a TLB: used only for second stage of an S12 page
2979     * table walk, or for descriptor loads during first stage of an S1
2980     * page table walk. Note that if we ever want to have a TLB for this
2981     * then various TLB flush insns which currently are no-ops or flush
2982     * only stage 1 MMU indexes will need to change to flush stage 2.
2983     */
2984    ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2985    ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2986
2987    /*
2988     * M-profile.
2989     */
2990    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2991    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2992    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2993    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2994    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2995    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2996    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2997    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2998} ARMMMUIdx;
2999
3000/*
3001 * Bit macros for the core-mmu-index values for each index,
3002 * for use when calling tlb_flush_by_mmuidx() and friends.
3003 */
3004#define TO_CORE_BIT(NAME) \
3005    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3006
3007typedef enum ARMMMUIdxBit {
3008    TO_CORE_BIT(E10_0),
3009    TO_CORE_BIT(E20_0),
3010    TO_CORE_BIT(E10_1),
3011    TO_CORE_BIT(E10_1_PAN),
3012    TO_CORE_BIT(E2),
3013    TO_CORE_BIT(E20_2),
3014    TO_CORE_BIT(E20_2_PAN),
3015    TO_CORE_BIT(SE10_0),
3016    TO_CORE_BIT(SE20_0),
3017    TO_CORE_BIT(SE10_1),
3018    TO_CORE_BIT(SE20_2),
3019    TO_CORE_BIT(SE10_1_PAN),
3020    TO_CORE_BIT(SE20_2_PAN),
3021    TO_CORE_BIT(SE2),
3022    TO_CORE_BIT(SE3),
3023
3024    TO_CORE_BIT(MUser),
3025    TO_CORE_BIT(MPriv),
3026    TO_CORE_BIT(MUserNegPri),
3027    TO_CORE_BIT(MPrivNegPri),
3028    TO_CORE_BIT(MSUser),
3029    TO_CORE_BIT(MSPriv),
3030    TO_CORE_BIT(MSUserNegPri),
3031    TO_CORE_BIT(MSPrivNegPri),
3032} ARMMMUIdxBit;
3033
3034#undef TO_CORE_BIT
3035
3036#define MMU_USER_IDX 0
3037
3038/* Indexes used when registering address spaces with cpu_address_space_init */
3039typedef enum ARMASIdx {
3040    ARMASIdx_NS = 0,
3041    ARMASIdx_S = 1,
3042    ARMASIdx_TagNS = 2,
3043    ARMASIdx_TagS = 3,
3044} ARMASIdx;
3045
3046static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3047{
3048    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3049     * CSSELR is RAZ/WI.
3050     */
3051    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3052}
3053
3054static inline bool arm_sctlr_b(CPUARMState *env)
3055{
3056    return
3057        /* We need not implement SCTLR.ITD in user-mode emulation, so
3058         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3059         * This lets people run BE32 binaries with "-cpu any".
3060         */
3061#ifndef CONFIG_USER_ONLY
3062        !arm_feature(env, ARM_FEATURE_V7) &&
3063#endif
3064        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3065}
3066
3067uint64_t arm_sctlr(CPUARMState *env, int el);
3068
3069static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3070                                                  bool sctlr_b)
3071{
3072#ifdef CONFIG_USER_ONLY
3073    /*
3074     * In system mode, BE32 is modelled in line with the
3075     * architecture (as word-invariant big-endianness), where loads
3076     * and stores are done little endian but from addresses which
3077     * are adjusted by XORing with the appropriate constant. So the
3078     * endianness to use for the raw data access is not affected by
3079     * SCTLR.B.
3080     * In user mode, however, we model BE32 as byte-invariant
3081     * big-endianness (because user-only code cannot tell the
3082     * difference), and so we need to use a data access endianness
3083     * that depends on SCTLR.B.
3084     */
3085    if (sctlr_b) {
3086        return true;
3087    }
3088#endif
3089    /* In 32bit endianness is determined by looking at CPSR's E bit */
3090    return env->uncached_cpsr & CPSR_E;
3091}
3092
3093static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3094{
3095    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3096}
3097
3098/* Return true if the processor is in big-endian mode. */
3099static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3100{
3101    if (!is_a64(env)) {
3102        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3103    } else {
3104        int cur_el = arm_current_el(env);
3105        uint64_t sctlr = arm_sctlr(env, cur_el);
3106        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3107    }
3108}
3109
3110#include "exec/cpu-all.h"
3111
3112/*
3113 * We have more than 32-bits worth of state per TB, so we split the data
3114 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3115 * We collect these two parts in CPUARMTBFlags where they are named
3116 * flags and flags2 respectively.
3117 *
3118 * The flags that are shared between all execution modes, TBFLAG_ANY,
3119 * are stored in flags.  The flags that are specific to a given mode
3120 * are stores in flags2.  Since cs_base is sized on the configured
3121 * address size, flags2 always has 64-bits for A64, and a minimum of
3122 * 32-bits for A32 and M32.
3123 *
3124 * The bits for 32-bit A-profile and M-profile partially overlap:
3125 *
3126 *  31         23         11 10             0
3127 * +-------------+----------+----------------+
3128 * |             |          |   TBFLAG_A32   |
3129 * | TBFLAG_AM32 |          +-----+----------+
3130 * |             |                |TBFLAG_M32|
3131 * +-------------+----------------+----------+
3132 *  31         23                6 5        0
3133 *
3134 * Unless otherwise noted, these bits are cached in env->hflags.
3135 */
3136FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3137FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3138FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3139FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3140FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3141/* Target EL if we take a floating-point-disabled exception */
3142FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3143/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3144FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3145FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3146
3147/*
3148 * Bit usage when in AArch32 state, both A- and M-profile.
3149 */
3150FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3151FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3152
3153/*
3154 * Bit usage when in AArch32 state, for A-profile only.
3155 */
3156FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3157FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3158/*
3159 * We store the bottom two bits of the CPAR as TB flags and handle
3160 * checks on the other bits at runtime. This shares the same bits as
3161 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3162 * Not cached, because VECLEN+VECSTRIDE are not cached.
3163 */
3164FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3165FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3166FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3167FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3168/*
3169 * Indicates whether cp register reads and writes by guest code should access
3170 * the secure or nonsecure bank of banked registers; note that this is not
3171 * the same thing as the current security state of the processor!
3172 */
3173FIELD(TBFLAG_A32, NS, 10, 1)
3174/*
3175 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3176 * This requires an SME trap from AArch32 mode when using NEON.
3177 */
3178FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3179
3180/*
3181 * Bit usage when in AArch32 state, for M-profile only.
3182 */
3183/* Handler (ie not Thread) mode */
3184FIELD(TBFLAG_M32, HANDLER, 0, 1)
3185/* Whether we should generate stack-limit checks */
3186FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3187/* Set if FPCCR.LSPACT is set */
3188FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3189/* Set if we must create a new FP context */
3190FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3191/* Set if FPCCR.S does not match current security state */
3192FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3193/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3194FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3195
3196/*
3197 * Bit usage when in AArch64 state
3198 */
3199FIELD(TBFLAG_A64, TBII, 0, 2)
3200FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3201/* The current vector length, either NVL or SVL. */
3202FIELD(TBFLAG_A64, VL, 4, 4)
3203FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3204FIELD(TBFLAG_A64, BT, 9, 1)
3205FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3206FIELD(TBFLAG_A64, TBID, 12, 2)
3207FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3208FIELD(TBFLAG_A64, ATA, 15, 1)
3209FIELD(TBFLAG_A64, TCMA, 16, 2)
3210FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3211FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3212FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3213FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3214FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3215FIELD(TBFLAG_A64, SVL, 24, 4)
3216/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3217FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3218
3219/*
3220 * Helpers for using the above.
3221 */
3222#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3223    (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3224#define DP_TBFLAG_A64(DST, WHICH, VAL) \
3225    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3226#define DP_TBFLAG_A32(DST, WHICH, VAL) \
3227    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3228#define DP_TBFLAG_M32(DST, WHICH, VAL) \
3229    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3230#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3231    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3232
3233#define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3234#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3235#define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3236#define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3237#define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3238
3239/**
3240 * cpu_mmu_index:
3241 * @env: The cpu environment
3242 * @ifetch: True for code access, false for data access.
3243 *
3244 * Return the core mmu index for the current translation regime.
3245 * This function is used by generic TCG code paths.
3246 */
3247static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3248{
3249    return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3250}
3251
3252/**
3253 * sve_vq
3254 * @env: the cpu context
3255 *
3256 * Return the VL cached within env->hflags, in units of quadwords.
3257 */
3258static inline int sve_vq(CPUARMState *env)
3259{
3260    return EX_TBFLAG_A64(env->hflags, VL) + 1;
3261}
3262
3263/**
3264 * sme_vq
3265 * @env: the cpu context
3266 *
3267 * Return the SVL cached within env->hflags, in units of quadwords.
3268 */
3269static inline int sme_vq(CPUARMState *env)
3270{
3271    return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3272}
3273
3274static inline bool bswap_code(bool sctlr_b)
3275{
3276#ifdef CONFIG_USER_ONLY
3277    /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3278     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3279     * would also end up as a mixed-endian mode with BE code, LE data.
3280     */
3281    return
3282#if TARGET_BIG_ENDIAN
3283        1 ^
3284#endif
3285        sctlr_b;
3286#else
3287    /* All code access in ARM is little endian, and there are no loaders
3288     * doing swaps that need to be reversed
3289     */
3290    return 0;
3291#endif
3292}
3293
3294#ifdef CONFIG_USER_ONLY
3295static inline bool arm_cpu_bswap_data(CPUARMState *env)
3296{
3297    return
3298#if TARGET_BIG_ENDIAN
3299       1 ^
3300#endif
3301       arm_cpu_data_is_big_endian(env);
3302}
3303#endif
3304
3305void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3306                          target_ulong *cs_base, uint32_t *flags);
3307
3308enum {
3309    QEMU_PSCI_CONDUIT_DISABLED = 0,
3310    QEMU_PSCI_CONDUIT_SMC = 1,
3311    QEMU_PSCI_CONDUIT_HVC = 2,
3312};
3313
3314#ifndef CONFIG_USER_ONLY
3315/* Return the address space index to use for a memory access */
3316static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3317{
3318    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3319}
3320
3321/* Return the AddressSpace to use for a memory access
3322 * (which depends on whether the access is S or NS, and whether
3323 * the board gave us a separate AddressSpace for S accesses).
3324 */
3325static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3326{
3327    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3328}
3329#endif
3330
3331/**
3332 * arm_register_pre_el_change_hook:
3333 * Register a hook function which will be called immediately before this
3334 * CPU changes exception level or mode. The hook function will be
3335 * passed a pointer to the ARMCPU and the opaque data pointer passed
3336 * to this function when the hook was registered.
3337 *
3338 * Note that if a pre-change hook is called, any registered post-change hooks
3339 * are guaranteed to subsequently be called.
3340 */
3341void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3342                                 void *opaque);
3343/**
3344 * arm_register_el_change_hook:
3345 * Register a hook function which will be called immediately after this
3346 * CPU changes exception level or mode. The hook function will be
3347 * passed a pointer to the ARMCPU and the opaque data pointer passed
3348 * to this function when the hook was registered.
3349 *
3350 * Note that any registered hooks registered here are guaranteed to be called
3351 * if pre-change hooks have been.
3352 */
3353void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3354        *opaque);
3355
3356/**
3357 * arm_rebuild_hflags:
3358 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3359 */
3360void arm_rebuild_hflags(CPUARMState *env);
3361
3362/**
3363 * aa32_vfp_dreg:
3364 * Return a pointer to the Dn register within env in 32-bit mode.
3365 */
3366static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3367{
3368    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3369}
3370
3371/**
3372 * aa32_vfp_qreg:
3373 * Return a pointer to the Qn register within env in 32-bit mode.
3374 */
3375static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3376{
3377    return &env->vfp.zregs[regno].d[0];
3378}
3379
3380/**
3381 * aa64_vfp_qreg:
3382 * Return a pointer to the Qn register within env in 64-bit mode.
3383 */
3384static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3385{
3386    return &env->vfp.zregs[regno].d[0];
3387}
3388
3389/* Shared between translate-sve.c and sve_helper.c.  */
3390extern const uint64_t pred_esz_masks[5];
3391
3392/* Helper for the macros below, validating the argument type. */
3393static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3394{
3395    return x;
3396}
3397
3398/*
3399 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3400 * Using these should be a bit more self-documenting than using the
3401 * generic target bits directly.
3402 */
3403#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3404#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3405
3406/*
3407 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3408 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3409 * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3410 */
3411#define PAGE_BTI            PAGE_TARGET_1
3412#define PAGE_MTE            PAGE_TARGET_2
3413#define PAGE_TARGET_STICKY  PAGE_MTE
3414
3415#ifdef TARGET_TAGGED_ADDRESSES
3416/**
3417 * cpu_untagged_addr:
3418 * @cs: CPU context
3419 * @x: tagged address
3420 *
3421 * Remove any address tag from @x.  This is explicitly related to the
3422 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3423 *
3424 * There should be a better place to put this, but we need this in
3425 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3426 */
3427static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3428{
3429    ARMCPU *cpu = ARM_CPU(cs);
3430    if (cpu->env.tagged_addr_enable) {
3431        /*
3432         * TBI is enabled for userspace but not kernelspace addresses.
3433         * Only clear the tag if bit 55 is clear.
3434         */
3435        x &= sextract64(x, 0, 56);
3436    }
3437    return x;
3438}
3439#endif
3440
3441/*
3442 * Naming convention for isar_feature functions:
3443 * Functions which test 32-bit ID registers should have _aa32_ in
3444 * their name. Functions which test 64-bit ID registers should have
3445 * _aa64_ in their name. These must only be used in code where we
3446 * know for certain that the CPU has AArch32 or AArch64 respectively
3447 * or where the correct answer for a CPU which doesn't implement that
3448 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3449 * system registers that are specific to that CPU state, for "should
3450 * we let this system register bit be set" tests where the 32-bit
3451 * flavour of the register doesn't have the bit, and so on).
3452 * Functions which simply ask "does this feature exist at all" have
3453 * _any_ in their name, and always return the logical OR of the _aa64_
3454 * and the _aa32_ function.
3455 */
3456
3457/*
3458 * 32-bit feature tests via id registers.
3459 */
3460static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3461{
3462    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3463}
3464
3465static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3466{
3467    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3468}
3469
3470static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3471{
3472    /* (M-profile) low-overhead loops and branch future */
3473    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3474}
3475
3476static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3477{
3478    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3479}
3480
3481static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3482{
3483    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3484}
3485
3486static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3487{
3488    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3489}
3490
3491static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3492{
3493    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3494}
3495
3496static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3497{
3498    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3499}
3500
3501static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3502{
3503    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3504}
3505
3506static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3507{
3508    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3509}
3510
3511static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3512{
3513    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3514}
3515
3516static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3517{
3518    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3519}
3520
3521static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3522{
3523    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3524}
3525
3526static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3527{
3528    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3529}
3530
3531static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3532{
3533    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3534}
3535
3536static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3537{
3538    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3539}
3540
3541static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3542{
3543    return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3544}
3545
3546static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3547{
3548    return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3549}
3550
3551static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3552{
3553    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3554}
3555
3556static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3557{
3558    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3559}
3560
3561static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3562{
3563    /*
3564     * Return true if M-profile state handling insns
3565     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3566     */
3567    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3568}
3569
3570static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3571{
3572    /* Sadly this is encoded differently for A-profile and M-profile */
3573    if (isar_feature_aa32_mprofile(id)) {
3574        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3575    } else {
3576        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3577    }
3578}
3579
3580static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3581{
3582    /*
3583     * Return true if MVE is supported (either integer or floating point).
3584     * We must check for M-profile as the MVFR1 field means something
3585     * else for A-profile.
3586     */
3587    return isar_feature_aa32_mprofile(id) &&
3588        FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3589}
3590
3591static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3592{
3593    /*
3594     * Return true if MVE is supported (either integer or floating point).
3595     * We must check for M-profile as the MVFR1 field means something
3596     * else for A-profile.
3597     */
3598    return isar_feature_aa32_mprofile(id) &&
3599        FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3600}
3601
3602static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3603{
3604    /*
3605     * Return true if either VFP or SIMD is implemented.
3606     * In this case, a minimum of VFP w/ D0-D15.
3607     */
3608    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3609}
3610
3611static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3612{
3613    /* Return true if D16-D31 are implemented */
3614    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3615}
3616
3617static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3618{
3619    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3620}
3621
3622static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3623{
3624    /* Return true if CPU supports single precision floating point, VFPv2 */
3625    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3626}
3627
3628static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3629{
3630    /* Return true if CPU supports single precision floating point, VFPv3 */
3631    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3632}
3633
3634static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3635{
3636    /* Return true if CPU supports double precision floating point, VFPv2 */
3637    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3638}
3639
3640static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3641{
3642    /* Return true if CPU supports double precision floating point, VFPv3 */
3643    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3644}
3645
3646static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3647{
3648    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3649}
3650
3651/*
3652 * We always set the FP and SIMD FP16 fields to indicate identical
3653 * levels of support (assuming SIMD is implemented at all), so
3654 * we only need one set of accessors.
3655 */
3656static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3657{
3658    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3659}
3660
3661static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3662{
3663    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3664}
3665
3666/*
3667 * Note that this ID register field covers both VFP and Neon FMAC,
3668 * so should usually be tested in combination with some other
3669 * check that confirms the presence of whichever of VFP or Neon is
3670 * relevant, to avoid accidentally enabling a Neon feature on
3671 * a VFP-no-Neon core or vice-versa.
3672 */
3673static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3674{
3675    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3676}
3677
3678static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3679{
3680    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3681}
3682
3683static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3684{
3685    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3686}
3687
3688static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3689{
3690    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3691}
3692
3693static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3694{
3695    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3696}
3697
3698static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3699{
3700    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3701}
3702
3703static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3704{
3705    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3706}
3707
3708static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3709{
3710    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3711}
3712
3713static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3714{
3715    /* 0xf means "non-standard IMPDEF PMU" */
3716    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3717        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3718}
3719
3720static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3721{
3722    /* 0xf means "non-standard IMPDEF PMU" */
3723    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3724        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3725}
3726
3727static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3728{
3729    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3730}
3731
3732static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3733{
3734    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3735}
3736
3737static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3738{
3739    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3740}
3741
3742static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3743{
3744    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3745}
3746
3747static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3748{
3749    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3750}
3751
3752static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3753{
3754    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3755}
3756
3757static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3758{
3759    return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3760}
3761
3762static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3763{
3764    return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3765}
3766
3767static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3768{
3769    return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3770}
3771
3772/*
3773 * 64-bit feature tests via id registers.
3774 */
3775static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3776{
3777    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3778}
3779
3780static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3781{
3782    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3783}
3784
3785static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3786{
3787    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3788}
3789
3790static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3791{
3792    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3793}
3794
3795static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3796{
3797    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3798}
3799
3800static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3801{
3802    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3803}
3804
3805static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3806{
3807    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3808}
3809
3810static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3811{
3812    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3813}
3814
3815static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3816{
3817    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3818}
3819
3820static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3821{
3822    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3823}
3824
3825static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3826{
3827    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3828}
3829
3830static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3831{
3832    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3833}
3834
3835static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3836{
3837    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3838}
3839
3840static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3841{
3842    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3843}
3844
3845static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3846{
3847    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3848}
3849
3850static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3851{
3852    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3853}
3854
3855static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3856{
3857    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3858}
3859
3860static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3861{
3862    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3863}
3864
3865static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3866{
3867    /*
3868     * Return true if any form of pauth is enabled, as this
3869     * predicate controls migration of the 128-bit keys.
3870     */
3871    return (id->id_aa64isar1 &
3872            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3873             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3874             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3875             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3876}
3877
3878static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3879{
3880    /*
3881     * Return true if pauth is enabled with the architected QARMA algorithm.
3882     * QEMU will always set APA+GPA to the same value.
3883     */
3884    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3885}
3886
3887static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3888{
3889    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3890}
3891
3892static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3893{
3894    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3895}
3896
3897static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3898{
3899    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3900}
3901
3902static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3903{
3904    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3905}
3906
3907static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3908{
3909    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3910}
3911
3912static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3913{
3914    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3915}
3916
3917static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3918{
3919    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3920}
3921
3922static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3923{
3924    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3925}
3926
3927static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3928{
3929    /* We always set the AdvSIMD and FP fields identically.  */
3930    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3931}
3932
3933static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3934{
3935    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3936    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3937}
3938
3939static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3940{
3941    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3942}
3943
3944static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3945{
3946    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3947}
3948
3949static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3950{
3951    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3952}
3953
3954static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3955{
3956    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3957}
3958
3959static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3960{
3961    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3962}
3963
3964static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3965{
3966    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3967}
3968
3969static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3970{
3971    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3972}
3973
3974static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3975{
3976    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3977}
3978
3979static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3980{
3981    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3982}
3983
3984static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3985{
3986    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3987}
3988
3989static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3990{
3991    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3992}
3993
3994static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3995{
3996    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3997}
3998
3999static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4000{
4001    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4002}
4003
4004static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4005{
4006    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4007}
4008
4009static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4010{
4011    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4012}
4013
4014static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4015{
4016    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4017}
4018
4019static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4020{
4021    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4022}
4023
4024static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4025{
4026    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4027}
4028
4029static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4030{
4031    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4032}
4033
4034static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4035{
4036    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4037}
4038
4039static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4040{
4041    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4042        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4043}
4044
4045static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4046{
4047    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4048        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4049}
4050
4051static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4052{
4053    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4054}
4055
4056static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4057{
4058    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4059}
4060
4061static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4062{
4063    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4064}
4065
4066static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4067{
4068    return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4069}
4070
4071static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4072{
4073    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4074    return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4075}
4076
4077static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4078{
4079    return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4080}
4081
4082static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4083{
4084    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4085    return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4086}
4087
4088static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4089{
4090    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4091}
4092
4093static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4094{
4095    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4096}
4097
4098static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4099{
4100    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4101}
4102
4103static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4104{
4105    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4106}
4107
4108static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4109{
4110    int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4111    if (key >= 2) {
4112        return true;      /* FEAT_CSV2_2 */
4113    }
4114    if (key == 1) {
4115        key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4116        return key >= 2;  /* FEAT_CSV2_1p2 */
4117    }
4118    return false;
4119}
4120
4121static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4122{
4123    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4124}
4125
4126static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4127{
4128    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4129}
4130
4131static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4132{
4133    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4134}
4135
4136static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4137{
4138    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4139}
4140
4141static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4142{
4143    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4144}
4145
4146static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4147{
4148    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4149}
4150
4151static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4152{
4153    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4154}
4155
4156static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4157{
4158    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4159}
4160
4161static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4162{
4163    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4164}
4165
4166static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4167{
4168    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4169}
4170
4171static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4172{
4173    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4174}
4175
4176static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4177{
4178    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4179}
4180
4181static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4182{
4183    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4184}
4185
4186static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4187{
4188    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4189}
4190
4191static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4192{
4193    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4194}
4195
4196static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4197{
4198    return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4199}
4200
4201/*
4202 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4203 */
4204static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4205{
4206    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4207}
4208
4209static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4210{
4211    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4212}
4213
4214static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4215{
4216    return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4217}
4218
4219static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4220{
4221    return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4222}
4223
4224static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4225{
4226    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4227}
4228
4229static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4230{
4231    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4232}
4233
4234static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4235{
4236    return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4237}
4238
4239static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4240{
4241    return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4242}
4243
4244/*
4245 * Forward to the above feature tests given an ARMCPU pointer.
4246 */
4247#define cpu_isar_feature(name, cpu) \
4248    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4249
4250#endif
4251