qemu/target/arm/cpu64.c
<<
>>
Prefs
   1/*
   2 * QEMU AArch64 CPU
   3 *
   4 * Copyright (c) 2013 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qapi/error.h"
  23#include "cpu.h"
  24#ifdef CONFIG_TCG
  25#include "hw/core/tcg-cpu-ops.h"
  26#endif /* CONFIG_TCG */
  27#include "qemu/module.h"
  28#if !defined(CONFIG_USER_ONLY)
  29#include "hw/loader.h"
  30#endif
  31#include "sysemu/kvm.h"
  32#include "sysemu/hvf.h"
  33#include "kvm_arm.h"
  34#include "hvf_arm.h"
  35#include "qapi/visitor.h"
  36#include "hw/qdev-properties.h"
  37#include "internals.h"
  38
  39
  40static void aarch64_a57_initfn(Object *obj)
  41{
  42    ARMCPU *cpu = ARM_CPU(obj);
  43
  44    cpu->dtb_compatible = "arm,cortex-a57";
  45    set_feature(&cpu->env, ARM_FEATURE_V8);
  46    set_feature(&cpu->env, ARM_FEATURE_NEON);
  47    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
  48    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
  49    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
  50    set_feature(&cpu->env, ARM_FEATURE_EL2);
  51    set_feature(&cpu->env, ARM_FEATURE_EL3);
  52    set_feature(&cpu->env, ARM_FEATURE_PMU);
  53    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
  54    cpu->midr = 0x411fd070;
  55    cpu->revidr = 0x00000000;
  56    cpu->reset_fpsid = 0x41034070;
  57    cpu->isar.mvfr0 = 0x10110222;
  58    cpu->isar.mvfr1 = 0x12111111;
  59    cpu->isar.mvfr2 = 0x00000043;
  60    cpu->ctr = 0x8444c004;
  61    cpu->reset_sctlr = 0x00c50838;
  62    cpu->isar.id_pfr0 = 0x00000131;
  63    cpu->isar.id_pfr1 = 0x00011011;
  64    cpu->isar.id_dfr0 = 0x03010066;
  65    cpu->id_afr0 = 0x00000000;
  66    cpu->isar.id_mmfr0 = 0x10101105;
  67    cpu->isar.id_mmfr1 = 0x40000000;
  68    cpu->isar.id_mmfr2 = 0x01260000;
  69    cpu->isar.id_mmfr3 = 0x02102211;
  70    cpu->isar.id_isar0 = 0x02101110;
  71    cpu->isar.id_isar1 = 0x13112111;
  72    cpu->isar.id_isar2 = 0x21232042;
  73    cpu->isar.id_isar3 = 0x01112131;
  74    cpu->isar.id_isar4 = 0x00011142;
  75    cpu->isar.id_isar5 = 0x00011121;
  76    cpu->isar.id_isar6 = 0;
  77    cpu->isar.id_aa64pfr0 = 0x00002222;
  78    cpu->isar.id_aa64dfr0 = 0x10305106;
  79    cpu->isar.id_aa64isar0 = 0x00011120;
  80    cpu->isar.id_aa64mmfr0 = 0x00001124;
  81    cpu->isar.dbgdidr = 0x3516d000;
  82    cpu->isar.dbgdevid = 0x01110f13;
  83    cpu->isar.dbgdevid1 = 0x2;
  84    cpu->isar.reset_pmcr_el0 = 0x41013000;
  85    cpu->clidr = 0x0a200023;
  86    cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
  87    cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
  88    cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
  89    cpu->dcz_blocksize = 4; /* 64 bytes */
  90    cpu->gic_num_lrs = 4;
  91    cpu->gic_vpribits = 5;
  92    cpu->gic_vprebits = 5;
  93    cpu->gic_pribits = 5;
  94    define_cortex_a72_a57_a53_cp_reginfo(cpu);
  95}
  96
  97static void aarch64_a53_initfn(Object *obj)
  98{
  99    ARMCPU *cpu = ARM_CPU(obj);
 100
 101    cpu->dtb_compatible = "arm,cortex-a53";
 102    set_feature(&cpu->env, ARM_FEATURE_V8);
 103    set_feature(&cpu->env, ARM_FEATURE_NEON);
 104    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 105    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 106    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 107    set_feature(&cpu->env, ARM_FEATURE_EL2);
 108    set_feature(&cpu->env, ARM_FEATURE_EL3);
 109    set_feature(&cpu->env, ARM_FEATURE_PMU);
 110    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
 111    cpu->midr = 0x410fd034;
 112    cpu->revidr = 0x00000000;
 113    cpu->reset_fpsid = 0x41034070;
 114    cpu->isar.mvfr0 = 0x10110222;
 115    cpu->isar.mvfr1 = 0x12111111;
 116    cpu->isar.mvfr2 = 0x00000043;
 117    cpu->ctr = 0x84448004; /* L1Ip = VIPT */
 118    cpu->reset_sctlr = 0x00c50838;
 119    cpu->isar.id_pfr0 = 0x00000131;
 120    cpu->isar.id_pfr1 = 0x00011011;
 121    cpu->isar.id_dfr0 = 0x03010066;
 122    cpu->id_afr0 = 0x00000000;
 123    cpu->isar.id_mmfr0 = 0x10101105;
 124    cpu->isar.id_mmfr1 = 0x40000000;
 125    cpu->isar.id_mmfr2 = 0x01260000;
 126    cpu->isar.id_mmfr3 = 0x02102211;
 127    cpu->isar.id_isar0 = 0x02101110;
 128    cpu->isar.id_isar1 = 0x13112111;
 129    cpu->isar.id_isar2 = 0x21232042;
 130    cpu->isar.id_isar3 = 0x01112131;
 131    cpu->isar.id_isar4 = 0x00011142;
 132    cpu->isar.id_isar5 = 0x00011121;
 133    cpu->isar.id_isar6 = 0;
 134    cpu->isar.id_aa64pfr0 = 0x00002222;
 135    cpu->isar.id_aa64dfr0 = 0x10305106;
 136    cpu->isar.id_aa64isar0 = 0x00011120;
 137    cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
 138    cpu->isar.dbgdidr = 0x3516d000;
 139    cpu->isar.dbgdevid = 0x00110f13;
 140    cpu->isar.dbgdevid1 = 0x1;
 141    cpu->isar.reset_pmcr_el0 = 0x41033000;
 142    cpu->clidr = 0x0a200023;
 143    cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
 144    cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
 145    cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
 146    cpu->dcz_blocksize = 4; /* 64 bytes */
 147    cpu->gic_num_lrs = 4;
 148    cpu->gic_vpribits = 5;
 149    cpu->gic_vprebits = 5;
 150    cpu->gic_pribits = 5;
 151    define_cortex_a72_a57_a53_cp_reginfo(cpu);
 152}
 153
 154static void aarch64_a72_initfn(Object *obj)
 155{
 156    ARMCPU *cpu = ARM_CPU(obj);
 157
 158    cpu->dtb_compatible = "arm,cortex-a72";
 159    set_feature(&cpu->env, ARM_FEATURE_V8);
 160    set_feature(&cpu->env, ARM_FEATURE_NEON);
 161    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 162    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 163    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 164    set_feature(&cpu->env, ARM_FEATURE_EL2);
 165    set_feature(&cpu->env, ARM_FEATURE_EL3);
 166    set_feature(&cpu->env, ARM_FEATURE_PMU);
 167    cpu->midr = 0x410fd083;
 168    cpu->revidr = 0x00000000;
 169    cpu->reset_fpsid = 0x41034080;
 170    cpu->isar.mvfr0 = 0x10110222;
 171    cpu->isar.mvfr1 = 0x12111111;
 172    cpu->isar.mvfr2 = 0x00000043;
 173    cpu->ctr = 0x8444c004;
 174    cpu->reset_sctlr = 0x00c50838;
 175    cpu->isar.id_pfr0 = 0x00000131;
 176    cpu->isar.id_pfr1 = 0x00011011;
 177    cpu->isar.id_dfr0 = 0x03010066;
 178    cpu->id_afr0 = 0x00000000;
 179    cpu->isar.id_mmfr0 = 0x10201105;
 180    cpu->isar.id_mmfr1 = 0x40000000;
 181    cpu->isar.id_mmfr2 = 0x01260000;
 182    cpu->isar.id_mmfr3 = 0x02102211;
 183    cpu->isar.id_isar0 = 0x02101110;
 184    cpu->isar.id_isar1 = 0x13112111;
 185    cpu->isar.id_isar2 = 0x21232042;
 186    cpu->isar.id_isar3 = 0x01112131;
 187    cpu->isar.id_isar4 = 0x00011142;
 188    cpu->isar.id_isar5 = 0x00011121;
 189    cpu->isar.id_aa64pfr0 = 0x00002222;
 190    cpu->isar.id_aa64dfr0 = 0x10305106;
 191    cpu->isar.id_aa64isar0 = 0x00011120;
 192    cpu->isar.id_aa64mmfr0 = 0x00001124;
 193    cpu->isar.dbgdidr = 0x3516d000;
 194    cpu->isar.dbgdevid = 0x01110f13;
 195    cpu->isar.dbgdevid1 = 0x2;
 196    cpu->isar.reset_pmcr_el0 = 0x41023000;
 197    cpu->clidr = 0x0a200023;
 198    cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
 199    cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
 200    cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
 201    cpu->dcz_blocksize = 4; /* 64 bytes */
 202    cpu->gic_num_lrs = 4;
 203    cpu->gic_vpribits = 5;
 204    cpu->gic_vprebits = 5;
 205    cpu->gic_pribits = 5;
 206    define_cortex_a72_a57_a53_cp_reginfo(cpu);
 207}
 208
 209static void aarch64_a76_initfn(Object *obj)
 210{
 211    ARMCPU *cpu = ARM_CPU(obj);
 212
 213    cpu->dtb_compatible = "arm,cortex-a76";
 214    set_feature(&cpu->env, ARM_FEATURE_V8);
 215    set_feature(&cpu->env, ARM_FEATURE_NEON);
 216    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 217    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 218    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 219    set_feature(&cpu->env, ARM_FEATURE_EL2);
 220    set_feature(&cpu->env, ARM_FEATURE_EL3);
 221    set_feature(&cpu->env, ARM_FEATURE_PMU);
 222
 223    /* Ordered by B2.4 AArch64 registers by functional group */
 224    cpu->clidr = 0x82000023;
 225    cpu->ctr = 0x8444C004;
 226    cpu->dcz_blocksize = 4;
 227    cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
 228    cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
 229    cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
 230    cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
 231    cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
 232    cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
 233    cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
 234    cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
 235    cpu->id_afr0       = 0x00000000;
 236    cpu->isar.id_dfr0  = 0x04010088;
 237    cpu->isar.id_isar0 = 0x02101110;
 238    cpu->isar.id_isar1 = 0x13112111;
 239    cpu->isar.id_isar2 = 0x21232042;
 240    cpu->isar.id_isar3 = 0x01112131;
 241    cpu->isar.id_isar4 = 0x00010142;
 242    cpu->isar.id_isar5 = 0x01011121;
 243    cpu->isar.id_isar6 = 0x00000010;
 244    cpu->isar.id_mmfr0 = 0x10201105;
 245    cpu->isar.id_mmfr1 = 0x40000000;
 246    cpu->isar.id_mmfr2 = 0x01260000;
 247    cpu->isar.id_mmfr3 = 0x02122211;
 248    cpu->isar.id_mmfr4 = 0x00021110;
 249    cpu->isar.id_pfr0  = 0x10010131;
 250    cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
 251    cpu->isar.id_pfr2  = 0x00000011;
 252    cpu->midr = 0x414fd0b1;          /* r4p1 */
 253    cpu->revidr = 0;
 254
 255    /* From B2.18 CCSIDR_EL1 */
 256    cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
 257    cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
 258    cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
 259
 260    /* From B2.93 SCTLR_EL3 */
 261    cpu->reset_sctlr = 0x30c50838;
 262
 263    /* From B4.23 ICH_VTR_EL2 */
 264    cpu->gic_num_lrs = 4;
 265    cpu->gic_vpribits = 5;
 266    cpu->gic_vprebits = 5;
 267    cpu->gic_pribits = 5;
 268
 269    /* From B5.1 AdvSIMD AArch64 register summary */
 270    cpu->isar.mvfr0 = 0x10110222;
 271    cpu->isar.mvfr1 = 0x13211111;
 272    cpu->isar.mvfr2 = 0x00000043;
 273
 274    /* From D5.1 AArch64 PMU register summary */
 275    cpu->isar.reset_pmcr_el0 = 0x410b3000;
 276}
 277
 278static void aarch64_neoverse_n1_initfn(Object *obj)
 279{
 280    ARMCPU *cpu = ARM_CPU(obj);
 281
 282    cpu->dtb_compatible = "arm,neoverse-n1";
 283    set_feature(&cpu->env, ARM_FEATURE_V8);
 284    set_feature(&cpu->env, ARM_FEATURE_NEON);
 285    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
 286    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
 287    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
 288    set_feature(&cpu->env, ARM_FEATURE_EL2);
 289    set_feature(&cpu->env, ARM_FEATURE_EL3);
 290    set_feature(&cpu->env, ARM_FEATURE_PMU);
 291
 292    /* Ordered by B2.4 AArch64 registers by functional group */
 293    cpu->clidr = 0x82000023;
 294    cpu->ctr = 0x8444c004;
 295    cpu->dcz_blocksize = 4;
 296    cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
 297    cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
 298    cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
 299    cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
 300    cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
 301    cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
 302    cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
 303    cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
 304    cpu->id_afr0       = 0x00000000;
 305    cpu->isar.id_dfr0  = 0x04010088;
 306    cpu->isar.id_isar0 = 0x02101110;
 307    cpu->isar.id_isar1 = 0x13112111;
 308    cpu->isar.id_isar2 = 0x21232042;
 309    cpu->isar.id_isar3 = 0x01112131;
 310    cpu->isar.id_isar4 = 0x00010142;
 311    cpu->isar.id_isar5 = 0x01011121;
 312    cpu->isar.id_isar6 = 0x00000010;
 313    cpu->isar.id_mmfr0 = 0x10201105;
 314    cpu->isar.id_mmfr1 = 0x40000000;
 315    cpu->isar.id_mmfr2 = 0x01260000;
 316    cpu->isar.id_mmfr3 = 0x02122211;
 317    cpu->isar.id_mmfr4 = 0x00021110;
 318    cpu->isar.id_pfr0  = 0x10010131;
 319    cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
 320    cpu->isar.id_pfr2  = 0x00000011;
 321    cpu->midr = 0x414fd0c1;          /* r4p1 */
 322    cpu->revidr = 0;
 323
 324    /* From B2.23 CCSIDR_EL1 */
 325    cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
 326    cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
 327    cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
 328
 329    /* From B2.98 SCTLR_EL3 */
 330    cpu->reset_sctlr = 0x30c50838;
 331
 332    /* From B4.23 ICH_VTR_EL2 */
 333    cpu->gic_num_lrs = 4;
 334    cpu->gic_vpribits = 5;
 335    cpu->gic_vprebits = 5;
 336    cpu->gic_pribits = 5;
 337
 338    /* From B5.1 AdvSIMD AArch64 register summary */
 339    cpu->isar.mvfr0 = 0x10110222;
 340    cpu->isar.mvfr1 = 0x13211111;
 341    cpu->isar.mvfr2 = 0x00000043;
 342
 343    /* From D5.1 AArch64 PMU register summary */
 344    cpu->isar.reset_pmcr_el0 = 0x410c3000;
 345}
 346
 347void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
 348{
 349    /*
 350     * If any vector lengths are explicitly enabled with sve<N> properties,
 351     * then all other lengths are implicitly disabled.  If sve-max-vq is
 352     * specified then it is the same as explicitly enabling all lengths
 353     * up to and including the specified maximum, which means all larger
 354     * lengths will be implicitly disabled.  If no sve<N> properties
 355     * are enabled and sve-max-vq is not specified, then all lengths not
 356     * explicitly disabled will be enabled.  Additionally, all power-of-two
 357     * vector lengths less than the maximum enabled length will be
 358     * automatically enabled and all vector lengths larger than the largest
 359     * disabled power-of-two vector length will be automatically disabled.
 360     * Errors are generated if the user provided input that interferes with
 361     * any of the above.  Finally, if SVE is not disabled, then at least one
 362     * vector length must be enabled.
 363     */
 364    uint32_t vq_map = cpu->sve_vq.map;
 365    uint32_t vq_init = cpu->sve_vq.init;
 366    uint32_t vq_supported;
 367    uint32_t vq_mask = 0;
 368    uint32_t tmp, vq, max_vq = 0;
 369
 370    /*
 371     * CPU models specify a set of supported vector lengths which are
 372     * enabled by default.  Attempting to enable any vector length not set
 373     * in the supported bitmap results in an error.  When KVM is enabled we
 374     * fetch the supported bitmap from the host.
 375     */
 376    if (kvm_enabled()) {
 377        if (kvm_arm_sve_supported()) {
 378            cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
 379            vq_supported = cpu->sve_vq.supported;
 380        } else {
 381            assert(!cpu_isar_feature(aa64_sve, cpu));
 382            vq_supported = 0;
 383        }
 384    } else {
 385        vq_supported = cpu->sve_vq.supported;
 386    }
 387
 388    /*
 389     * Process explicit sve<N> properties.
 390     * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
 391     * Check first for any sve<N> enabled.
 392     */
 393    if (vq_map != 0) {
 394        max_vq = 32 - clz32(vq_map);
 395        vq_mask = MAKE_64BIT_MASK(0, max_vq);
 396
 397        if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
 398            error_setg(errp, "cannot enable sve%d", max_vq * 128);
 399            error_append_hint(errp, "sve%d is larger than the maximum vector "
 400                              "length, sve-max-vq=%d (%d bits)\n",
 401                              max_vq * 128, cpu->sve_max_vq,
 402                              cpu->sve_max_vq * 128);
 403            return;
 404        }
 405
 406        if (kvm_enabled()) {
 407            /*
 408             * For KVM we have to automatically enable all supported unitialized
 409             * lengths, even when the smaller lengths are not all powers-of-two.
 410             */
 411            vq_map |= vq_supported & ~vq_init & vq_mask;
 412        } else {
 413            /* Propagate enabled bits down through required powers-of-two. */
 414            vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
 415        }
 416    } else if (cpu->sve_max_vq == 0) {
 417        /*
 418         * No explicit bits enabled, and no implicit bits from sve-max-vq.
 419         */
 420        if (!cpu_isar_feature(aa64_sve, cpu)) {
 421            /* SVE is disabled and so are all vector lengths.  Good. */
 422            return;
 423        }
 424
 425        if (kvm_enabled()) {
 426            /* Disabling a supported length disables all larger lengths. */
 427            tmp = vq_init & vq_supported;
 428        } else {
 429            /* Disabling a power-of-two disables all larger lengths. */
 430            tmp = vq_init & SVE_VQ_POW2_MAP;
 431        }
 432        vq = ctz32(tmp) + 1;
 433
 434        max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
 435        vq_mask = MAKE_64BIT_MASK(0, max_vq);
 436        vq_map = vq_supported & ~vq_init & vq_mask;
 437
 438        if (max_vq == 0 || vq_map == 0) {
 439            error_setg(errp, "cannot disable sve%d", vq * 128);
 440            error_append_hint(errp, "Disabling sve%d results in all "
 441                              "vector lengths being disabled.\n",
 442                              vq * 128);
 443            error_append_hint(errp, "With SVE enabled, at least one "
 444                              "vector length must be enabled.\n");
 445            return;
 446        }
 447
 448        max_vq = 32 - clz32(vq_map);
 449        vq_mask = MAKE_64BIT_MASK(0, max_vq);
 450    }
 451
 452    /*
 453     * Process the sve-max-vq property.
 454     * Note that we know from the above that no bit above
 455     * sve-max-vq is currently set.
 456     */
 457    if (cpu->sve_max_vq != 0) {
 458        max_vq = cpu->sve_max_vq;
 459        vq_mask = MAKE_64BIT_MASK(0, max_vq);
 460
 461        if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
 462            error_setg(errp, "cannot disable sve%d", max_vq * 128);
 463            error_append_hint(errp, "The maximum vector length must be "
 464                              "enabled, sve-max-vq=%d (%d bits)\n",
 465                              max_vq, max_vq * 128);
 466            return;
 467        }
 468
 469        /* Set all bits not explicitly set within sve-max-vq. */
 470        vq_map |= ~vq_init & vq_mask;
 471    }
 472
 473    /*
 474     * We should know what max-vq is now.  Also, as we're done
 475     * manipulating sve-vq-map, we ensure any bits above max-vq
 476     * are clear, just in case anybody looks.
 477     */
 478    assert(max_vq != 0);
 479    assert(vq_mask != 0);
 480    vq_map &= vq_mask;
 481
 482    /* Ensure the set of lengths matches what is supported. */
 483    tmp = vq_map ^ (vq_supported & vq_mask);
 484    if (tmp) {
 485        vq = 32 - clz32(tmp);
 486        if (vq_map & (1 << (vq - 1))) {
 487            if (cpu->sve_max_vq) {
 488                error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
 489                error_append_hint(errp, "This CPU does not support "
 490                                  "the vector length %d-bits.\n", vq * 128);
 491                error_append_hint(errp, "It may not be possible to use "
 492                                  "sve-max-vq with this CPU. Try "
 493                                  "using only sve<N> properties.\n");
 494            } else {
 495                error_setg(errp, "cannot enable sve%d", vq * 128);
 496                if (vq_supported) {
 497                    error_append_hint(errp, "This CPU does not support "
 498                                      "the vector length %d-bits.\n", vq * 128);
 499                } else {
 500                    error_append_hint(errp, "SVE not supported by KVM "
 501                                      "on this host\n");
 502                }
 503            }
 504            return;
 505        } else {
 506            if (kvm_enabled()) {
 507                error_setg(errp, "cannot disable sve%d", vq * 128);
 508                error_append_hint(errp, "The KVM host requires all "
 509                                  "supported vector lengths smaller "
 510                                  "than %d bits to also be enabled.\n",
 511                                  max_vq * 128);
 512                return;
 513            } else {
 514                /* Ensure all required powers-of-two are enabled. */
 515                tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
 516                if (tmp) {
 517                    vq = 32 - clz32(tmp);
 518                    error_setg(errp, "cannot disable sve%d", vq * 128);
 519                    error_append_hint(errp, "sve%d is required as it "
 520                                      "is a power-of-two length smaller "
 521                                      "than the maximum, sve%d\n",
 522                                      vq * 128, max_vq * 128);
 523                    return;
 524                }
 525            }
 526        }
 527    }
 528
 529    /*
 530     * Now that we validated all our vector lengths, the only question
 531     * left to answer is if we even want SVE at all.
 532     */
 533    if (!cpu_isar_feature(aa64_sve, cpu)) {
 534        error_setg(errp, "cannot enable sve%d", max_vq * 128);
 535        error_append_hint(errp, "SVE must be enabled to enable vector "
 536                          "lengths.\n");
 537        error_append_hint(errp, "Add sve=on to the CPU property list.\n");
 538        return;
 539    }
 540
 541    /* From now on sve_max_vq is the actual maximum supported length. */
 542    cpu->sve_max_vq = max_vq;
 543    cpu->sve_vq.map = vq_map;
 544}
 545
 546static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
 547                                   void *opaque, Error **errp)
 548{
 549    ARMCPU *cpu = ARM_CPU(obj);
 550    uint32_t value;
 551
 552    /* All vector lengths are disabled when SVE is off. */
 553    if (!cpu_isar_feature(aa64_sve, cpu)) {
 554        value = 0;
 555    } else {
 556        value = cpu->sve_max_vq;
 557    }
 558    visit_type_uint32(v, name, &value, errp);
 559}
 560
 561static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
 562                                   void *opaque, Error **errp)
 563{
 564    ARMCPU *cpu = ARM_CPU(obj);
 565    uint32_t max_vq;
 566
 567    if (!visit_type_uint32(v, name, &max_vq, errp)) {
 568        return;
 569    }
 570
 571    if (kvm_enabled() && !kvm_arm_sve_supported()) {
 572        error_setg(errp, "cannot set sve-max-vq");
 573        error_append_hint(errp, "SVE not supported by KVM on this host\n");
 574        return;
 575    }
 576
 577    if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
 578        error_setg(errp, "unsupported SVE vector length");
 579        error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
 580                          ARM_MAX_VQ);
 581        return;
 582    }
 583
 584    cpu->sve_max_vq = max_vq;
 585}
 586
 587/*
 588 * Note that cpu_arm_{get,set}_vq cannot use the simpler
 589 * object_property_add_bool interface because they make use of the
 590 * contents of "name" to determine which bit on which to operate.
 591 */
 592static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
 593                           void *opaque, Error **errp)
 594{
 595    ARMCPU *cpu = ARM_CPU(obj);
 596    ARMVQMap *vq_map = opaque;
 597    uint32_t vq = atoi(&name[3]) / 128;
 598    bool sve = vq_map == &cpu->sve_vq;
 599    bool value;
 600
 601    /* All vector lengths are disabled when feature is off. */
 602    if (sve
 603        ? !cpu_isar_feature(aa64_sve, cpu)
 604        : !cpu_isar_feature(aa64_sme, cpu)) {
 605        value = false;
 606    } else {
 607        value = extract32(vq_map->map, vq - 1, 1);
 608    }
 609    visit_type_bool(v, name, &value, errp);
 610}
 611
 612static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
 613                           void *opaque, Error **errp)
 614{
 615    ARMVQMap *vq_map = opaque;
 616    uint32_t vq = atoi(&name[3]) / 128;
 617    bool value;
 618
 619    if (!visit_type_bool(v, name, &value, errp)) {
 620        return;
 621    }
 622
 623    vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
 624    vq_map->init |= 1 << (vq - 1);
 625}
 626
 627static bool cpu_arm_get_sve(Object *obj, Error **errp)
 628{
 629    ARMCPU *cpu = ARM_CPU(obj);
 630    return cpu_isar_feature(aa64_sve, cpu);
 631}
 632
 633static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
 634{
 635    ARMCPU *cpu = ARM_CPU(obj);
 636    uint64_t t;
 637
 638    if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
 639        error_setg(errp, "'sve' feature not supported by KVM on this host");
 640        return;
 641    }
 642
 643    t = cpu->isar.id_aa64pfr0;
 644    t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
 645    cpu->isar.id_aa64pfr0 = t;
 646}
 647
 648void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
 649{
 650    uint32_t vq_map = cpu->sme_vq.map;
 651    uint32_t vq_init = cpu->sme_vq.init;
 652    uint32_t vq_supported = cpu->sme_vq.supported;
 653    uint32_t vq;
 654
 655    if (vq_map == 0) {
 656        if (!cpu_isar_feature(aa64_sme, cpu)) {
 657            cpu->isar.id_aa64smfr0 = 0;
 658            return;
 659        }
 660
 661        /* TODO: KVM will require limitations via SMCR_EL2. */
 662        vq_map = vq_supported & ~vq_init;
 663
 664        if (vq_map == 0) {
 665            vq = ctz32(vq_supported) + 1;
 666            error_setg(errp, "cannot disable sme%d", vq * 128);
 667            error_append_hint(errp, "All SME vector lengths are disabled.\n");
 668            error_append_hint(errp, "With SME enabled, at least one "
 669                              "vector length must be enabled.\n");
 670            return;
 671        }
 672    } else {
 673        if (!cpu_isar_feature(aa64_sme, cpu)) {
 674            vq = 32 - clz32(vq_map);
 675            error_setg(errp, "cannot enable sme%d", vq * 128);
 676            error_append_hint(errp, "SME must be enabled to enable "
 677                              "vector lengths.\n");
 678            error_append_hint(errp, "Add sme=on to the CPU property list.\n");
 679            return;
 680        }
 681        /* TODO: KVM will require limitations via SMCR_EL2. */
 682    }
 683
 684    cpu->sme_vq.map = vq_map;
 685}
 686
 687static bool cpu_arm_get_sme(Object *obj, Error **errp)
 688{
 689    ARMCPU *cpu = ARM_CPU(obj);
 690    return cpu_isar_feature(aa64_sme, cpu);
 691}
 692
 693static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
 694{
 695    ARMCPU *cpu = ARM_CPU(obj);
 696    uint64_t t;
 697
 698    t = cpu->isar.id_aa64pfr1;
 699    t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
 700    cpu->isar.id_aa64pfr1 = t;
 701}
 702
 703static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
 704{
 705    ARMCPU *cpu = ARM_CPU(obj);
 706    return cpu_isar_feature(aa64_sme, cpu) &&
 707           cpu_isar_feature(aa64_sme_fa64, cpu);
 708}
 709
 710static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
 711{
 712    ARMCPU *cpu = ARM_CPU(obj);
 713    uint64_t t;
 714
 715    t = cpu->isar.id_aa64smfr0;
 716    t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
 717    cpu->isar.id_aa64smfr0 = t;
 718}
 719
 720#ifdef CONFIG_USER_ONLY
 721/* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
 722static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
 723                                        const char *name, void *opaque,
 724                                        Error **errp)
 725{
 726    uint32_t *ptr_default_vq = opaque;
 727    int32_t default_len, default_vq, remainder;
 728
 729    if (!visit_type_int32(v, name, &default_len, errp)) {
 730        return;
 731    }
 732
 733    /* Undocumented, but the kernel allows -1 to indicate "maximum". */
 734    if (default_len == -1) {
 735        *ptr_default_vq = ARM_MAX_VQ;
 736        return;
 737    }
 738
 739    default_vq = default_len / 16;
 740    remainder = default_len % 16;
 741
 742    /*
 743     * Note that the 512 max comes from include/uapi/asm/sve_context.h
 744     * and is the maximum architectural width of ZCR_ELx.LEN.
 745     */
 746    if (remainder || default_vq < 1 || default_vq > 512) {
 747        ARMCPU *cpu = ARM_CPU(obj);
 748        const char *which =
 749            (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
 750
 751        error_setg(errp, "cannot set %s-default-vector-length", which);
 752        if (remainder) {
 753            error_append_hint(errp, "Vector length not a multiple of 16\n");
 754        } else if (default_vq < 1) {
 755            error_append_hint(errp, "Vector length smaller than 16\n");
 756        } else {
 757            error_append_hint(errp, "Vector length larger than %d\n",
 758                              512 * 16);
 759        }
 760        return;
 761    }
 762
 763    *ptr_default_vq = default_vq;
 764}
 765
 766static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
 767                                        const char *name, void *opaque,
 768                                        Error **errp)
 769{
 770    uint32_t *ptr_default_vq = opaque;
 771    int32_t value = *ptr_default_vq * 16;
 772
 773    visit_type_int32(v, name, &value, errp);
 774}
 775#endif
 776
 777static void aarch64_add_sve_properties(Object *obj)
 778{
 779    ARMCPU *cpu = ARM_CPU(obj);
 780    uint32_t vq;
 781
 782    object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
 783
 784    for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
 785        char name[8];
 786        sprintf(name, "sve%d", vq * 128);
 787        object_property_add(obj, name, "bool", cpu_arm_get_vq,
 788                            cpu_arm_set_vq, NULL, &cpu->sve_vq);
 789    }
 790
 791#ifdef CONFIG_USER_ONLY
 792    /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
 793    object_property_add(obj, "sve-default-vector-length", "int32",
 794                        cpu_arm_get_default_vec_len,
 795                        cpu_arm_set_default_vec_len, NULL,
 796                        &cpu->sve_default_vq);
 797#endif
 798}
 799
 800static void aarch64_add_sme_properties(Object *obj)
 801{
 802    ARMCPU *cpu = ARM_CPU(obj);
 803    uint32_t vq;
 804
 805    object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
 806    object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
 807                             cpu_arm_set_sme_fa64);
 808
 809    for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
 810        char name[8];
 811        sprintf(name, "sme%d", vq * 128);
 812        object_property_add(obj, name, "bool", cpu_arm_get_vq,
 813                            cpu_arm_set_vq, NULL, &cpu->sme_vq);
 814    }
 815
 816#ifdef CONFIG_USER_ONLY
 817    /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
 818    object_property_add(obj, "sme-default-vector-length", "int32",
 819                        cpu_arm_get_default_vec_len,
 820                        cpu_arm_set_default_vec_len, NULL,
 821                        &cpu->sme_default_vq);
 822#endif
 823}
 824
 825void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
 826{
 827    int arch_val = 0, impdef_val = 0;
 828    uint64_t t;
 829
 830    /* Exit early if PAuth is enabled, and fall through to disable it */
 831    if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
 832        if (!cpu_isar_feature(aa64_pauth, cpu)) {
 833            error_setg(errp, "'pauth' feature not supported by %s on this host",
 834                       kvm_enabled() ? "KVM" : "hvf");
 835        }
 836
 837        return;
 838    }
 839
 840    /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
 841    if (cpu->prop_pauth) {
 842        if (cpu->prop_pauth_impdef) {
 843            impdef_val = 1;
 844        } else {
 845            arch_val = 1;
 846        }
 847    } else if (cpu->prop_pauth_impdef) {
 848        error_setg(errp, "cannot enable pauth-impdef without pauth");
 849        error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
 850    }
 851
 852    t = cpu->isar.id_aa64isar1;
 853    t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
 854    t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
 855    t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
 856    t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
 857    cpu->isar.id_aa64isar1 = t;
 858}
 859
 860static Property arm_cpu_pauth_property =
 861    DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
 862static Property arm_cpu_pauth_impdef_property =
 863    DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
 864
 865static void aarch64_add_pauth_properties(Object *obj)
 866{
 867    ARMCPU *cpu = ARM_CPU(obj);
 868
 869    /* Default to PAUTH on, with the architected algorithm on TCG. */
 870    qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
 871    if (kvm_enabled() || hvf_enabled()) {
 872        /*
 873         * Mirror PAuth support from the probed sysregs back into the
 874         * property for KVM or hvf. Is it just a bit backward? Yes it is!
 875         * Note that prop_pauth is true whether the host CPU supports the
 876         * architected QARMA5 algorithm or the IMPDEF one. We don't
 877         * provide the separate pauth-impdef property for KVM or hvf,
 878         * only for TCG.
 879         */
 880        cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
 881    } else {
 882        qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
 883    }
 884}
 885
 886static Property arm_cpu_lpa2_property =
 887    DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
 888
 889void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
 890{
 891    uint64_t t;
 892
 893    /*
 894     * We only install the property for tcg -cpu max; this is the
 895     * only situation in which the cpu field can be true.
 896     */
 897    if (!cpu->prop_lpa2) {
 898        return;
 899    }
 900
 901    t = cpu->isar.id_aa64mmfr0;
 902    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
 903    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
 904    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
 905    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
 906    cpu->isar.id_aa64mmfr0 = t;
 907}
 908
 909static void aarch64_host_initfn(Object *obj)
 910{
 911#if defined(CONFIG_KVM)
 912    ARMCPU *cpu = ARM_CPU(obj);
 913    kvm_arm_set_cpu_features_from_host(cpu);
 914    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 915        aarch64_add_sve_properties(obj);
 916        aarch64_add_pauth_properties(obj);
 917    }
 918#elif defined(CONFIG_HVF)
 919    ARMCPU *cpu = ARM_CPU(obj);
 920    hvf_arm_set_cpu_features_from_host(cpu);
 921    aarch64_add_pauth_properties(obj);
 922#else
 923    g_assert_not_reached();
 924#endif
 925}
 926
 927/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
 928 * otherwise, a CPU with as many features enabled as our emulation supports.
 929 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
 930 * this only needs to handle 64 bits.
 931 */
 932static void aarch64_max_initfn(Object *obj)
 933{
 934    ARMCPU *cpu = ARM_CPU(obj);
 935    uint64_t t;
 936    uint32_t u;
 937
 938    if (kvm_enabled() || hvf_enabled()) {
 939        /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
 940        aarch64_host_initfn(obj);
 941        return;
 942    }
 943
 944    /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
 945
 946    aarch64_a57_initfn(obj);
 947
 948    /*
 949     * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
 950     * one and try to apply errata workarounds or use impdef features we
 951     * don't provide.
 952     * An IMPLEMENTER field of 0 means "reserved for software use";
 953     * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
 954     * to see which features are present";
 955     * the VARIANT, PARTNUM and REVISION fields are all implementation
 956     * defined and we choose to define PARTNUM just in case guest
 957     * code needs to distinguish this QEMU CPU from other software
 958     * implementations, though this shouldn't be needed.
 959     */
 960    t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
 961    t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
 962    t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
 963    t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
 964    t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
 965    cpu->midr = t;
 966
 967    /*
 968     * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
 969     * are zero.
 970     */
 971    u = cpu->clidr;
 972    u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
 973    u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
 974    cpu->clidr = u;
 975
 976    t = cpu->isar.id_aa64isar0;
 977    t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
 978    t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
 979    t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
 980    t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
 981    t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
 982    t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
 983    t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
 984    t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
 985    t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
 986    t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
 987    t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
 988    t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
 989    t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
 990    t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
 991    cpu->isar.id_aa64isar0 = t;
 992
 993    t = cpu->isar.id_aa64isar1;
 994    t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
 995    t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
 996    t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
 997    t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
 998    t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
 999    t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
1000    t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
1001    t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
1002    t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
1003    t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
1004    cpu->isar.id_aa64isar1 = t;
1005
1006    t = cpu->isar.id_aa64pfr0;
1007    t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
1008    t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
1009    t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2);       /* FEAT_RASv1p1 + FEAT_DoubleFault */
1010    t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1011    t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
1012    t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
1013    t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
1014    t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
1015    cpu->isar.id_aa64pfr0 = t;
1016
1017    t = cpu->isar.id_aa64pfr1;
1018    t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
1019    t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
1020    /*
1021     * Begin with full support for MTE. This will be downgraded to MTE=0
1022     * during realize if the board provides no tag memory, much like
1023     * we do for EL2 with the virtualization=on property.
1024     */
1025    t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
1026    t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0);  /* FEAT_RASv1p1 + FEAT_DoubleFault */
1027    t = FIELD_DP64(t, ID_AA64PFR1, SME, 1);       /* FEAT_SME */
1028    t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1029    cpu->isar.id_aa64pfr1 = t;
1030
1031    t = cpu->isar.id_aa64mmfr0;
1032    t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1033    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
1034    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1035    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1036    t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
1037    cpu->isar.id_aa64mmfr0 = t;
1038
1039    t = cpu->isar.id_aa64mmfr1;
1040    t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1041    t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
1042    t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
1043    t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
1044    t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
1045    t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
1046    t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
1047    cpu->isar.id_aa64mmfr1 = t;
1048
1049    t = cpu->isar.id_aa64mmfr2;
1050    t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
1051    t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
1052    t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
1053    t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
1054    t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
1055    t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
1056    t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
1057    t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
1058    t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
1059    cpu->isar.id_aa64mmfr2 = t;
1060
1061    t = cpu->isar.id_aa64zfr0;
1062    t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1063    t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
1064    t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
1065    t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
1066    t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
1067    t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
1068    t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
1069    t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
1070    t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
1071    cpu->isar.id_aa64zfr0 = t;
1072
1073    t = cpu->isar.id_aa64dfr0;
1074    t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
1075    t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5);    /* FEAT_PMUv3p4 */
1076    cpu->isar.id_aa64dfr0 = t;
1077
1078    t = cpu->isar.id_aa64smfr0;
1079    t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1);   /* FEAT_SME */
1080    t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1);   /* FEAT_SME */
1081    t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1);   /* FEAT_SME */
1082    t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf);  /* FEAT_SME */
1083    t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1);   /* FEAT_SME_F64F64 */
1084    t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1085    t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1);     /* FEAT_SME_FA64 */
1086    cpu->isar.id_aa64smfr0 = t;
1087
1088    /* Replicate the same data to the 32-bit id registers.  */
1089    aa32_max_features(cpu);
1090
1091#ifdef CONFIG_USER_ONLY
1092    /*
1093     * For usermode -cpu max we can use a larger and more efficient DCZ
1094     * blocksize since we don't have to follow what the hardware does.
1095     */
1096    cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1097    cpu->dcz_blocksize = 7; /*  512 bytes */
1098#endif
1099
1100    cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1101    cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1102
1103    aarch64_add_pauth_properties(obj);
1104    aarch64_add_sve_properties(obj);
1105    aarch64_add_sme_properties(obj);
1106    object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1107                        cpu_max_set_sve_max_vq, NULL, NULL);
1108    qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1109}
1110
1111static void aarch64_a64fx_initfn(Object *obj)
1112{
1113    ARMCPU *cpu = ARM_CPU(obj);
1114
1115    cpu->dtb_compatible = "arm,a64fx";
1116    set_feature(&cpu->env, ARM_FEATURE_V8);
1117    set_feature(&cpu->env, ARM_FEATURE_NEON);
1118    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1119    set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1120    set_feature(&cpu->env, ARM_FEATURE_EL2);
1121    set_feature(&cpu->env, ARM_FEATURE_EL3);
1122    set_feature(&cpu->env, ARM_FEATURE_PMU);
1123    cpu->midr = 0x461f0010;
1124    cpu->revidr = 0x00000000;
1125    cpu->ctr = 0x86668006;
1126    cpu->reset_sctlr = 0x30000180;
1127    cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
1128    cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1129    cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1130    cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1131    cpu->id_aa64afr0 = 0x0000000000000000;
1132    cpu->id_aa64afr1 = 0x0000000000000000;
1133    cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1134    cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1135    cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1136    cpu->isar.id_aa64isar0 = 0x0000000010211120;
1137    cpu->isar.id_aa64isar1 = 0x0000000000010001;
1138    cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1139    cpu->clidr = 0x0000000080000023;
1140    cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1141    cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1142    cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1143    cpu->dcz_blocksize = 6; /* 256 bytes */
1144    cpu->gic_num_lrs = 4;
1145    cpu->gic_vpribits = 5;
1146    cpu->gic_vprebits = 5;
1147    cpu->gic_pribits = 5;
1148
1149    /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1150    aarch64_add_sve_properties(obj);
1151    cpu->sve_vq.supported = (1 << 0)  /* 128bit */
1152                          | (1 << 1)  /* 256bit */
1153                          | (1 << 3); /* 512bit */
1154
1155    cpu->isar.reset_pmcr_el0 = 0x46014040;
1156
1157    /* TODO:  Add A64FX specific HPC extension registers */
1158}
1159
1160static const ARMCPUInfo aarch64_cpus[] = {
1161    { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1162    { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1163    { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1164    { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1165    { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1166    { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1167    { .name = "max",                .initfn = aarch64_max_initfn },
1168#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1169    { .name = "host",               .initfn = aarch64_host_initfn },
1170#endif
1171};
1172
1173static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1174{
1175    ARMCPU *cpu = ARM_CPU(obj);
1176
1177    return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1178}
1179
1180static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1181{
1182    ARMCPU *cpu = ARM_CPU(obj);
1183
1184    /* At this time, this property is only allowed if KVM is enabled.  This
1185     * restriction allows us to avoid fixing up functionality that assumes a
1186     * uniform execution state like do_interrupt.
1187     */
1188    if (value == false) {
1189        if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1190            error_setg(errp, "'aarch64' feature cannot be disabled "
1191                             "unless KVM is enabled and 32-bit EL1 "
1192                             "is supported");
1193            return;
1194        }
1195        unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1196    } else {
1197        set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1198    }
1199}
1200
1201static void aarch64_cpu_finalizefn(Object *obj)
1202{
1203}
1204
1205static gchar *aarch64_gdb_arch_name(CPUState *cs)
1206{
1207    return g_strdup("aarch64");
1208}
1209
1210static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1211{
1212    CPUClass *cc = CPU_CLASS(oc);
1213
1214    cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1215    cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1216    cc->gdb_num_core_regs = 34;
1217    cc->gdb_core_xml_file = "aarch64-core.xml";
1218    cc->gdb_arch_name = aarch64_gdb_arch_name;
1219
1220    object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1221                                   aarch64_cpu_set_aarch64);
1222    object_class_property_set_description(oc, "aarch64",
1223                                          "Set on/off to enable/disable aarch64 "
1224                                          "execution state ");
1225}
1226
1227static void aarch64_cpu_instance_init(Object *obj)
1228{
1229    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1230
1231    acc->info->initfn(obj);
1232    arm_cpu_post_init(obj);
1233}
1234
1235static void cpu_register_class_init(ObjectClass *oc, void *data)
1236{
1237    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1238
1239    acc->info = data;
1240}
1241
1242void aarch64_cpu_register(const ARMCPUInfo *info)
1243{
1244    TypeInfo type_info = {
1245        .parent = TYPE_AARCH64_CPU,
1246        .instance_size = sizeof(ARMCPU),
1247        .instance_init = aarch64_cpu_instance_init,
1248        .class_size = sizeof(ARMCPUClass),
1249        .class_init = info->class_init ?: cpu_register_class_init,
1250        .class_data = (void *)info,
1251    };
1252
1253    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1254    type_register(&type_info);
1255    g_free((void *)type_info.name);
1256}
1257
1258static const TypeInfo aarch64_cpu_type_info = {
1259    .name = TYPE_AARCH64_CPU,
1260    .parent = TYPE_ARM_CPU,
1261    .instance_size = sizeof(ARMCPU),
1262    .instance_finalize = aarch64_cpu_finalizefn,
1263    .abstract = true,
1264    .class_size = sizeof(AArch64CPUClass),
1265    .class_init = aarch64_cpu_class_init,
1266};
1267
1268static void aarch64_cpu_register_types(void)
1269{
1270    size_t i;
1271
1272    type_register_static(&aarch64_cpu_type_info);
1273
1274    for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1275        aarch64_cpu_register(&aarch64_cpus[i]);
1276    }
1277}
1278
1279type_init(aarch64_cpu_register_types)
1280