qemu/target/arm/debug_helper.c
<<
>>
Prefs
   1/*
   2 * ARM debug helpers.
   3 *
   4 * This code is licensed under the GNU GPL v2 or later.
   5 *
   6 * SPDX-License-Identifier: GPL-2.0-or-later
   7 */
   8#include "qemu/osdep.h"
   9#include "qemu/log.h"
  10#include "cpu.h"
  11#include "internals.h"
  12#include "cpregs.h"
  13#include "exec/exec-all.h"
  14#include "exec/helper-proto.h"
  15
  16
  17/* Return the Exception Level targeted by debug exceptions. */
  18static int arm_debug_target_el(CPUARMState *env)
  19{
  20    bool secure = arm_is_secure(env);
  21    bool route_to_el2 = false;
  22
  23    if (arm_is_el2_enabled(env)) {
  24        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
  25                       env->cp15.mdcr_el2 & MDCR_TDE;
  26    }
  27
  28    if (route_to_el2) {
  29        return 2;
  30    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
  31               !arm_el_is_aa64(env, 3) && secure) {
  32        return 3;
  33    } else {
  34        return 1;
  35    }
  36}
  37
  38/*
  39 * Raise an exception to the debug target el.
  40 * Modify syndrome to indicate when origin and target EL are the same.
  41 */
  42G_NORETURN static void
  43raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
  44{
  45    int debug_el = arm_debug_target_el(env);
  46    int cur_el = arm_current_el(env);
  47
  48    /*
  49     * If singlestep is targeting a lower EL than the current one, then
  50     * DisasContext.ss_active must be false and we can never get here.
  51     * Similarly for watchpoint and breakpoint matches.
  52     */
  53    assert(debug_el >= cur_el);
  54    syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
  55    raise_exception(env, excp, syndrome, debug_el);
  56}
  57
  58/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
  59static bool aa64_generate_debug_exceptions(CPUARMState *env)
  60{
  61    int cur_el = arm_current_el(env);
  62    int debug_el;
  63
  64    if (cur_el == 3) {
  65        return false;
  66    }
  67
  68    /* MDCR_EL3.SDD disables debug events from Secure state */
  69    if (arm_is_secure_below_el3(env)
  70        && extract32(env->cp15.mdcr_el3, 16, 1)) {
  71        return false;
  72    }
  73
  74    /*
  75     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
  76     * while not masking the (D)ebug bit in DAIF.
  77     */
  78    debug_el = arm_debug_target_el(env);
  79
  80    if (cur_el == debug_el) {
  81        return extract32(env->cp15.mdscr_el1, 13, 1)
  82            && !(env->daif & PSTATE_D);
  83    }
  84
  85    /* Otherwise the debug target needs to be a higher EL */
  86    return debug_el > cur_el;
  87}
  88
  89static bool aa32_generate_debug_exceptions(CPUARMState *env)
  90{
  91    int el = arm_current_el(env);
  92
  93    if (el == 0 && arm_el_is_aa64(env, 1)) {
  94        return aa64_generate_debug_exceptions(env);
  95    }
  96
  97    if (arm_is_secure(env)) {
  98        int spd;
  99
 100        if (el == 0 && (env->cp15.sder & 1)) {
 101            /*
 102             * SDER.SUIDEN means debug exceptions from Secure EL0
 103             * are always enabled. Otherwise they are controlled by
 104             * SDCR.SPD like those from other Secure ELs.
 105             */
 106            return true;
 107        }
 108
 109        spd = extract32(env->cp15.mdcr_el3, 14, 2);
 110        switch (spd) {
 111        case 1:
 112            /* SPD == 0b01 is reserved, but behaves as 0b00. */
 113        case 0:
 114            /*
 115             * For 0b00 we return true if external secure invasive debug
 116             * is enabled. On real hardware this is controlled by external
 117             * signals to the core. QEMU always permits debug, and behaves
 118             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
 119             */
 120            return true;
 121        case 2:
 122            return false;
 123        case 3:
 124            return true;
 125        }
 126    }
 127
 128    return el != 2;
 129}
 130
 131/*
 132 * Return true if debugging exceptions are currently enabled.
 133 * This corresponds to what in ARM ARM pseudocode would be
 134 *    if UsingAArch32() then
 135 *        return AArch32.GenerateDebugExceptions()
 136 *    else
 137 *        return AArch64.GenerateDebugExceptions()
 138 * We choose to push the if() down into this function for clarity,
 139 * since the pseudocode has it at all callsites except for the one in
 140 * CheckSoftwareStep(), where it is elided because both branches would
 141 * always return the same value.
 142 */
 143bool arm_generate_debug_exceptions(CPUARMState *env)
 144{
 145    if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
 146        return false;
 147    }
 148    if (is_a64(env)) {
 149        return aa64_generate_debug_exceptions(env);
 150    } else {
 151        return aa32_generate_debug_exceptions(env);
 152    }
 153}
 154
 155/*
 156 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
 157 * implicitly means this always returns false in pre-v8 CPUs.)
 158 */
 159bool arm_singlestep_active(CPUARMState *env)
 160{
 161    return extract32(env->cp15.mdscr_el1, 0, 1)
 162        && arm_el_is_aa64(env, arm_debug_target_el(env))
 163        && arm_generate_debug_exceptions(env);
 164}
 165
 166/* Return true if the linked breakpoint entry lbn passes its checks */
 167static bool linked_bp_matches(ARMCPU *cpu, int lbn)
 168{
 169    CPUARMState *env = &cpu->env;
 170    uint64_t bcr = env->cp15.dbgbcr[lbn];
 171    int brps = arm_num_brps(cpu);
 172    int ctx_cmps = arm_num_ctx_cmps(cpu);
 173    int bt;
 174    uint32_t contextidr;
 175    uint64_t hcr_el2;
 176
 177    /*
 178     * Links to unimplemented or non-context aware breakpoints are
 179     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
 180     * as if linked to an UNKNOWN context-aware breakpoint (in which
 181     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
 182     * We choose the former.
 183     */
 184    if (lbn >= brps || lbn < (brps - ctx_cmps)) {
 185        return false;
 186    }
 187
 188    bcr = env->cp15.dbgbcr[lbn];
 189
 190    if (extract64(bcr, 0, 1) == 0) {
 191        /* Linked breakpoint disabled : generate no events */
 192        return false;
 193    }
 194
 195    bt = extract64(bcr, 20, 4);
 196    hcr_el2 = arm_hcr_el2_eff(env);
 197
 198    switch (bt) {
 199    case 3: /* linked context ID match */
 200        switch (arm_current_el(env)) {
 201        default:
 202            /* Context matches never fire in AArch64 EL3 */
 203            return false;
 204        case 2:
 205            if (!(hcr_el2 & HCR_E2H)) {
 206                /* Context matches never fire in EL2 without E2H enabled. */
 207                return false;
 208            }
 209            contextidr = env->cp15.contextidr_el[2];
 210            break;
 211        case 1:
 212            contextidr = env->cp15.contextidr_el[1];
 213            break;
 214        case 0:
 215            if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
 216                contextidr = env->cp15.contextidr_el[2];
 217            } else {
 218                contextidr = env->cp15.contextidr_el[1];
 219            }
 220            break;
 221        }
 222        break;
 223
 224    case 7:  /* linked contextidr_el1 match */
 225        contextidr = env->cp15.contextidr_el[1];
 226        break;
 227    case 13: /* linked contextidr_el2 match */
 228        contextidr = env->cp15.contextidr_el[2];
 229        break;
 230
 231    case 9: /* linked VMID match (reserved if no EL2) */
 232    case 11: /* linked context ID and VMID match (reserved if no EL2) */
 233    case 15: /* linked full context ID match */
 234    default:
 235        /*
 236         * Links to Unlinked context breakpoints must generate no
 237         * events; we choose to do the same for reserved values too.
 238         */
 239        return false;
 240    }
 241
 242    /*
 243     * We match the whole register even if this is AArch32 using the
 244     * short descriptor format (in which case it holds both PROCID and ASID),
 245     * since we don't implement the optional v7 context ID masking.
 246     */
 247    return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
 248}
 249
 250static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
 251{
 252    CPUARMState *env = &cpu->env;
 253    uint64_t cr;
 254    int pac, hmc, ssc, wt, lbn;
 255    /*
 256     * Note that for watchpoints the check is against the CPU security
 257     * state, not the S/NS attribute on the offending data access.
 258     */
 259    bool is_secure = arm_is_secure(env);
 260    int access_el = arm_current_el(env);
 261
 262    if (is_wp) {
 263        CPUWatchpoint *wp = env->cpu_watchpoint[n];
 264
 265        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
 266            return false;
 267        }
 268        cr = env->cp15.dbgwcr[n];
 269        if (wp->hitattrs.user) {
 270            /*
 271             * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
 272             * match watchpoints as if they were accesses done at EL0, even if
 273             * the CPU is at EL1 or higher.
 274             */
 275            access_el = 0;
 276        }
 277    } else {
 278        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 279
 280        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
 281            return false;
 282        }
 283        cr = env->cp15.dbgbcr[n];
 284    }
 285    /*
 286     * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
 287     * enabled and that the address and access type match; for breakpoints
 288     * we know the address matched; check the remaining fields, including
 289     * linked breakpoints. We rely on WCR and BCR having the same layout
 290     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
 291     * Note that some combinations of {PAC, HMC, SSC} are reserved and
 292     * must act either like some valid combination or as if the watchpoint
 293     * were disabled. We choose the former, and use this together with
 294     * the fact that EL3 must always be Secure and EL2 must always be
 295     * Non-Secure to simplify the code slightly compared to the full
 296     * table in the ARM ARM.
 297     */
 298    pac = FIELD_EX64(cr, DBGWCR, PAC);
 299    hmc = FIELD_EX64(cr, DBGWCR, HMC);
 300    ssc = FIELD_EX64(cr, DBGWCR, SSC);
 301
 302    switch (ssc) {
 303    case 0:
 304        break;
 305    case 1:
 306    case 3:
 307        if (is_secure) {
 308            return false;
 309        }
 310        break;
 311    case 2:
 312        if (!is_secure) {
 313            return false;
 314        }
 315        break;
 316    }
 317
 318    switch (access_el) {
 319    case 3:
 320    case 2:
 321        if (!hmc) {
 322            return false;
 323        }
 324        break;
 325    case 1:
 326        if (extract32(pac, 0, 1) == 0) {
 327            return false;
 328        }
 329        break;
 330    case 0:
 331        if (extract32(pac, 1, 1) == 0) {
 332            return false;
 333        }
 334        break;
 335    default:
 336        g_assert_not_reached();
 337    }
 338
 339    wt = FIELD_EX64(cr, DBGWCR, WT);
 340    lbn = FIELD_EX64(cr, DBGWCR, LBN);
 341
 342    if (wt && !linked_bp_matches(cpu, lbn)) {
 343        return false;
 344    }
 345
 346    return true;
 347}
 348
 349static bool check_watchpoints(ARMCPU *cpu)
 350{
 351    CPUARMState *env = &cpu->env;
 352    int n;
 353
 354    /*
 355     * If watchpoints are disabled globally or we can't take debug
 356     * exceptions here then watchpoint firings are ignored.
 357     */
 358    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 359        || !arm_generate_debug_exceptions(env)) {
 360        return false;
 361    }
 362
 363    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
 364        if (bp_wp_matches(cpu, n, true)) {
 365            return true;
 366        }
 367    }
 368    return false;
 369}
 370
 371bool arm_debug_check_breakpoint(CPUState *cs)
 372{
 373    ARMCPU *cpu = ARM_CPU(cs);
 374    CPUARMState *env = &cpu->env;
 375    target_ulong pc;
 376    int n;
 377
 378    /*
 379     * If breakpoints are disabled globally or we can't take debug
 380     * exceptions here then breakpoint firings are ignored.
 381     */
 382    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 383        || !arm_generate_debug_exceptions(env)) {
 384        return false;
 385    }
 386
 387    /*
 388     * Single-step exceptions have priority over breakpoint exceptions.
 389     * If single-step state is active-pending, suppress the bp.
 390     */
 391    if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
 392        return false;
 393    }
 394
 395    /*
 396     * PC alignment faults have priority over breakpoint exceptions.
 397     */
 398    pc = is_a64(env) ? env->pc : env->regs[15];
 399    if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
 400        return false;
 401    }
 402
 403    /*
 404     * Instruction aborts have priority over breakpoint exceptions.
 405     * TODO: We would need to look up the page for PC and verify that
 406     * it is present and executable.
 407     */
 408
 409    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
 410        if (bp_wp_matches(cpu, n, false)) {
 411            return true;
 412        }
 413    }
 414    return false;
 415}
 416
 417bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
 418{
 419    /*
 420     * Called by core code when a CPU watchpoint fires; need to check if this
 421     * is also an architectural watchpoint match.
 422     */
 423    ARMCPU *cpu = ARM_CPU(cs);
 424
 425    return check_watchpoints(cpu);
 426}
 427
 428/*
 429 * Return the FSR value for a debug exception (watchpoint, hardware
 430 * breakpoint or BKPT insn) targeting the specified exception level.
 431 */
 432static uint32_t arm_debug_exception_fsr(CPUARMState *env)
 433{
 434    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 435    int target_el = arm_debug_target_el(env);
 436    bool using_lpae = false;
 437
 438    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 439        using_lpae = true;
 440    } else {
 441        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 442            (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
 443            using_lpae = true;
 444        }
 445    }
 446
 447    if (using_lpae) {
 448        return arm_fi_to_lfsc(&fi);
 449    } else {
 450        return arm_fi_to_sfsc(&fi);
 451    }
 452}
 453
 454void arm_debug_excp_handler(CPUState *cs)
 455{
 456    /*
 457     * Called by core code when a watchpoint or breakpoint fires;
 458     * need to check which one and raise the appropriate exception.
 459     */
 460    ARMCPU *cpu = ARM_CPU(cs);
 461    CPUARMState *env = &cpu->env;
 462    CPUWatchpoint *wp_hit = cs->watchpoint_hit;
 463
 464    if (wp_hit) {
 465        if (wp_hit->flags & BP_CPU) {
 466            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
 467
 468            cs->watchpoint_hit = NULL;
 469
 470            env->exception.fsr = arm_debug_exception_fsr(env);
 471            env->exception.vaddress = wp_hit->hitaddr;
 472            raise_exception_debug(env, EXCP_DATA_ABORT,
 473                                  syn_watchpoint(0, 0, wnr));
 474        }
 475    } else {
 476        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 477
 478        /*
 479         * (1) GDB breakpoints should be handled first.
 480         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
 481         * since singlestep is also done by generating a debug internal
 482         * exception.
 483         */
 484        if (cpu_breakpoint_test(cs, pc, BP_GDB)
 485            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
 486            return;
 487        }
 488
 489        env->exception.fsr = arm_debug_exception_fsr(env);
 490        /*
 491         * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
 492         * values to the guest that it shouldn't be able to see at its
 493         * exception/security level.
 494         */
 495        env->exception.vaddress = 0;
 496        raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
 497    }
 498}
 499
 500/*
 501 * Raise an EXCP_BKPT with the specified syndrome register value,
 502 * targeting the correct exception level for debug exceptions.
 503 */
 504void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
 505{
 506    int debug_el = arm_debug_target_el(env);
 507    int cur_el = arm_current_el(env);
 508
 509    /* FSR will only be used if the debug target EL is AArch32. */
 510    env->exception.fsr = arm_debug_exception_fsr(env);
 511    /*
 512     * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
 513     * values to the guest that it shouldn't be able to see at its
 514     * exception/security level.
 515     */
 516    env->exception.vaddress = 0;
 517    /*
 518     * Other kinds of architectural debug exception are ignored if
 519     * they target an exception level below the current one (in QEMU
 520     * this is checked by arm_generate_debug_exceptions()). Breakpoint
 521     * instructions are special because they always generate an exception
 522     * to somewhere: if they can't go to the configured debug exception
 523     * level they are taken to the current exception level.
 524     */
 525    if (debug_el < cur_el) {
 526        debug_el = cur_el;
 527    }
 528    raise_exception(env, EXCP_BKPT, syndrome, debug_el);
 529}
 530
 531void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
 532{
 533    raise_exception_debug(env, EXCP_UDEF, syndrome);
 534}
 535
 536/*
 537 * Check for traps to "powerdown debug" registers, which are controlled
 538 * by MDCR.TDOSA
 539 */
 540static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 541                                   bool isread)
 542{
 543    int el = arm_current_el(env);
 544    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 545    bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
 546        (arm_hcr_el2_eff(env) & HCR_TGE);
 547
 548    if (el < 2 && mdcr_el2_tdosa) {
 549        return CP_ACCESS_TRAP_EL2;
 550    }
 551    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 552        return CP_ACCESS_TRAP_EL3;
 553    }
 554    return CP_ACCESS_OK;
 555}
 556
 557/*
 558 * Check for traps to "debug ROM" registers, which are controlled
 559 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 560 */
 561static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 562                                  bool isread)
 563{
 564    int el = arm_current_el(env);
 565    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 566    bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
 567        (arm_hcr_el2_eff(env) & HCR_TGE);
 568
 569    if (el < 2 && mdcr_el2_tdra) {
 570        return CP_ACCESS_TRAP_EL2;
 571    }
 572    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 573        return CP_ACCESS_TRAP_EL3;
 574    }
 575    return CP_ACCESS_OK;
 576}
 577
 578/*
 579 * Check for traps to general debug registers, which are controlled
 580 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 581 */
 582static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 583                                  bool isread)
 584{
 585    int el = arm_current_el(env);
 586    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
 587    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
 588        (arm_hcr_el2_eff(env) & HCR_TGE);
 589
 590    if (el < 2 && mdcr_el2_tda) {
 591        return CP_ACCESS_TRAP_EL2;
 592    }
 593    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 594        return CP_ACCESS_TRAP_EL3;
 595    }
 596    return CP_ACCESS_OK;
 597}
 598
 599static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 600                        uint64_t value)
 601{
 602    /*
 603     * Writes to OSLAR_EL1 may update the OS lock status, which can be
 604     * read via a bit in OSLSR_EL1.
 605     */
 606    int oslock;
 607
 608    if (ri->state == ARM_CP_STATE_AA32) {
 609        oslock = (value == 0xC5ACCE55);
 610    } else {
 611        oslock = value & 1;
 612    }
 613
 614    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
 615}
 616
 617static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 618                        uint64_t value)
 619{
 620    ARMCPU *cpu = env_archcpu(env);
 621    /*
 622     * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
 623     * implemented this is RAZ/WI.
 624     */
 625    if(arm_feature(env, ARM_FEATURE_AARCH64)
 626       ? cpu_isar_feature(aa64_doublelock, cpu)
 627       : cpu_isar_feature(aa32_doublelock, cpu)) {
 628        env->cp15.osdlr_el1 = value & 1;
 629    }
 630}
 631
 632static const ARMCPRegInfo debug_cp_reginfo[] = {
 633    /*
 634     * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 635     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
 636     * unlike DBGDRAR it is never accessible from EL0.
 637     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
 638     * accessor.
 639     */
 640    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 641      .access = PL0_R, .accessfn = access_tdra,
 642      .type = ARM_CP_CONST, .resetvalue = 0 },
 643    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
 644      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 645      .access = PL1_R, .accessfn = access_tdra,
 646      .type = ARM_CP_CONST, .resetvalue = 0 },
 647    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 648      .access = PL0_R, .accessfn = access_tdra,
 649      .type = ARM_CP_CONST, .resetvalue = 0 },
 650    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
 651    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
 652      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 653      .access = PL1_RW, .accessfn = access_tda,
 654      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
 655      .resetvalue = 0 },
 656    /*
 657     * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
 658     * Debug Communication Channel is not implemented.
 659     */
 660    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
 661      .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
 662      .access = PL0_R, .accessfn = access_tda,
 663      .type = ARM_CP_CONST, .resetvalue = 0 },
 664    /*
 665     * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
 666     * it is unlikely a guest will care.
 667     * We don't implement the configurable EL0 access.
 668     */
 669    { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
 670      .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 671      .type = ARM_CP_ALIAS,
 672      .access = PL1_R, .accessfn = access_tda,
 673      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
 674    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
 675      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
 676      .access = PL1_W, .type = ARM_CP_NO_RAW,
 677      .accessfn = access_tdosa,
 678      .writefn = oslar_write },
 679    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
 680      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
 681      .access = PL1_R, .resetvalue = 10,
 682      .accessfn = access_tdosa,
 683      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
 684    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
 685    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
 686      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
 687      .access = PL1_RW, .accessfn = access_tdosa,
 688      .writefn = osdlr_write,
 689      .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
 690    /*
 691     * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
 692     * implement vector catch debug events yet.
 693     */
 694    { .name = "DBGVCR",
 695      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 696      .access = PL1_RW, .accessfn = access_tda,
 697      .type = ARM_CP_NOP },
 698    /*
 699     * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
 700     * to save and restore a 32-bit guest's DBGVCR)
 701     */
 702    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
 703      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
 704      .access = PL2_RW, .accessfn = access_tda,
 705      .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
 706    /*
 707     * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
 708     * Channel but Linux may try to access this register. The 32-bit
 709     * alias is DBGDCCINT.
 710     */
 711    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
 712      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 713      .access = PL1_RW, .accessfn = access_tda,
 714      .type = ARM_CP_NOP },
 715};
 716
 717static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
 718    /* 64 bit access versions of the (dummy) debug registers */
 719    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 720      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 721    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 722      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 723};
 724
 725void hw_watchpoint_update(ARMCPU *cpu, int n)
 726{
 727    CPUARMState *env = &cpu->env;
 728    vaddr len = 0;
 729    vaddr wvr = env->cp15.dbgwvr[n];
 730    uint64_t wcr = env->cp15.dbgwcr[n];
 731    int mask;
 732    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 733
 734    if (env->cpu_watchpoint[n]) {
 735        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
 736        env->cpu_watchpoint[n] = NULL;
 737    }
 738
 739    if (!FIELD_EX64(wcr, DBGWCR, E)) {
 740        /* E bit clear : watchpoint disabled */
 741        return;
 742    }
 743
 744    switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
 745    case 0:
 746        /* LSC 00 is reserved and must behave as if the wp is disabled */
 747        return;
 748    case 1:
 749        flags |= BP_MEM_READ;
 750        break;
 751    case 2:
 752        flags |= BP_MEM_WRITE;
 753        break;
 754    case 3:
 755        flags |= BP_MEM_ACCESS;
 756        break;
 757    }
 758
 759    /*
 760     * Attempts to use both MASK and BAS fields simultaneously are
 761     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
 762     * thus generating a watchpoint for every byte in the masked region.
 763     */
 764    mask = FIELD_EX64(wcr, DBGWCR, MASK);
 765    if (mask == 1 || mask == 2) {
 766        /*
 767         * Reserved values of MASK; we must act as if the mask value was
 768         * some non-reserved value, or as if the watchpoint were disabled.
 769         * We choose the latter.
 770         */
 771        return;
 772    } else if (mask) {
 773        /* Watchpoint covers an aligned area up to 2GB in size */
 774        len = 1ULL << mask;
 775        /*
 776         * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
 777         * whether the watchpoint fires when the unmasked bits match; we opt
 778         * to generate the exceptions.
 779         */
 780        wvr &= ~(len - 1);
 781    } else {
 782        /* Watchpoint covers bytes defined by the byte address select bits */
 783        int bas = FIELD_EX64(wcr, DBGWCR, BAS);
 784        int basstart;
 785
 786        if (extract64(wvr, 2, 1)) {
 787            /*
 788             * Deprecated case of an only 4-aligned address. BAS[7:4] are
 789             * ignored, and BAS[3:0] define which bytes to watch.
 790             */
 791            bas &= 0xf;
 792        }
 793
 794        if (bas == 0) {
 795            /* This must act as if the watchpoint is disabled */
 796            return;
 797        }
 798
 799        /*
 800         * The BAS bits are supposed to be programmed to indicate a contiguous
 801         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
 802         * we fire for each byte in the word/doubleword addressed by the WVR.
 803         * We choose to ignore any non-zero bits after the first range of 1s.
 804         */
 805        basstart = ctz32(bas);
 806        len = cto32(bas >> basstart);
 807        wvr += basstart;
 808    }
 809
 810    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
 811                          &env->cpu_watchpoint[n]);
 812}
 813
 814void hw_watchpoint_update_all(ARMCPU *cpu)
 815{
 816    int i;
 817    CPUARMState *env = &cpu->env;
 818
 819    /*
 820     * Completely clear out existing QEMU watchpoints and our array, to
 821     * avoid possible stale entries following migration load.
 822     */
 823    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
 824    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
 825
 826    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
 827        hw_watchpoint_update(cpu, i);
 828    }
 829}
 830
 831static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 832                         uint64_t value)
 833{
 834    ARMCPU *cpu = env_archcpu(env);
 835    int i = ri->crm;
 836
 837    /*
 838     * Bits [1:0] are RES0.
 839     *
 840     * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
 841     * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
 842     * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
 843     * whether the RESS bits are ignored when comparing an address.
 844     *
 845     * Therefore we are allowed to compare the entire register, which lets
 846     * us avoid considering whether or not FEAT_LVA is actually enabled.
 847     */
 848    value &= ~3ULL;
 849
 850    raw_write(env, ri, value);
 851    hw_watchpoint_update(cpu, i);
 852}
 853
 854static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 855                         uint64_t value)
 856{
 857    ARMCPU *cpu = env_archcpu(env);
 858    int i = ri->crm;
 859
 860    raw_write(env, ri, value);
 861    hw_watchpoint_update(cpu, i);
 862}
 863
 864void hw_breakpoint_update(ARMCPU *cpu, int n)
 865{
 866    CPUARMState *env = &cpu->env;
 867    uint64_t bvr = env->cp15.dbgbvr[n];
 868    uint64_t bcr = env->cp15.dbgbcr[n];
 869    vaddr addr;
 870    int bt;
 871    int flags = BP_CPU;
 872
 873    if (env->cpu_breakpoint[n]) {
 874        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
 875        env->cpu_breakpoint[n] = NULL;
 876    }
 877
 878    if (!extract64(bcr, 0, 1)) {
 879        /* E bit clear : watchpoint disabled */
 880        return;
 881    }
 882
 883    bt = extract64(bcr, 20, 4);
 884
 885    switch (bt) {
 886    case 4: /* unlinked address mismatch (reserved if AArch64) */
 887    case 5: /* linked address mismatch (reserved if AArch64) */
 888        qemu_log_mask(LOG_UNIMP,
 889                      "arm: address mismatch breakpoint types not implemented\n");
 890        return;
 891    case 0: /* unlinked address match */
 892    case 1: /* linked address match */
 893    {
 894        /*
 895         * Bits [1:0] are RES0.
 896         *
 897         * It is IMPLEMENTATION DEFINED whether bits [63:49]
 898         * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
 899         * of the VA field ([48] or [52] for FEAT_LVA), or whether the
 900         * value is read as written.  It is CONSTRAINED UNPREDICTABLE
 901         * whether the RESS bits are ignored when comparing an address.
 902         * Therefore we are allowed to compare the entire register, which
 903         * lets us avoid considering whether FEAT_LVA is actually enabled.
 904         *
 905         * The BAS field is used to allow setting breakpoints on 16-bit
 906         * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
 907         * a bp will fire if the addresses covered by the bp and the addresses
 908         * covered by the insn overlap but the insn doesn't start at the
 909         * start of the bp address range. We choose to require the insn and
 910         * the bp to have the same address. The constraints on writing to
 911         * BAS enforced in dbgbcr_write mean we have only four cases:
 912         *  0b0000  => no breakpoint
 913         *  0b0011  => breakpoint on addr
 914         *  0b1100  => breakpoint on addr + 2
 915         *  0b1111  => breakpoint on addr
 916         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
 917         */
 918        int bas = extract64(bcr, 5, 4);
 919        addr = bvr & ~3ULL;
 920        if (bas == 0) {
 921            return;
 922        }
 923        if (bas == 0xc) {
 924            addr += 2;
 925        }
 926        break;
 927    }
 928    case 2: /* unlinked context ID match */
 929    case 8: /* unlinked VMID match (reserved if no EL2) */
 930    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
 931        qemu_log_mask(LOG_UNIMP,
 932                      "arm: unlinked context breakpoint types not implemented\n");
 933        return;
 934    case 9: /* linked VMID match (reserved if no EL2) */
 935    case 11: /* linked context ID and VMID match (reserved if no EL2) */
 936    case 3: /* linked context ID match */
 937    default:
 938        /*
 939         * We must generate no events for Linked context matches (unless
 940         * they are linked to by some other bp/wp, which is handled in
 941         * updates for the linking bp/wp). We choose to also generate no events
 942         * for reserved values.
 943         */
 944        return;
 945    }
 946
 947    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
 948}
 949
 950void hw_breakpoint_update_all(ARMCPU *cpu)
 951{
 952    int i;
 953    CPUARMState *env = &cpu->env;
 954
 955    /*
 956     * Completely clear out existing QEMU breakpoints and our array, to
 957     * avoid possible stale entries following migration load.
 958     */
 959    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
 960    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
 961
 962    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
 963        hw_breakpoint_update(cpu, i);
 964    }
 965}
 966
 967static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 968                         uint64_t value)
 969{
 970    ARMCPU *cpu = env_archcpu(env);
 971    int i = ri->crm;
 972
 973    raw_write(env, ri, value);
 974    hw_breakpoint_update(cpu, i);
 975}
 976
 977static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 978                         uint64_t value)
 979{
 980    ARMCPU *cpu = env_archcpu(env);
 981    int i = ri->crm;
 982
 983    /*
 984     * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
 985     * copy of BAS[0].
 986     */
 987    value = deposit64(value, 6, 1, extract64(value, 5, 1));
 988    value = deposit64(value, 8, 1, extract64(value, 7, 1));
 989
 990    raw_write(env, ri, value);
 991    hw_breakpoint_update(cpu, i);
 992}
 993
 994void define_debug_regs(ARMCPU *cpu)
 995{
 996    /*
 997     * Define v7 and v8 architectural debug registers.
 998     * These are just dummy implementations for now.
 999     */
1000    int i;
1001    int wrps, brps, ctx_cmps;
1002
1003    /*
1004     * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1005     * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
1006     * the register must not exist for this cpu.
1007     */
1008    if (cpu->isar.dbgdidr != 0) {
1009        ARMCPRegInfo dbgdidr = {
1010            .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1011            .opc1 = 0, .opc2 = 0,
1012            .access = PL0_R, .accessfn = access_tda,
1013            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1014        };
1015        define_one_arm_cp_reg(cpu, &dbgdidr);
1016    }
1017
1018    /*
1019     * DBGDEVID is present in the v7 debug architecture if
1020     * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1021     * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1022     * from v7.1 of the debug architecture. Because no fields have yet
1023     * been defined in DBGDEVID2 (and quite possibly none will ever
1024     * be) we don't define an ARMISARegisters field for it.
1025     * These registers exist only if EL1 can use AArch32, but that
1026     * happens naturally because they are only PL1 accessible anyway.
1027     */
1028    if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1029        ARMCPRegInfo dbgdevid = {
1030            .name = "DBGDEVID",
1031            .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1032            .access = PL1_R, .accessfn = access_tda,
1033            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1034        };
1035        define_one_arm_cp_reg(cpu, &dbgdevid);
1036    }
1037    if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1038        ARMCPRegInfo dbgdevid12[] = {
1039            {
1040                .name = "DBGDEVID1",
1041                .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1042                .access = PL1_R, .accessfn = access_tda,
1043                .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1044            }, {
1045                .name = "DBGDEVID2",
1046                .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1047                .access = PL1_R, .accessfn = access_tda,
1048                .type = ARM_CP_CONST, .resetvalue = 0,
1049            },
1050        };
1051        define_arm_cp_regs(cpu, dbgdevid12);
1052    }
1053
1054    brps = arm_num_brps(cpu);
1055    wrps = arm_num_wrps(cpu);
1056    ctx_cmps = arm_num_ctx_cmps(cpu);
1057
1058    assert(ctx_cmps <= brps);
1059
1060    define_arm_cp_regs(cpu, debug_cp_reginfo);
1061
1062    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1063        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1064    }
1065
1066    for (i = 0; i < brps; i++) {
1067        char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1068        char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1069        ARMCPRegInfo dbgregs[] = {
1070            { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1071              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1072              .access = PL1_RW, .accessfn = access_tda,
1073              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1074              .writefn = dbgbvr_write, .raw_writefn = raw_write
1075            },
1076            { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1077              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1078              .access = PL1_RW, .accessfn = access_tda,
1079              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1080              .writefn = dbgbcr_write, .raw_writefn = raw_write
1081            },
1082        };
1083        define_arm_cp_regs(cpu, dbgregs);
1084        g_free(dbgbvr_el1_name);
1085        g_free(dbgbcr_el1_name);
1086    }
1087
1088    for (i = 0; i < wrps; i++) {
1089        char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1090        char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1091        ARMCPRegInfo dbgregs[] = {
1092            { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1093              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1094              .access = PL1_RW, .accessfn = access_tda,
1095              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1096              .writefn = dbgwvr_write, .raw_writefn = raw_write
1097            },
1098            { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1099              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1100              .access = PL1_RW, .accessfn = access_tda,
1101              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1102              .writefn = dbgwcr_write, .raw_writefn = raw_write
1103            },
1104        };
1105        define_arm_cp_regs(cpu, dbgregs);
1106        g_free(dbgwvr_el1_name);
1107        g_free(dbgwcr_el1_name);
1108    }
1109}
1110
1111#if !defined(CONFIG_USER_ONLY)
1112
1113vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1114{
1115    ARMCPU *cpu = ARM_CPU(cs);
1116    CPUARMState *env = &cpu->env;
1117
1118    /*
1119     * In BE32 system mode, target memory is stored byteswapped (on a
1120     * little-endian host system), and by the time we reach here (via an
1121     * opcode helper) the addresses of subword accesses have been adjusted
1122     * to account for that, which means that watchpoints will not match.
1123     * Undo the adjustment here.
1124     */
1125    if (arm_sctlr_b(env)) {
1126        if (len == 1) {
1127            addr ^= 3;
1128        } else if (len == 2) {
1129            addr ^= 2;
1130        }
1131    }
1132
1133    return addr;
1134}
1135
1136#endif
1137