qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29#include "tcg/tcg-gvec-desc.h"
  30#include "syndrome.h"
  31
  32/* register banks for CPU modes */
  33#define BANK_USRSYS 0
  34#define BANK_SVC    1
  35#define BANK_ABT    2
  36#define BANK_UND    3
  37#define BANK_IRQ    4
  38#define BANK_FIQ    5
  39#define BANK_HYP    6
  40#define BANK_MON    7
  41
  42static inline bool excp_is_internal(int excp)
  43{
  44    /* Return true if this exception number represents a QEMU-internal
  45     * exception that will not be passed to the guest.
  46     */
  47    return excp == EXCP_INTERRUPT
  48        || excp == EXCP_HLT
  49        || excp == EXCP_DEBUG
  50        || excp == EXCP_HALTED
  51        || excp == EXCP_EXCEPTION_EXIT
  52        || excp == EXCP_KERNEL_TRAP
  53        || excp == EXCP_SEMIHOST;
  54}
  55
  56/* Scale factor for generic timers, ie number of ns per tick.
  57 * This gives a 62.5MHz timer.
  58 */
  59#define GTIMER_SCALE 16
  60
  61/* Bit definitions for the v7M CONTROL register */
  62FIELD(V7M_CONTROL, NPRIV, 0, 1)
  63FIELD(V7M_CONTROL, SPSEL, 1, 1)
  64FIELD(V7M_CONTROL, FPCA, 2, 1)
  65FIELD(V7M_CONTROL, SFPA, 3, 1)
  66
  67/* Bit definitions for v7M exception return payload */
  68FIELD(V7M_EXCRET, ES, 0, 1)
  69FIELD(V7M_EXCRET, RES0, 1, 1)
  70FIELD(V7M_EXCRET, SPSEL, 2, 1)
  71FIELD(V7M_EXCRET, MODE, 3, 1)
  72FIELD(V7M_EXCRET, FTYPE, 4, 1)
  73FIELD(V7M_EXCRET, DCRS, 5, 1)
  74FIELD(V7M_EXCRET, S, 6, 1)
  75FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  76
  77/* Minimum value which is a magic number for exception return */
  78#define EXC_RETURN_MIN_MAGIC 0xff000000
  79/* Minimum number which is a magic number for function or exception return
  80 * when using v8M security extension
  81 */
  82#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  83
  84/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
  85FIELD(DBGWCR, E, 0, 1)
  86FIELD(DBGWCR, PAC, 1, 2)
  87FIELD(DBGWCR, LSC, 3, 2)
  88FIELD(DBGWCR, BAS, 5, 8)
  89FIELD(DBGWCR, HMC, 13, 1)
  90FIELD(DBGWCR, SSC, 14, 2)
  91FIELD(DBGWCR, LBN, 16, 4)
  92FIELD(DBGWCR, WT, 20, 1)
  93FIELD(DBGWCR, MASK, 24, 5)
  94FIELD(DBGWCR, SSCE, 29, 1)
  95
  96/* We use a few fake FSR values for internal purposes in M profile.
  97 * M profile cores don't have A/R format FSRs, but currently our
  98 * get_phys_addr() code assumes A/R profile and reports failures via
  99 * an A/R format FSR value. We then translate that into the proper
 100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
 101 * Mostly the FSR values we use for this are those defined for v7PMSA,
 102 * since we share some of that codepath. A few kinds of fault are
 103 * only for M profile and have no A/R equivalent, though, so we have
 104 * to pick a value from the reserved range (which we never otherwise
 105 * generate) to use for these.
 106 * These values will never be visible to the guest.
 107 */
 108#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
 109#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
 110
 111/**
 112 * raise_exception: Raise the specified exception.
 113 * Raise a guest exception with the specified value, syndrome register
 114 * and target exception level. This should be called from helper functions,
 115 * and never returns because we will longjump back up to the CPU main loop.
 116 */
 117G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
 118                                uint32_t syndrome, uint32_t target_el);
 119
 120/*
 121 * Similarly, but also use unwinding to restore cpu state.
 122 */
 123G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
 124                                      uint32_t syndrome, uint32_t target_el,
 125                                      uintptr_t ra);
 126
 127/*
 128 * For AArch64, map a given EL to an index in the banked_spsr array.
 129 * Note that this mapping and the AArch32 mapping defined in bank_number()
 130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 131 * mandated mapping between each other.
 132 */
 133static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 134{
 135    static const unsigned int map[4] = {
 136        [1] = BANK_SVC, /* EL1.  */
 137        [2] = BANK_HYP, /* EL2.  */
 138        [3] = BANK_MON, /* EL3.  */
 139    };
 140    assert(el >= 1 && el <= 3);
 141    return map[el];
 142}
 143
 144/* Map CPU modes onto saved register banks.  */
 145static inline int bank_number(int mode)
 146{
 147    switch (mode) {
 148    case ARM_CPU_MODE_USR:
 149    case ARM_CPU_MODE_SYS:
 150        return BANK_USRSYS;
 151    case ARM_CPU_MODE_SVC:
 152        return BANK_SVC;
 153    case ARM_CPU_MODE_ABT:
 154        return BANK_ABT;
 155    case ARM_CPU_MODE_UND:
 156        return BANK_UND;
 157    case ARM_CPU_MODE_IRQ:
 158        return BANK_IRQ;
 159    case ARM_CPU_MODE_FIQ:
 160        return BANK_FIQ;
 161    case ARM_CPU_MODE_HYP:
 162        return BANK_HYP;
 163    case ARM_CPU_MODE_MON:
 164        return BANK_MON;
 165    }
 166    g_assert_not_reached();
 167}
 168
 169/**
 170 * r14_bank_number: Map CPU mode onto register bank for r14
 171 *
 172 * Given an AArch32 CPU mode, return the index into the saved register
 173 * banks to use for the R14 (LR) in that mode. This is the same as
 174 * bank_number(), except for the special case of Hyp mode, where
 175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 176 * This should be used as the index into env->banked_r14[], and
 177 * bank_number() used for the index into env->banked_r13[] and
 178 * env->banked_spsr[].
 179 */
 180static inline int r14_bank_number(int mode)
 181{
 182    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 183}
 184
 185void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 186void arm_translate_init(void);
 187
 188#ifdef CONFIG_TCG
 189void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
 190#endif /* CONFIG_TCG */
 191
 192enum arm_fprounding {
 193    FPROUNDING_TIEEVEN,
 194    FPROUNDING_POSINF,
 195    FPROUNDING_NEGINF,
 196    FPROUNDING_ZERO,
 197    FPROUNDING_TIEAWAY,
 198    FPROUNDING_ODD
 199};
 200
 201int arm_rmode_to_sf(int rmode);
 202
 203static inline void aarch64_save_sp(CPUARMState *env, int el)
 204{
 205    if (env->pstate & PSTATE_SP) {
 206        env->sp_el[el] = env->xregs[31];
 207    } else {
 208        env->sp_el[0] = env->xregs[31];
 209    }
 210}
 211
 212static inline void aarch64_restore_sp(CPUARMState *env, int el)
 213{
 214    if (env->pstate & PSTATE_SP) {
 215        env->xregs[31] = env->sp_el[el];
 216    } else {
 217        env->xregs[31] = env->sp_el[0];
 218    }
 219}
 220
 221static inline void update_spsel(CPUARMState *env, uint32_t imm)
 222{
 223    unsigned int cur_el = arm_current_el(env);
 224    /* Update PSTATE SPSel bit; this requires us to update the
 225     * working stack pointer in xregs[31].
 226     */
 227    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 228        return;
 229    }
 230    aarch64_save_sp(env, cur_el);
 231    env->pstate = deposit32(env->pstate, 0, 1, imm);
 232
 233    /* We rely on illegal updates to SPsel from EL0 to get trapped
 234     * at translation time.
 235     */
 236    assert(cur_el >= 1 && cur_el <= 3);
 237    aarch64_restore_sp(env, cur_el);
 238}
 239
 240/*
 241 * arm_pamax
 242 * @cpu: ARMCPU
 243 *
 244 * Returns the implementation defined bit-width of physical addresses.
 245 * The ARMv8 reference manuals refer to this as PAMax().
 246 */
 247unsigned int arm_pamax(ARMCPU *cpu);
 248
 249/* Return true if extended addresses are enabled.
 250 * This is always the case if our translation regime is 64 bit,
 251 * but depends on TTBCR.EAE for 32 bit.
 252 */
 253static inline bool extended_addresses_enabled(CPUARMState *env)
 254{
 255    uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 256    return arm_el_is_aa64(env, 1) ||
 257           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
 258}
 259
 260/* Update a QEMU watchpoint based on the information the guest has set in the
 261 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 262 */
 263void hw_watchpoint_update(ARMCPU *cpu, int n);
 264/* Update the QEMU watchpoints for every guest watchpoint. This does a
 265 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 266 * suitable for use after migration or on reset.
 267 */
 268void hw_watchpoint_update_all(ARMCPU *cpu);
 269/* Update a QEMU breakpoint based on the information the guest has set in the
 270 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 271 */
 272void hw_breakpoint_update(ARMCPU *cpu, int n);
 273/* Update the QEMU breakpoints for every guest breakpoint. This does a
 274 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 275 * suitable for use after migration or on reset.
 276 */
 277void hw_breakpoint_update_all(ARMCPU *cpu);
 278
 279/* Callback function for checking if a breakpoint should trigger. */
 280bool arm_debug_check_breakpoint(CPUState *cs);
 281
 282/* Callback function for checking if a watchpoint should trigger. */
 283bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 284
 285/* Adjust addresses (in BE32 mode) before testing against watchpoint
 286 * addresses.
 287 */
 288vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 289
 290/* Callback function for when a watchpoint or breakpoint triggers. */
 291void arm_debug_excp_handler(CPUState *cs);
 292
 293#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
 294static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 295{
 296    return false;
 297}
 298static inline void arm_handle_psci_call(ARMCPU *cpu)
 299{
 300    g_assert_not_reached();
 301}
 302#else
 303/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 304bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 305/* Actually handle a PSCI call */
 306void arm_handle_psci_call(ARMCPU *cpu);
 307#endif
 308
 309/**
 310 * arm_clear_exclusive: clear the exclusive monitor
 311 * @env: CPU env
 312 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 313 */
 314static inline void arm_clear_exclusive(CPUARMState *env)
 315{
 316    env->exclusive_addr = -1;
 317}
 318
 319/**
 320 * ARMFaultType: type of an ARM MMU fault
 321 * This corresponds to the v8A pseudocode's Fault enumeration,
 322 * with extensions for QEMU internal conditions.
 323 */
 324typedef enum ARMFaultType {
 325    ARMFault_None,
 326    ARMFault_AccessFlag,
 327    ARMFault_Alignment,
 328    ARMFault_Background,
 329    ARMFault_Domain,
 330    ARMFault_Permission,
 331    ARMFault_Translation,
 332    ARMFault_AddressSize,
 333    ARMFault_SyncExternal,
 334    ARMFault_SyncExternalOnWalk,
 335    ARMFault_SyncParity,
 336    ARMFault_SyncParityOnWalk,
 337    ARMFault_AsyncParity,
 338    ARMFault_AsyncExternal,
 339    ARMFault_Debug,
 340    ARMFault_TLBConflict,
 341    ARMFault_Lockdown,
 342    ARMFault_Exclusive,
 343    ARMFault_ICacheMaint,
 344    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 345    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 346} ARMFaultType;
 347
 348/**
 349 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 350 * @type: Type of fault
 351 * @level: Table walk level (for translation, access flag and permission faults)
 352 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 353 * @s2addr: Address that caused a fault at stage 2
 354 * @stage2: True if we faulted at stage 2
 355 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 356 * @s1ns: True if we faulted on a non-secure IPA while in secure state
 357 * @ea: True if we should set the EA (external abort type) bit in syndrome
 358 */
 359typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 360struct ARMMMUFaultInfo {
 361    ARMFaultType type;
 362    target_ulong s2addr;
 363    int level;
 364    int domain;
 365    bool stage2;
 366    bool s1ptw;
 367    bool s1ns;
 368    bool ea;
 369};
 370
 371/**
 372 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 373 * Compare pseudocode EncodeSDFSC(), though unlike that function
 374 * we set up a whole FSR-format code including domain field and
 375 * putting the high bit of the FSC into bit 10.
 376 */
 377static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 378{
 379    uint32_t fsc;
 380
 381    switch (fi->type) {
 382    case ARMFault_None:
 383        return 0;
 384    case ARMFault_AccessFlag:
 385        fsc = fi->level == 1 ? 0x3 : 0x6;
 386        break;
 387    case ARMFault_Alignment:
 388        fsc = 0x1;
 389        break;
 390    case ARMFault_Permission:
 391        fsc = fi->level == 1 ? 0xd : 0xf;
 392        break;
 393    case ARMFault_Domain:
 394        fsc = fi->level == 1 ? 0x9 : 0xb;
 395        break;
 396    case ARMFault_Translation:
 397        fsc = fi->level == 1 ? 0x5 : 0x7;
 398        break;
 399    case ARMFault_SyncExternal:
 400        fsc = 0x8 | (fi->ea << 12);
 401        break;
 402    case ARMFault_SyncExternalOnWalk:
 403        fsc = fi->level == 1 ? 0xc : 0xe;
 404        fsc |= (fi->ea << 12);
 405        break;
 406    case ARMFault_SyncParity:
 407        fsc = 0x409;
 408        break;
 409    case ARMFault_SyncParityOnWalk:
 410        fsc = fi->level == 1 ? 0x40c : 0x40e;
 411        break;
 412    case ARMFault_AsyncParity:
 413        fsc = 0x408;
 414        break;
 415    case ARMFault_AsyncExternal:
 416        fsc = 0x406 | (fi->ea << 12);
 417        break;
 418    case ARMFault_Debug:
 419        fsc = 0x2;
 420        break;
 421    case ARMFault_TLBConflict:
 422        fsc = 0x400;
 423        break;
 424    case ARMFault_Lockdown:
 425        fsc = 0x404;
 426        break;
 427    case ARMFault_Exclusive:
 428        fsc = 0x405;
 429        break;
 430    case ARMFault_ICacheMaint:
 431        fsc = 0x4;
 432        break;
 433    case ARMFault_Background:
 434        fsc = 0x0;
 435        break;
 436    case ARMFault_QEMU_NSCExec:
 437        fsc = M_FAKE_FSR_NSC_EXEC;
 438        break;
 439    case ARMFault_QEMU_SFault:
 440        fsc = M_FAKE_FSR_SFAULT;
 441        break;
 442    default:
 443        /* Other faults can't occur in a context that requires a
 444         * short-format status code.
 445         */
 446        g_assert_not_reached();
 447    }
 448
 449    fsc |= (fi->domain << 4);
 450    return fsc;
 451}
 452
 453/**
 454 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 455 * Compare pseudocode EncodeLDFSC(), though unlike that function
 456 * we fill in also the LPAE bit 9 of a DFSR format.
 457 */
 458static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 459{
 460    uint32_t fsc;
 461
 462    switch (fi->type) {
 463    case ARMFault_None:
 464        return 0;
 465    case ARMFault_AddressSize:
 466        assert(fi->level >= -1 && fi->level <= 3);
 467        if (fi->level < 0) {
 468            fsc = 0b101001;
 469        } else {
 470            fsc = fi->level;
 471        }
 472        break;
 473    case ARMFault_AccessFlag:
 474        assert(fi->level >= 0 && fi->level <= 3);
 475        fsc = 0b001000 | fi->level;
 476        break;
 477    case ARMFault_Permission:
 478        assert(fi->level >= 0 && fi->level <= 3);
 479        fsc = 0b001100 | fi->level;
 480        break;
 481    case ARMFault_Translation:
 482        assert(fi->level >= -1 && fi->level <= 3);
 483        if (fi->level < 0) {
 484            fsc = 0b101011;
 485        } else {
 486            fsc = 0b000100 | fi->level;
 487        }
 488        break;
 489    case ARMFault_SyncExternal:
 490        fsc = 0x10 | (fi->ea << 12);
 491        break;
 492    case ARMFault_SyncExternalOnWalk:
 493        assert(fi->level >= -1 && fi->level <= 3);
 494        if (fi->level < 0) {
 495            fsc = 0b010011;
 496        } else {
 497            fsc = 0b010100 | fi->level;
 498        }
 499        fsc |= fi->ea << 12;
 500        break;
 501    case ARMFault_SyncParity:
 502        fsc = 0x18;
 503        break;
 504    case ARMFault_SyncParityOnWalk:
 505        assert(fi->level >= -1 && fi->level <= 3);
 506        if (fi->level < 0) {
 507            fsc = 0b011011;
 508        } else {
 509            fsc = 0b011100 | fi->level;
 510        }
 511        break;
 512    case ARMFault_AsyncParity:
 513        fsc = 0x19;
 514        break;
 515    case ARMFault_AsyncExternal:
 516        fsc = 0x11 | (fi->ea << 12);
 517        break;
 518    case ARMFault_Alignment:
 519        fsc = 0x21;
 520        break;
 521    case ARMFault_Debug:
 522        fsc = 0x22;
 523        break;
 524    case ARMFault_TLBConflict:
 525        fsc = 0x30;
 526        break;
 527    case ARMFault_Lockdown:
 528        fsc = 0x34;
 529        break;
 530    case ARMFault_Exclusive:
 531        fsc = 0x35;
 532        break;
 533    default:
 534        /* Other faults can't occur in a context that requires a
 535         * long-format status code.
 536         */
 537        g_assert_not_reached();
 538    }
 539
 540    fsc |= 1 << 9;
 541    return fsc;
 542}
 543
 544static inline bool arm_extabort_type(MemTxResult result)
 545{
 546    /* The EA bit in syndromes and fault status registers is an
 547     * IMPDEF classification of external aborts. ARM implementations
 548     * usually use this to indicate AXI bus Decode error (0) or
 549     * Slave error (1); in QEMU we follow that.
 550     */
 551    return result != MEMTX_DECODE_ERROR;
 552}
 553
 554#ifdef CONFIG_USER_ONLY
 555void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
 556                            MMUAccessType access_type,
 557                            bool maperr, uintptr_t ra);
 558void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
 559                           MMUAccessType access_type, uintptr_t ra);
 560#else
 561bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 562                      MMUAccessType access_type, int mmu_idx,
 563                      bool probe, uintptr_t retaddr);
 564#endif
 565
 566static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 567{
 568    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 569}
 570
 571static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 572{
 573    if (arm_feature(env, ARM_FEATURE_M)) {
 574        return mmu_idx | ARM_MMU_IDX_M;
 575    } else {
 576        return mmu_idx | ARM_MMU_IDX_A;
 577    }
 578}
 579
 580static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
 581{
 582    /* AArch64 is always a-profile. */
 583    return mmu_idx | ARM_MMU_IDX_A;
 584}
 585
 586int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
 587
 588/*
 589 * Return the MMU index for a v7M CPU with all relevant information
 590 * manually specified.
 591 */
 592ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
 593                              bool secstate, bool priv, bool negpri);
 594
 595/*
 596 * Return the MMU index for a v7M CPU in the specified security and
 597 * privilege state.
 598 */
 599ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 600                                                bool secstate, bool priv);
 601
 602/* Return the MMU index for a v7M CPU in the specified security state */
 603ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
 604
 605/* Return true if the translation regime is using LPAE format page tables */
 606bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 607
 608/*
 609 * Return true if the stage 1 translation regime is using LPAE
 610 * format page tables
 611 */
 612bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 613
 614/* Raise a data fault alignment exception for the specified virtual address */
 615G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 616                                            MMUAccessType access_type,
 617                                            int mmu_idx, uintptr_t retaddr);
 618
 619/* arm_cpu_do_transaction_failed: handle a memory system error response
 620 * (eg "no device/memory present at address") by raising an external abort
 621 * exception
 622 */
 623void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 624                                   vaddr addr, unsigned size,
 625                                   MMUAccessType access_type,
 626                                   int mmu_idx, MemTxAttrs attrs,
 627                                   MemTxResult response, uintptr_t retaddr);
 628
 629/* Call any registered EL change hooks */
 630static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 631{
 632    ARMELChangeHook *hook, *next;
 633    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 634        hook->hook(cpu, hook->opaque);
 635    }
 636}
 637static inline void arm_call_el_change_hook(ARMCPU *cpu)
 638{
 639    ARMELChangeHook *hook, *next;
 640    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 641        hook->hook(cpu, hook->opaque);
 642    }
 643}
 644
 645/* Return true if this address translation regime has two ranges.  */
 646static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
 647{
 648    switch (mmu_idx) {
 649    case ARMMMUIdx_Stage1_E0:
 650    case ARMMMUIdx_Stage1_E1:
 651    case ARMMMUIdx_Stage1_E1_PAN:
 652    case ARMMMUIdx_Stage1_SE0:
 653    case ARMMMUIdx_Stage1_SE1:
 654    case ARMMMUIdx_Stage1_SE1_PAN:
 655    case ARMMMUIdx_E10_0:
 656    case ARMMMUIdx_E10_1:
 657    case ARMMMUIdx_E10_1_PAN:
 658    case ARMMMUIdx_E20_0:
 659    case ARMMMUIdx_E20_2:
 660    case ARMMMUIdx_E20_2_PAN:
 661    case ARMMMUIdx_SE10_0:
 662    case ARMMMUIdx_SE10_1:
 663    case ARMMMUIdx_SE10_1_PAN:
 664    case ARMMMUIdx_SE20_0:
 665    case ARMMMUIdx_SE20_2:
 666    case ARMMMUIdx_SE20_2_PAN:
 667        return true;
 668    default:
 669        return false;
 670    }
 671}
 672
 673/* Return true if this address translation regime is secure */
 674static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 675{
 676    switch (mmu_idx) {
 677    case ARMMMUIdx_E10_0:
 678    case ARMMMUIdx_E10_1:
 679    case ARMMMUIdx_E10_1_PAN:
 680    case ARMMMUIdx_E20_0:
 681    case ARMMMUIdx_E20_2:
 682    case ARMMMUIdx_E20_2_PAN:
 683    case ARMMMUIdx_Stage1_E0:
 684    case ARMMMUIdx_Stage1_E1:
 685    case ARMMMUIdx_Stage1_E1_PAN:
 686    case ARMMMUIdx_E2:
 687    case ARMMMUIdx_Stage2:
 688    case ARMMMUIdx_MPrivNegPri:
 689    case ARMMMUIdx_MUserNegPri:
 690    case ARMMMUIdx_MPriv:
 691    case ARMMMUIdx_MUser:
 692        return false;
 693    case ARMMMUIdx_SE3:
 694    case ARMMMUIdx_SE10_0:
 695    case ARMMMUIdx_SE10_1:
 696    case ARMMMUIdx_SE10_1_PAN:
 697    case ARMMMUIdx_SE20_0:
 698    case ARMMMUIdx_SE20_2:
 699    case ARMMMUIdx_SE20_2_PAN:
 700    case ARMMMUIdx_Stage1_SE0:
 701    case ARMMMUIdx_Stage1_SE1:
 702    case ARMMMUIdx_Stage1_SE1_PAN:
 703    case ARMMMUIdx_SE2:
 704    case ARMMMUIdx_Stage2_S:
 705    case ARMMMUIdx_MSPrivNegPri:
 706    case ARMMMUIdx_MSUserNegPri:
 707    case ARMMMUIdx_MSPriv:
 708    case ARMMMUIdx_MSUser:
 709        return true;
 710    default:
 711        g_assert_not_reached();
 712    }
 713}
 714
 715static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
 716{
 717    switch (mmu_idx) {
 718    case ARMMMUIdx_Stage1_E1_PAN:
 719    case ARMMMUIdx_Stage1_SE1_PAN:
 720    case ARMMMUIdx_E10_1_PAN:
 721    case ARMMMUIdx_E20_2_PAN:
 722    case ARMMMUIdx_SE10_1_PAN:
 723    case ARMMMUIdx_SE20_2_PAN:
 724        return true;
 725    default:
 726        return false;
 727    }
 728}
 729
 730/* Return the exception level which controls this address translation regime */
 731static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 732{
 733    switch (mmu_idx) {
 734    case ARMMMUIdx_SE20_0:
 735    case ARMMMUIdx_SE20_2:
 736    case ARMMMUIdx_SE20_2_PAN:
 737    case ARMMMUIdx_E20_0:
 738    case ARMMMUIdx_E20_2:
 739    case ARMMMUIdx_E20_2_PAN:
 740    case ARMMMUIdx_Stage2:
 741    case ARMMMUIdx_Stage2_S:
 742    case ARMMMUIdx_SE2:
 743    case ARMMMUIdx_E2:
 744        return 2;
 745    case ARMMMUIdx_SE3:
 746        return 3;
 747    case ARMMMUIdx_SE10_0:
 748    case ARMMMUIdx_Stage1_SE0:
 749        return arm_el_is_aa64(env, 3) ? 1 : 3;
 750    case ARMMMUIdx_SE10_1:
 751    case ARMMMUIdx_SE10_1_PAN:
 752    case ARMMMUIdx_Stage1_E0:
 753    case ARMMMUIdx_Stage1_E1:
 754    case ARMMMUIdx_Stage1_E1_PAN:
 755    case ARMMMUIdx_Stage1_SE1:
 756    case ARMMMUIdx_Stage1_SE1_PAN:
 757    case ARMMMUIdx_E10_0:
 758    case ARMMMUIdx_E10_1:
 759    case ARMMMUIdx_E10_1_PAN:
 760    case ARMMMUIdx_MPrivNegPri:
 761    case ARMMMUIdx_MUserNegPri:
 762    case ARMMMUIdx_MPriv:
 763    case ARMMMUIdx_MUser:
 764    case ARMMMUIdx_MSPrivNegPri:
 765    case ARMMMUIdx_MSUserNegPri:
 766    case ARMMMUIdx_MSPriv:
 767    case ARMMMUIdx_MSUser:
 768        return 1;
 769    default:
 770        g_assert_not_reached();
 771    }
 772}
 773
 774/* Return the SCTLR value which controls this address translation regime */
 775static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 776{
 777    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 778}
 779
 780/*
 781 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
 782 * and the Non-Secure stage 2 translation regimes (and hence which are
 783 * not present in VSTCR_EL2).
 784 */
 785#define VTCR_SHARED_FIELD_MASK \
 786    (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
 787     R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
 788     R_VTCR_DS_MASK)
 789
 790/* Return the value of the TCR controlling this translation regime */
 791static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 792{
 793    if (mmu_idx == ARMMMUIdx_Stage2) {
 794        return env->cp15.vtcr_el2;
 795    }
 796    if (mmu_idx == ARMMMUIdx_Stage2_S) {
 797        /*
 798         * Secure stage 2 shares fields from VTCR_EL2. We merge those
 799         * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
 800         * value so the callers don't need to special case this.
 801         *
 802         * If a future architecture change defines bits in VSTCR_EL2 that
 803         * overlap with these VTCR_EL2 fields we may need to revisit this.
 804         */
 805        uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
 806        v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
 807        return v;
 808    }
 809    return env->cp15.tcr_el[regime_el(env, mmu_idx)];
 810}
 811
 812/**
 813 * arm_num_brps: Return number of implemented breakpoints.
 814 * Note that the ID register BRPS field is "number of bps - 1",
 815 * and we return the actual number of breakpoints.
 816 */
 817static inline int arm_num_brps(ARMCPU *cpu)
 818{
 819    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 820        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
 821    } else {
 822        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
 823    }
 824}
 825
 826/**
 827 * arm_num_wrps: Return number of implemented watchpoints.
 828 * Note that the ID register WRPS field is "number of wps - 1",
 829 * and we return the actual number of watchpoints.
 830 */
 831static inline int arm_num_wrps(ARMCPU *cpu)
 832{
 833    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 834        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
 835    } else {
 836        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
 837    }
 838}
 839
 840/**
 841 * arm_num_ctx_cmps: Return number of implemented context comparators.
 842 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
 843 * and we return the actual number of comparators.
 844 */
 845static inline int arm_num_ctx_cmps(ARMCPU *cpu)
 846{
 847    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 848        return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
 849    } else {
 850        return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
 851    }
 852}
 853
 854/**
 855 * v7m_using_psp: Return true if using process stack pointer
 856 * Return true if the CPU is currently using the process stack
 857 * pointer, or false if it is using the main stack pointer.
 858 */
 859static inline bool v7m_using_psp(CPUARMState *env)
 860{
 861    /* Handler mode always uses the main stack; for thread mode
 862     * the CONTROL.SPSEL bit determines the answer.
 863     * Note that in v7M it is not possible to be in Handler mode with
 864     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 865     */
 866    return !arm_v7m_is_handler_mode(env) &&
 867        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 868}
 869
 870/**
 871 * v7m_sp_limit: Return SP limit for current CPU state
 872 * Return the SP limit value for the current CPU security state
 873 * and stack pointer.
 874 */
 875static inline uint32_t v7m_sp_limit(CPUARMState *env)
 876{
 877    if (v7m_using_psp(env)) {
 878        return env->v7m.psplim[env->v7m.secure];
 879    } else {
 880        return env->v7m.msplim[env->v7m.secure];
 881    }
 882}
 883
 884/**
 885 * v7m_cpacr_pass:
 886 * Return true if the v7M CPACR permits access to the FPU for the specified
 887 * security state and privilege level.
 888 */
 889static inline bool v7m_cpacr_pass(CPUARMState *env,
 890                                  bool is_secure, bool is_priv)
 891{
 892    switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
 893    case 0:
 894    case 2: /* UNPREDICTABLE: we treat like 0 */
 895        return false;
 896    case 1:
 897        return is_priv;
 898    case 3:
 899        return true;
 900    default:
 901        g_assert_not_reached();
 902    }
 903}
 904
 905/**
 906 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 907 * @psr: Program Status Register indicating CPU mode
 908 *
 909 * Returns, for debug logging purposes, a printable representation
 910 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 911 * the low bits of the specified PSR.
 912 */
 913static inline const char *aarch32_mode_name(uint32_t psr)
 914{
 915    static const char cpu_mode_names[16][4] = {
 916        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 917        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 918    };
 919
 920    return cpu_mode_names[psr & 0xf];
 921}
 922
 923/**
 924 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 925 *
 926 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 927 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 928 * Must be called with the iothread lock held.
 929 */
 930void arm_cpu_update_virq(ARMCPU *cpu);
 931
 932/**
 933 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 934 *
 935 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 936 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 937 * Must be called with the iothread lock held.
 938 */
 939void arm_cpu_update_vfiq(ARMCPU *cpu);
 940
 941/**
 942 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
 943 *
 944 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
 945 * following a change to the HCR_EL2.VSE bit.
 946 */
 947void arm_cpu_update_vserr(ARMCPU *cpu);
 948
 949/**
 950 * arm_mmu_idx_el:
 951 * @env: The cpu environment
 952 * @el: The EL to use.
 953 *
 954 * Return the full ARMMMUIdx for the translation regime for EL.
 955 */
 956ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
 957
 958/**
 959 * arm_mmu_idx:
 960 * @env: The cpu environment
 961 *
 962 * Return the full ARMMMUIdx for the current translation regime.
 963 */
 964ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 965
 966/**
 967 * arm_stage1_mmu_idx:
 968 * @env: The cpu environment
 969 *
 970 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 971 */
 972#ifdef CONFIG_USER_ONLY
 973static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
 974{
 975    return ARMMMUIdx_Stage1_E0;
 976}
 977static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 978{
 979    return ARMMMUIdx_Stage1_E0;
 980}
 981#else
 982ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
 983ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 984#endif
 985
 986/**
 987 * arm_mmu_idx_is_stage1_of_2:
 988 * @mmu_idx: The ARMMMUIdx to test
 989 *
 990 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
 991 * first stage of a two stage regime.
 992 */
 993static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
 994{
 995    switch (mmu_idx) {
 996    case ARMMMUIdx_Stage1_E0:
 997    case ARMMMUIdx_Stage1_E1:
 998    case ARMMMUIdx_Stage1_E1_PAN:
 999    case ARMMMUIdx_Stage1_SE0:
1000    case ARMMMUIdx_Stage1_SE1:
1001    case ARMMMUIdx_Stage1_SE1_PAN:
1002        return true;
1003    default:
1004        return false;
1005    }
1006}
1007
1008static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1009                                               const ARMISARegisters *id)
1010{
1011    uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1012
1013    if ((features >> ARM_FEATURE_V4T) & 1) {
1014        valid |= CPSR_T;
1015    }
1016    if ((features >> ARM_FEATURE_V5) & 1) {
1017        valid |= CPSR_Q; /* V5TE in reality*/
1018    }
1019    if ((features >> ARM_FEATURE_V6) & 1) {
1020        valid |= CPSR_E | CPSR_GE;
1021    }
1022    if ((features >> ARM_FEATURE_THUMB2) & 1) {
1023        valid |= CPSR_IT;
1024    }
1025    if (isar_feature_aa32_jazelle(id)) {
1026        valid |= CPSR_J;
1027    }
1028    if (isar_feature_aa32_pan(id)) {
1029        valid |= CPSR_PAN;
1030    }
1031    if (isar_feature_aa32_dit(id)) {
1032        valid |= CPSR_DIT;
1033    }
1034    if (isar_feature_aa32_ssbs(id)) {
1035        valid |= CPSR_SSBS;
1036    }
1037
1038    return valid;
1039}
1040
1041static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1042{
1043    uint32_t valid;
1044
1045    valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1046    if (isar_feature_aa64_bti(id)) {
1047        valid |= PSTATE_BTYPE;
1048    }
1049    if (isar_feature_aa64_pan(id)) {
1050        valid |= PSTATE_PAN;
1051    }
1052    if (isar_feature_aa64_uao(id)) {
1053        valid |= PSTATE_UAO;
1054    }
1055    if (isar_feature_aa64_dit(id)) {
1056        valid |= PSTATE_DIT;
1057    }
1058    if (isar_feature_aa64_ssbs(id)) {
1059        valid |= PSTATE_SSBS;
1060    }
1061    if (isar_feature_aa64_mte(id)) {
1062        valid |= PSTATE_TCO;
1063    }
1064
1065    return valid;
1066}
1067
1068/*
1069 * Parameters of a given virtual address, as extracted from the
1070 * translation control register (TCR) for a given regime.
1071 */
1072typedef struct ARMVAParameters {
1073    unsigned tsz    : 8;
1074    unsigned ps     : 3;
1075    unsigned sh     : 2;
1076    unsigned select : 1;
1077    bool tbi        : 1;
1078    bool epd        : 1;
1079    bool hpd        : 1;
1080    bool using16k   : 1;
1081    bool using64k   : 1;
1082    bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1083    bool ds         : 1;
1084} ARMVAParameters;
1085
1086ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1087                                   ARMMMUIdx mmu_idx, bool data);
1088
1089int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1090int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1091
1092/* Determine if allocation tags are available.  */
1093static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1094                                                 uint64_t sctlr)
1095{
1096    if (el < 3
1097        && arm_feature(env, ARM_FEATURE_EL3)
1098        && !(env->cp15.scr_el3 & SCR_ATA)) {
1099        return false;
1100    }
1101    if (el < 2 && arm_is_el2_enabled(env)) {
1102        uint64_t hcr = arm_hcr_el2_eff(env);
1103        if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1104            return false;
1105        }
1106    }
1107    sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1108    return sctlr != 0;
1109}
1110
1111#ifndef CONFIG_USER_ONLY
1112
1113/* Security attributes for an address, as returned by v8m_security_lookup. */
1114typedef struct V8M_SAttributes {
1115    bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1116    bool ns;
1117    bool nsc;
1118    uint8_t sregion;
1119    bool srvalid;
1120    uint8_t iregion;
1121    bool irvalid;
1122} V8M_SAttributes;
1123
1124void v8m_security_lookup(CPUARMState *env, uint32_t address,
1125                         MMUAccessType access_type, ARMMMUIdx mmu_idx,
1126                         V8M_SAttributes *sattrs);
1127
1128bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1129                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
1130                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
1131                       int *prot, bool *is_subpage,
1132                       ARMMMUFaultInfo *fi, uint32_t *mregion);
1133
1134/* Cacheability and shareability attributes for a memory access */
1135typedef struct ARMCacheAttrs {
1136    /*
1137     * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1138     * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1139     */
1140    unsigned int attrs:8;
1141    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1142    bool is_s2_format:1;
1143} ARMCacheAttrs;
1144
1145bool get_phys_addr(CPUARMState *env, target_ulong address,
1146                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
1147                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1148                   target_ulong *page_size,
1149                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1150    __attribute__((nonnull));
1151
1152void arm_log_exception(CPUState *cs);
1153
1154#endif /* !CONFIG_USER_ONLY */
1155
1156/*
1157 * The log2 of the words in the tag block, for GMID_EL1.BS.
1158 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1159 */
1160#define GMID_EL1_BS  6
1161
1162/* We associate one allocation tag per 16 bytes, the minimum.  */
1163#define LOG2_TAG_GRANULE 4
1164#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1165
1166/*
1167 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1168 * the same simd_desc() encoding due to restrictions on size.
1169 * Use these instead.
1170 */
1171FIELD(PREDDESC, OPRSZ, 0, 6)
1172FIELD(PREDDESC, ESZ, 6, 2)
1173FIELD(PREDDESC, DATA, 8, 24)
1174
1175/*
1176 * The SVE simd_data field, for memory ops, contains either
1177 * rd (5 bits) or a shift count (2 bits).
1178 */
1179#define SVE_MTEDESC_SHIFT 5
1180
1181/* Bits within a descriptor passed to the helper_mte_check* functions. */
1182FIELD(MTEDESC, MIDX,  0, 4)
1183FIELD(MTEDESC, TBI,   4, 2)
1184FIELD(MTEDESC, TCMA,  6, 2)
1185FIELD(MTEDESC, WRITE, 8, 1)
1186FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1187
1188bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1189uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1190
1191static inline int allocation_tag_from_addr(uint64_t ptr)
1192{
1193    return extract64(ptr, 56, 4);
1194}
1195
1196static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1197{
1198    return deposit64(ptr, 56, 4, rtag);
1199}
1200
1201/* Return true if tbi bits mean that the access is checked.  */
1202static inline bool tbi_check(uint32_t desc, int bit55)
1203{
1204    return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1205}
1206
1207/* Return true if tcma bits mean that the access is unchecked.  */
1208static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1209{
1210    /*
1211     * We had extracted bit55 and ptr_tag for other reasons, so fold
1212     * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1213     */
1214    bool match = ((ptr_tag + bit55) & 0xf) == 0;
1215    bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1216    return tcma && match;
1217}
1218
1219/*
1220 * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1221 * for the tag to be present in the FAR_ELx register.  But for user-only
1222 * mode, we do not have a TLB with which to implement this, so we must
1223 * remove the top byte.
1224 */
1225static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1226{
1227#ifdef CONFIG_USER_ONLY
1228    /* TBI0 is known to be enabled, while TBI1 is disabled. */
1229    ptr &= sextract64(ptr, 0, 56);
1230#endif
1231    return ptr;
1232}
1233
1234static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1235{
1236#ifdef CONFIG_USER_ONLY
1237    int64_t clean_ptr = sextract64(ptr, 0, 56);
1238    if (tbi_check(desc, clean_ptr < 0)) {
1239        ptr = clean_ptr;
1240    }
1241#endif
1242    return ptr;
1243}
1244
1245/* Values for M-profile PSR.ECI for MVE insns */
1246enum MVEECIState {
1247    ECI_NONE = 0, /* No completed beats */
1248    ECI_A0 = 1, /* Completed: A0 */
1249    ECI_A0A1 = 2, /* Completed: A0, A1 */
1250    /* 3 is reserved */
1251    ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1252    ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1253    /* All other values reserved */
1254};
1255
1256/* Definitions for the PMU registers */
1257#define PMCRN_MASK  0xf800
1258#define PMCRN_SHIFT 11
1259#define PMCRLC  0x40
1260#define PMCRDP  0x20
1261#define PMCRX   0x10
1262#define PMCRD   0x8
1263#define PMCRC   0x4
1264#define PMCRP   0x2
1265#define PMCRE   0x1
1266/*
1267 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1268 * which can be written as 1 to trigger behaviour but which stay RAZ).
1269 */
1270#define PMCR_WRITABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1271
1272#define PMXEVTYPER_P          0x80000000
1273#define PMXEVTYPER_U          0x40000000
1274#define PMXEVTYPER_NSK        0x20000000
1275#define PMXEVTYPER_NSU        0x10000000
1276#define PMXEVTYPER_NSH        0x08000000
1277#define PMXEVTYPER_M          0x04000000
1278#define PMXEVTYPER_MT         0x02000000
1279#define PMXEVTYPER_EVTCOUNT   0x0000ffff
1280#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1281                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1282                               PMXEVTYPER_M | PMXEVTYPER_MT | \
1283                               PMXEVTYPER_EVTCOUNT)
1284
1285#define PMCCFILTR             0xf8000000
1286#define PMCCFILTR_M           PMXEVTYPER_M
1287#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1288
1289static inline uint32_t pmu_num_counters(CPUARMState *env)
1290{
1291    ARMCPU *cpu = env_archcpu(env);
1292
1293    return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1294}
1295
1296/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1297static inline uint64_t pmu_counter_mask(CPUARMState *env)
1298{
1299  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1300}
1301
1302#ifdef TARGET_AARCH64
1303int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1304int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1305int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1306int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1307void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1308void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1309void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1310void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1311#endif
1312
1313#ifdef CONFIG_USER_ONLY
1314static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1315#else
1316void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1317#endif
1318
1319bool el_is_in_host(CPUARMState *env, int el);
1320
1321void aa32_max_features(ARMCPU *cpu);
1322int exception_target_el(CPUARMState *env);
1323bool arm_singlestep_active(CPUARMState *env);
1324bool arm_generate_debug_exceptions(CPUARMState *env);
1325
1326/* Add the cpreg definitions for debug related system registers */
1327void define_debug_regs(ARMCPU *cpu);
1328
1329/* Effective value of MDCR_EL2 */
1330static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1331{
1332    return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1333}
1334
1335/* Powers of 2 for sve_vq_map et al. */
1336#define SVE_VQ_POW2_MAP                                 \
1337    ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1338     (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1339
1340#endif
1341