qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu/timer.h"
  17#include "qemu/error-report.h"
  18#include "qemu/main-loop.h"
  19#include "qom/object.h"
  20#include "qapi/error.h"
  21#include "sysemu/sysemu.h"
  22#include "sysemu/kvm.h"
  23#include "sysemu/kvm_int.h"
  24#include "kvm_arm.h"
  25#include "cpu.h"
  26#include "trace.h"
  27#include "internals.h"
  28#include "hw/pci/pci.h"
  29#include "exec/memattrs.h"
  30#include "exec/address-spaces.h"
  31#include "hw/boards.h"
  32#include "hw/irq.h"
  33#include "qemu/log.h"
  34
  35const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  36    KVM_CAP_LAST_INFO
  37};
  38
  39static bool cap_has_mp_state;
  40static bool cap_has_inject_serror_esr;
  41static bool cap_has_inject_ext_dabt;
  42
  43static ARMHostCPUFeatures arm_host_cpu_features;
  44
  45int kvm_arm_vcpu_init(CPUState *cs)
  46{
  47    ARMCPU *cpu = ARM_CPU(cs);
  48    struct kvm_vcpu_init init;
  49
  50    init.target = cpu->kvm_target;
  51    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  52
  53    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  54}
  55
  56int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
  57{
  58    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
  59}
  60
  61void kvm_arm_init_serror_injection(CPUState *cs)
  62{
  63    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  64                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  65}
  66
  67bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  68                                      int *fdarray,
  69                                      struct kvm_vcpu_init *init)
  70{
  71    int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
  72    int max_vm_pa_size;
  73
  74    kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
  75    if (kvmfd < 0) {
  76        goto err;
  77    }
  78    max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
  79    if (max_vm_pa_size < 0) {
  80        max_vm_pa_size = 0;
  81    }
  82    vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
  83    if (vmfd < 0) {
  84        goto err;
  85    }
  86    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  87    if (cpufd < 0) {
  88        goto err;
  89    }
  90
  91    if (!init) {
  92        /* Caller doesn't want the VCPU to be initialized, so skip it */
  93        goto finish;
  94    }
  95
  96    if (init->target == -1) {
  97        struct kvm_vcpu_init preferred;
  98
  99        ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
 100        if (!ret) {
 101            init->target = preferred.target;
 102        }
 103    }
 104    if (ret >= 0) {
 105        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 106        if (ret < 0) {
 107            goto err;
 108        }
 109    } else if (cpus_to_try) {
 110        /* Old kernel which doesn't know about the
 111         * PREFERRED_TARGET ioctl: we know it will only support
 112         * creating one kind of guest CPU which is its preferred
 113         * CPU type.
 114         */
 115        struct kvm_vcpu_init try;
 116
 117        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 118            try.target = *cpus_to_try++;
 119            memcpy(try.features, init->features, sizeof(init->features));
 120            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
 121            if (ret >= 0) {
 122                break;
 123            }
 124        }
 125        if (ret < 0) {
 126            goto err;
 127        }
 128        init->target = try.target;
 129    } else {
 130        /* Treat a NULL cpus_to_try argument the same as an empty
 131         * list, which means we will fail the call since this must
 132         * be an old kernel which doesn't support PREFERRED_TARGET.
 133         */
 134        goto err;
 135    }
 136
 137finish:
 138    fdarray[0] = kvmfd;
 139    fdarray[1] = vmfd;
 140    fdarray[2] = cpufd;
 141
 142    return true;
 143
 144err:
 145    if (cpufd >= 0) {
 146        close(cpufd);
 147    }
 148    if (vmfd >= 0) {
 149        close(vmfd);
 150    }
 151    if (kvmfd >= 0) {
 152        close(kvmfd);
 153    }
 154
 155    return false;
 156}
 157
 158void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 159{
 160    int i;
 161
 162    for (i = 2; i >= 0; i--) {
 163        close(fdarray[i]);
 164    }
 165}
 166
 167void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 168{
 169    CPUARMState *env = &cpu->env;
 170
 171    if (!arm_host_cpu_features.dtb_compatible) {
 172        if (!kvm_enabled() ||
 173            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 174            /* We can't report this error yet, so flag that we need to
 175             * in arm_cpu_realizefn().
 176             */
 177            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 178            cpu->host_cpu_probe_failed = true;
 179            return;
 180        }
 181    }
 182
 183    cpu->kvm_target = arm_host_cpu_features.target;
 184    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 185    cpu->isar = arm_host_cpu_features.isar;
 186    env->features = arm_host_cpu_features.features;
 187}
 188
 189static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
 190{
 191    return !ARM_CPU(obj)->kvm_adjvtime;
 192}
 193
 194static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
 195{
 196    ARM_CPU(obj)->kvm_adjvtime = !value;
 197}
 198
 199static bool kvm_steal_time_get(Object *obj, Error **errp)
 200{
 201    return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
 202}
 203
 204static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 205{
 206    ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
 207}
 208
 209/* KVM VCPU properties should be prefixed with "kvm-". */
 210void kvm_arm_add_vcpu_properties(Object *obj)
 211{
 212    ARMCPU *cpu = ARM_CPU(obj);
 213    CPUARMState *env = &cpu->env;
 214
 215    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 216        cpu->kvm_adjvtime = true;
 217        object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
 218                                 kvm_no_adjvtime_set);
 219        object_property_set_description(obj, "kvm-no-adjvtime",
 220                                        "Set on to disable the adjustment of "
 221                                        "the virtual counter. VM stopped time "
 222                                        "will be counted.");
 223    }
 224
 225    cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
 226    object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
 227                             kvm_steal_time_set);
 228    object_property_set_description(obj, "kvm-steal-time",
 229                                    "Set off to disable KVM steal time.");
 230}
 231
 232bool kvm_arm_pmu_supported(void)
 233{
 234    return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
 235}
 236
 237int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
 238{
 239    KVMState *s = KVM_STATE(ms->accelerator);
 240    int ret;
 241
 242    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 243    *fixed_ipa = ret <= 0;
 244
 245    return ret > 0 ? ret : 40;
 246}
 247
 248int kvm_arch_init(MachineState *ms, KVMState *s)
 249{
 250    int ret = 0;
 251    /* For ARM interrupt delivery is always asynchronous,
 252     * whether we are using an in-kernel VGIC or not.
 253     */
 254    kvm_async_interrupts_allowed = true;
 255
 256    /*
 257     * PSCI wakes up secondary cores, so we always need to
 258     * have vCPUs waiting in kernel space
 259     */
 260    kvm_halt_in_kernel_allowed = true;
 261
 262    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 263
 264    if (ms->smp.cpus > 256 &&
 265        !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
 266        error_report("Using more than 256 vcpus requires a host kernel "
 267                     "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
 268        ret = -EINVAL;
 269    }
 270
 271    if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
 272        if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
 273            error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
 274        } else {
 275            /* Set status for supporting the external dabt injection */
 276            cap_has_inject_ext_dabt = kvm_check_extension(s,
 277                                    KVM_CAP_ARM_INJECT_EXT_DABT);
 278        }
 279    }
 280
 281    return ret;
 282}
 283
 284unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 285{
 286    return cpu->cpu_index;
 287}
 288
 289/* We track all the KVM devices which need their memory addresses
 290 * passing to the kernel in a list of these structures.
 291 * When board init is complete we run through the list and
 292 * tell the kernel the base addresses of the memory regions.
 293 * We use a MemoryListener to track mapping and unmapping of
 294 * the regions during board creation, so the board models don't
 295 * need to do anything special for the KVM case.
 296 *
 297 * Sometimes the address must be OR'ed with some other fields
 298 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 299 * @kda_addr_ormask aims at storing the value of those fields.
 300 */
 301typedef struct KVMDevice {
 302    struct kvm_arm_device_addr kda;
 303    struct kvm_device_attr kdattr;
 304    uint64_t kda_addr_ormask;
 305    MemoryRegion *mr;
 306    QSLIST_ENTRY(KVMDevice) entries;
 307    int dev_fd;
 308} KVMDevice;
 309
 310static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 311
 312static void kvm_arm_devlistener_add(MemoryListener *listener,
 313                                    MemoryRegionSection *section)
 314{
 315    KVMDevice *kd;
 316
 317    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 318        if (section->mr == kd->mr) {
 319            kd->kda.addr = section->offset_within_address_space;
 320        }
 321    }
 322}
 323
 324static void kvm_arm_devlistener_del(MemoryListener *listener,
 325                                    MemoryRegionSection *section)
 326{
 327    KVMDevice *kd;
 328
 329    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 330        if (section->mr == kd->mr) {
 331            kd->kda.addr = -1;
 332        }
 333    }
 334}
 335
 336static MemoryListener devlistener = {
 337    .name = "kvm-arm",
 338    .region_add = kvm_arm_devlistener_add,
 339    .region_del = kvm_arm_devlistener_del,
 340};
 341
 342static void kvm_arm_set_device_addr(KVMDevice *kd)
 343{
 344    struct kvm_device_attr *attr = &kd->kdattr;
 345    int ret;
 346
 347    /* If the device control API is available and we have a device fd on the
 348     * KVMDevice struct, let's use the newer API
 349     */
 350    if (kd->dev_fd >= 0) {
 351        uint64_t addr = kd->kda.addr;
 352
 353        addr |= kd->kda_addr_ormask;
 354        attr->addr = (uintptr_t)&addr;
 355        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 356    } else {
 357        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 358    }
 359
 360    if (ret < 0) {
 361        fprintf(stderr, "Failed to set device address: %s\n",
 362                strerror(-ret));
 363        abort();
 364    }
 365}
 366
 367static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 368{
 369    KVMDevice *kd, *tkd;
 370
 371    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 372        if (kd->kda.addr != -1) {
 373            kvm_arm_set_device_addr(kd);
 374        }
 375        memory_region_unref(kd->mr);
 376        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 377        g_free(kd);
 378    }
 379    memory_listener_unregister(&devlistener);
 380}
 381
 382static Notifier notify = {
 383    .notify = kvm_arm_machine_init_done,
 384};
 385
 386void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 387                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 388{
 389    KVMDevice *kd;
 390
 391    if (!kvm_irqchip_in_kernel()) {
 392        return;
 393    }
 394
 395    if (QSLIST_EMPTY(&kvm_devices_head)) {
 396        memory_listener_register(&devlistener, &address_space_memory);
 397        qemu_add_machine_init_done_notifier(&notify);
 398    }
 399    kd = g_new0(KVMDevice, 1);
 400    kd->mr = mr;
 401    kd->kda.id = devid;
 402    kd->kda.addr = -1;
 403    kd->kdattr.flags = 0;
 404    kd->kdattr.group = group;
 405    kd->kdattr.attr = attr;
 406    kd->dev_fd = dev_fd;
 407    kd->kda_addr_ormask = addr_ormask;
 408    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 409    memory_region_ref(kd->mr);
 410}
 411
 412static int compare_u64(const void *a, const void *b)
 413{
 414    if (*(uint64_t *)a > *(uint64_t *)b) {
 415        return 1;
 416    }
 417    if (*(uint64_t *)a < *(uint64_t *)b) {
 418        return -1;
 419    }
 420    return 0;
 421}
 422
 423/*
 424 * cpreg_values are sorted in ascending order by KVM register ID
 425 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
 426 * the storage for a KVM register by ID with a binary search.
 427 */
 428static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
 429{
 430    uint64_t *res;
 431
 432    res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
 433                  sizeof(uint64_t), compare_u64);
 434    assert(res);
 435
 436    return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 437}
 438
 439/* Initialize the ARMCPU cpreg list according to the kernel's
 440 * definition of what CPU registers it knows about (and throw away
 441 * the previous TCG-created cpreg list).
 442 */
 443int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 444{
 445    struct kvm_reg_list rl;
 446    struct kvm_reg_list *rlp;
 447    int i, ret, arraylen;
 448    CPUState *cs = CPU(cpu);
 449
 450    rl.n = 0;
 451    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 452    if (ret != -E2BIG) {
 453        return ret;
 454    }
 455    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 456    rlp->n = rl.n;
 457    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 458    if (ret) {
 459        goto out;
 460    }
 461    /* Sort the list we get back from the kernel, since cpreg_tuples
 462     * must be in strictly ascending order.
 463     */
 464    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 465
 466    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 467        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 468            continue;
 469        }
 470        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 471        case KVM_REG_SIZE_U32:
 472        case KVM_REG_SIZE_U64:
 473            break;
 474        default:
 475            fprintf(stderr, "Can't handle size of register in kernel list\n");
 476            ret = -EINVAL;
 477            goto out;
 478        }
 479
 480        arraylen++;
 481    }
 482
 483    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 484    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 485    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 486                                         arraylen);
 487    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 488                                        arraylen);
 489    cpu->cpreg_array_len = arraylen;
 490    cpu->cpreg_vmstate_array_len = arraylen;
 491
 492    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 493        uint64_t regidx = rlp->reg[i];
 494        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 495            continue;
 496        }
 497        cpu->cpreg_indexes[arraylen] = regidx;
 498        arraylen++;
 499    }
 500    assert(cpu->cpreg_array_len == arraylen);
 501
 502    if (!write_kvmstate_to_list(cpu)) {
 503        /* Shouldn't happen unless kernel is inconsistent about
 504         * what registers exist.
 505         */
 506        fprintf(stderr, "Initial read of kernel register state failed\n");
 507        ret = -EINVAL;
 508        goto out;
 509    }
 510
 511out:
 512    g_free(rlp);
 513    return ret;
 514}
 515
 516bool write_kvmstate_to_list(ARMCPU *cpu)
 517{
 518    CPUState *cs = CPU(cpu);
 519    int i;
 520    bool ok = true;
 521
 522    for (i = 0; i < cpu->cpreg_array_len; i++) {
 523        struct kvm_one_reg r;
 524        uint64_t regidx = cpu->cpreg_indexes[i];
 525        uint32_t v32;
 526        int ret;
 527
 528        r.id = regidx;
 529
 530        switch (regidx & KVM_REG_SIZE_MASK) {
 531        case KVM_REG_SIZE_U32:
 532            r.addr = (uintptr_t)&v32;
 533            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 534            if (!ret) {
 535                cpu->cpreg_values[i] = v32;
 536            }
 537            break;
 538        case KVM_REG_SIZE_U64:
 539            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 540            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 541            break;
 542        default:
 543            g_assert_not_reached();
 544        }
 545        if (ret) {
 546            ok = false;
 547        }
 548    }
 549    return ok;
 550}
 551
 552bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 553{
 554    CPUState *cs = CPU(cpu);
 555    int i;
 556    bool ok = true;
 557
 558    for (i = 0; i < cpu->cpreg_array_len; i++) {
 559        struct kvm_one_reg r;
 560        uint64_t regidx = cpu->cpreg_indexes[i];
 561        uint32_t v32;
 562        int ret;
 563
 564        if (kvm_arm_cpreg_level(regidx) > level) {
 565            continue;
 566        }
 567
 568        r.id = regidx;
 569        switch (regidx & KVM_REG_SIZE_MASK) {
 570        case KVM_REG_SIZE_U32:
 571            v32 = cpu->cpreg_values[i];
 572            r.addr = (uintptr_t)&v32;
 573            break;
 574        case KVM_REG_SIZE_U64:
 575            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 576            break;
 577        default:
 578            g_assert_not_reached();
 579        }
 580        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 581        if (ret) {
 582            /* We might fail for "unknown register" and also for
 583             * "you tried to set a register which is constant with
 584             * a different value from what it actually contains".
 585             */
 586            ok = false;
 587        }
 588    }
 589    return ok;
 590}
 591
 592void kvm_arm_cpu_pre_save(ARMCPU *cpu)
 593{
 594    /* KVM virtual time adjustment */
 595    if (cpu->kvm_vtime_dirty) {
 596        *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
 597    }
 598}
 599
 600void kvm_arm_cpu_post_load(ARMCPU *cpu)
 601{
 602    /* KVM virtual time adjustment */
 603    if (cpu->kvm_adjvtime) {
 604        cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
 605        cpu->kvm_vtime_dirty = true;
 606    }
 607}
 608
 609void kvm_arm_reset_vcpu(ARMCPU *cpu)
 610{
 611    int ret;
 612
 613    /* Re-init VCPU so that all registers are set to
 614     * their respective reset values.
 615     */
 616    ret = kvm_arm_vcpu_init(CPU(cpu));
 617    if (ret < 0) {
 618        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 619        abort();
 620    }
 621    if (!write_kvmstate_to_list(cpu)) {
 622        fprintf(stderr, "write_kvmstate_to_list failed\n");
 623        abort();
 624    }
 625    /*
 626     * Sync the reset values also into the CPUState. This is necessary
 627     * because the next thing we do will be a kvm_arch_put_registers()
 628     * which will update the list values from the CPUState before copying
 629     * the list values back to KVM. It's OK to ignore failure returns here
 630     * for the same reason we do so in kvm_arch_get_registers().
 631     */
 632    write_list_to_cpustate(cpu);
 633}
 634
 635/*
 636 * Update KVM's MP_STATE based on what QEMU thinks it is
 637 */
 638int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 639{
 640    if (cap_has_mp_state) {
 641        struct kvm_mp_state mp_state = {
 642            .mp_state = (cpu->power_state == PSCI_OFF) ?
 643            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 644        };
 645        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 646        if (ret) {
 647            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 648                    __func__, ret, strerror(-ret));
 649            return -1;
 650        }
 651    }
 652
 653    return 0;
 654}
 655
 656/*
 657 * Sync the KVM MP_STATE into QEMU
 658 */
 659int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 660{
 661    if (cap_has_mp_state) {
 662        struct kvm_mp_state mp_state;
 663        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 664        if (ret) {
 665            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 666                    __func__, ret, strerror(-ret));
 667            abort();
 668        }
 669        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 670            PSCI_OFF : PSCI_ON;
 671    }
 672
 673    return 0;
 674}
 675
 676void kvm_arm_get_virtual_time(CPUState *cs)
 677{
 678    ARMCPU *cpu = ARM_CPU(cs);
 679    struct kvm_one_reg reg = {
 680        .id = KVM_REG_ARM_TIMER_CNT,
 681        .addr = (uintptr_t)&cpu->kvm_vtime,
 682    };
 683    int ret;
 684
 685    if (cpu->kvm_vtime_dirty) {
 686        return;
 687    }
 688
 689    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 690    if (ret) {
 691        error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
 692        abort();
 693    }
 694
 695    cpu->kvm_vtime_dirty = true;
 696}
 697
 698void kvm_arm_put_virtual_time(CPUState *cs)
 699{
 700    ARMCPU *cpu = ARM_CPU(cs);
 701    struct kvm_one_reg reg = {
 702        .id = KVM_REG_ARM_TIMER_CNT,
 703        .addr = (uintptr_t)&cpu->kvm_vtime,
 704    };
 705    int ret;
 706
 707    if (!cpu->kvm_vtime_dirty) {
 708        return;
 709    }
 710
 711    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 712    if (ret) {
 713        error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
 714        abort();
 715    }
 716
 717    cpu->kvm_vtime_dirty = false;
 718}
 719
 720int kvm_put_vcpu_events(ARMCPU *cpu)
 721{
 722    CPUARMState *env = &cpu->env;
 723    struct kvm_vcpu_events events;
 724    int ret;
 725
 726    if (!kvm_has_vcpu_events()) {
 727        return 0;
 728    }
 729
 730    memset(&events, 0, sizeof(events));
 731    events.exception.serror_pending = env->serror.pending;
 732
 733    /* Inject SError to guest with specified syndrome if host kernel
 734     * supports it, otherwise inject SError without syndrome.
 735     */
 736    if (cap_has_inject_serror_esr) {
 737        events.exception.serror_has_esr = env->serror.has_esr;
 738        events.exception.serror_esr = env->serror.esr;
 739    }
 740
 741    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 742    if (ret) {
 743        error_report("failed to put vcpu events");
 744    }
 745
 746    return ret;
 747}
 748
 749int kvm_get_vcpu_events(ARMCPU *cpu)
 750{
 751    CPUARMState *env = &cpu->env;
 752    struct kvm_vcpu_events events;
 753    int ret;
 754
 755    if (!kvm_has_vcpu_events()) {
 756        return 0;
 757    }
 758
 759    memset(&events, 0, sizeof(events));
 760    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 761    if (ret) {
 762        error_report("failed to get vcpu events");
 763        return ret;
 764    }
 765
 766    env->serror.pending = events.exception.serror_pending;
 767    env->serror.has_esr = events.exception.serror_has_esr;
 768    env->serror.esr = events.exception.serror_esr;
 769
 770    return 0;
 771}
 772
 773void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 774{
 775    ARMCPU *cpu = ARM_CPU(cs);
 776    CPUARMState *env = &cpu->env;
 777
 778    if (unlikely(env->ext_dabt_raised)) {
 779        /*
 780         * Verifying that the ext DABT has been properly injected,
 781         * otherwise risking indefinitely re-running the faulting instruction
 782         * Covering a very narrow case for kernels 5.5..5.5.4
 783         * when injected abort was misconfigured to be
 784         * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
 785         */
 786        if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
 787            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
 788
 789            error_report("Data abort exception with no valid ISS generated by "
 790                   "guest memory access. KVM unable to emulate faulting "
 791                   "instruction. Failed to inject an external data abort "
 792                   "into the guest.");
 793            abort();
 794       }
 795       /* Clear the status */
 796       env->ext_dabt_raised = 0;
 797    }
 798}
 799
 800MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 801{
 802    ARMCPU *cpu;
 803    uint32_t switched_level;
 804
 805    if (kvm_irqchip_in_kernel()) {
 806        /*
 807         * We only need to sync timer states with user-space interrupt
 808         * controllers, so return early and save cycles if we don't.
 809         */
 810        return MEMTXATTRS_UNSPECIFIED;
 811    }
 812
 813    cpu = ARM_CPU(cs);
 814
 815    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 816    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 817        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 818
 819        qemu_mutex_lock_iothread();
 820
 821        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 822            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 823                         !!(run->s.regs.device_irq_level &
 824                            KVM_ARM_DEV_EL1_VTIMER));
 825            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 826        }
 827
 828        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 829            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 830                         !!(run->s.regs.device_irq_level &
 831                            KVM_ARM_DEV_EL1_PTIMER));
 832            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 833        }
 834
 835        if (switched_level & KVM_ARM_DEV_PMU) {
 836            qemu_set_irq(cpu->pmu_interrupt,
 837                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 838            switched_level &= ~KVM_ARM_DEV_PMU;
 839        }
 840
 841        if (switched_level) {
 842            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 843                          __func__, switched_level);
 844        }
 845
 846        /* We also mark unknown levels as processed to not waste cycles */
 847        cpu->device_irq_level = run->s.regs.device_irq_level;
 848        qemu_mutex_unlock_iothread();
 849    }
 850
 851    return MEMTXATTRS_UNSPECIFIED;
 852}
 853
 854void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 855{
 856    CPUState *cs = opaque;
 857    ARMCPU *cpu = ARM_CPU(cs);
 858
 859    if (running) {
 860        if (cpu->kvm_adjvtime) {
 861            kvm_arm_put_virtual_time(cs);
 862        }
 863    } else {
 864        if (cpu->kvm_adjvtime) {
 865            kvm_arm_get_virtual_time(cs);
 866        }
 867    }
 868}
 869
 870/**
 871 * kvm_arm_handle_dabt_nisv:
 872 * @cs: CPUState
 873 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
 874 *           ISV bit set to '0b0' -> no valid instruction syndrome
 875 * @fault_ipa: faulting address for the synchronous data abort
 876 *
 877 * Returns: 0 if the exception has been handled, < 0 otherwise
 878 */
 879static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
 880                                    uint64_t fault_ipa)
 881{
 882    ARMCPU *cpu = ARM_CPU(cs);
 883    CPUARMState *env = &cpu->env;
 884    /*
 885     * Request KVM to inject the external data abort into the guest
 886     */
 887    if (cap_has_inject_ext_dabt) {
 888        struct kvm_vcpu_events events = { };
 889        /*
 890         * The external data abort event will be handled immediately by KVM
 891         * using the address fault that triggered the exit on given VCPU.
 892         * Requesting injection of the external data abort does not rely
 893         * on any other VCPU state. Therefore, in this particular case, the VCPU
 894         * synchronization can be exceptionally skipped.
 895         */
 896        events.exception.ext_dabt_pending = 1;
 897        /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
 898        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
 899            env->ext_dabt_raised = 1;
 900            return 0;
 901        }
 902    } else {
 903        error_report("Data abort exception triggered by guest memory access "
 904                     "at physical address: 0x"  TARGET_FMT_lx,
 905                     (target_ulong)fault_ipa);
 906        error_printf("KVM unable to emulate faulting instruction.\n");
 907    }
 908    return -1;
 909}
 910
 911int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 912{
 913    int ret = 0;
 914
 915    switch (run->exit_reason) {
 916    case KVM_EXIT_DEBUG:
 917        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 918            ret = EXCP_DEBUG;
 919        } /* otherwise return to guest */
 920        break;
 921    case KVM_EXIT_ARM_NISV:
 922        /* External DABT with no valid iss to decode */
 923        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
 924                                       run->arm_nisv.fault_ipa);
 925        break;
 926    default:
 927        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 928                      __func__, run->exit_reason);
 929        break;
 930    }
 931    return ret;
 932}
 933
 934bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 935{
 936    return true;
 937}
 938
 939int kvm_arch_process_async_events(CPUState *cs)
 940{
 941    return 0;
 942}
 943
 944void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 945{
 946    if (kvm_sw_breakpoints_active(cs)) {
 947        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 948    }
 949    if (kvm_arm_hw_debug_active(cs)) {
 950        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 951        kvm_arm_copy_hw_debug_data(&dbg->arch);
 952    }
 953}
 954
 955void kvm_arch_init_irq_routing(KVMState *s)
 956{
 957}
 958
 959int kvm_arch_irqchip_create(KVMState *s)
 960{
 961    if (kvm_kernel_irqchip_split()) {
 962        error_report("-machine kernel_irqchip=split is not supported on ARM.");
 963        exit(1);
 964    }
 965
 966    /* If we can create the VGIC using the newer device control API, we
 967     * let the device do this when it initializes itself, otherwise we
 968     * fall back to the old API */
 969    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 970}
 971
 972int kvm_arm_vgic_probe(void)
 973{
 974    int val = 0;
 975
 976    if (kvm_create_device(kvm_state,
 977                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 978        val |= KVM_ARM_VGIC_V3;
 979    }
 980    if (kvm_create_device(kvm_state,
 981                          KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 982        val |= KVM_ARM_VGIC_V2;
 983    }
 984    return val;
 985}
 986
 987int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
 988{
 989    int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
 990    int cpu_idx1 = cpu % 256;
 991    int cpu_idx2 = cpu / 256;
 992
 993    kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
 994               (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
 995
 996    return kvm_set_irq(kvm_state, kvm_irq, !!level);
 997}
 998
 999int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1000                             uint64_t address, uint32_t data, PCIDevice *dev)
1001{
1002    AddressSpace *as = pci_device_iommu_address_space(dev);
1003    hwaddr xlat, len, doorbell_gpa;
1004    MemoryRegionSection mrs;
1005    MemoryRegion *mr;
1006
1007    if (as == &address_space_memory) {
1008        return 0;
1009    }
1010
1011    /* MSI doorbell address is translated by an IOMMU */
1012
1013    RCU_READ_LOCK_GUARD();
1014
1015    mr = address_space_translate(as, address, &xlat, &len, true,
1016                                 MEMTXATTRS_UNSPECIFIED);
1017
1018    if (!mr) {
1019        return 1;
1020    }
1021
1022    mrs = memory_region_find(mr, xlat, 1);
1023
1024    if (!mrs.mr) {
1025        return 1;
1026    }
1027
1028    doorbell_gpa = mrs.offset_within_address_space;
1029    memory_region_unref(mrs.mr);
1030
1031    route->u.msi.address_lo = doorbell_gpa;
1032    route->u.msi.address_hi = doorbell_gpa >> 32;
1033
1034    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1035
1036    return 0;
1037}
1038
1039int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1040                                int vector, PCIDevice *dev)
1041{
1042    return 0;
1043}
1044
1045int kvm_arch_release_virq_post(int virq)
1046{
1047    return 0;
1048}
1049
1050int kvm_arch_msi_data_to_gsi(uint32_t data)
1051{
1052    return (data - 32) & 0xffff;
1053}
1054
1055bool kvm_arch_cpu_check_are_resettable(void)
1056{
1057    return true;
1058}
1059