qemu/target/avr/helper.c
<<
>>
Prefs
   1/*
   2 * QEMU AVR CPU helpers
   3 *
   4 * Copyright (c) 2016-2020 Michael Rolnik
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see
  18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/log.h"
  23#include "cpu.h"
  24#include "hw/core/tcg-cpu-ops.h"
  25#include "exec/exec-all.h"
  26#include "exec/address-spaces.h"
  27#include "exec/helper-proto.h"
  28
  29bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  30{
  31    bool ret = false;
  32    CPUClass *cc = CPU_GET_CLASS(cs);
  33    AVRCPU *cpu = AVR_CPU(cs);
  34    CPUAVRState *env = &cpu->env;
  35
  36    if (interrupt_request & CPU_INTERRUPT_RESET) {
  37        if (cpu_interrupts_enabled(env)) {
  38            cs->exception_index = EXCP_RESET;
  39            cc->tcg_ops->do_interrupt(cs);
  40
  41            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
  42
  43            ret = true;
  44        }
  45    }
  46    if (interrupt_request & CPU_INTERRUPT_HARD) {
  47        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
  48            int index = ctz32(env->intsrc);
  49            cs->exception_index = EXCP_INT(index);
  50            cc->tcg_ops->do_interrupt(cs);
  51
  52            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
  53            if (!env->intsrc) {
  54                cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
  55            }
  56
  57            ret = true;
  58        }
  59    }
  60    return ret;
  61}
  62
  63void avr_cpu_do_interrupt(CPUState *cs)
  64{
  65    AVRCPU *cpu = AVR_CPU(cs);
  66    CPUAVRState *env = &cpu->env;
  67
  68    uint32_t ret = env->pc_w;
  69    int vector = 0;
  70    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
  71    int base = 0;
  72
  73    if (cs->exception_index == EXCP_RESET) {
  74        vector = 0;
  75    } else if (env->intsrc != 0) {
  76        vector = ctz32(env->intsrc) + 1;
  77    }
  78
  79    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
  80        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  81        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  82        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
  83    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
  84        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  85        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
  86    } else {
  87        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
  88    }
  89
  90    env->pc_w = base + vector * size;
  91    env->sregI = 0; /* clear Global Interrupt Flag */
  92
  93    cs->exception_index = -1;
  94}
  95
  96hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
  97{
  98    return addr; /* I assume 1:1 address correspondence */
  99}
 100
 101bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
 102                      MMUAccessType access_type, int mmu_idx,
 103                      bool probe, uintptr_t retaddr)
 104{
 105    int prot = 0;
 106    MemTxAttrs attrs = {};
 107    uint32_t paddr;
 108
 109    address &= TARGET_PAGE_MASK;
 110
 111    if (mmu_idx == MMU_CODE_IDX) {
 112        /* access to code in flash */
 113        paddr = OFFSET_CODE + address;
 114        prot = PAGE_READ | PAGE_EXEC;
 115        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
 116            error_report("execution left flash memory");
 117            abort();
 118        }
 119    } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 120        /*
 121         * access to CPU registers, exit and rebuilt this TB to use full access
 122         * incase it touches specially handled registers like SREG or SP
 123         */
 124        AVRCPU *cpu = AVR_CPU(cs);
 125        CPUAVRState *env = &cpu->env;
 126        env->fullacc = 1;
 127        cpu_loop_exit_restore(cs, retaddr);
 128    } else {
 129        /* access to memory. nothing special */
 130        paddr = OFFSET_DATA + address;
 131        prot = PAGE_READ | PAGE_WRITE;
 132    }
 133
 134    tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
 135                            mmu_idx, TARGET_PAGE_SIZE);
 136
 137    return true;
 138}
 139
 140/*
 141 *  helpers
 142 */
 143
 144void helper_sleep(CPUAVRState *env)
 145{
 146    CPUState *cs = env_cpu(env);
 147
 148    cs->exception_index = EXCP_HLT;
 149    cpu_loop_exit(cs);
 150}
 151
 152void helper_unsupported(CPUAVRState *env)
 153{
 154    CPUState *cs = env_cpu(env);
 155
 156    /*
 157     *  I count not find what happens on the real platform, so
 158     *  it's EXCP_DEBUG for meanwhile
 159     */
 160    cs->exception_index = EXCP_DEBUG;
 161    if (qemu_loglevel_mask(LOG_UNIMP)) {
 162        qemu_log("UNSUPPORTED\n");
 163        cpu_dump_state(cs, stderr, 0);
 164    }
 165    cpu_loop_exit(cs);
 166}
 167
 168void helper_debug(CPUAVRState *env)
 169{
 170    CPUState *cs = env_cpu(env);
 171
 172    cs->exception_index = EXCP_DEBUG;
 173    cpu_loop_exit(cs);
 174}
 175
 176void helper_break(CPUAVRState *env)
 177{
 178    CPUState *cs = env_cpu(env);
 179
 180    cs->exception_index = EXCP_DEBUG;
 181    cpu_loop_exit(cs);
 182}
 183
 184void helper_wdr(CPUAVRState *env)
 185{
 186    qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
 187}
 188
 189/*
 190 * This function implements IN instruction
 191 *
 192 * It does the following
 193 * a.  if an IO register belongs to CPU, its value is read and returned
 194 * b.  otherwise io address is translated to mem address and physical memory
 195 *     is read.
 196 * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 197 *
 198 */
 199target_ulong helper_inb(CPUAVRState *env, uint32_t port)
 200{
 201    target_ulong data = 0;
 202
 203    switch (port) {
 204    case 0x38: /* RAMPD */
 205        data = 0xff & (env->rampD >> 16);
 206        break;
 207    case 0x39: /* RAMPX */
 208        data = 0xff & (env->rampX >> 16);
 209        break;
 210    case 0x3a: /* RAMPY */
 211        data = 0xff & (env->rampY >> 16);
 212        break;
 213    case 0x3b: /* RAMPZ */
 214        data = 0xff & (env->rampZ >> 16);
 215        break;
 216    case 0x3c: /* EIND */
 217        data = 0xff & (env->eind >> 16);
 218        break;
 219    case 0x3d: /* SPL */
 220        data = env->sp & 0x00ff;
 221        break;
 222    case 0x3e: /* SPH */
 223        data = env->sp >> 8;
 224        break;
 225    case 0x3f: /* SREG */
 226        data = cpu_get_sreg(env);
 227        break;
 228    default:
 229        /* not a special register, pass to normal memory access */
 230        data = address_space_ldub(&address_space_memory,
 231                                  OFFSET_IO_REGISTERS + port,
 232                                  MEMTXATTRS_UNSPECIFIED, NULL);
 233    }
 234
 235    return data;
 236}
 237
 238/*
 239 *  This function implements OUT instruction
 240 *
 241 *  It does the following
 242 *  a.  if an IO register belongs to CPU, its value is written into the register
 243 *  b.  otherwise io address is translated to mem address and physical memory
 244 *      is written.
 245 *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
 246 *
 247 */
 248void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
 249{
 250    data &= 0x000000ff;
 251
 252    switch (port) {
 253    case 0x38: /* RAMPD */
 254        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
 255            env->rampD = (data & 0xff) << 16;
 256        }
 257        break;
 258    case 0x39: /* RAMPX */
 259        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
 260            env->rampX = (data & 0xff) << 16;
 261        }
 262        break;
 263    case 0x3a: /* RAMPY */
 264        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
 265            env->rampY = (data & 0xff) << 16;
 266        }
 267        break;
 268    case 0x3b: /* RAMPZ */
 269        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
 270            env->rampZ = (data & 0xff) << 16;
 271        }
 272        break;
 273    case 0x3c: /* EIDN */
 274        env->eind = (data & 0xff) << 16;
 275        break;
 276    case 0x3d: /* SPL */
 277        env->sp = (env->sp & 0xff00) | (data);
 278        break;
 279    case 0x3e: /* SPH */
 280        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
 281            env->sp = (env->sp & 0x00ff) | (data << 8);
 282        }
 283        break;
 284    case 0x3f: /* SREG */
 285        cpu_set_sreg(env, data);
 286        break;
 287    default:
 288        /* not a special register, pass to normal memory access */
 289        address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
 290                          data, MEMTXATTRS_UNSPECIFIED, NULL);
 291    }
 292}
 293
 294/*
 295 *  this function implements LD instruction when there is a possibility to read
 296 *  from a CPU register
 297 */
 298target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
 299{
 300    uint8_t data;
 301
 302    env->fullacc = false;
 303
 304    if (addr < NUMBER_OF_CPU_REGISTERS) {
 305        /* CPU registers */
 306        data = env->r[addr];
 307    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 308        /* IO registers */
 309        data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
 310    } else {
 311        /* memory */
 312        data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
 313                                  MEMTXATTRS_UNSPECIFIED, NULL);
 314    }
 315    return data;
 316}
 317
 318/*
 319 *  this function implements ST instruction when there is a possibility to write
 320 *  into a CPU register
 321 */
 322void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
 323{
 324    env->fullacc = false;
 325
 326    /* Following logic assumes this: */
 327    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
 328    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
 329                                  NUMBER_OF_CPU_REGISTERS);
 330
 331    if (addr < NUMBER_OF_CPU_REGISTERS) {
 332        /* CPU registers */
 333        env->r[addr] = data;
 334    } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
 335        /* IO registers */
 336        helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
 337    } else {
 338        /* memory */
 339        address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
 340                          MEMTXATTRS_UNSPECIFIED, NULL);
 341    }
 342}
 343