qemu/target/hexagon/macros.h
<<
>>
Prefs
   1/*
   2 *  Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
   3 *
   4 *  This program is free software; you can redistribute it and/or modify
   5 *  it under the terms of the GNU General Public License as published by
   6 *  the Free Software Foundation; either version 2 of the License, or
   7 *  (at your option) any later version.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#ifndef HEXAGON_MACROS_H
  19#define HEXAGON_MACROS_H
  20
  21#include "cpu.h"
  22#include "hex_regs.h"
  23#include "reg_fields.h"
  24
  25#ifdef QEMU_GENERATE
  26#define READ_REG(dest, NUM)              gen_read_reg(dest, NUM)
  27#else
  28#define READ_REG(NUM)                    (env->gpr[(NUM)])
  29#define READ_PREG(NUM)                   (env->pred[NUM])
  30
  31#define WRITE_RREG(NUM, VAL)             log_reg_write(env, NUM, VAL, slot)
  32#define WRITE_PREG(NUM, VAL)             log_pred_write(env, NUM, VAL)
  33#endif
  34
  35#define PCALIGN 4
  36#define PCALIGN_MASK (PCALIGN - 1)
  37
  38#define GET_FIELD(FIELD, REGIN) \
  39    fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
  40                   reg_field_info[FIELD].offset)
  41
  42#ifdef QEMU_GENERATE
  43#define GET_USR_FIELD(FIELD, DST) \
  44    tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
  45                       reg_field_info[FIELD].offset, \
  46                       reg_field_info[FIELD].width)
  47
  48#define TYPE_INT(X)          __builtin_types_compatible_p(typeof(X), int)
  49#define TYPE_TCGV(X)         __builtin_types_compatible_p(typeof(X), TCGv)
  50#define TYPE_TCGV_I64(X)     __builtin_types_compatible_p(typeof(X), TCGv_i64)
  51
  52#define SET_USR_FIELD_FUNC(X) \
  53    __builtin_choose_expr(TYPE_INT(X), \
  54        gen_set_usr_fieldi, \
  55        __builtin_choose_expr(TYPE_TCGV(X), \
  56            gen_set_usr_field, (void)0))
  57#define SET_USR_FIELD(FIELD, VAL) \
  58    SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
  59#else
  60#define GET_USR_FIELD(FIELD) \
  61    fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
  62                   reg_field_info[FIELD].offset)
  63
  64#define SET_USR_FIELD(FIELD, VAL) \
  65    fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
  66                 reg_field_info[FIELD].offset, (VAL))
  67#endif
  68
  69#ifdef QEMU_GENERATE
  70/*
  71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
  72 *
  73 * Slot 1 store with slot 0 load
  74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
  75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
  76 * would otherwise be done by the assembler. For example:
  77 *     {
  78 *         memw(R5) = R2 // slot 1 store
  79 *         R3 = memh(R6) // slot 0 load
  80 *     }:mem_noshuf
  81 * Unlike most packetized operations, these memory operations are not executed
  82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
  83 * effectively executes first, followed by the load instruction in Slot 0. If
  84 * the addresses of the two operations are overlapping, the load will receive
  85 * the newly stored data. This feature is supported in processor versions
  86 * V65 or greater.
  87 *
  88 *
  89 * For qemu, we look for a load in slot 0 when there is  a store in slot 1
  90 * in the same packet.  When we see this, we call a helper that probes the
  91 * load to make sure it doesn't fault.  Then, we process the store ahead of
  92 * the actual load.
  93
  94 */
  95#define CHECK_NOSHUF(VA, SIZE) \
  96    do { \
  97        if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
  98            probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
  99            process_store(ctx, pkt, 1); \
 100        } \
 101    } while (0)
 102
 103#define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
 104    do { \
 105        TCGLabel *label = gen_new_label(); \
 106        tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
 107        GET_EA; \
 108        if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
 109            probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
 110        } \
 111        gen_set_label(label); \
 112        if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
 113            process_store(ctx, pkt, 1); \
 114        } \
 115    } while (0)
 116
 117#define MEM_LOAD1s(DST, VA) \
 118    do { \
 119        CHECK_NOSHUF(VA, 1); \
 120        tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
 121    } while (0)
 122#define MEM_LOAD1u(DST, VA) \
 123    do { \
 124        CHECK_NOSHUF(VA, 1); \
 125        tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
 126    } while (0)
 127#define MEM_LOAD2s(DST, VA) \
 128    do { \
 129        CHECK_NOSHUF(VA, 2); \
 130        tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
 131    } while (0)
 132#define MEM_LOAD2u(DST, VA) \
 133    do { \
 134        CHECK_NOSHUF(VA, 2); \
 135        tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
 136    } while (0)
 137#define MEM_LOAD4s(DST, VA) \
 138    do { \
 139        CHECK_NOSHUF(VA, 4); \
 140        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
 141    } while (0)
 142#define MEM_LOAD4u(DST, VA) \
 143    do { \
 144        CHECK_NOSHUF(VA, 4); \
 145        tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
 146    } while (0)
 147#define MEM_LOAD8u(DST, VA) \
 148    do { \
 149        CHECK_NOSHUF(VA, 8); \
 150        tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
 151    } while (0)
 152
 153#define MEM_STORE1_FUNC(X) \
 154    __builtin_choose_expr(TYPE_INT(X), \
 155        gen_store1i, \
 156        __builtin_choose_expr(TYPE_TCGV(X), \
 157            gen_store1, (void)0))
 158#define MEM_STORE1(VA, DATA, SLOT) \
 159    MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 160
 161#define MEM_STORE2_FUNC(X) \
 162    __builtin_choose_expr(TYPE_INT(X), \
 163        gen_store2i, \
 164        __builtin_choose_expr(TYPE_TCGV(X), \
 165            gen_store2, (void)0))
 166#define MEM_STORE2(VA, DATA, SLOT) \
 167    MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 168
 169#define MEM_STORE4_FUNC(X) \
 170    __builtin_choose_expr(TYPE_INT(X), \
 171        gen_store4i, \
 172        __builtin_choose_expr(TYPE_TCGV(X), \
 173            gen_store4, (void)0))
 174#define MEM_STORE4(VA, DATA, SLOT) \
 175    MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 176
 177#define MEM_STORE8_FUNC(X) \
 178    __builtin_choose_expr(TYPE_INT(X), \
 179        gen_store8i, \
 180        __builtin_choose_expr(TYPE_TCGV_I64(X), \
 181            gen_store8, (void)0))
 182#define MEM_STORE8(VA, DATA, SLOT) \
 183    MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
 184#else
 185#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
 186#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
 187#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
 188#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
 189#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
 190#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
 191#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
 192#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
 193
 194#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
 195#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
 196#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
 197#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
 198#endif
 199
 200#define CANCEL cancel_slot(env, slot)
 201
 202#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
 203
 204#ifdef QEMU_GENERATE
 205static inline void gen_pred_cancel(TCGv pred, int slot_num)
 206 {
 207    TCGv slot_mask = tcg_temp_new();
 208    TCGv tmp = tcg_temp_new();
 209    TCGv zero = tcg_constant_tl(0);
 210    tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
 211    tcg_gen_andi_tl(tmp, pred, 1);
 212    tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
 213                       slot_mask, hex_slot_cancelled);
 214    tcg_temp_free(slot_mask);
 215    tcg_temp_free(tmp);
 216}
 217#define PRED_LOAD_CANCEL(PRED, EA) \
 218    gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
 219#endif
 220
 221#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
 222
 223#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
 224
 225#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
 226
 227#define fABS(A) (((A) < 0) ? (-(A)) : (A))
 228#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
 229    REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
 230#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
 231    ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
 232#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
 233    (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
 234#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
 235    (((HIBIT) - (LOWBIT) + 1) ? \
 236        extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
 237        0LL)
 238#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
 239    do { \
 240        int width = ((HIBIT) - (LOWBIT) + 1); \
 241        INREG = (width >= 0 ? \
 242            deposit64((INREG), (LOWBIT), width, (INVAL)) : \
 243            INREG); \
 244    } while (0)
 245
 246#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
 247
 248#ifdef QEMU_GENERATE
 249#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
 250#else
 251#define fLSBOLD(VAL)  ((VAL) & 1)
 252#endif
 253
 254#ifdef QEMU_GENERATE
 255#define fLSBNEW(PVAL)   tcg_gen_andi_tl(LSB, (PVAL), 1)
 256#define fLSBNEW0        tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
 257#define fLSBNEW1        tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
 258#else
 259#define fLSBNEW(PVAL)   ((PVAL) & 1)
 260#define fLSBNEW0        (env->new_pred_value[0] & 1)
 261#define fLSBNEW1        (env->new_pred_value[1] & 1)
 262#endif
 263
 264#ifdef QEMU_GENERATE
 265#define fLSBOLDNOT(VAL) \
 266    do { \
 267        tcg_gen_andi_tl(LSB, (VAL), 1); \
 268        tcg_gen_xori_tl(LSB, LSB, 1); \
 269    } while (0)
 270#define fLSBNEWNOT(PNUM) \
 271    do { \
 272        tcg_gen_andi_tl(LSB, (PNUM), 1); \
 273        tcg_gen_xori_tl(LSB, LSB, 1); \
 274    } while (0)
 275#else
 276#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
 277#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
 278#define fLSBNEW0NOT (!fLSBNEW0)
 279#define fLSBNEW1NOT (!fLSBNEW1)
 280#endif
 281
 282#define fNEWREG(VAL) ((int32_t)(VAL))
 283
 284#define fNEWREG_ST(VAL) (VAL)
 285
 286#define fVSATUVALN(N, VAL) \
 287    ({ \
 288        (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
 289    })
 290#define fSATUVALN(N, VAL) \
 291    ({ \
 292        fSET_OVERFLOW(); \
 293        ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
 294    })
 295#define fSATVALN(N, VAL) \
 296    ({ \
 297        fSET_OVERFLOW(); \
 298        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
 299    })
 300#define fVSATVALN(N, VAL) \
 301    ({ \
 302        ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
 303    })
 304#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
 305#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
 306#define fSATN(N, VAL) \
 307    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
 308#define fVSATN(N, VAL) \
 309    ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
 310#define fADDSAT64(DST, A, B) \
 311    do { \
 312        uint64_t __a = fCAST8u(A); \
 313        uint64_t __b = fCAST8u(B); \
 314        uint64_t __sum = __a + __b; \
 315        uint64_t __xor = __a ^ __b; \
 316        const uint64_t __mask = 0x8000000000000000ULL; \
 317        if (__xor & __mask) { \
 318            DST = __sum; \
 319        } \
 320        else if ((__a ^ __sum) & __mask) { \
 321            if (__sum & __mask) { \
 322                DST = 0x7FFFFFFFFFFFFFFFLL; \
 323                fSET_OVERFLOW(); \
 324            } else { \
 325                DST = 0x8000000000000000LL; \
 326                fSET_OVERFLOW(); \
 327            } \
 328        } else { \
 329            DST = __sum; \
 330        } \
 331    } while (0)
 332#define fVSATUN(N, VAL) \
 333    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
 334#define fSATUN(N, VAL) \
 335    ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
 336#define fSATH(VAL) (fSATN(16, VAL))
 337#define fSATUH(VAL) (fSATUN(16, VAL))
 338#define fVSATH(VAL) (fVSATN(16, VAL))
 339#define fVSATUH(VAL) (fVSATUN(16, VAL))
 340#define fSATUB(VAL) (fSATUN(8, VAL))
 341#define fSATB(VAL) (fSATN(8, VAL))
 342#define fVSATUB(VAL) (fVSATUN(8, VAL))
 343#define fVSATB(VAL) (fVSATN(8, VAL))
 344#define fIMMEXT(IMM) (IMM = IMM)
 345#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
 346
 347#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
 348
 349#ifdef QEMU_GENERATE
 350static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
 351{
 352    /*
 353     * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
 354     *
 355     *  The "I" value from a modifier register is divided into two pieces
 356     *      LSB         bits 23:17
 357     *      MSB         bits 31:28
 358     * The value is signed
 359     *
 360     * At the end we shift the result according to the shift argument
 361     */
 362    TCGv msb = tcg_temp_new();
 363    TCGv lsb = tcg_temp_new();
 364
 365    tcg_gen_extract_tl(lsb, val, 17, 7);
 366    tcg_gen_sari_tl(msb, val, 21);
 367    tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
 368
 369    tcg_gen_shli_tl(result, result, shift);
 370
 371    tcg_temp_free(msb);
 372    tcg_temp_free(lsb);
 373
 374    return result;
 375}
 376#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
 377#else
 378#define fREAD_IREG(VAL) \
 379    (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
 380#endif
 381
 382#define fREAD_LR() (READ_REG(HEX_REG_LR))
 383
 384#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
 385#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
 386#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
 387
 388#define fREAD_SP() (READ_REG(HEX_REG_SP))
 389#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
 390#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
 391#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
 392#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
 393#define fREAD_FP() (READ_REG(HEX_REG_FP))
 394#ifdef FIXME
 395/* Figure out how to get insn->extension_valid to helper */
 396#define fREAD_GP() \
 397    (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
 398#else
 399#define fREAD_GP() READ_REG(HEX_REG_GP)
 400#endif
 401#define fREAD_PC() (READ_REG(HEX_REG_PC))
 402
 403#define fREAD_NPC() (env->next_PC & (0xfffffffe))
 404
 405#define fREAD_P0() (READ_PREG(0))
 406#define fREAD_P3() (READ_PREG(3))
 407
 408#define fCHECK_PCALIGN(A)
 409
 410#define fWRITE_NPC(A) write_new_pc(env, A)
 411
 412#define fBRANCH(LOC, TYPE)          fWRITE_NPC(LOC)
 413#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
 414#define fHINTJR(TARGET) { /* Not modelled in qemu */}
 415#define fCALL(A) \
 416    do { \
 417        fWRITE_LR(fREAD_NPC()); \
 418        fBRANCH(A, COF_TYPE_CALL); \
 419    } while (0)
 420#define fCALLR(A) \
 421    do { \
 422        fWRITE_LR(fREAD_NPC()); \
 423        fBRANCH(A, COF_TYPE_CALLR); \
 424    } while (0)
 425#define fWRITE_LOOP_REGS0(START, COUNT) \
 426    do { \
 427        WRITE_RREG(HEX_REG_LC0, COUNT);  \
 428        WRITE_RREG(HEX_REG_SA0, START); \
 429    } while (0)
 430#define fWRITE_LOOP_REGS1(START, COUNT) \
 431    do { \
 432        WRITE_RREG(HEX_REG_LC1, COUNT);  \
 433        WRITE_RREG(HEX_REG_SA1, START);\
 434    } while (0)
 435#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
 436#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
 437
 438#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
 439#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
 440#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
 441#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
 442#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
 443#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
 444#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
 445#define fPART1(WORK) if (part1) { WORK; return; }
 446#define fCAST4u(A) ((uint32_t)(A))
 447#define fCAST4s(A) ((int32_t)(A))
 448#define fCAST8u(A) ((uint64_t)(A))
 449#define fCAST8s(A) ((int64_t)(A))
 450#define fCAST2_2s(A) ((int16_t)(A))
 451#define fCAST2_2u(A) ((uint16_t)(A))
 452#define fCAST4_4s(A) ((int32_t)(A))
 453#define fCAST4_4u(A) ((uint32_t)(A))
 454#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
 455#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
 456#define fCAST8_8s(A) ((int64_t)(A))
 457#define fCAST8_8u(A) ((uint64_t)(A))
 458#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
 459#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
 460#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
 461#define fSE8_16(A) ((int16_t)((int8_t)(A)))
 462#define fSE16_32(A) ((int32_t)((int16_t)(A)))
 463#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
 464#define fSE32_64(A) ((int64_t)((int32_t)(A)))
 465#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
 466#define fSE8_32(A) ((int32_t)((int8_t)(A)))
 467#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
 468#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
 469#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
 470#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
 471#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
 472#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
 473#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
 474#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
 475#define fMPY16US(A, B) fMPY16SU(B, A)
 476#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
 477#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
 478#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
 479#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
 480#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
 481#define fROUND(A) (A + 0x8000)
 482#define fCLIP(DST, SRC, U) \
 483    do { \
 484        int32_t maxv = (1 << U) - 1; \
 485        int32_t minv = -(1 << U); \
 486        DST = fMIN(maxv, fMAX(SRC, minv)); \
 487    } while (0)
 488#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
 489#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
 490#define fCRNDN(A, N) (conv_round(A, N))
 491#define fADD128(A, B) (int128_add(A, B))
 492#define fSUB128(A, B) (int128_sub(A, B))
 493#define fSHIFTR128(A, B) (int128_rshift(A, B))
 494#define fSHIFTL128(A, B) (int128_lshift(A, B))
 495#define fAND128(A, B) (int128_and(A, B))
 496#define fCAST8S_16S(A) (int128_exts64(A))
 497#define fCAST16S_8S(A) (int128_getlo(A))
 498
 499#ifdef QEMU_GENERATE
 500#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
 501#define fEA_RRs(REG, REG2, SCALE) \
 502    do { \
 503        TCGv tmp = tcg_temp_new(); \
 504        tcg_gen_shli_tl(tmp, REG2, SCALE); \
 505        tcg_gen_add_tl(EA, REG, tmp); \
 506        tcg_temp_free(tmp); \
 507    } while (0)
 508#define fEA_IRs(IMM, REG, SCALE) \
 509    do { \
 510        tcg_gen_shli_tl(EA, REG, SCALE); \
 511        tcg_gen_addi_tl(EA, EA, IMM); \
 512    } while (0)
 513#else
 514#define fEA_RI(REG, IMM) \
 515    do { \
 516        EA = REG + IMM; \
 517    } while (0)
 518#define fEA_RRs(REG, REG2, SCALE) \
 519    do { \
 520        EA = REG + (REG2 << SCALE); \
 521    } while (0)
 522#define fEA_IRs(IMM, REG, SCALE) \
 523    do { \
 524        EA = IMM + (REG << SCALE); \
 525    } while (0)
 526#endif
 527
 528#ifdef QEMU_GENERATE
 529#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
 530#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
 531#define fEA_BREVR(REG)      gen_helper_fbrev(EA, REG)
 532#define fPM_I(REG, IMM)     tcg_gen_addi_tl(REG, REG, IMM)
 533#define fPM_M(REG, MVAL)    tcg_gen_add_tl(REG, REG, MVAL)
 534#define fPM_CIRI(REG, IMM, MVAL) \
 535    do { \
 536        TCGv tcgv_siV = tcg_constant_tl(siV); \
 537        gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
 538                            hex_gpr[HEX_REG_CS0 + MuN]); \
 539    } while (0)
 540#else
 541#define fEA_IMM(IMM)        do { EA = (IMM); } while (0)
 542#define fEA_REG(REG)        do { EA = (REG); } while (0)
 543#define fEA_GPI(IMM)        do { EA = (fREAD_GP() + (IMM)); } while (0)
 544#define fPM_I(REG, IMM)     do { REG = REG + (IMM); } while (0)
 545#define fPM_M(REG, MVAL)    do { REG = REG + (MVAL); } while (0)
 546#endif
 547#define fSCALE(N, A) (((int64_t)(A)) << N)
 548#define fVSATW(A) fVSATN(32, ((long long)A))
 549#define fSATW(A) fSATN(32, ((long long)A))
 550#define fVSAT(A) fVSATN(32, (A))
 551#define fSAT(A) fSATN(32, (A))
 552#define fSAT_ORIG_SHL(A, ORIG_REG) \
 553    ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
 554        ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
 555        : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
 556                                            : fSAT(A)))
 557#define fPASS(A) A
 558#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
 559    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
 560                   : (fCAST##REGSTYPE(SRC) << (SHAMT)))
 561#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
 562    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
 563#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
 564    fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
 565#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
 566    (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
 567                   : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
 568#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
 569    (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
 570                   : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
 571#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
 572    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
 573#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
 574    fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
 575#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
 576    (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
 577                        << ((-(SHAMT)) - 1)) << 1, (SRC)) \
 578                   : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
 579#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
 580#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
 581    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
 582#define fROTL(SRC, SHAMT, REGSTYPE) \
 583    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
 584                              ((fCAST##REGSTYPE##u(SRC) >> \
 585                                 ((sizeof(SRC) * 8) - (SHAMT))))))
 586#define fROTR(SRC, SHAMT, REGSTYPE) \
 587    (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
 588                              ((fCAST##REGSTYPE##u(SRC) << \
 589                                 ((sizeof(SRC) * 8) - (SHAMT))))))
 590#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
 591    (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
 592
 593#ifdef QEMU_GENERATE
 594#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
 595#else
 596#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
 597    DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
 598#endif
 599
 600#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
 601
 602#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
 603#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
 604#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
 605
 606#ifdef CONFIG_USER_ONLY
 607#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
 608#else
 609/* System mode not implemented yet */
 610#define fFRAMECHECK(ADDR, EA)  g_assert_not_reached();
 611#endif
 612
 613#ifdef QEMU_GENERATE
 614#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
 615    gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
 616#endif
 617
 618#ifdef QEMU_GENERATE
 619#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
 620#else
 621#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
 622#endif
 623
 624#ifdef QEMU_GENERATE
 625#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
 626    gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
 627#endif
 628
 629#ifdef QEMU_GENERATE
 630#define GETBYTE_FUNC(X) \
 631    __builtin_choose_expr(TYPE_TCGV(X), \
 632        gen_get_byte, \
 633        __builtin_choose_expr(TYPE_TCGV_I64(X), \
 634            gen_get_byte_i64, (void)0))
 635#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
 636#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
 637#else
 638#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
 639#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
 640#endif
 641
 642#define fSETBYTE(N, DST, VAL) \
 643    do { \
 644        DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
 645        (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
 646    } while (0)
 647
 648#ifdef QEMU_GENERATE
 649#define fGETHALF(N, SRC)  gen_get_half(HALF, N, SRC, true)
 650#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
 651#else
 652#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
 653#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
 654#endif
 655#define fSETHALF(N, DST, VAL) \
 656    do { \
 657        DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
 658        (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
 659    } while (0)
 660#define fSETHALFw fSETHALF
 661#define fSETHALFd fSETHALF
 662
 663#define fGETWORD(N, SRC) \
 664    ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
 665#define fGETUWORD(N, SRC) \
 666    ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
 667
 668#define fSETWORD(N, DST, VAL) \
 669    do { \
 670        DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
 671              (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
 672    } while (0)
 673
 674#define fSETBIT(N, DST, VAL) \
 675    do { \
 676        DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
 677    } while (0)
 678
 679#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
 680#define fSETBITS(HI, LO, DST, VAL) \
 681    do { \
 682        int j; \
 683        for (j = LO; j <= HI; j++) { \
 684            fSETBIT(j, DST, VAL); \
 685        } \
 686    } while (0)
 687#define fCOUNTONES_2(VAL) ctpop16(VAL)
 688#define fCOUNTONES_4(VAL) ctpop32(VAL)
 689#define fCOUNTONES_8(VAL) ctpop64(VAL)
 690#define fBREV_8(VAL) revbit64(VAL)
 691#define fBREV_4(VAL) revbit32(VAL)
 692#define fCL1_8(VAL) clo64(VAL)
 693#define fCL1_4(VAL) clo32(VAL)
 694#define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
 695#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
 696#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
 697#define fHIDE(A) A
 698#define fCONSTLL(A) A##LL
 699#define fECHO(A) (A)
 700
 701#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
 702#define fPAUSE(IMM)
 703
 704#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
 705    ((VAL) << reg_field_info[FIELD].offset)
 706#define fGET_REG_FIELD_MASK(FIELD) \
 707    (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
 708#define fREAD_REG_FIELD(REG, FIELD) \
 709    fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
 710                   reg_field_info[FIELD].width, \
 711                   reg_field_info[FIELD].offset)
 712#define fGET_FIELD(VAL, FIELD)
 713#define fSET_FIELD(VAL, FIELD, NEWVAL)
 714#define fBARRIER()
 715#define fSYNCH()
 716#define fISYNC()
 717#define fDCFETCH(REG) \
 718    do { (void)REG; } while (0) /* Nothing to do in qemu */
 719#define fICINVA(REG) \
 720    do { (void)REG; } while (0) /* Nothing to do in qemu */
 721#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
 722#define fDCCLEANA(REG) \
 723    do { (void)REG; } while (0) /* Nothing to do in qemu */
 724#define fDCCLEANINVA(REG) \
 725    do { (void)REG; } while (0) /* Nothing to do in qemu */
 726
 727#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
 728
 729#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
 730                                STRBITNUM) /* Nothing */
 731
 732
 733#endif
 734