qemu/target/i386/hvf/x86hvf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2008 Fabrice Bellard
   3 * Copyright (C) 2016 Veertu Inc,
   4 * Copyright (C) 2017 Google Inc,
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21
  22#include "x86hvf.h"
  23#include "vmx.h"
  24#include "vmcs.h"
  25#include "cpu.h"
  26#include "x86_descr.h"
  27#include "x86_decode.h"
  28#include "sysemu/hw_accel.h"
  29
  30#include "hw/i386/apic_internal.h"
  31
  32#include <Hypervisor/hv.h>
  33#include <Hypervisor/hv_vmx.h>
  34
  35void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
  36                     SegmentCache *qseg, bool is_tr)
  37{
  38    vmx_seg->sel = qseg->selector;
  39    vmx_seg->base = qseg->base;
  40    vmx_seg->limit = qseg->limit;
  41
  42    if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
  43        /* the TR register is usable after processor reset despite
  44         * having a null selector */
  45        vmx_seg->ar = 1 << 16;
  46        return;
  47    }
  48    vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
  49    vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
  50    vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
  51    vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
  52    vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
  53    vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
  54    vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
  55    vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
  56}
  57
  58void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
  59{
  60    qseg->limit = vmx_seg->limit;
  61    qseg->base = vmx_seg->base;
  62    qseg->selector = vmx_seg->sel;
  63    qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
  64                  (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
  65                  (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
  66                  (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
  67                  (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
  68                  (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
  69                  (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
  70                  (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
  71}
  72
  73void hvf_put_xsave(CPUState *cpu_state)
  74{
  75    void *xsave = X86_CPU(cpu_state)->env.xsave_buf;
  76    uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len;
  77
  78    x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave, xsave_len);
  79
  80    if (hv_vcpu_write_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) {
  81        abort();
  82    }
  83}
  84
  85static void hvf_put_segments(CPUState *cpu_state)
  86{
  87    CPUX86State *env = &X86_CPU(cpu_state)->env;
  88    struct vmx_segment seg;
  89    
  90    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
  91    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
  92
  93    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
  94    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
  95
  96    /* wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */
  97    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3, env->cr[3]);
  98    vmx_update_tpr(cpu_state);
  99    wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer);
 100
 101    macvm_set_cr4(cpu_state->hvf->fd, env->cr[4]);
 102    macvm_set_cr0(cpu_state->hvf->fd, env->cr[0]);
 103
 104    hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
 105    vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
 106    
 107    hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
 108    vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
 109
 110    hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
 111    vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
 112
 113    hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
 114    vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
 115
 116    hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
 117    vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
 118
 119    hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
 120    vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
 121
 122    hvf_set_segment(cpu_state, &seg, &env->tr, true);
 123    vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
 124
 125    hvf_set_segment(cpu_state, &seg, &env->ldt, false);
 126    vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
 127}
 128    
 129void hvf_put_msrs(CPUState *cpu_state)
 130{
 131    CPUX86State *env = &X86_CPU(cpu_state)->env;
 132
 133    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS,
 134                      env->sysenter_cs);
 135    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP,
 136                      env->sysenter_esp);
 137    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP,
 138                      env->sysenter_eip);
 139
 140    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_STAR, env->star);
 141
 142#ifdef TARGET_X86_64
 143    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_CSTAR, env->cstar);
 144    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase);
 145    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FMASK, env->fmask);
 146    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_LSTAR, env->lstar);
 147#endif
 148
 149    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_GSBASE, env->segs[R_GS].base);
 150    hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FSBASE, env->segs[R_FS].base);
 151}
 152
 153
 154void hvf_get_xsave(CPUState *cpu_state)
 155{
 156    void *xsave = X86_CPU(cpu_state)->env.xsave_buf;
 157    uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len;
 158
 159    if (hv_vcpu_read_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) {
 160        abort();
 161    }
 162
 163    x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave, xsave_len);
 164}
 165
 166static void hvf_get_segments(CPUState *cpu_state)
 167{
 168    CPUX86State *env = &X86_CPU(cpu_state)->env;
 169
 170    struct vmx_segment seg;
 171
 172    env->interrupt_injected = -1;
 173
 174    vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
 175    hvf_get_segment(&env->segs[R_CS], &seg);
 176    
 177    vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
 178    hvf_get_segment(&env->segs[R_DS], &seg);
 179
 180    vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
 181    hvf_get_segment(&env->segs[R_ES], &seg);
 182
 183    vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
 184    hvf_get_segment(&env->segs[R_FS], &seg);
 185
 186    vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
 187    hvf_get_segment(&env->segs[R_GS], &seg);
 188
 189    vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
 190    hvf_get_segment(&env->segs[R_SS], &seg);
 191
 192    vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
 193    hvf_get_segment(&env->tr, &seg);
 194
 195    vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
 196    hvf_get_segment(&env->ldt, &seg);
 197
 198    env->idt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT);
 199    env->idt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE);
 200    env->gdt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
 201    env->gdt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE);
 202
 203    env->cr[0] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR0);
 204    env->cr[2] = 0;
 205    env->cr[3] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3);
 206    env->cr[4] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR4);
 207    
 208    env->efer = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER);
 209}
 210
 211void hvf_get_msrs(CPUState *cpu_state)
 212{
 213    CPUX86State *env = &X86_CPU(cpu_state)->env;
 214    uint64_t tmp;
 215    
 216    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp);
 217    env->sysenter_cs = tmp;
 218    
 219    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp);
 220    env->sysenter_esp = tmp;
 221
 222    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp);
 223    env->sysenter_eip = tmp;
 224
 225    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_STAR, &env->star);
 226
 227#ifdef TARGET_X86_64
 228    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_CSTAR, &env->cstar);
 229    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
 230    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_FMASK, &env->fmask);
 231    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_LSTAR, &env->lstar);
 232#endif
 233
 234    hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_APICBASE, &tmp);
 235    
 236    env->tsc = rdtscp() + rvmcs(cpu_state->hvf->fd, VMCS_TSC_OFFSET);
 237}
 238
 239int hvf_put_registers(CPUState *cpu_state)
 240{
 241    X86CPU *x86cpu = X86_CPU(cpu_state);
 242    CPUX86State *env = &x86cpu->env;
 243
 244    wreg(cpu_state->hvf->fd, HV_X86_RAX, env->regs[R_EAX]);
 245    wreg(cpu_state->hvf->fd, HV_X86_RBX, env->regs[R_EBX]);
 246    wreg(cpu_state->hvf->fd, HV_X86_RCX, env->regs[R_ECX]);
 247    wreg(cpu_state->hvf->fd, HV_X86_RDX, env->regs[R_EDX]);
 248    wreg(cpu_state->hvf->fd, HV_X86_RBP, env->regs[R_EBP]);
 249    wreg(cpu_state->hvf->fd, HV_X86_RSP, env->regs[R_ESP]);
 250    wreg(cpu_state->hvf->fd, HV_X86_RSI, env->regs[R_ESI]);
 251    wreg(cpu_state->hvf->fd, HV_X86_RDI, env->regs[R_EDI]);
 252    wreg(cpu_state->hvf->fd, HV_X86_R8, env->regs[8]);
 253    wreg(cpu_state->hvf->fd, HV_X86_R9, env->regs[9]);
 254    wreg(cpu_state->hvf->fd, HV_X86_R10, env->regs[10]);
 255    wreg(cpu_state->hvf->fd, HV_X86_R11, env->regs[11]);
 256    wreg(cpu_state->hvf->fd, HV_X86_R12, env->regs[12]);
 257    wreg(cpu_state->hvf->fd, HV_X86_R13, env->regs[13]);
 258    wreg(cpu_state->hvf->fd, HV_X86_R14, env->regs[14]);
 259    wreg(cpu_state->hvf->fd, HV_X86_R15, env->regs[15]);
 260    wreg(cpu_state->hvf->fd, HV_X86_RFLAGS, env->eflags);
 261    wreg(cpu_state->hvf->fd, HV_X86_RIP, env->eip);
 262   
 263    wreg(cpu_state->hvf->fd, HV_X86_XCR0, env->xcr0);
 264    
 265    hvf_put_xsave(cpu_state);
 266    
 267    hvf_put_segments(cpu_state);
 268    
 269    hvf_put_msrs(cpu_state);
 270    
 271    wreg(cpu_state->hvf->fd, HV_X86_DR0, env->dr[0]);
 272    wreg(cpu_state->hvf->fd, HV_X86_DR1, env->dr[1]);
 273    wreg(cpu_state->hvf->fd, HV_X86_DR2, env->dr[2]);
 274    wreg(cpu_state->hvf->fd, HV_X86_DR3, env->dr[3]);
 275    wreg(cpu_state->hvf->fd, HV_X86_DR4, env->dr[4]);
 276    wreg(cpu_state->hvf->fd, HV_X86_DR5, env->dr[5]);
 277    wreg(cpu_state->hvf->fd, HV_X86_DR6, env->dr[6]);
 278    wreg(cpu_state->hvf->fd, HV_X86_DR7, env->dr[7]);
 279    
 280    return 0;
 281}
 282
 283int hvf_get_registers(CPUState *cpu_state)
 284{
 285    X86CPU *x86cpu = X86_CPU(cpu_state);
 286    CPUX86State *env = &x86cpu->env;
 287
 288    env->regs[R_EAX] = rreg(cpu_state->hvf->fd, HV_X86_RAX);
 289    env->regs[R_EBX] = rreg(cpu_state->hvf->fd, HV_X86_RBX);
 290    env->regs[R_ECX] = rreg(cpu_state->hvf->fd, HV_X86_RCX);
 291    env->regs[R_EDX] = rreg(cpu_state->hvf->fd, HV_X86_RDX);
 292    env->regs[R_EBP] = rreg(cpu_state->hvf->fd, HV_X86_RBP);
 293    env->regs[R_ESP] = rreg(cpu_state->hvf->fd, HV_X86_RSP);
 294    env->regs[R_ESI] = rreg(cpu_state->hvf->fd, HV_X86_RSI);
 295    env->regs[R_EDI] = rreg(cpu_state->hvf->fd, HV_X86_RDI);
 296    env->regs[8] = rreg(cpu_state->hvf->fd, HV_X86_R8);
 297    env->regs[9] = rreg(cpu_state->hvf->fd, HV_X86_R9);
 298    env->regs[10] = rreg(cpu_state->hvf->fd, HV_X86_R10);
 299    env->regs[11] = rreg(cpu_state->hvf->fd, HV_X86_R11);
 300    env->regs[12] = rreg(cpu_state->hvf->fd, HV_X86_R12);
 301    env->regs[13] = rreg(cpu_state->hvf->fd, HV_X86_R13);
 302    env->regs[14] = rreg(cpu_state->hvf->fd, HV_X86_R14);
 303    env->regs[15] = rreg(cpu_state->hvf->fd, HV_X86_R15);
 304    
 305    env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
 306    env->eip = rreg(cpu_state->hvf->fd, HV_X86_RIP);
 307   
 308    hvf_get_xsave(cpu_state);
 309    env->xcr0 = rreg(cpu_state->hvf->fd, HV_X86_XCR0);
 310    
 311    hvf_get_segments(cpu_state);
 312    hvf_get_msrs(cpu_state);
 313    
 314    env->dr[0] = rreg(cpu_state->hvf->fd, HV_X86_DR0);
 315    env->dr[1] = rreg(cpu_state->hvf->fd, HV_X86_DR1);
 316    env->dr[2] = rreg(cpu_state->hvf->fd, HV_X86_DR2);
 317    env->dr[3] = rreg(cpu_state->hvf->fd, HV_X86_DR3);
 318    env->dr[4] = rreg(cpu_state->hvf->fd, HV_X86_DR4);
 319    env->dr[5] = rreg(cpu_state->hvf->fd, HV_X86_DR5);
 320    env->dr[6] = rreg(cpu_state->hvf->fd, HV_X86_DR6);
 321    env->dr[7] = rreg(cpu_state->hvf->fd, HV_X86_DR7);
 322    
 323    x86_update_hflags(env);
 324    return 0;
 325}
 326
 327static void vmx_set_int_window_exiting(CPUState *cpu)
 328{
 329     uint64_t val;
 330     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
 331     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
 332             VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
 333}
 334
 335void vmx_clear_int_window_exiting(CPUState *cpu)
 336{
 337     uint64_t val;
 338     val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
 339     wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
 340             ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
 341}
 342
 343bool hvf_inject_interrupts(CPUState *cpu_state)
 344{
 345    X86CPU *x86cpu = X86_CPU(cpu_state);
 346    CPUX86State *env = &x86cpu->env;
 347
 348    uint8_t vector;
 349    uint64_t intr_type;
 350    bool have_event = true;
 351    if (env->interrupt_injected != -1) {
 352        vector = env->interrupt_injected;
 353        if (env->ins_len) {
 354            intr_type = VMCS_INTR_T_SWINTR;
 355        } else {
 356            intr_type = VMCS_INTR_T_HWINTR;
 357        }
 358    } else if (env->exception_nr != -1) {
 359        vector = env->exception_nr;
 360        if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
 361            intr_type = VMCS_INTR_T_SWEXCEPTION;
 362        } else {
 363            intr_type = VMCS_INTR_T_HWEXCEPTION;
 364        }
 365    } else if (env->nmi_injected) {
 366        vector = EXCP02_NMI;
 367        intr_type = VMCS_INTR_T_NMI;
 368    } else {
 369        have_event = false;
 370    }
 371
 372    uint64_t info = 0;
 373    if (have_event) {
 374        info = vector | intr_type | VMCS_INTR_VALID;
 375        uint64_t reason = rvmcs(cpu_state->hvf->fd, VMCS_EXIT_REASON);
 376        if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
 377            vmx_clear_nmi_blocking(cpu_state);
 378        }
 379
 380        if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
 381            info &= ~(1 << 12); /* clear undefined bit */
 382            if (intr_type == VMCS_INTR_T_SWINTR ||
 383                intr_type == VMCS_INTR_T_SWEXCEPTION) {
 384                wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
 385            }
 386            
 387            if (env->has_error_code) {
 388                wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR,
 389                      env->error_code);
 390                /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
 391                info |= VMCS_INTR_DEL_ERRCODE;
 392            }
 393            /*printf("reinject  %lx err %d\n", info, err);*/
 394            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
 395        };
 396    }
 397
 398    if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
 399        if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
 400            cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
 401            info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
 402            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
 403        } else {
 404            vmx_set_nmi_window_exiting(cpu_state);
 405        }
 406    }
 407
 408    if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
 409        (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
 410        (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
 411        int line = cpu_get_pic_interrupt(&x86cpu->env);
 412        cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
 413        if (line >= 0) {
 414            wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, line |
 415                  VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
 416        }
 417    }
 418    if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
 419        vmx_set_int_window_exiting(cpu_state);
 420    }
 421    return (cpu_state->interrupt_request
 422            & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
 423}
 424
 425int hvf_process_events(CPUState *cpu_state)
 426{
 427    X86CPU *cpu = X86_CPU(cpu_state);
 428    CPUX86State *env = &cpu->env;
 429
 430    if (!cpu_state->vcpu_dirty) {
 431        /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */
 432        env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
 433    }
 434
 435    if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
 436        cpu_synchronize_state(cpu_state);
 437        do_cpu_init(cpu);
 438    }
 439
 440    if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
 441        cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
 442        apic_poll_irq(cpu->apic_state);
 443    }
 444    if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
 445        (env->eflags & IF_MASK)) ||
 446        (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
 447        cpu_state->halted = 0;
 448    }
 449    if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
 450        cpu_synchronize_state(cpu_state);
 451        do_cpu_sipi(cpu);
 452    }
 453    if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
 454        cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
 455        cpu_synchronize_state(cpu_state);
 456        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
 457                                      env->tpr_access_type);
 458    }
 459    return cpu_state->halted;
 460}
 461