qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include <sys/ioctl.h>
  19#include <sys/utsname.h>
  20#include <sys/syscall.h>
  21
  22#include <linux/kvm.h>
  23#include "standard-headers/asm-x86/kvm_para.h"
  24
  25#include "cpu.h"
  26#include "host-cpu.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/hw_accel.h"
  29#include "sysemu/kvm_int.h"
  30#include "sysemu/runstate.h"
  31#include "kvm_i386.h"
  32#include "sev.h"
  33#include "hyperv.h"
  34#include "hyperv-proto.h"
  35
  36#include "exec/gdbstub.h"
  37#include "qemu/host-utils.h"
  38#include "qemu/main-loop.h"
  39#include "qemu/config-file.h"
  40#include "qemu/error-report.h"
  41#include "qemu/memalign.h"
  42#include "hw/i386/x86.h"
  43#include "hw/i386/apic.h"
  44#include "hw/i386/apic_internal.h"
  45#include "hw/i386/apic-msidef.h"
  46#include "hw/i386/intel_iommu.h"
  47#include "hw/i386/x86-iommu.h"
  48#include "hw/i386/e820_memory_layout.h"
  49
  50#include "hw/pci/pci.h"
  51#include "hw/pci/msi.h"
  52#include "hw/pci/msix.h"
  53#include "migration/blocker.h"
  54#include "exec/memattrs.h"
  55#include "trace.h"
  56
  57#include CONFIG_DEVICES
  58
  59//#define DEBUG_KVM
  60
  61#ifdef DEBUG_KVM
  62#define DPRINTF(fmt, ...) \
  63    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  64#else
  65#define DPRINTF(fmt, ...) \
  66    do { } while (0)
  67#endif
  68
  69/* From arch/x86/kvm/lapic.h */
  70#define KVM_APIC_BUS_CYCLE_NS       1
  71#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  72
  73#define MSR_KVM_WALL_CLOCK  0x11
  74#define MSR_KVM_SYSTEM_TIME 0x12
  75
  76/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  77 * 255 kvm_msr_entry structs */
  78#define MSR_BUF_SIZE 4096
  79
  80static void kvm_init_msrs(X86CPU *cpu);
  81
  82const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  83    KVM_CAP_INFO(SET_TSS_ADDR),
  84    KVM_CAP_INFO(EXT_CPUID),
  85    KVM_CAP_INFO(MP_STATE),
  86    KVM_CAP_LAST_INFO
  87};
  88
  89static bool has_msr_star;
  90static bool has_msr_hsave_pa;
  91static bool has_msr_tsc_aux;
  92static bool has_msr_tsc_adjust;
  93static bool has_msr_tsc_deadline;
  94static bool has_msr_feature_control;
  95static bool has_msr_misc_enable;
  96static bool has_msr_smbase;
  97static bool has_msr_bndcfgs;
  98static int lm_capable_kernel;
  99static bool has_msr_hv_hypercall;
 100static bool has_msr_hv_crash;
 101static bool has_msr_hv_reset;
 102static bool has_msr_hv_vpindex;
 103static bool hv_vpindex_settable;
 104static bool has_msr_hv_runtime;
 105static bool has_msr_hv_synic;
 106static bool has_msr_hv_stimer;
 107static bool has_msr_hv_frequencies;
 108static bool has_msr_hv_reenlightenment;
 109static bool has_msr_hv_syndbg_options;
 110static bool has_msr_xss;
 111static bool has_msr_umwait;
 112static bool has_msr_spec_ctrl;
 113static bool has_tsc_scale_msr;
 114static bool has_msr_tsx_ctrl;
 115static bool has_msr_virt_ssbd;
 116static bool has_msr_smi_count;
 117static bool has_msr_arch_capabs;
 118static bool has_msr_core_capabs;
 119static bool has_msr_vmx_vmfunc;
 120static bool has_msr_ucode_rev;
 121static bool has_msr_vmx_procbased_ctls2;
 122static bool has_msr_perf_capabs;
 123static bool has_msr_pkrs;
 124
 125static uint32_t has_architectural_pmu_version;
 126static uint32_t num_architectural_pmu_gp_counters;
 127static uint32_t num_architectural_pmu_fixed_counters;
 128
 129static int has_xsave;
 130static int has_xsave2;
 131static int has_xcrs;
 132static int has_pit_state2;
 133static int has_sregs2;
 134static int has_exception_payload;
 135
 136static bool has_msr_mcg_ext_ctl;
 137
 138static struct kvm_cpuid2 *cpuid_cache;
 139static struct kvm_cpuid2 *hv_cpuid_cache;
 140static struct kvm_msr_list *kvm_feature_msrs;
 141
 142#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
 143static RateLimit bus_lock_ratelimit_ctrl;
 144static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
 145
 146int kvm_has_pit_state2(void)
 147{
 148    return has_pit_state2;
 149}
 150
 151bool kvm_has_smm(void)
 152{
 153    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 154}
 155
 156bool kvm_has_adjust_clock_stable(void)
 157{
 158    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 159
 160    return (ret == KVM_CLOCK_TSC_STABLE);
 161}
 162
 163bool kvm_has_adjust_clock(void)
 164{
 165    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 166}
 167
 168bool kvm_has_exception_payload(void)
 169{
 170    return has_exception_payload;
 171}
 172
 173static bool kvm_x2apic_api_set_flags(uint64_t flags)
 174{
 175    KVMState *s = KVM_STATE(current_accel());
 176
 177    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 178}
 179
 180#define MEMORIZE(fn, _result) \
 181    ({ \
 182        static bool _memorized; \
 183        \
 184        if (_memorized) { \
 185            return _result; \
 186        } \
 187        _memorized = true; \
 188        _result = fn; \
 189    })
 190
 191static bool has_x2apic_api;
 192
 193bool kvm_has_x2apic_api(void)
 194{
 195    return has_x2apic_api;
 196}
 197
 198bool kvm_enable_x2apic(void)
 199{
 200    return MEMORIZE(
 201             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 202                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 203             has_x2apic_api);
 204}
 205
 206bool kvm_hv_vpindex_settable(void)
 207{
 208    return hv_vpindex_settable;
 209}
 210
 211static int kvm_get_tsc(CPUState *cs)
 212{
 213    X86CPU *cpu = X86_CPU(cs);
 214    CPUX86State *env = &cpu->env;
 215    uint64_t value;
 216    int ret;
 217
 218    if (env->tsc_valid) {
 219        return 0;
 220    }
 221
 222    env->tsc_valid = !runstate_is_running();
 223
 224    ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
 225    if (ret < 0) {
 226        return ret;
 227    }
 228
 229    env->tsc = value;
 230    return 0;
 231}
 232
 233static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 234{
 235    kvm_get_tsc(cpu);
 236}
 237
 238void kvm_synchronize_all_tsc(void)
 239{
 240    CPUState *cpu;
 241
 242    if (kvm_enabled()) {
 243        CPU_FOREACH(cpu) {
 244            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 245        }
 246    }
 247}
 248
 249static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 250{
 251    struct kvm_cpuid2 *cpuid;
 252    int r, size;
 253
 254    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 255    cpuid = g_malloc0(size);
 256    cpuid->nent = max;
 257    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 258    if (r == 0 && cpuid->nent >= max) {
 259        r = -E2BIG;
 260    }
 261    if (r < 0) {
 262        if (r == -E2BIG) {
 263            g_free(cpuid);
 264            return NULL;
 265        } else {
 266            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 267                    strerror(-r));
 268            exit(1);
 269        }
 270    }
 271    return cpuid;
 272}
 273
 274/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 275 * for all entries.
 276 */
 277static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 278{
 279    struct kvm_cpuid2 *cpuid;
 280    int max = 1;
 281
 282    if (cpuid_cache != NULL) {
 283        return cpuid_cache;
 284    }
 285    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 286        max *= 2;
 287    }
 288    cpuid_cache = cpuid;
 289    return cpuid;
 290}
 291
 292static bool host_tsx_broken(void)
 293{
 294    int family, model, stepping;\
 295    char vendor[CPUID_VENDOR_SZ + 1];
 296
 297    host_cpu_vendor_fms(vendor, &family, &model, &stepping);
 298
 299    /* Check if we are running on a Haswell host known to have broken TSX */
 300    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 301           (family == 6) &&
 302           ((model == 63 && stepping < 4) ||
 303            model == 60 || model == 69 || model == 70);
 304}
 305
 306/* Returns the value for a specific register on the cpuid entry
 307 */
 308static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 309{
 310    uint32_t ret = 0;
 311    switch (reg) {
 312    case R_EAX:
 313        ret = entry->eax;
 314        break;
 315    case R_EBX:
 316        ret = entry->ebx;
 317        break;
 318    case R_ECX:
 319        ret = entry->ecx;
 320        break;
 321    case R_EDX:
 322        ret = entry->edx;
 323        break;
 324    }
 325    return ret;
 326}
 327
 328/* Find matching entry for function/index on kvm_cpuid2 struct
 329 */
 330static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 331                                                 uint32_t function,
 332                                                 uint32_t index)
 333{
 334    int i;
 335    for (i = 0; i < cpuid->nent; ++i) {
 336        if (cpuid->entries[i].function == function &&
 337            cpuid->entries[i].index == index) {
 338            return &cpuid->entries[i];
 339        }
 340    }
 341    /* not found: */
 342    return NULL;
 343}
 344
 345uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 346                                      uint32_t index, int reg)
 347{
 348    struct kvm_cpuid2 *cpuid;
 349    uint32_t ret = 0;
 350    uint32_t cpuid_1_edx;
 351    uint64_t bitmask;
 352
 353    cpuid = get_supported_cpuid(s);
 354
 355    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 356    if (entry) {
 357        ret = cpuid_entry_get_reg(entry, reg);
 358    }
 359
 360    /* Fixups for the data returned by KVM, below */
 361
 362    if (function == 1 && reg == R_EDX) {
 363        /* KVM before 2.6.30 misreports the following features */
 364        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 365    } else if (function == 1 && reg == R_ECX) {
 366        /* We can set the hypervisor flag, even if KVM does not return it on
 367         * GET_SUPPORTED_CPUID
 368         */
 369        ret |= CPUID_EXT_HYPERVISOR;
 370        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 371         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 372         * and the irqchip is in the kernel.
 373         */
 374        if (kvm_irqchip_in_kernel() &&
 375                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 376            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 377        }
 378
 379        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 380         * without the in-kernel irqchip
 381         */
 382        if (!kvm_irqchip_in_kernel()) {
 383            ret &= ~CPUID_EXT_X2APIC;
 384        }
 385
 386        if (enable_cpu_pm) {
 387            int disable_exits = kvm_check_extension(s,
 388                                                    KVM_CAP_X86_DISABLE_EXITS);
 389
 390            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 391                ret |= CPUID_EXT_MONITOR;
 392            }
 393        }
 394    } else if (function == 6 && reg == R_EAX) {
 395        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 396    } else if (function == 7 && index == 0 && reg == R_EBX) {
 397        if (host_tsx_broken()) {
 398            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 399        }
 400    } else if (function == 7 && index == 0 && reg == R_EDX) {
 401        /*
 402         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 403         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 404         * returned by KVM_GET_MSR_INDEX_LIST.
 405         */
 406        if (!has_msr_arch_capabs) {
 407            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 408        }
 409    } else if (function == 0xd && index == 0 &&
 410               (reg == R_EAX || reg == R_EDX)) {
 411        /*
 412         * The value returned by KVM_GET_SUPPORTED_CPUID does not include
 413         * features that still have to be enabled with the arch_prctl
 414         * system call.  QEMU needs the full value, which is retrieved
 415         * with KVM_GET_DEVICE_ATTR.
 416         */
 417        struct kvm_device_attr attr = {
 418            .group = 0,
 419            .attr = KVM_X86_XCOMP_GUEST_SUPP,
 420            .addr = (unsigned long) &bitmask
 421        };
 422
 423        bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
 424        if (!sys_attr) {
 425            return ret;
 426        }
 427
 428        int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 429        if (rc < 0) {
 430            if (rc != -ENXIO) {
 431                warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
 432                            "error: %d", rc);
 433            }
 434            return ret;
 435        }
 436        ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
 437    } else if (function == 0x80000001 && reg == R_ECX) {
 438        /*
 439         * It's safe to enable TOPOEXT even if it's not returned by
 440         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 441         * us to keep CPU models including TOPOEXT runnable on older kernels.
 442         */
 443        ret |= CPUID_EXT3_TOPOEXT;
 444    } else if (function == 0x80000001 && reg == R_EDX) {
 445        /* On Intel, kvm returns cpuid according to the Intel spec,
 446         * so add missing bits according to the AMD spec:
 447         */
 448        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 449        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 450    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 451        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 452         * be enabled without the in-kernel irqchip
 453         */
 454        if (!kvm_irqchip_in_kernel()) {
 455            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 456        }
 457        if (kvm_irqchip_is_split()) {
 458            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 459        }
 460    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 461        ret |= 1U << KVM_HINTS_REALTIME;
 462    }
 463
 464    return ret;
 465}
 466
 467uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 468{
 469    struct {
 470        struct kvm_msrs info;
 471        struct kvm_msr_entry entries[1];
 472    } msr_data = {};
 473    uint64_t value;
 474    uint32_t ret, can_be_one, must_be_one;
 475
 476    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 477        return 0;
 478    }
 479
 480    /* Check if requested MSR is supported feature MSR */
 481    int i;
 482    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 483        if (kvm_feature_msrs->indices[i] == index) {
 484            break;
 485        }
 486    if (i == kvm_feature_msrs->nmsrs) {
 487        return 0; /* if the feature MSR is not supported, simply return 0 */
 488    }
 489
 490    msr_data.info.nmsrs = 1;
 491    msr_data.entries[0].index = index;
 492
 493    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 494    if (ret != 1) {
 495        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 496            index, strerror(-ret));
 497        exit(1);
 498    }
 499
 500    value = msr_data.entries[0].data;
 501    switch (index) {
 502    case MSR_IA32_VMX_PROCBASED_CTLS2:
 503        if (!has_msr_vmx_procbased_ctls2) {
 504            /* KVM forgot to add these bits for some time, do this ourselves. */
 505            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 506                CPUID_XSAVE_XSAVES) {
 507                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 508            }
 509            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 510                CPUID_EXT_RDRAND) {
 511                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 512            }
 513            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 514                CPUID_7_0_EBX_INVPCID) {
 515                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 516            }
 517            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 518                CPUID_7_0_EBX_RDSEED) {
 519                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 520            }
 521            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 522                CPUID_EXT2_RDTSCP) {
 523                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 524            }
 525        }
 526        /* fall through */
 527    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 528    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 529    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 530    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 531        /*
 532         * Return true for bits that can be one, but do not have to be one.
 533         * The SDM tells us which bits could have a "must be one" setting,
 534         * so we can do the opposite transformation in make_vmx_msr_value.
 535         */
 536        must_be_one = (uint32_t)value;
 537        can_be_one = (uint32_t)(value >> 32);
 538        return can_be_one & ~must_be_one;
 539
 540    default:
 541        return value;
 542    }
 543}
 544
 545static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 546                                     int *max_banks)
 547{
 548    int r;
 549
 550    r = kvm_check_extension(s, KVM_CAP_MCE);
 551    if (r > 0) {
 552        *max_banks = r;
 553        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 554    }
 555    return -ENOSYS;
 556}
 557
 558static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 559{
 560    CPUState *cs = CPU(cpu);
 561    CPUX86State *env = &cpu->env;
 562    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 563                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 564    uint64_t mcg_status = MCG_STATUS_MCIP;
 565    int flags = 0;
 566
 567    if (code == BUS_MCEERR_AR) {
 568        status |= MCI_STATUS_AR | 0x134;
 569        mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
 570    } else {
 571        status |= 0xc0;
 572        mcg_status |= MCG_STATUS_RIPV;
 573    }
 574
 575    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 576    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 577     * guest kernel back into env->mcg_ext_ctl.
 578     */
 579    cpu_synchronize_state(cs);
 580    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 581        mcg_status |= MCG_STATUS_LMCE;
 582        flags = 0;
 583    }
 584
 585    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 586                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 587}
 588
 589static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 590{
 591    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 592
 593    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 594                                   &mff);
 595}
 596
 597static void hardware_memory_error(void *host_addr)
 598{
 599    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 600    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 601    exit(1);
 602}
 603
 604void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 605{
 606    X86CPU *cpu = X86_CPU(c);
 607    CPUX86State *env = &cpu->env;
 608    ram_addr_t ram_addr;
 609    hwaddr paddr;
 610
 611    /* If we get an action required MCE, it has been injected by KVM
 612     * while the VM was running.  An action optional MCE instead should
 613     * be coming from the main thread, which qemu_init_sigbus identifies
 614     * as the "early kill" thread.
 615     */
 616    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 617
 618    if ((env->mcg_cap & MCG_SER_P) && addr) {
 619        ram_addr = qemu_ram_addr_from_host(addr);
 620        if (ram_addr != RAM_ADDR_INVALID &&
 621            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 622            kvm_hwpoison_page_add(ram_addr);
 623            kvm_mce_inject(cpu, paddr, code);
 624
 625            /*
 626             * Use different logging severity based on error type.
 627             * If there is additional MCE reporting on the hypervisor, QEMU VA
 628             * could be another source to identify the PA and MCE details.
 629             */
 630            if (code == BUS_MCEERR_AR) {
 631                error_report("Guest MCE Memory Error at QEMU addr %p and "
 632                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 633                    addr, paddr, "BUS_MCEERR_AR");
 634            } else {
 635                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 636                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 637                     addr, paddr, "BUS_MCEERR_AO");
 638            }
 639
 640            return;
 641        }
 642
 643        if (code == BUS_MCEERR_AO) {
 644            warn_report("Hardware memory error at addr %p of type %s "
 645                "for memory used by QEMU itself instead of guest system!",
 646                 addr, "BUS_MCEERR_AO");
 647        }
 648    }
 649
 650    if (code == BUS_MCEERR_AR) {
 651        hardware_memory_error(addr);
 652    }
 653
 654    /* Hope we are lucky for AO MCE, just notify a event */
 655    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 656}
 657
 658static void kvm_reset_exception(CPUX86State *env)
 659{
 660    env->exception_nr = -1;
 661    env->exception_pending = 0;
 662    env->exception_injected = 0;
 663    env->exception_has_payload = false;
 664    env->exception_payload = 0;
 665}
 666
 667static void kvm_queue_exception(CPUX86State *env,
 668                                int32_t exception_nr,
 669                                uint8_t exception_has_payload,
 670                                uint64_t exception_payload)
 671{
 672    assert(env->exception_nr == -1);
 673    assert(!env->exception_pending);
 674    assert(!env->exception_injected);
 675    assert(!env->exception_has_payload);
 676
 677    env->exception_nr = exception_nr;
 678
 679    if (has_exception_payload) {
 680        env->exception_pending = 1;
 681
 682        env->exception_has_payload = exception_has_payload;
 683        env->exception_payload = exception_payload;
 684    } else {
 685        env->exception_injected = 1;
 686
 687        if (exception_nr == EXCP01_DB) {
 688            assert(exception_has_payload);
 689            env->dr[6] = exception_payload;
 690        } else if (exception_nr == EXCP0E_PAGE) {
 691            assert(exception_has_payload);
 692            env->cr[2] = exception_payload;
 693        } else {
 694            assert(!exception_has_payload);
 695        }
 696    }
 697}
 698
 699static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 700{
 701    CPUX86State *env = &cpu->env;
 702
 703    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 704        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 705        struct kvm_x86_mce mce;
 706
 707        kvm_reset_exception(env);
 708
 709        /*
 710         * There must be at least one bank in use if an MCE is pending.
 711         * Find it and use its values for the event injection.
 712         */
 713        for (bank = 0; bank < bank_num; bank++) {
 714            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 715                break;
 716            }
 717        }
 718        assert(bank < bank_num);
 719
 720        mce.bank = bank;
 721        mce.status = env->mce_banks[bank * 4 + 1];
 722        mce.mcg_status = env->mcg_status;
 723        mce.addr = env->mce_banks[bank * 4 + 2];
 724        mce.misc = env->mce_banks[bank * 4 + 3];
 725
 726        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 727    }
 728    return 0;
 729}
 730
 731static void cpu_update_state(void *opaque, bool running, RunState state)
 732{
 733    CPUX86State *env = opaque;
 734
 735    if (running) {
 736        env->tsc_valid = false;
 737    }
 738}
 739
 740unsigned long kvm_arch_vcpu_id(CPUState *cs)
 741{
 742    X86CPU *cpu = X86_CPU(cs);
 743    return cpu->apic_id;
 744}
 745
 746#ifndef KVM_CPUID_SIGNATURE_NEXT
 747#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 748#endif
 749
 750static bool hyperv_enabled(X86CPU *cpu)
 751{
 752    return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
 753        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 754         cpu->hyperv_features || cpu->hyperv_passthrough);
 755}
 756
 757/*
 758 * Check whether target_freq is within conservative
 759 * ntp correctable bounds (250ppm) of freq
 760 */
 761static inline bool freq_within_bounds(int freq, int target_freq)
 762{
 763        int max_freq = freq + (freq * 250 / 1000000);
 764        int min_freq = freq - (freq * 250 / 1000000);
 765
 766        if (target_freq >= min_freq && target_freq <= max_freq) {
 767                return true;
 768        }
 769
 770        return false;
 771}
 772
 773static int kvm_arch_set_tsc_khz(CPUState *cs)
 774{
 775    X86CPU *cpu = X86_CPU(cs);
 776    CPUX86State *env = &cpu->env;
 777    int r, cur_freq;
 778    bool set_ioctl = false;
 779
 780    if (!env->tsc_khz) {
 781        return 0;
 782    }
 783
 784    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 785               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 786
 787    /*
 788     * If TSC scaling is supported, attempt to set TSC frequency.
 789     */
 790    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 791        set_ioctl = true;
 792    }
 793
 794    /*
 795     * If desired TSC frequency is within bounds of NTP correction,
 796     * attempt to set TSC frequency.
 797     */
 798    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 799        set_ioctl = true;
 800    }
 801
 802    r = set_ioctl ?
 803        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 804        -ENOTSUP;
 805
 806    if (r < 0) {
 807        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 808         * TSC frequency doesn't match the one we want.
 809         */
 810        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 811                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 812                   -ENOTSUP;
 813        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 814            warn_report("TSC frequency mismatch between "
 815                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 816                        "and TSC scaling unavailable",
 817                        env->tsc_khz, cur_freq);
 818            return r;
 819        }
 820    }
 821
 822    return 0;
 823}
 824
 825static bool tsc_is_stable_and_known(CPUX86State *env)
 826{
 827    if (!env->tsc_khz) {
 828        return false;
 829    }
 830    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 831        || env->user_tsc_khz;
 832}
 833
 834#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
 835
 836static struct {
 837    const char *desc;
 838    struct {
 839        uint32_t func;
 840        int reg;
 841        uint32_t bits;
 842    } flags[2];
 843    uint64_t dependencies;
 844} kvm_hyperv_properties[] = {
 845    [HYPERV_FEAT_RELAXED] = {
 846        .desc = "relaxed timing (hv-relaxed)",
 847        .flags = {
 848            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 849             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 850        }
 851    },
 852    [HYPERV_FEAT_VAPIC] = {
 853        .desc = "virtual APIC (hv-vapic)",
 854        .flags = {
 855            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 856             .bits = HV_APIC_ACCESS_AVAILABLE}
 857        }
 858    },
 859    [HYPERV_FEAT_TIME] = {
 860        .desc = "clocksources (hv-time)",
 861        .flags = {
 862            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 863             .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
 864        }
 865    },
 866    [HYPERV_FEAT_CRASH] = {
 867        .desc = "crash MSRs (hv-crash)",
 868        .flags = {
 869            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 870             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 871        }
 872    },
 873    [HYPERV_FEAT_RESET] = {
 874        .desc = "reset MSR (hv-reset)",
 875        .flags = {
 876            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 877             .bits = HV_RESET_AVAILABLE}
 878        }
 879    },
 880    [HYPERV_FEAT_VPINDEX] = {
 881        .desc = "VP_INDEX MSR (hv-vpindex)",
 882        .flags = {
 883            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 884             .bits = HV_VP_INDEX_AVAILABLE}
 885        }
 886    },
 887    [HYPERV_FEAT_RUNTIME] = {
 888        .desc = "VP_RUNTIME MSR (hv-runtime)",
 889        .flags = {
 890            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 891             .bits = HV_VP_RUNTIME_AVAILABLE}
 892        }
 893    },
 894    [HYPERV_FEAT_SYNIC] = {
 895        .desc = "synthetic interrupt controller (hv-synic)",
 896        .flags = {
 897            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 898             .bits = HV_SYNIC_AVAILABLE}
 899        }
 900    },
 901    [HYPERV_FEAT_STIMER] = {
 902        .desc = "synthetic timers (hv-stimer)",
 903        .flags = {
 904            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 905             .bits = HV_SYNTIMERS_AVAILABLE}
 906        },
 907        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 908    },
 909    [HYPERV_FEAT_FREQUENCIES] = {
 910        .desc = "frequency MSRs (hv-frequencies)",
 911        .flags = {
 912            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 913             .bits = HV_ACCESS_FREQUENCY_MSRS},
 914            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 915             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 916        }
 917    },
 918    [HYPERV_FEAT_REENLIGHTENMENT] = {
 919        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 920        .flags = {
 921            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 922             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 923        }
 924    },
 925    [HYPERV_FEAT_TLBFLUSH] = {
 926        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 927        .flags = {
 928            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 929             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 930             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 931        },
 932        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 933    },
 934    [HYPERV_FEAT_EVMCS] = {
 935        .desc = "enlightened VMCS (hv-evmcs)",
 936        .flags = {
 937            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 938             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 939        },
 940        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 941    },
 942    [HYPERV_FEAT_IPI] = {
 943        .desc = "paravirtualized IPI (hv-ipi)",
 944        .flags = {
 945            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 946             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 947             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 948        },
 949        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 950    },
 951    [HYPERV_FEAT_STIMER_DIRECT] = {
 952        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 953        .flags = {
 954            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 955             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 956        },
 957        .dependencies = BIT(HYPERV_FEAT_STIMER)
 958    },
 959    [HYPERV_FEAT_AVIC] = {
 960        .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
 961        .flags = {
 962            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 963             .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
 964        }
 965    },
 966#ifdef CONFIG_SYNDBG
 967    [HYPERV_FEAT_SYNDBG] = {
 968        .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
 969        .flags = {
 970            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 971             .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
 972        },
 973        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
 974    },
 975#endif
 976    [HYPERV_FEAT_MSR_BITMAP] = {
 977        .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
 978        .flags = {
 979            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
 980             .bits = HV_NESTED_MSR_BITMAP}
 981        }
 982    },
 983    [HYPERV_FEAT_XMM_INPUT] = {
 984        .desc = "XMM fast hypercall input (hv-xmm-input)",
 985        .flags = {
 986            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 987             .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
 988        }
 989    },
 990    [HYPERV_FEAT_TLBFLUSH_EXT] = {
 991        .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
 992        .flags = {
 993            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 994             .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
 995        },
 996        .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
 997    },
 998    [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
 999        .desc = "direct TLB flush (hv-tlbflush-direct)",
1000        .flags = {
1001            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1002             .bits = HV_NESTED_DIRECT_FLUSH}
1003        },
1004        .dependencies = BIT(HYPERV_FEAT_VAPIC)
1005    },
1006};
1007
1008static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1009                                           bool do_sys_ioctl)
1010{
1011    struct kvm_cpuid2 *cpuid;
1012    int r, size;
1013
1014    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1015    cpuid = g_malloc0(size);
1016    cpuid->nent = max;
1017
1018    if (do_sys_ioctl) {
1019        r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1020    } else {
1021        r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1022    }
1023    if (r == 0 && cpuid->nent >= max) {
1024        r = -E2BIG;
1025    }
1026    if (r < 0) {
1027        if (r == -E2BIG) {
1028            g_free(cpuid);
1029            return NULL;
1030        } else {
1031            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1032                    strerror(-r));
1033            exit(1);
1034        }
1035    }
1036    return cpuid;
1037}
1038
1039/*
1040 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1041 * for all entries.
1042 */
1043static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1044{
1045    struct kvm_cpuid2 *cpuid;
1046    /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1047    int max = 11;
1048    int i;
1049    bool do_sys_ioctl;
1050
1051    do_sys_ioctl =
1052        kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1053
1054    /*
1055     * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1056     * unsupported, kvm_hyperv_expand_features() checks for that.
1057     */
1058    assert(do_sys_ioctl || cs->kvm_state);
1059
1060    /*
1061     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1062     * -E2BIG, however, it doesn't report back the right size. Keep increasing
1063     * it and re-trying until we succeed.
1064     */
1065    while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1066        max++;
1067    }
1068
1069    /*
1070     * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1071     * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1072     * information early, just check for the capability and set the bit
1073     * manually.
1074     */
1075    if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1076                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1077        for (i = 0; i < cpuid->nent; i++) {
1078            if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1079                cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1080            }
1081        }
1082    }
1083
1084    return cpuid;
1085}
1086
1087/*
1088 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1089 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1090 */
1091static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1092{
1093    X86CPU *cpu = X86_CPU(cs);
1094    struct kvm_cpuid2 *cpuid;
1095    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1096
1097    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1098    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1099    cpuid->nent = 2;
1100
1101    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1102    entry_feat = &cpuid->entries[0];
1103    entry_feat->function = HV_CPUID_FEATURES;
1104
1105    entry_recomm = &cpuid->entries[1];
1106    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1107    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1108
1109    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1110        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1111        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1112        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1113        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1114        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1115    }
1116
1117    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1118        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1119        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1120    }
1121
1122    if (has_msr_hv_frequencies) {
1123        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1124        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1125    }
1126
1127    if (has_msr_hv_crash) {
1128        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1129    }
1130
1131    if (has_msr_hv_reenlightenment) {
1132        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1133    }
1134
1135    if (has_msr_hv_reset) {
1136        entry_feat->eax |= HV_RESET_AVAILABLE;
1137    }
1138
1139    if (has_msr_hv_vpindex) {
1140        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1141    }
1142
1143    if (has_msr_hv_runtime) {
1144        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1145    }
1146
1147    if (has_msr_hv_synic) {
1148        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1149            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1150
1151        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1152            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1153        }
1154    }
1155
1156    if (has_msr_hv_stimer) {
1157        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1158    }
1159
1160    if (has_msr_hv_syndbg_options) {
1161        entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1162        entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1163        entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1164    }
1165
1166    if (kvm_check_extension(cs->kvm_state,
1167                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1168        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1169        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1170    }
1171
1172    if (kvm_check_extension(cs->kvm_state,
1173                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1174        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1175    }
1176
1177    if (kvm_check_extension(cs->kvm_state,
1178                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1179        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1180        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1181    }
1182
1183    return cpuid;
1184}
1185
1186static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1187{
1188    struct kvm_cpuid_entry2 *entry;
1189    struct kvm_cpuid2 *cpuid;
1190
1191    if (hv_cpuid_cache) {
1192        cpuid = hv_cpuid_cache;
1193    } else {
1194        if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1195            cpuid = get_supported_hv_cpuid(cs);
1196        } else {
1197            /*
1198             * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1199             * before KVM context is created but this is only done when
1200             * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1201             * KVM_CAP_HYPERV_CPUID.
1202             */
1203            assert(cs->kvm_state);
1204
1205            cpuid = get_supported_hv_cpuid_legacy(cs);
1206        }
1207        hv_cpuid_cache = cpuid;
1208    }
1209
1210    if (!cpuid) {
1211        return 0;
1212    }
1213
1214    entry = cpuid_find_entry(cpuid, func, 0);
1215    if (!entry) {
1216        return 0;
1217    }
1218
1219    return cpuid_entry_get_reg(entry, reg);
1220}
1221
1222static bool hyperv_feature_supported(CPUState *cs, int feature)
1223{
1224    uint32_t func, bits;
1225    int i, reg;
1226
1227    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1228
1229        func = kvm_hyperv_properties[feature].flags[i].func;
1230        reg = kvm_hyperv_properties[feature].flags[i].reg;
1231        bits = kvm_hyperv_properties[feature].flags[i].bits;
1232
1233        if (!func) {
1234            continue;
1235        }
1236
1237        if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1238            return false;
1239        }
1240    }
1241
1242    return true;
1243}
1244
1245/* Checks that all feature dependencies are enabled */
1246static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1247{
1248    uint64_t deps;
1249    int dep_feat;
1250
1251    deps = kvm_hyperv_properties[feature].dependencies;
1252    while (deps) {
1253        dep_feat = ctz64(deps);
1254        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1255            error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1256                       kvm_hyperv_properties[feature].desc,
1257                       kvm_hyperv_properties[dep_feat].desc);
1258            return false;
1259        }
1260        deps &= ~(1ull << dep_feat);
1261    }
1262
1263    return true;
1264}
1265
1266static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1267{
1268    X86CPU *cpu = X86_CPU(cs);
1269    uint32_t r = 0;
1270    int i, j;
1271
1272    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1273        if (!hyperv_feat_enabled(cpu, i)) {
1274            continue;
1275        }
1276
1277        for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1278            if (kvm_hyperv_properties[i].flags[j].func != func) {
1279                continue;
1280            }
1281            if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1282                continue;
1283            }
1284
1285            r |= kvm_hyperv_properties[i].flags[j].bits;
1286        }
1287    }
1288
1289    /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1290    if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1291        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1292            r |= DEFAULT_EVMCS_VERSION;
1293        }
1294    }
1295
1296    return r;
1297}
1298
1299/*
1300 * Expand Hyper-V CPU features. In partucular, check that all the requested
1301 * features are supported by the host and the sanity of the configuration
1302 * (that all the required dependencies are included). Also, this takes care
1303 * of 'hv_passthrough' mode and fills the environment with all supported
1304 * Hyper-V features.
1305 */
1306bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1307{
1308    CPUState *cs = CPU(cpu);
1309    Error *local_err = NULL;
1310    int feat;
1311
1312    if (!hyperv_enabled(cpu))
1313        return true;
1314
1315    /*
1316     * When kvm_hyperv_expand_features is called at CPU feature expansion
1317     * time per-CPU kvm_state is not available yet so we can only proceed
1318     * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1319     */
1320    if (!cs->kvm_state &&
1321        !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1322        return true;
1323
1324    if (cpu->hyperv_passthrough) {
1325        cpu->hyperv_vendor_id[0] =
1326            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1327        cpu->hyperv_vendor_id[1] =
1328            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1329        cpu->hyperv_vendor_id[2] =
1330            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1331        cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1332                                       sizeof(cpu->hyperv_vendor_id) + 1);
1333        memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1334               sizeof(cpu->hyperv_vendor_id));
1335        cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1336
1337        cpu->hyperv_interface_id[0] =
1338            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1339        cpu->hyperv_interface_id[1] =
1340            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1341        cpu->hyperv_interface_id[2] =
1342            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1343        cpu->hyperv_interface_id[3] =
1344            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1345
1346        cpu->hyperv_ver_id_build =
1347            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1348        cpu->hyperv_ver_id_major =
1349            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1350        cpu->hyperv_ver_id_minor =
1351            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1352        cpu->hyperv_ver_id_sp =
1353            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1354        cpu->hyperv_ver_id_sb =
1355            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1356        cpu->hyperv_ver_id_sn =
1357            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1358
1359        cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1360                                            R_EAX);
1361        cpu->hyperv_limits[0] =
1362            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1363        cpu->hyperv_limits[1] =
1364            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1365        cpu->hyperv_limits[2] =
1366            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1367
1368        cpu->hyperv_spinlock_attempts =
1369            hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1370
1371        /*
1372         * Mark feature as enabled in 'cpu->hyperv_features' as
1373         * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1374         */
1375        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1376            if (hyperv_feature_supported(cs, feat)) {
1377                cpu->hyperv_features |= BIT(feat);
1378            }
1379        }
1380    } else {
1381        /* Check features availability and dependencies */
1382        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1383            /* If the feature was not requested skip it. */
1384            if (!hyperv_feat_enabled(cpu, feat)) {
1385                continue;
1386            }
1387
1388            /* Check if the feature is supported by KVM */
1389            if (!hyperv_feature_supported(cs, feat)) {
1390                error_setg(errp, "Hyper-V %s is not supported by kernel",
1391                           kvm_hyperv_properties[feat].desc);
1392                return false;
1393            }
1394
1395            /* Check dependencies */
1396            if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1397                error_propagate(errp, local_err);
1398                return false;
1399            }
1400        }
1401    }
1402
1403    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1404    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1405        !cpu->hyperv_synic_kvm_only &&
1406        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1407        error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1408                   kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1409                   kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1410        return false;
1411    }
1412
1413    return true;
1414}
1415
1416/*
1417 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1418 */
1419static int hyperv_fill_cpuids(CPUState *cs,
1420                              struct kvm_cpuid_entry2 *cpuid_ent)
1421{
1422    X86CPU *cpu = X86_CPU(cs);
1423    struct kvm_cpuid_entry2 *c;
1424    uint32_t signature[3];
1425    uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1426    uint32_t nested_eax =
1427        hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1428
1429    max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1430        HV_CPUID_IMPLEMENT_LIMITS;
1431
1432    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1433        max_cpuid_leaf =
1434            MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1435    }
1436
1437    c = &cpuid_ent[cpuid_i++];
1438    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1439    c->eax = max_cpuid_leaf;
1440    c->ebx = cpu->hyperv_vendor_id[0];
1441    c->ecx = cpu->hyperv_vendor_id[1];
1442    c->edx = cpu->hyperv_vendor_id[2];
1443
1444    c = &cpuid_ent[cpuid_i++];
1445    c->function = HV_CPUID_INTERFACE;
1446    c->eax = cpu->hyperv_interface_id[0];
1447    c->ebx = cpu->hyperv_interface_id[1];
1448    c->ecx = cpu->hyperv_interface_id[2];
1449    c->edx = cpu->hyperv_interface_id[3];
1450
1451    c = &cpuid_ent[cpuid_i++];
1452    c->function = HV_CPUID_VERSION;
1453    c->eax = cpu->hyperv_ver_id_build;
1454    c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1455        cpu->hyperv_ver_id_minor;
1456    c->ecx = cpu->hyperv_ver_id_sp;
1457    c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1458        (cpu->hyperv_ver_id_sn & 0xffffff);
1459
1460    c = &cpuid_ent[cpuid_i++];
1461    c->function = HV_CPUID_FEATURES;
1462    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1463    c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1464    c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1465
1466    /* Unconditionally required with any Hyper-V enlightenment */
1467    c->eax |= HV_HYPERCALL_AVAILABLE;
1468
1469    /* SynIC and Vmbus devices require messages/signals hypercalls */
1470    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1471        !cpu->hyperv_synic_kvm_only) {
1472        c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1473    }
1474
1475
1476    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1477    c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1478
1479    c = &cpuid_ent[cpuid_i++];
1480    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1481    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1482    c->ebx = cpu->hyperv_spinlock_attempts;
1483
1484    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1485        !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1486        c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1487    }
1488
1489    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1490        c->eax |= HV_NO_NONARCH_CORESHARING;
1491    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1492        c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1493            HV_NO_NONARCH_CORESHARING;
1494    }
1495
1496    c = &cpuid_ent[cpuid_i++];
1497    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1498    c->eax = cpu->hv_max_vps;
1499    c->ebx = cpu->hyperv_limits[0];
1500    c->ecx = cpu->hyperv_limits[1];
1501    c->edx = cpu->hyperv_limits[2];
1502
1503    if (nested_eax) {
1504        uint32_t function;
1505
1506        /* Create zeroed 0x40000006..0x40000009 leaves */
1507        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1508             function < HV_CPUID_NESTED_FEATURES; function++) {
1509            c = &cpuid_ent[cpuid_i++];
1510            c->function = function;
1511        }
1512
1513        c = &cpuid_ent[cpuid_i++];
1514        c->function = HV_CPUID_NESTED_FEATURES;
1515        c->eax = nested_eax;
1516    }
1517
1518    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1519        c = &cpuid_ent[cpuid_i++];
1520        c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1521        c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1522            HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1523        memcpy(signature, "Microsoft VS", 12);
1524        c->eax = 0;
1525        c->ebx = signature[0];
1526        c->ecx = signature[1];
1527        c->edx = signature[2];
1528
1529        c = &cpuid_ent[cpuid_i++];
1530        c->function = HV_CPUID_SYNDBG_INTERFACE;
1531        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1532        c->eax = signature[0];
1533        c->ebx = 0;
1534        c->ecx = 0;
1535        c->edx = 0;
1536
1537        c = &cpuid_ent[cpuid_i++];
1538        c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1539        c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1540        c->ebx = 0;
1541        c->ecx = 0;
1542        c->edx = 0;
1543    }
1544
1545    return cpuid_i;
1546}
1547
1548static Error *hv_passthrough_mig_blocker;
1549static Error *hv_no_nonarch_cs_mig_blocker;
1550
1551/* Checks that the exposed eVMCS version range is supported by KVM */
1552static bool evmcs_version_supported(uint16_t evmcs_version,
1553                                    uint16_t supported_evmcs_version)
1554{
1555    uint8_t min_version = evmcs_version & 0xff;
1556    uint8_t max_version = evmcs_version >> 8;
1557    uint8_t min_supported_version = supported_evmcs_version & 0xff;
1558    uint8_t max_supported_version = supported_evmcs_version >> 8;
1559
1560    return (min_version >= min_supported_version) &&
1561        (max_version <= max_supported_version);
1562}
1563
1564static int hyperv_init_vcpu(X86CPU *cpu)
1565{
1566    CPUState *cs = CPU(cpu);
1567    Error *local_err = NULL;
1568    int ret;
1569
1570    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1571        error_setg(&hv_passthrough_mig_blocker,
1572                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1573                   " set of hv-* flags instead");
1574        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1575        if (ret < 0) {
1576            error_report_err(local_err);
1577            return ret;
1578        }
1579    }
1580
1581    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1582        hv_no_nonarch_cs_mig_blocker == NULL) {
1583        error_setg(&hv_no_nonarch_cs_mig_blocker,
1584                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1585                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1586                   " make sure SMT is disabled and/or that vCPUs are properly"
1587                   " pinned)");
1588        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1589        if (ret < 0) {
1590            error_report_err(local_err);
1591            return ret;
1592        }
1593    }
1594
1595    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1596        /*
1597         * the kernel doesn't support setting vp_index; assert that its value
1598         * is in sync
1599         */
1600        uint64_t value;
1601
1602        ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1603        if (ret < 0) {
1604            return ret;
1605        }
1606
1607        if (value != hyperv_vp_index(CPU(cpu))) {
1608            error_report("kernel's vp_index != QEMU's vp_index");
1609            return -ENXIO;
1610        }
1611    }
1612
1613    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1614        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1615            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1616        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1617        if (ret < 0) {
1618            error_report("failed to turn on HyperV SynIC in KVM: %s",
1619                         strerror(-ret));
1620            return ret;
1621        }
1622
1623        if (!cpu->hyperv_synic_kvm_only) {
1624            ret = hyperv_x86_synic_add(cpu);
1625            if (ret < 0) {
1626                error_report("failed to create HyperV SynIC: %s",
1627                             strerror(-ret));
1628                return ret;
1629            }
1630        }
1631    }
1632
1633    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1634        uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1635        uint16_t supported_evmcs_version;
1636
1637        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1638                                  (uintptr_t)&supported_evmcs_version);
1639
1640        /*
1641         * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1642         * option sets. Note: we hardcode the maximum supported eVMCS version
1643         * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1644         * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1645         * to be added.
1646         */
1647        if (ret < 0) {
1648            error_report("Hyper-V %s is not supported by kernel",
1649                         kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1650            return ret;
1651        }
1652
1653        if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1654            error_report("eVMCS version range [%d..%d] is not supported by "
1655                         "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1656                         evmcs_version >> 8, supported_evmcs_version & 0xff,
1657                         supported_evmcs_version >> 8);
1658            return -ENOTSUP;
1659        }
1660    }
1661
1662    if (cpu->hyperv_enforce_cpuid) {
1663        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1664        if (ret < 0) {
1665            error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1666                         strerror(-ret));
1667            return ret;
1668        }
1669    }
1670
1671    return 0;
1672}
1673
1674static Error *invtsc_mig_blocker;
1675
1676#define KVM_MAX_CPUID_ENTRIES  100
1677
1678static void kvm_init_xsave(CPUX86State *env)
1679{
1680    if (has_xsave2) {
1681        env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1682    } else if (has_xsave) {
1683        env->xsave_buf_len = sizeof(struct kvm_xsave);
1684    } else {
1685        return;
1686    }
1687
1688    env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1689    memset(env->xsave_buf, 0, env->xsave_buf_len);
1690    /*
1691     * The allocated storage must be large enough for all of the
1692     * possible XSAVE state components.
1693     */
1694    assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1695           env->xsave_buf_len);
1696}
1697
1698int kvm_arch_init_vcpu(CPUState *cs)
1699{
1700    struct {
1701        struct kvm_cpuid2 cpuid;
1702        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1703    } cpuid_data;
1704    /*
1705     * The kernel defines these structs with padding fields so there
1706     * should be no extra padding in our cpuid_data struct.
1707     */
1708    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1709                      sizeof(struct kvm_cpuid2) +
1710                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1711
1712    X86CPU *cpu = X86_CPU(cs);
1713    CPUX86State *env = &cpu->env;
1714    uint32_t limit, i, j, cpuid_i;
1715    uint32_t unused;
1716    struct kvm_cpuid_entry2 *c;
1717    uint32_t signature[3];
1718    int kvm_base = KVM_CPUID_SIGNATURE;
1719    int max_nested_state_len;
1720    int r;
1721    Error *local_err = NULL;
1722
1723    memset(&cpuid_data, 0, sizeof(cpuid_data));
1724
1725    cpuid_i = 0;
1726
1727    has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1728
1729    r = kvm_arch_set_tsc_khz(cs);
1730    if (r < 0) {
1731        return r;
1732    }
1733
1734    /* vcpu's TSC frequency is either specified by user, or following
1735     * the value used by KVM if the former is not present. In the
1736     * latter case, we query it from KVM and record in env->tsc_khz,
1737     * so that vcpu's TSC frequency can be migrated later via this field.
1738     */
1739    if (!env->tsc_khz) {
1740        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1741            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1742            -ENOTSUP;
1743        if (r > 0) {
1744            env->tsc_khz = r;
1745        }
1746    }
1747
1748    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1749
1750    /*
1751     * kvm_hyperv_expand_features() is called here for the second time in case
1752     * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1753     * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1754     * check which Hyper-V enlightenments are supported and which are not, we
1755     * can still proceed and check/expand Hyper-V enlightenments here so legacy
1756     * behavior is preserved.
1757     */
1758    if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1759        error_report_err(local_err);
1760        return -ENOSYS;
1761    }
1762
1763    if (hyperv_enabled(cpu)) {
1764        r = hyperv_init_vcpu(cpu);
1765        if (r) {
1766            return r;
1767        }
1768
1769        cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1770        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1771        has_msr_hv_hypercall = true;
1772    }
1773
1774    if (cpu->expose_kvm) {
1775        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1776        c = &cpuid_data.entries[cpuid_i++];
1777        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1778        c->eax = KVM_CPUID_FEATURES | kvm_base;
1779        c->ebx = signature[0];
1780        c->ecx = signature[1];
1781        c->edx = signature[2];
1782
1783        c = &cpuid_data.entries[cpuid_i++];
1784        c->function = KVM_CPUID_FEATURES | kvm_base;
1785        c->eax = env->features[FEAT_KVM];
1786        c->edx = env->features[FEAT_KVM_HINTS];
1787    }
1788
1789    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1790
1791    if (cpu->kvm_pv_enforce_cpuid) {
1792        r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1793        if (r < 0) {
1794            fprintf(stderr,
1795                    "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1796                    strerror(-r));
1797            abort();
1798        }
1799    }
1800
1801    for (i = 0; i <= limit; i++) {
1802        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1803            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1804            abort();
1805        }
1806        c = &cpuid_data.entries[cpuid_i++];
1807
1808        switch (i) {
1809        case 2: {
1810            /* Keep reading function 2 till all the input is received */
1811            int times;
1812
1813            c->function = i;
1814            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1815                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1816            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1817            times = c->eax & 0xff;
1818
1819            for (j = 1; j < times; ++j) {
1820                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1821                    fprintf(stderr, "cpuid_data is full, no space for "
1822                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1823                    abort();
1824                }
1825                c = &cpuid_data.entries[cpuid_i++];
1826                c->function = i;
1827                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1828                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1829            }
1830            break;
1831        }
1832        case 0x1f:
1833            if (env->nr_dies < 2) {
1834                break;
1835            }
1836            /* fallthrough */
1837        case 4:
1838        case 0xb:
1839        case 0xd:
1840            for (j = 0; ; j++) {
1841                if (i == 0xd && j == 64) {
1842                    break;
1843                }
1844
1845                if (i == 0x1f && j == 64) {
1846                    break;
1847                }
1848
1849                c->function = i;
1850                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1851                c->index = j;
1852                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1853
1854                if (i == 4 && c->eax == 0) {
1855                    break;
1856                }
1857                if (i == 0xb && !(c->ecx & 0xff00)) {
1858                    break;
1859                }
1860                if (i == 0x1f && !(c->ecx & 0xff00)) {
1861                    break;
1862                }
1863                if (i == 0xd && c->eax == 0) {
1864                    continue;
1865                }
1866                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1867                    fprintf(stderr, "cpuid_data is full, no space for "
1868                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1869                    abort();
1870                }
1871                c = &cpuid_data.entries[cpuid_i++];
1872            }
1873            break;
1874        case 0x7:
1875        case 0x12:
1876            for (j = 0; ; j++) {
1877                c->function = i;
1878                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1879                c->index = j;
1880                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1881
1882                if (j > 1 && (c->eax & 0xf) != 1) {
1883                    break;
1884                }
1885
1886                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1887                    fprintf(stderr, "cpuid_data is full, no space for "
1888                                "cpuid(eax:0x12,ecx:0x%x)\n", j);
1889                    abort();
1890                }
1891                c = &cpuid_data.entries[cpuid_i++];
1892            }
1893            break;
1894        case 0x14:
1895        case 0x1d:
1896        case 0x1e: {
1897            uint32_t times;
1898
1899            c->function = i;
1900            c->index = 0;
1901            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1902            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1903            times = c->eax;
1904
1905            for (j = 1; j <= times; ++j) {
1906                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1907                    fprintf(stderr, "cpuid_data is full, no space for "
1908                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1909                    abort();
1910                }
1911                c = &cpuid_data.entries[cpuid_i++];
1912                c->function = i;
1913                c->index = j;
1914                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1915                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1916            }
1917            break;
1918        }
1919        default:
1920            c->function = i;
1921            c->flags = 0;
1922            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1923            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1924                /*
1925                 * KVM already returns all zeroes if a CPUID entry is missing,
1926                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1927                 */
1928                cpuid_i--;
1929            }
1930            break;
1931        }
1932    }
1933
1934    if (limit >= 0x0a) {
1935        uint32_t eax, edx;
1936
1937        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1938
1939        has_architectural_pmu_version = eax & 0xff;
1940        if (has_architectural_pmu_version > 0) {
1941            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1942
1943            /* Shouldn't be more than 32, since that's the number of bits
1944             * available in EBX to tell us _which_ counters are available.
1945             * Play it safe.
1946             */
1947            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1948                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1949            }
1950
1951            if (has_architectural_pmu_version > 1) {
1952                num_architectural_pmu_fixed_counters = edx & 0x1f;
1953
1954                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1955                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1956                }
1957            }
1958        }
1959    }
1960
1961    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1962
1963    for (i = 0x80000000; i <= limit; i++) {
1964        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1965            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1966            abort();
1967        }
1968        c = &cpuid_data.entries[cpuid_i++];
1969
1970        switch (i) {
1971        case 0x8000001d:
1972            /* Query for all AMD cache information leaves */
1973            for (j = 0; ; j++) {
1974                c->function = i;
1975                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1976                c->index = j;
1977                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1978
1979                if (c->eax == 0) {
1980                    break;
1981                }
1982                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1983                    fprintf(stderr, "cpuid_data is full, no space for "
1984                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1985                    abort();
1986                }
1987                c = &cpuid_data.entries[cpuid_i++];
1988            }
1989            break;
1990        default:
1991            c->function = i;
1992            c->flags = 0;
1993            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1994            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1995                /*
1996                 * KVM already returns all zeroes if a CPUID entry is missing,
1997                 * so we can omit it and avoid hitting KVM's 80-entry limit.
1998                 */
1999                cpuid_i--;
2000            }
2001            break;
2002        }
2003    }
2004
2005    /* Call Centaur's CPUID instructions they are supported. */
2006    if (env->cpuid_xlevel2 > 0) {
2007        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2008
2009        for (i = 0xC0000000; i <= limit; i++) {
2010            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2011                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2012                abort();
2013            }
2014            c = &cpuid_data.entries[cpuid_i++];
2015
2016            c->function = i;
2017            c->flags = 0;
2018            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2019        }
2020    }
2021
2022    cpuid_data.cpuid.nent = cpuid_i;
2023
2024    if (((env->cpuid_version >> 8)&0xF) >= 6
2025        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2026           (CPUID_MCE | CPUID_MCA)
2027        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2028        uint64_t mcg_cap, unsupported_caps;
2029        int banks;
2030        int ret;
2031
2032        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2033        if (ret < 0) {
2034            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2035            return ret;
2036        }
2037
2038        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2039            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2040                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2041            return -ENOTSUP;
2042        }
2043
2044        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2045        if (unsupported_caps) {
2046            if (unsupported_caps & MCG_LMCE_P) {
2047                error_report("kvm: LMCE not supported");
2048                return -ENOTSUP;
2049            }
2050            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2051                        unsupported_caps);
2052        }
2053
2054        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2055        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2056        if (ret < 0) {
2057            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2058            return ret;
2059        }
2060    }
2061
2062    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2063
2064    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2065    if (c) {
2066        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2067                                  !!(c->ecx & CPUID_EXT_SMX);
2068    }
2069
2070    c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2071    if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2072        has_msr_feature_control = true;
2073    }
2074
2075    if (env->mcg_cap & MCG_LMCE_P) {
2076        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2077    }
2078
2079    if (!env->user_tsc_khz) {
2080        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2081            invtsc_mig_blocker == NULL) {
2082            error_setg(&invtsc_mig_blocker,
2083                       "State blocked by non-migratable CPU device"
2084                       " (invtsc flag)");
2085            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2086            if (r < 0) {
2087                error_report_err(local_err);
2088                return r;
2089            }
2090        }
2091    }
2092
2093    if (cpu->vmware_cpuid_freq
2094        /* Guests depend on 0x40000000 to detect this feature, so only expose
2095         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2096        && cpu->expose_kvm
2097        && kvm_base == KVM_CPUID_SIGNATURE
2098        /* TSC clock must be stable and known for this feature. */
2099        && tsc_is_stable_and_known(env)) {
2100
2101        c = &cpuid_data.entries[cpuid_i++];
2102        c->function = KVM_CPUID_SIGNATURE | 0x10;
2103        c->eax = env->tsc_khz;
2104        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2105        c->ecx = c->edx = 0;
2106
2107        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2108        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2109    }
2110
2111    cpuid_data.cpuid.nent = cpuid_i;
2112
2113    cpuid_data.cpuid.padding = 0;
2114    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2115    if (r) {
2116        goto fail;
2117    }
2118    kvm_init_xsave(env);
2119
2120    max_nested_state_len = kvm_max_nested_state_length();
2121    if (max_nested_state_len > 0) {
2122        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2123
2124        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2125            struct kvm_vmx_nested_state_hdr *vmx_hdr;
2126
2127            env->nested_state = g_malloc0(max_nested_state_len);
2128            env->nested_state->size = max_nested_state_len;
2129
2130            if (cpu_has_vmx(env)) {
2131                env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
2132                vmx_hdr = &env->nested_state->hdr.vmx;
2133                vmx_hdr->vmxon_pa = -1ull;
2134                vmx_hdr->vmcs12_pa = -1ull;
2135            } else {
2136                env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
2137            }
2138        }
2139    }
2140
2141    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2142
2143    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2144        has_msr_tsc_aux = false;
2145    }
2146
2147    kvm_init_msrs(cpu);
2148
2149    return 0;
2150
2151 fail:
2152    migrate_del_blocker(invtsc_mig_blocker);
2153
2154    return r;
2155}
2156
2157int kvm_arch_destroy_vcpu(CPUState *cs)
2158{
2159    X86CPU *cpu = X86_CPU(cs);
2160    CPUX86State *env = &cpu->env;
2161
2162    g_free(env->xsave_buf);
2163
2164    if (cpu->kvm_msr_buf) {
2165        g_free(cpu->kvm_msr_buf);
2166        cpu->kvm_msr_buf = NULL;
2167    }
2168
2169    if (env->nested_state) {
2170        g_free(env->nested_state);
2171        env->nested_state = NULL;
2172    }
2173
2174    qemu_del_vm_change_state_handler(cpu->vmsentry);
2175
2176    return 0;
2177}
2178
2179void kvm_arch_reset_vcpu(X86CPU *cpu)
2180{
2181    CPUX86State *env = &cpu->env;
2182
2183    env->xcr0 = 1;
2184    if (kvm_irqchip_in_kernel()) {
2185        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2186                                          KVM_MP_STATE_UNINITIALIZED;
2187    } else {
2188        env->mp_state = KVM_MP_STATE_RUNNABLE;
2189    }
2190
2191    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2192        int i;
2193        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2194            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2195        }
2196
2197        hyperv_x86_synic_reset(cpu);
2198    }
2199    /* enabled by default */
2200    env->poll_control_msr = 1;
2201
2202    sev_es_set_reset_vector(CPU(cpu));
2203}
2204
2205void kvm_arch_do_init_vcpu(X86CPU *cpu)
2206{
2207    CPUX86State *env = &cpu->env;
2208
2209    /* APs get directly into wait-for-SIPI state.  */
2210    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2211        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2212    }
2213}
2214
2215static int kvm_get_supported_feature_msrs(KVMState *s)
2216{
2217    int ret = 0;
2218
2219    if (kvm_feature_msrs != NULL) {
2220        return 0;
2221    }
2222
2223    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2224        return 0;
2225    }
2226
2227    struct kvm_msr_list msr_list;
2228
2229    msr_list.nmsrs = 0;
2230    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2231    if (ret < 0 && ret != -E2BIG) {
2232        error_report("Fetch KVM feature MSR list failed: %s",
2233            strerror(-ret));
2234        return ret;
2235    }
2236
2237    assert(msr_list.nmsrs > 0);
2238    kvm_feature_msrs = (struct kvm_msr_list *) \
2239        g_malloc0(sizeof(msr_list) +
2240                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2241
2242    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2243    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2244
2245    if (ret < 0) {
2246        error_report("Fetch KVM feature MSR list failed: %s",
2247            strerror(-ret));
2248        g_free(kvm_feature_msrs);
2249        kvm_feature_msrs = NULL;
2250        return ret;
2251    }
2252
2253    return 0;
2254}
2255
2256static int kvm_get_supported_msrs(KVMState *s)
2257{
2258    int ret = 0;
2259    struct kvm_msr_list msr_list, *kvm_msr_list;
2260
2261    /*
2262     *  Obtain MSR list from KVM.  These are the MSRs that we must
2263     *  save/restore.
2264     */
2265    msr_list.nmsrs = 0;
2266    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2267    if (ret < 0 && ret != -E2BIG) {
2268        return ret;
2269    }
2270    /*
2271     * Old kernel modules had a bug and could write beyond the provided
2272     * memory. Allocate at least a safe amount of 1K.
2273     */
2274    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2275                                          msr_list.nmsrs *
2276                                          sizeof(msr_list.indices[0])));
2277
2278    kvm_msr_list->nmsrs = msr_list.nmsrs;
2279    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2280    if (ret >= 0) {
2281        int i;
2282
2283        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2284            switch (kvm_msr_list->indices[i]) {
2285            case MSR_STAR:
2286                has_msr_star = true;
2287                break;
2288            case MSR_VM_HSAVE_PA:
2289                has_msr_hsave_pa = true;
2290                break;
2291            case MSR_TSC_AUX:
2292                has_msr_tsc_aux = true;
2293                break;
2294            case MSR_TSC_ADJUST:
2295                has_msr_tsc_adjust = true;
2296                break;
2297            case MSR_IA32_TSCDEADLINE:
2298                has_msr_tsc_deadline = true;
2299                break;
2300            case MSR_IA32_SMBASE:
2301                has_msr_smbase = true;
2302                break;
2303            case MSR_SMI_COUNT:
2304                has_msr_smi_count = true;
2305                break;
2306            case MSR_IA32_MISC_ENABLE:
2307                has_msr_misc_enable = true;
2308                break;
2309            case MSR_IA32_BNDCFGS:
2310                has_msr_bndcfgs = true;
2311                break;
2312            case MSR_IA32_XSS:
2313                has_msr_xss = true;
2314                break;
2315            case MSR_IA32_UMWAIT_CONTROL:
2316                has_msr_umwait = true;
2317                break;
2318            case HV_X64_MSR_CRASH_CTL:
2319                has_msr_hv_crash = true;
2320                break;
2321            case HV_X64_MSR_RESET:
2322                has_msr_hv_reset = true;
2323                break;
2324            case HV_X64_MSR_VP_INDEX:
2325                has_msr_hv_vpindex = true;
2326                break;
2327            case HV_X64_MSR_VP_RUNTIME:
2328                has_msr_hv_runtime = true;
2329                break;
2330            case HV_X64_MSR_SCONTROL:
2331                has_msr_hv_synic = true;
2332                break;
2333            case HV_X64_MSR_STIMER0_CONFIG:
2334                has_msr_hv_stimer = true;
2335                break;
2336            case HV_X64_MSR_TSC_FREQUENCY:
2337                has_msr_hv_frequencies = true;
2338                break;
2339            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2340                has_msr_hv_reenlightenment = true;
2341                break;
2342            case HV_X64_MSR_SYNDBG_OPTIONS:
2343                has_msr_hv_syndbg_options = true;
2344                break;
2345            case MSR_IA32_SPEC_CTRL:
2346                has_msr_spec_ctrl = true;
2347                break;
2348            case MSR_AMD64_TSC_RATIO:
2349                has_tsc_scale_msr = true;
2350                break;
2351            case MSR_IA32_TSX_CTRL:
2352                has_msr_tsx_ctrl = true;
2353                break;
2354            case MSR_VIRT_SSBD:
2355                has_msr_virt_ssbd = true;
2356                break;
2357            case MSR_IA32_ARCH_CAPABILITIES:
2358                has_msr_arch_capabs = true;
2359                break;
2360            case MSR_IA32_CORE_CAPABILITY:
2361                has_msr_core_capabs = true;
2362                break;
2363            case MSR_IA32_PERF_CAPABILITIES:
2364                has_msr_perf_capabs = true;
2365                break;
2366            case MSR_IA32_VMX_VMFUNC:
2367                has_msr_vmx_vmfunc = true;
2368                break;
2369            case MSR_IA32_UCODE_REV:
2370                has_msr_ucode_rev = true;
2371                break;
2372            case MSR_IA32_VMX_PROCBASED_CTLS2:
2373                has_msr_vmx_procbased_ctls2 = true;
2374                break;
2375            case MSR_IA32_PKRS:
2376                has_msr_pkrs = true;
2377                break;
2378            }
2379        }
2380    }
2381
2382    g_free(kvm_msr_list);
2383
2384    return ret;
2385}
2386
2387static Notifier smram_machine_done;
2388static KVMMemoryListener smram_listener;
2389static AddressSpace smram_address_space;
2390static MemoryRegion smram_as_root;
2391static MemoryRegion smram_as_mem;
2392
2393static void register_smram_listener(Notifier *n, void *unused)
2394{
2395    MemoryRegion *smram =
2396        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2397
2398    /* Outer container... */
2399    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2400    memory_region_set_enabled(&smram_as_root, true);
2401
2402    /* ... with two regions inside: normal system memory with low
2403     * priority, and...
2404     */
2405    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2406                             get_system_memory(), 0, ~0ull);
2407    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2408    memory_region_set_enabled(&smram_as_mem, true);
2409
2410    if (smram) {
2411        /* ... SMRAM with higher priority */
2412        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2413        memory_region_set_enabled(smram, true);
2414    }
2415
2416    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2417    kvm_memory_listener_register(kvm_state, &smram_listener,
2418                                 &smram_address_space, 1, "kvm-smram");
2419}
2420
2421int kvm_arch_init(MachineState *ms, KVMState *s)
2422{
2423    uint64_t identity_base = 0xfffbc000;
2424    uint64_t shadow_mem;
2425    int ret;
2426    struct utsname utsname;
2427    Error *local_err = NULL;
2428
2429    /*
2430     * Initialize SEV context, if required
2431     *
2432     * If no memory encryption is requested (ms->cgs == NULL) this is
2433     * a no-op.
2434     *
2435     * It's also a no-op if a non-SEV confidential guest support
2436     * mechanism is selected.  SEV is the only mechanism available to
2437     * select on x86 at present, so this doesn't arise, but if new
2438     * mechanisms are supported in future (e.g. TDX), they'll need
2439     * their own initialization either here or elsewhere.
2440     */
2441    ret = sev_kvm_init(ms->cgs, &local_err);
2442    if (ret < 0) {
2443        error_report_err(local_err);
2444        return ret;
2445    }
2446
2447    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2448        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2449        return -ENOTSUP;
2450    }
2451
2452    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2453    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2454    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2455    has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2456
2457    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2458
2459    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2460    if (has_exception_payload) {
2461        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2462        if (ret < 0) {
2463            error_report("kvm: Failed to enable exception payload cap: %s",
2464                         strerror(-ret));
2465            return ret;
2466        }
2467    }
2468
2469    ret = kvm_get_supported_msrs(s);
2470    if (ret < 0) {
2471        return ret;
2472    }
2473
2474    kvm_get_supported_feature_msrs(s);
2475
2476    uname(&utsname);
2477    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2478
2479    /*
2480     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2481     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2482     * Since these must be part of guest physical memory, we need to allocate
2483     * them, both by setting their start addresses in the kernel and by
2484     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2485     *
2486     * Older KVM versions may not support setting the identity map base. In
2487     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2488     * size.
2489     */
2490    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2491        /* Allows up to 16M BIOSes. */
2492        identity_base = 0xfeffc000;
2493
2494        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2495        if (ret < 0) {
2496            return ret;
2497        }
2498    }
2499
2500    /* Set TSS base one page after EPT identity map. */
2501    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2502    if (ret < 0) {
2503        return ret;
2504    }
2505
2506    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2507    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2508    if (ret < 0) {
2509        fprintf(stderr, "e820_add_entry() table is full\n");
2510        return ret;
2511    }
2512
2513    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2514    if (shadow_mem != -1) {
2515        shadow_mem /= 4096;
2516        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2517        if (ret < 0) {
2518            return ret;
2519        }
2520    }
2521
2522    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2523        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2524        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2525        smram_machine_done.notify = register_smram_listener;
2526        qemu_add_machine_init_done_notifier(&smram_machine_done);
2527    }
2528
2529    if (enable_cpu_pm) {
2530        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2531        int ret;
2532
2533/* Work around for kernel header with a typo. TODO: fix header and drop. */
2534#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2535#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2536#endif
2537        if (disable_exits) {
2538            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2539                              KVM_X86_DISABLE_EXITS_HLT |
2540                              KVM_X86_DISABLE_EXITS_PAUSE |
2541                              KVM_X86_DISABLE_EXITS_CSTATE);
2542        }
2543
2544        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2545                                disable_exits);
2546        if (ret < 0) {
2547            error_report("kvm: guest stopping CPU not supported: %s",
2548                         strerror(-ret));
2549        }
2550    }
2551
2552    if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2553        X86MachineState *x86ms = X86_MACHINE(ms);
2554
2555        if (x86ms->bus_lock_ratelimit > 0) {
2556            ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2557            if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2558                error_report("kvm: bus lock detection unsupported");
2559                return -ENOTSUP;
2560            }
2561            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2562                                    KVM_BUS_LOCK_DETECTION_EXIT);
2563            if (ret < 0) {
2564                error_report("kvm: Failed to enable bus lock detection cap: %s",
2565                             strerror(-ret));
2566                return ret;
2567            }
2568            ratelimit_init(&bus_lock_ratelimit_ctrl);
2569            ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2570                                x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2571        }
2572    }
2573
2574    return 0;
2575}
2576
2577static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2578{
2579    lhs->selector = rhs->selector;
2580    lhs->base = rhs->base;
2581    lhs->limit = rhs->limit;
2582    lhs->type = 3;
2583    lhs->present = 1;
2584    lhs->dpl = 3;
2585    lhs->db = 0;
2586    lhs->s = 1;
2587    lhs->l = 0;
2588    lhs->g = 0;
2589    lhs->avl = 0;
2590    lhs->unusable = 0;
2591}
2592
2593static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2594{
2595    unsigned flags = rhs->flags;
2596    lhs->selector = rhs->selector;
2597    lhs->base = rhs->base;
2598    lhs->limit = rhs->limit;
2599    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2600    lhs->present = (flags & DESC_P_MASK) != 0;
2601    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2602    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2603    lhs->s = (flags & DESC_S_MASK) != 0;
2604    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2605    lhs->g = (flags & DESC_G_MASK) != 0;
2606    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2607    lhs->unusable = !lhs->present;
2608    lhs->padding = 0;
2609}
2610
2611static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2612{
2613    lhs->selector = rhs->selector;
2614    lhs->base = rhs->base;
2615    lhs->limit = rhs->limit;
2616    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2617                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2618                 (rhs->dpl << DESC_DPL_SHIFT) |
2619                 (rhs->db << DESC_B_SHIFT) |
2620                 (rhs->s * DESC_S_MASK) |
2621                 (rhs->l << DESC_L_SHIFT) |
2622                 (rhs->g * DESC_G_MASK) |
2623                 (rhs->avl * DESC_AVL_MASK);
2624}
2625
2626static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2627{
2628    if (set) {
2629        *kvm_reg = *qemu_reg;
2630    } else {
2631        *qemu_reg = *kvm_reg;
2632    }
2633}
2634
2635static int kvm_getput_regs(X86CPU *cpu, int set)
2636{
2637    CPUX86State *env = &cpu->env;
2638    struct kvm_regs regs;
2639    int ret = 0;
2640
2641    if (!set) {
2642        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2643        if (ret < 0) {
2644            return ret;
2645        }
2646    }
2647
2648    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2649    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2650    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2651    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2652    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2653    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2654    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2655    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2656#ifdef TARGET_X86_64
2657    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2658    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2659    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2660    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2661    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2662    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2663    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2664    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2665#endif
2666
2667    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2668    kvm_getput_reg(&regs.rip, &env->eip, set);
2669
2670    if (set) {
2671        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2672    }
2673
2674    return ret;
2675}
2676
2677static int kvm_put_fpu(X86CPU *cpu)
2678{
2679    CPUX86State *env = &cpu->env;
2680    struct kvm_fpu fpu;
2681    int i;
2682
2683    memset(&fpu, 0, sizeof fpu);
2684    fpu.fsw = env->fpus & ~(7 << 11);
2685    fpu.fsw |= (env->fpstt & 7) << 11;
2686    fpu.fcw = env->fpuc;
2687    fpu.last_opcode = env->fpop;
2688    fpu.last_ip = env->fpip;
2689    fpu.last_dp = env->fpdp;
2690    for (i = 0; i < 8; ++i) {
2691        fpu.ftwx |= (!env->fptags[i]) << i;
2692    }
2693    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2694    for (i = 0; i < CPU_NB_REGS; i++) {
2695        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2696        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2697    }
2698    fpu.mxcsr = env->mxcsr;
2699
2700    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2701}
2702
2703static int kvm_put_xsave(X86CPU *cpu)
2704{
2705    CPUX86State *env = &cpu->env;
2706    void *xsave = env->xsave_buf;
2707
2708    if (!has_xsave) {
2709        return kvm_put_fpu(cpu);
2710    }
2711    x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2712
2713    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2714}
2715
2716static int kvm_put_xcrs(X86CPU *cpu)
2717{
2718    CPUX86State *env = &cpu->env;
2719    struct kvm_xcrs xcrs = {};
2720
2721    if (!has_xcrs) {
2722        return 0;
2723    }
2724
2725    xcrs.nr_xcrs = 1;
2726    xcrs.flags = 0;
2727    xcrs.xcrs[0].xcr = 0;
2728    xcrs.xcrs[0].value = env->xcr0;
2729    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2730}
2731
2732static int kvm_put_sregs(X86CPU *cpu)
2733{
2734    CPUX86State *env = &cpu->env;
2735    struct kvm_sregs sregs;
2736
2737    /*
2738     * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2739     * always followed by KVM_SET_VCPU_EVENTS.
2740     */
2741    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2742
2743    if ((env->eflags & VM_MASK)) {
2744        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2745        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2746        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2747        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2748        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2749        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2750    } else {
2751        set_seg(&sregs.cs, &env->segs[R_CS]);
2752        set_seg(&sregs.ds, &env->segs[R_DS]);
2753        set_seg(&sregs.es, &env->segs[R_ES]);
2754        set_seg(&sregs.fs, &env->segs[R_FS]);
2755        set_seg(&sregs.gs, &env->segs[R_GS]);
2756        set_seg(&sregs.ss, &env->segs[R_SS]);
2757    }
2758
2759    set_seg(&sregs.tr, &env->tr);
2760    set_seg(&sregs.ldt, &env->ldt);
2761
2762    sregs.idt.limit = env->idt.limit;
2763    sregs.idt.base = env->idt.base;
2764    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2765    sregs.gdt.limit = env->gdt.limit;
2766    sregs.gdt.base = env->gdt.base;
2767    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2768
2769    sregs.cr0 = env->cr[0];
2770    sregs.cr2 = env->cr[2];
2771    sregs.cr3 = env->cr[3];
2772    sregs.cr4 = env->cr[4];
2773
2774    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2775    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2776
2777    sregs.efer = env->efer;
2778
2779    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2780}
2781
2782static int kvm_put_sregs2(X86CPU *cpu)
2783{
2784    CPUX86State *env = &cpu->env;
2785    struct kvm_sregs2 sregs;
2786    int i;
2787
2788    sregs.flags = 0;
2789
2790    if ((env->eflags & VM_MASK)) {
2791        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2792        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2793        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2794        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2795        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2796        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2797    } else {
2798        set_seg(&sregs.cs, &env->segs[R_CS]);
2799        set_seg(&sregs.ds, &env->segs[R_DS]);
2800        set_seg(&sregs.es, &env->segs[R_ES]);
2801        set_seg(&sregs.fs, &env->segs[R_FS]);
2802        set_seg(&sregs.gs, &env->segs[R_GS]);
2803        set_seg(&sregs.ss, &env->segs[R_SS]);
2804    }
2805
2806    set_seg(&sregs.tr, &env->tr);
2807    set_seg(&sregs.ldt, &env->ldt);
2808
2809    sregs.idt.limit = env->idt.limit;
2810    sregs.idt.base = env->idt.base;
2811    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2812    sregs.gdt.limit = env->gdt.limit;
2813    sregs.gdt.base = env->gdt.base;
2814    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2815
2816    sregs.cr0 = env->cr[0];
2817    sregs.cr2 = env->cr[2];
2818    sregs.cr3 = env->cr[3];
2819    sregs.cr4 = env->cr[4];
2820
2821    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2822    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2823
2824    sregs.efer = env->efer;
2825
2826    if (env->pdptrs_valid) {
2827        for (i = 0; i < 4; i++) {
2828            sregs.pdptrs[i] = env->pdptrs[i];
2829        }
2830        sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2831    }
2832
2833    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2834}
2835
2836
2837static void kvm_msr_buf_reset(X86CPU *cpu)
2838{
2839    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2840}
2841
2842static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2843{
2844    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2845    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2846    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2847
2848    assert((void *)(entry + 1) <= limit);
2849
2850    entry->index = index;
2851    entry->reserved = 0;
2852    entry->data = value;
2853    msrs->nmsrs++;
2854}
2855
2856static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2857{
2858    kvm_msr_buf_reset(cpu);
2859    kvm_msr_entry_add(cpu, index, value);
2860
2861    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2862}
2863
2864static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2865{
2866    int ret;
2867    struct {
2868        struct kvm_msrs info;
2869        struct kvm_msr_entry entries[1];
2870    } msr_data = {
2871        .info.nmsrs = 1,
2872        .entries[0].index = index,
2873    };
2874
2875    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2876    if (ret < 0) {
2877        return ret;
2878    }
2879    assert(ret == 1);
2880    *value = msr_data.entries[0].data;
2881    return ret;
2882}
2883void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2884{
2885    int ret;
2886
2887    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2888    assert(ret == 1);
2889}
2890
2891static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2892{
2893    CPUX86State *env = &cpu->env;
2894    int ret;
2895
2896    if (!has_msr_tsc_deadline) {
2897        return 0;
2898    }
2899
2900    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2901    if (ret < 0) {
2902        return ret;
2903    }
2904
2905    assert(ret == 1);
2906    return 0;
2907}
2908
2909/*
2910 * Provide a separate write service for the feature control MSR in order to
2911 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2912 * before writing any other state because forcibly leaving nested mode
2913 * invalidates the VCPU state.
2914 */
2915static int kvm_put_msr_feature_control(X86CPU *cpu)
2916{
2917    int ret;
2918
2919    if (!has_msr_feature_control) {
2920        return 0;
2921    }
2922
2923    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2924                          cpu->env.msr_ia32_feature_control);
2925    if (ret < 0) {
2926        return ret;
2927    }
2928
2929    assert(ret == 1);
2930    return 0;
2931}
2932
2933static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2934{
2935    uint32_t default1, can_be_one, can_be_zero;
2936    uint32_t must_be_one;
2937
2938    switch (index) {
2939    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2940        default1 = 0x00000016;
2941        break;
2942    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2943        default1 = 0x0401e172;
2944        break;
2945    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2946        default1 = 0x000011ff;
2947        break;
2948    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2949        default1 = 0x00036dff;
2950        break;
2951    case MSR_IA32_VMX_PROCBASED_CTLS2:
2952        default1 = 0;
2953        break;
2954    default:
2955        abort();
2956    }
2957
2958    /* If a feature bit is set, the control can be either set or clear.
2959     * Otherwise the value is limited to either 0 or 1 by default1.
2960     */
2961    can_be_one = features | default1;
2962    can_be_zero = features | ~default1;
2963    must_be_one = ~can_be_zero;
2964
2965    /*
2966     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2967     * Bit 32:63 -> 1 if the control bit can be one.
2968     */
2969    return must_be_one | (((uint64_t)can_be_one) << 32);
2970}
2971
2972static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2973{
2974    uint64_t kvm_vmx_basic =
2975        kvm_arch_get_supported_msr_feature(kvm_state,
2976                                           MSR_IA32_VMX_BASIC);
2977
2978    if (!kvm_vmx_basic) {
2979        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2980         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2981         */
2982        return;
2983    }
2984
2985    uint64_t kvm_vmx_misc =
2986        kvm_arch_get_supported_msr_feature(kvm_state,
2987                                           MSR_IA32_VMX_MISC);
2988    uint64_t kvm_vmx_ept_vpid =
2989        kvm_arch_get_supported_msr_feature(kvm_state,
2990                                           MSR_IA32_VMX_EPT_VPID_CAP);
2991
2992    /*
2993     * If the guest is 64-bit, a value of 1 is allowed for the host address
2994     * space size vmexit control.
2995     */
2996    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2997        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2998
2999    /*
3000     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3001     * not change them for backwards compatibility.
3002     */
3003    uint64_t fixed_vmx_basic = kvm_vmx_basic &
3004        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3005         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3006         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3007
3008    /*
3009     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3010     * change in the future but are always zero for now, clear them to be
3011     * future proof.  Bits 32-63 in theory could change, though KVM does
3012     * not support dual-monitor treatment and probably never will; mask
3013     * them out as well.
3014     */
3015    uint64_t fixed_vmx_misc = kvm_vmx_misc &
3016        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3017         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3018
3019    /*
3020     * EPT memory types should not change either, so we do not bother
3021     * adding features for them.
3022     */
3023    uint64_t fixed_vmx_ept_mask =
3024            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3025             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3026    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3027
3028    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3029                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3030                                         f[FEAT_VMX_PROCBASED_CTLS]));
3031    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3032                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3033                                         f[FEAT_VMX_PINBASED_CTLS]));
3034    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3035                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3036                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3037    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3038                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3039                                         f[FEAT_VMX_ENTRY_CTLS]));
3040    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3041                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3042                                         f[FEAT_VMX_SECONDARY_CTLS]));
3043    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3044                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3045    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3046                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3047    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3048                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
3049    if (has_msr_vmx_vmfunc) {
3050        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3051    }
3052
3053    /*
3054     * Just to be safe, write these with constant values.  The CRn_FIXED1
3055     * MSRs are generated by KVM based on the vCPU's CPUID.
3056     */
3057    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3058                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3059    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3060                      CR4_VMXE_MASK);
3061
3062    if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3063        /* TSC multiplier (0x2032).  */
3064        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3065    } else {
3066        /* Preemption timer (0x482E).  */
3067        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3068    }
3069}
3070
3071static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3072{
3073    uint64_t kvm_perf_cap =
3074        kvm_arch_get_supported_msr_feature(kvm_state,
3075                                           MSR_IA32_PERF_CAPABILITIES);
3076
3077    if (kvm_perf_cap) {
3078        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3079                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3080    }
3081}
3082
3083static int kvm_buf_set_msrs(X86CPU *cpu)
3084{
3085    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3086    if (ret < 0) {
3087        return ret;
3088    }
3089
3090    if (ret < cpu->kvm_msr_buf->nmsrs) {
3091        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3092        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3093                     (uint32_t)e->index, (uint64_t)e->data);
3094    }
3095
3096    assert(ret == cpu->kvm_msr_buf->nmsrs);
3097    return 0;
3098}
3099
3100static void kvm_init_msrs(X86CPU *cpu)
3101{
3102    CPUX86State *env = &cpu->env;
3103
3104    kvm_msr_buf_reset(cpu);
3105    if (has_msr_arch_capabs) {
3106        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3107                          env->features[FEAT_ARCH_CAPABILITIES]);
3108    }
3109
3110    if (has_msr_core_capabs) {
3111        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3112                          env->features[FEAT_CORE_CAPABILITY]);
3113    }
3114
3115    if (has_msr_perf_capabs && cpu->enable_pmu) {
3116        kvm_msr_entry_add_perf(cpu, env->features);
3117    }
3118
3119    if (has_msr_ucode_rev) {
3120        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3121    }
3122
3123    /*
3124     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3125     * all kernels with MSR features should have them.
3126     */
3127    if (kvm_feature_msrs && cpu_has_vmx(env)) {
3128        kvm_msr_entry_add_vmx(cpu, env->features);
3129    }
3130
3131    assert(kvm_buf_set_msrs(cpu) == 0);
3132}
3133
3134static int kvm_put_msrs(X86CPU *cpu, int level)
3135{
3136    CPUX86State *env = &cpu->env;
3137    int i;
3138
3139    kvm_msr_buf_reset(cpu);
3140
3141    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3142    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3143    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3144    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3145    if (has_msr_star) {
3146        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3147    }
3148    if (has_msr_hsave_pa) {
3149        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3150    }
3151    if (has_msr_tsc_aux) {
3152        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3153    }
3154    if (has_msr_tsc_adjust) {
3155        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3156    }
3157    if (has_msr_misc_enable) {
3158        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3159                          env->msr_ia32_misc_enable);
3160    }
3161    if (has_msr_smbase) {
3162        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3163    }
3164    if (has_msr_smi_count) {
3165        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3166    }
3167    if (has_msr_pkrs) {
3168        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3169    }
3170    if (has_msr_bndcfgs) {
3171        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3172    }
3173    if (has_msr_xss) {
3174        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3175    }
3176    if (has_msr_umwait) {
3177        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3178    }
3179    if (has_msr_spec_ctrl) {
3180        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3181    }
3182    if (has_tsc_scale_msr) {
3183        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3184    }
3185
3186    if (has_msr_tsx_ctrl) {
3187        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3188    }
3189    if (has_msr_virt_ssbd) {
3190        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3191    }
3192
3193#ifdef TARGET_X86_64
3194    if (lm_capable_kernel) {
3195        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3196        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3197        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3198        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3199    }
3200#endif
3201
3202    /*
3203     * The following MSRs have side effects on the guest or are too heavy
3204     * for normal writeback. Limit them to reset or full state updates.
3205     */
3206    if (level >= KVM_PUT_RESET_STATE) {
3207        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3208        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3209        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3210        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3211            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3212        }
3213        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3214            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3215        }
3216        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3217            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3218        }
3219        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3220            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3221        }
3222
3223        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3224            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3225        }
3226
3227        if (has_architectural_pmu_version > 0) {
3228            if (has_architectural_pmu_version > 1) {
3229                /* Stop the counter.  */
3230                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3231                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3232            }
3233
3234            /* Set the counter values.  */
3235            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3236                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3237                                  env->msr_fixed_counters[i]);
3238            }
3239            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3240                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3241                                  env->msr_gp_counters[i]);
3242                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3243                                  env->msr_gp_evtsel[i]);
3244            }
3245            if (has_architectural_pmu_version > 1) {
3246                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3247                                  env->msr_global_status);
3248                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3249                                  env->msr_global_ovf_ctrl);
3250
3251                /* Now start the PMU.  */
3252                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3253                                  env->msr_fixed_ctr_ctrl);
3254                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3255                                  env->msr_global_ctrl);
3256            }
3257        }
3258        /*
3259         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3260         * only sync them to KVM on the first cpu
3261         */
3262        if (current_cpu == first_cpu) {
3263            if (has_msr_hv_hypercall) {
3264                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3265                                  env->msr_hv_guest_os_id);
3266                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3267                                  env->msr_hv_hypercall);
3268            }
3269            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3270                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3271                                  env->msr_hv_tsc);
3272            }
3273            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3274                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3275                                  env->msr_hv_reenlightenment_control);
3276                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3277                                  env->msr_hv_tsc_emulation_control);
3278                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3279                                  env->msr_hv_tsc_emulation_status);
3280            }
3281#ifdef CONFIG_SYNDBG
3282            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3283                has_msr_hv_syndbg_options) {
3284                kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3285                                  hyperv_syndbg_query_options());
3286            }
3287#endif
3288        }
3289        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3290            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3291                              env->msr_hv_vapic);
3292        }
3293        if (has_msr_hv_crash) {
3294            int j;
3295
3296            for (j = 0; j < HV_CRASH_PARAMS; j++)
3297                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3298                                  env->msr_hv_crash_params[j]);
3299
3300            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3301        }
3302        if (has_msr_hv_runtime) {
3303            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3304        }
3305        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3306            && hv_vpindex_settable) {
3307            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3308                              hyperv_vp_index(CPU(cpu)));
3309        }
3310        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3311            int j;
3312
3313            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3314
3315            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3316                              env->msr_hv_synic_control);
3317            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3318                              env->msr_hv_synic_evt_page);
3319            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3320                              env->msr_hv_synic_msg_page);
3321
3322            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3323                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3324                                  env->msr_hv_synic_sint[j]);
3325            }
3326        }
3327        if (has_msr_hv_stimer) {
3328            int j;
3329
3330            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3331                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3332                                env->msr_hv_stimer_config[j]);
3333            }
3334
3335            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3336                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3337                                env->msr_hv_stimer_count[j]);
3338            }
3339        }
3340        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3341            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3342
3343            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3344            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3345            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3346            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3347            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3348            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3349            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3350            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3351            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3352            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3353            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3354            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3355            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3356                /* The CPU GPs if we write to a bit above the physical limit of
3357                 * the host CPU (and KVM emulates that)
3358                 */
3359                uint64_t mask = env->mtrr_var[i].mask;
3360                mask &= phys_mask;
3361
3362                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3363                                  env->mtrr_var[i].base);
3364                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3365            }
3366        }
3367        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3368            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3369                                                    0x14, 1, R_EAX) & 0x7;
3370
3371            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3372                            env->msr_rtit_ctrl);
3373            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3374                            env->msr_rtit_status);
3375            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3376                            env->msr_rtit_output_base);
3377            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3378                            env->msr_rtit_output_mask);
3379            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3380                            env->msr_rtit_cr3_match);
3381            for (i = 0; i < addr_num; i++) {
3382                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3383                            env->msr_rtit_addrs[i]);
3384            }
3385        }
3386
3387        if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3388            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3389                              env->msr_ia32_sgxlepubkeyhash[0]);
3390            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3391                              env->msr_ia32_sgxlepubkeyhash[1]);
3392            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3393                              env->msr_ia32_sgxlepubkeyhash[2]);
3394            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3395                              env->msr_ia32_sgxlepubkeyhash[3]);
3396        }
3397
3398        if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3399            kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3400                              env->msr_xfd);
3401            kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3402                              env->msr_xfd_err);
3403        }
3404
3405        if (kvm_enabled() && cpu->enable_pmu &&
3406            (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3407            uint64_t depth;
3408            int i, ret;
3409
3410            /*
3411             * Only migrate Arch LBR states when the host Arch LBR depth
3412             * equals that of source guest's, this is to avoid mismatch
3413             * of guest/host config for the msr hence avoid unexpected
3414             * misbehavior.
3415             */
3416            ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3417
3418            if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3419                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3420                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3421
3422                for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3423                    if (!env->lbr_records[i].from) {
3424                        continue;
3425                    }
3426                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3427                                      env->lbr_records[i].from);
3428                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3429                                      env->lbr_records[i].to);
3430                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3431                                      env->lbr_records[i].info);
3432                }
3433            }
3434        }
3435
3436        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3437         *       kvm_put_msr_feature_control. */
3438    }
3439
3440    if (env->mcg_cap) {
3441        int i;
3442
3443        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3444        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3445        if (has_msr_mcg_ext_ctl) {
3446            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3447        }
3448        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3449            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3450        }
3451    }
3452
3453    return kvm_buf_set_msrs(cpu);
3454}
3455
3456
3457static int kvm_get_fpu(X86CPU *cpu)
3458{
3459    CPUX86State *env = &cpu->env;
3460    struct kvm_fpu fpu;
3461    int i, ret;
3462
3463    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3464    if (ret < 0) {
3465        return ret;
3466    }
3467
3468    env->fpstt = (fpu.fsw >> 11) & 7;
3469    env->fpus = fpu.fsw;
3470    env->fpuc = fpu.fcw;
3471    env->fpop = fpu.last_opcode;
3472    env->fpip = fpu.last_ip;
3473    env->fpdp = fpu.last_dp;
3474    for (i = 0; i < 8; ++i) {
3475        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3476    }
3477    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3478    for (i = 0; i < CPU_NB_REGS; i++) {
3479        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3480        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3481    }
3482    env->mxcsr = fpu.mxcsr;
3483
3484    return 0;
3485}
3486
3487static int kvm_get_xsave(X86CPU *cpu)
3488{
3489    CPUX86State *env = &cpu->env;
3490    void *xsave = env->xsave_buf;
3491    int type, ret;
3492
3493    if (!has_xsave) {
3494        return kvm_get_fpu(cpu);
3495    }
3496
3497    type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3498    ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3499    if (ret < 0) {
3500        return ret;
3501    }
3502    x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3503
3504    return 0;
3505}
3506
3507static int kvm_get_xcrs(X86CPU *cpu)
3508{
3509    CPUX86State *env = &cpu->env;
3510    int i, ret;
3511    struct kvm_xcrs xcrs;
3512
3513    if (!has_xcrs) {
3514        return 0;
3515    }
3516
3517    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3518    if (ret < 0) {
3519        return ret;
3520    }
3521
3522    for (i = 0; i < xcrs.nr_xcrs; i++) {
3523        /* Only support xcr0 now */
3524        if (xcrs.xcrs[i].xcr == 0) {
3525            env->xcr0 = xcrs.xcrs[i].value;
3526            break;
3527        }
3528    }
3529    return 0;
3530}
3531
3532static int kvm_get_sregs(X86CPU *cpu)
3533{
3534    CPUX86State *env = &cpu->env;
3535    struct kvm_sregs sregs;
3536    int ret;
3537
3538    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3539    if (ret < 0) {
3540        return ret;
3541    }
3542
3543    /*
3544     * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3545     * always preceded by KVM_GET_VCPU_EVENTS.
3546     */
3547
3548    get_seg(&env->segs[R_CS], &sregs.cs);
3549    get_seg(&env->segs[R_DS], &sregs.ds);
3550    get_seg(&env->segs[R_ES], &sregs.es);
3551    get_seg(&env->segs[R_FS], &sregs.fs);
3552    get_seg(&env->segs[R_GS], &sregs.gs);
3553    get_seg(&env->segs[R_SS], &sregs.ss);
3554
3555    get_seg(&env->tr, &sregs.tr);
3556    get_seg(&env->ldt, &sregs.ldt);
3557
3558    env->idt.limit = sregs.idt.limit;
3559    env->idt.base = sregs.idt.base;
3560    env->gdt.limit = sregs.gdt.limit;
3561    env->gdt.base = sregs.gdt.base;
3562
3563    env->cr[0] = sregs.cr0;
3564    env->cr[2] = sregs.cr2;
3565    env->cr[3] = sregs.cr3;
3566    env->cr[4] = sregs.cr4;
3567
3568    env->efer = sregs.efer;
3569
3570    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3571    x86_update_hflags(env);
3572
3573    return 0;
3574}
3575
3576static int kvm_get_sregs2(X86CPU *cpu)
3577{
3578    CPUX86State *env = &cpu->env;
3579    struct kvm_sregs2 sregs;
3580    int i, ret;
3581
3582    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3583    if (ret < 0) {
3584        return ret;
3585    }
3586
3587    get_seg(&env->segs[R_CS], &sregs.cs);
3588    get_seg(&env->segs[R_DS], &sregs.ds);
3589    get_seg(&env->segs[R_ES], &sregs.es);
3590    get_seg(&env->segs[R_FS], &sregs.fs);
3591    get_seg(&env->segs[R_GS], &sregs.gs);
3592    get_seg(&env->segs[R_SS], &sregs.ss);
3593
3594    get_seg(&env->tr, &sregs.tr);
3595    get_seg(&env->ldt, &sregs.ldt);
3596
3597    env->idt.limit = sregs.idt.limit;
3598    env->idt.base = sregs.idt.base;
3599    env->gdt.limit = sregs.gdt.limit;
3600    env->gdt.base = sregs.gdt.base;
3601
3602    env->cr[0] = sregs.cr0;
3603    env->cr[2] = sregs.cr2;
3604    env->cr[3] = sregs.cr3;
3605    env->cr[4] = sregs.cr4;
3606
3607    env->efer = sregs.efer;
3608
3609    env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3610
3611    if (env->pdptrs_valid) {
3612        for (i = 0; i < 4; i++) {
3613            env->pdptrs[i] = sregs.pdptrs[i];
3614        }
3615    }
3616
3617    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3618    x86_update_hflags(env);
3619
3620    return 0;
3621}
3622
3623static int kvm_get_msrs(X86CPU *cpu)
3624{
3625    CPUX86State *env = &cpu->env;
3626    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3627    int ret, i;
3628    uint64_t mtrr_top_bits;
3629
3630    kvm_msr_buf_reset(cpu);
3631
3632    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3633    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3634    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3635    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3636    if (has_msr_star) {
3637        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3638    }
3639    if (has_msr_hsave_pa) {
3640        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3641    }
3642    if (has_msr_tsc_aux) {
3643        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3644    }
3645    if (has_msr_tsc_adjust) {
3646        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3647    }
3648    if (has_msr_tsc_deadline) {
3649        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3650    }
3651    if (has_msr_misc_enable) {
3652        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3653    }
3654    if (has_msr_smbase) {
3655        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3656    }
3657    if (has_msr_smi_count) {
3658        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3659    }
3660    if (has_msr_feature_control) {
3661        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3662    }
3663    if (has_msr_pkrs) {
3664        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3665    }
3666    if (has_msr_bndcfgs) {
3667        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3668    }
3669    if (has_msr_xss) {
3670        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3671    }
3672    if (has_msr_umwait) {
3673        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3674    }
3675    if (has_msr_spec_ctrl) {
3676        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3677    }
3678    if (has_tsc_scale_msr) {
3679        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3680    }
3681
3682    if (has_msr_tsx_ctrl) {
3683        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3684    }
3685    if (has_msr_virt_ssbd) {
3686        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3687    }
3688    if (!env->tsc_valid) {
3689        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3690        env->tsc_valid = !runstate_is_running();
3691    }
3692
3693#ifdef TARGET_X86_64
3694    if (lm_capable_kernel) {
3695        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3696        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3697        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3698        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3699    }
3700#endif
3701    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3702    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3703    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3704        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3705    }
3706    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3707        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3708    }
3709    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3710        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3711    }
3712    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3713        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3714    }
3715    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3716        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3717    }
3718    if (has_architectural_pmu_version > 0) {
3719        if (has_architectural_pmu_version > 1) {
3720            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3721            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3722            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3723            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3724        }
3725        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3726            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3727        }
3728        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3729            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3730            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3731        }
3732    }
3733
3734    if (env->mcg_cap) {
3735        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3736        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3737        if (has_msr_mcg_ext_ctl) {
3738            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3739        }
3740        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3741            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3742        }
3743    }
3744
3745    if (has_msr_hv_hypercall) {
3746        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3747        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3748    }
3749    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3750        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3751    }
3752    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3753        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3754    }
3755    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3756        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3757        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3758        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3759    }
3760    if (has_msr_hv_syndbg_options) {
3761        kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3762    }
3763    if (has_msr_hv_crash) {
3764        int j;
3765
3766        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3767            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3768        }
3769    }
3770    if (has_msr_hv_runtime) {
3771        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3772    }
3773    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3774        uint32_t msr;
3775
3776        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3777        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3778        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3779        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3780            kvm_msr_entry_add(cpu, msr, 0);
3781        }
3782    }
3783    if (has_msr_hv_stimer) {
3784        uint32_t msr;
3785
3786        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3787             msr++) {
3788            kvm_msr_entry_add(cpu, msr, 0);
3789        }
3790    }
3791    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3792        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3793        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3794        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3795        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3796        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3797        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3798        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3799        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3800        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3801        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3802        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3803        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3804        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3805            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3806            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3807        }
3808    }
3809
3810    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3811        int addr_num =
3812            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3813
3814        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3815        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3816        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3817        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3818        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3819        for (i = 0; i < addr_num; i++) {
3820            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3821        }
3822    }
3823
3824    if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3825        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3826        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3827        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3828        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3829    }
3830
3831    if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3832        kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3833        kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3834    }
3835
3836    if (kvm_enabled() && cpu->enable_pmu &&
3837        (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3838        uint64_t depth;
3839        int i, ret;
3840
3841        ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3842        if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3843            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3844            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3845
3846            for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3847                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3848                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3849                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3850            }
3851        }
3852    }
3853
3854    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3855    if (ret < 0) {
3856        return ret;
3857    }
3858
3859    if (ret < cpu->kvm_msr_buf->nmsrs) {
3860        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3861        error_report("error: failed to get MSR 0x%" PRIx32,
3862                     (uint32_t)e->index);
3863    }
3864
3865    assert(ret == cpu->kvm_msr_buf->nmsrs);
3866    /*
3867     * MTRR masks: Each mask consists of 5 parts
3868     * a  10..0: must be zero
3869     * b  11   : valid bit
3870     * c n-1.12: actual mask bits
3871     * d  51..n: reserved must be zero
3872     * e  63.52: reserved must be zero
3873     *
3874     * 'n' is the number of physical bits supported by the CPU and is
3875     * apparently always <= 52.   We know our 'n' but don't know what
3876     * the destinations 'n' is; it might be smaller, in which case
3877     * it masks (c) on loading. It might be larger, in which case
3878     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3879     * we're migrating to.
3880     */
3881
3882    if (cpu->fill_mtrr_mask) {
3883        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3884        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3885        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3886    } else {
3887        mtrr_top_bits = 0;
3888    }
3889
3890    for (i = 0; i < ret; i++) {
3891        uint32_t index = msrs[i].index;
3892        switch (index) {
3893        case MSR_IA32_SYSENTER_CS:
3894            env->sysenter_cs = msrs[i].data;
3895            break;
3896        case MSR_IA32_SYSENTER_ESP:
3897            env->sysenter_esp = msrs[i].data;
3898            break;
3899        case MSR_IA32_SYSENTER_EIP:
3900            env->sysenter_eip = msrs[i].data;
3901            break;
3902        case MSR_PAT:
3903            env->pat = msrs[i].data;
3904            break;
3905        case MSR_STAR:
3906            env->star = msrs[i].data;
3907            break;
3908#ifdef TARGET_X86_64
3909        case MSR_CSTAR:
3910            env->cstar = msrs[i].data;
3911            break;
3912        case MSR_KERNELGSBASE:
3913            env->kernelgsbase = msrs[i].data;
3914            break;
3915        case MSR_FMASK:
3916            env->fmask = msrs[i].data;
3917            break;
3918        case MSR_LSTAR:
3919            env->lstar = msrs[i].data;
3920            break;
3921#endif
3922        case MSR_IA32_TSC:
3923            env->tsc = msrs[i].data;
3924            break;
3925        case MSR_TSC_AUX:
3926            env->tsc_aux = msrs[i].data;
3927            break;
3928        case MSR_TSC_ADJUST:
3929            env->tsc_adjust = msrs[i].data;
3930            break;
3931        case MSR_IA32_TSCDEADLINE:
3932            env->tsc_deadline = msrs[i].data;
3933            break;
3934        case MSR_VM_HSAVE_PA:
3935            env->vm_hsave = msrs[i].data;
3936            break;
3937        case MSR_KVM_SYSTEM_TIME:
3938            env->system_time_msr = msrs[i].data;
3939            break;
3940        case MSR_KVM_WALL_CLOCK:
3941            env->wall_clock_msr = msrs[i].data;
3942            break;
3943        case MSR_MCG_STATUS:
3944            env->mcg_status = msrs[i].data;
3945            break;
3946        case MSR_MCG_CTL:
3947            env->mcg_ctl = msrs[i].data;
3948            break;
3949        case MSR_MCG_EXT_CTL:
3950            env->mcg_ext_ctl = msrs[i].data;
3951            break;
3952        case MSR_IA32_MISC_ENABLE:
3953            env->msr_ia32_misc_enable = msrs[i].data;
3954            break;
3955        case MSR_IA32_SMBASE:
3956            env->smbase = msrs[i].data;
3957            break;
3958        case MSR_SMI_COUNT:
3959            env->msr_smi_count = msrs[i].data;
3960            break;
3961        case MSR_IA32_FEATURE_CONTROL:
3962            env->msr_ia32_feature_control = msrs[i].data;
3963            break;
3964        case MSR_IA32_BNDCFGS:
3965            env->msr_bndcfgs = msrs[i].data;
3966            break;
3967        case MSR_IA32_XSS:
3968            env->xss = msrs[i].data;
3969            break;
3970        case MSR_IA32_UMWAIT_CONTROL:
3971            env->umwait = msrs[i].data;
3972            break;
3973        case MSR_IA32_PKRS:
3974            env->pkrs = msrs[i].data;
3975            break;
3976        default:
3977            if (msrs[i].index >= MSR_MC0_CTL &&
3978                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3979                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3980            }
3981            break;
3982        case MSR_KVM_ASYNC_PF_EN:
3983            env->async_pf_en_msr = msrs[i].data;
3984            break;
3985        case MSR_KVM_ASYNC_PF_INT:
3986            env->async_pf_int_msr = msrs[i].data;
3987            break;
3988        case MSR_KVM_PV_EOI_EN:
3989            env->pv_eoi_en_msr = msrs[i].data;
3990            break;
3991        case MSR_KVM_STEAL_TIME:
3992            env->steal_time_msr = msrs[i].data;
3993            break;
3994        case MSR_KVM_POLL_CONTROL: {
3995            env->poll_control_msr = msrs[i].data;
3996            break;
3997        }
3998        case MSR_CORE_PERF_FIXED_CTR_CTRL:
3999            env->msr_fixed_ctr_ctrl = msrs[i].data;
4000            break;
4001        case MSR_CORE_PERF_GLOBAL_CTRL:
4002            env->msr_global_ctrl = msrs[i].data;
4003            break;
4004        case MSR_CORE_PERF_GLOBAL_STATUS:
4005            env->msr_global_status = msrs[i].data;
4006            break;
4007        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4008            env->msr_global_ovf_ctrl = msrs[i].data;
4009            break;
4010        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4011            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4012            break;
4013        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4014            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4015            break;
4016        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4017            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4018            break;
4019        case HV_X64_MSR_HYPERCALL:
4020            env->msr_hv_hypercall = msrs[i].data;
4021            break;
4022        case HV_X64_MSR_GUEST_OS_ID:
4023            env->msr_hv_guest_os_id = msrs[i].data;
4024            break;
4025        case HV_X64_MSR_APIC_ASSIST_PAGE:
4026            env->msr_hv_vapic = msrs[i].data;
4027            break;
4028        case HV_X64_MSR_REFERENCE_TSC:
4029            env->msr_hv_tsc = msrs[i].data;
4030            break;
4031        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4032            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4033            break;
4034        case HV_X64_MSR_VP_RUNTIME:
4035            env->msr_hv_runtime = msrs[i].data;
4036            break;
4037        case HV_X64_MSR_SCONTROL:
4038            env->msr_hv_synic_control = msrs[i].data;
4039            break;
4040        case HV_X64_MSR_SIEFP:
4041            env->msr_hv_synic_evt_page = msrs[i].data;
4042            break;
4043        case HV_X64_MSR_SIMP:
4044            env->msr_hv_synic_msg_page = msrs[i].data;
4045            break;
4046        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4047            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4048            break;
4049        case HV_X64_MSR_STIMER0_CONFIG:
4050        case HV_X64_MSR_STIMER1_CONFIG:
4051        case HV_X64_MSR_STIMER2_CONFIG:
4052        case HV_X64_MSR_STIMER3_CONFIG:
4053            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4054                                msrs[i].data;
4055            break;
4056        case HV_X64_MSR_STIMER0_COUNT:
4057        case HV_X64_MSR_STIMER1_COUNT:
4058        case HV_X64_MSR_STIMER2_COUNT:
4059        case HV_X64_MSR_STIMER3_COUNT:
4060            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4061                                msrs[i].data;
4062            break;
4063        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4064            env->msr_hv_reenlightenment_control = msrs[i].data;
4065            break;
4066        case HV_X64_MSR_TSC_EMULATION_CONTROL:
4067            env->msr_hv_tsc_emulation_control = msrs[i].data;
4068            break;
4069        case HV_X64_MSR_TSC_EMULATION_STATUS:
4070            env->msr_hv_tsc_emulation_status = msrs[i].data;
4071            break;
4072        case HV_X64_MSR_SYNDBG_OPTIONS:
4073            env->msr_hv_syndbg_options = msrs[i].data;
4074            break;
4075        case MSR_MTRRdefType:
4076            env->mtrr_deftype = msrs[i].data;
4077            break;
4078        case MSR_MTRRfix64K_00000:
4079            env->mtrr_fixed[0] = msrs[i].data;
4080            break;
4081        case MSR_MTRRfix16K_80000:
4082            env->mtrr_fixed[1] = msrs[i].data;
4083            break;
4084        case MSR_MTRRfix16K_A0000:
4085            env->mtrr_fixed[2] = msrs[i].data;
4086            break;
4087        case MSR_MTRRfix4K_C0000:
4088            env->mtrr_fixed[3] = msrs[i].data;
4089            break;
4090        case MSR_MTRRfix4K_C8000:
4091            env->mtrr_fixed[4] = msrs[i].data;
4092            break;
4093        case MSR_MTRRfix4K_D0000:
4094            env->mtrr_fixed[5] = msrs[i].data;
4095            break;
4096        case MSR_MTRRfix4K_D8000:
4097            env->mtrr_fixed[6] = msrs[i].data;
4098            break;
4099        case MSR_MTRRfix4K_E0000:
4100            env->mtrr_fixed[7] = msrs[i].data;
4101            break;
4102        case MSR_MTRRfix4K_E8000:
4103            env->mtrr_fixed[8] = msrs[i].data;
4104            break;
4105        case MSR_MTRRfix4K_F0000:
4106            env->mtrr_fixed[9] = msrs[i].data;
4107            break;
4108        case MSR_MTRRfix4K_F8000:
4109            env->mtrr_fixed[10] = msrs[i].data;
4110            break;
4111        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4112            if (index & 1) {
4113                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4114                                                               mtrr_top_bits;
4115            } else {
4116                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4117            }
4118            break;
4119        case MSR_IA32_SPEC_CTRL:
4120            env->spec_ctrl = msrs[i].data;
4121            break;
4122        case MSR_AMD64_TSC_RATIO:
4123            env->amd_tsc_scale_msr = msrs[i].data;
4124            break;
4125        case MSR_IA32_TSX_CTRL:
4126            env->tsx_ctrl = msrs[i].data;
4127            break;
4128        case MSR_VIRT_SSBD:
4129            env->virt_ssbd = msrs[i].data;
4130            break;
4131        case MSR_IA32_RTIT_CTL:
4132            env->msr_rtit_ctrl = msrs[i].data;
4133            break;
4134        case MSR_IA32_RTIT_STATUS:
4135            env->msr_rtit_status = msrs[i].data;
4136            break;
4137        case MSR_IA32_RTIT_OUTPUT_BASE:
4138            env->msr_rtit_output_base = msrs[i].data;
4139            break;
4140        case MSR_IA32_RTIT_OUTPUT_MASK:
4141            env->msr_rtit_output_mask = msrs[i].data;
4142            break;
4143        case MSR_IA32_RTIT_CR3_MATCH:
4144            env->msr_rtit_cr3_match = msrs[i].data;
4145            break;
4146        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4147            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4148            break;
4149        case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4150            env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4151                           msrs[i].data;
4152            break;
4153        case MSR_IA32_XFD:
4154            env->msr_xfd = msrs[i].data;
4155            break;
4156        case MSR_IA32_XFD_ERR:
4157            env->msr_xfd_err = msrs[i].data;
4158            break;
4159        case MSR_ARCH_LBR_CTL:
4160            env->msr_lbr_ctl = msrs[i].data;
4161            break;
4162        case MSR_ARCH_LBR_DEPTH:
4163            env->msr_lbr_depth = msrs[i].data;
4164            break;
4165        case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4166            env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4167            break;
4168        case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4169            env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4170            break;
4171        case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4172            env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4173            break;
4174        }
4175    }
4176
4177    return 0;
4178}
4179
4180static int kvm_put_mp_state(X86CPU *cpu)
4181{
4182    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4183
4184    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4185}
4186
4187static int kvm_get_mp_state(X86CPU *cpu)
4188{
4189    CPUState *cs = CPU(cpu);
4190    CPUX86State *env = &cpu->env;
4191    struct kvm_mp_state mp_state;
4192    int ret;
4193
4194    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4195    if (ret < 0) {
4196        return ret;
4197    }
4198    env->mp_state = mp_state.mp_state;
4199    if (kvm_irqchip_in_kernel()) {
4200        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4201    }
4202    return 0;
4203}
4204
4205static int kvm_get_apic(X86CPU *cpu)
4206{
4207    DeviceState *apic = cpu->apic_state;
4208    struct kvm_lapic_state kapic;
4209    int ret;
4210
4211    if (apic && kvm_irqchip_in_kernel()) {
4212        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4213        if (ret < 0) {
4214            return ret;
4215        }
4216
4217        kvm_get_apic_state(apic, &kapic);
4218    }
4219    return 0;
4220}
4221
4222static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4223{
4224    CPUState *cs = CPU(cpu);
4225    CPUX86State *env = &cpu->env;
4226    struct kvm_vcpu_events events = {};
4227
4228    if (!kvm_has_vcpu_events()) {
4229        return 0;
4230    }
4231
4232    events.flags = 0;
4233
4234    if (has_exception_payload) {
4235        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4236        events.exception.pending = env->exception_pending;
4237        events.exception_has_payload = env->exception_has_payload;
4238        events.exception_payload = env->exception_payload;
4239    }
4240    events.exception.nr = env->exception_nr;
4241    events.exception.injected = env->exception_injected;
4242    events.exception.has_error_code = env->has_error_code;
4243    events.exception.error_code = env->error_code;
4244
4245    events.interrupt.injected = (env->interrupt_injected >= 0);
4246    events.interrupt.nr = env->interrupt_injected;
4247    events.interrupt.soft = env->soft_interrupt;
4248
4249    events.nmi.injected = env->nmi_injected;
4250    events.nmi.pending = env->nmi_pending;
4251    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4252
4253    events.sipi_vector = env->sipi_vector;
4254
4255    if (has_msr_smbase) {
4256        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4257        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4258        if (kvm_irqchip_in_kernel()) {
4259            /* As soon as these are moved to the kernel, remove them
4260             * from cs->interrupt_request.
4261             */
4262            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4263            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4264            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4265        } else {
4266            /* Keep these in cs->interrupt_request.  */
4267            events.smi.pending = 0;
4268            events.smi.latched_init = 0;
4269        }
4270        /* Stop SMI delivery on old machine types to avoid a reboot
4271         * on an inward migration of an old VM.
4272         */
4273        if (!cpu->kvm_no_smi_migration) {
4274            events.flags |= KVM_VCPUEVENT_VALID_SMM;
4275        }
4276    }
4277
4278    if (level >= KVM_PUT_RESET_STATE) {
4279        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4280        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4281            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4282        }
4283    }
4284
4285    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4286}
4287
4288static int kvm_get_vcpu_events(X86CPU *cpu)
4289{
4290    CPUX86State *env = &cpu->env;
4291    struct kvm_vcpu_events events;
4292    int ret;
4293
4294    if (!kvm_has_vcpu_events()) {
4295        return 0;
4296    }
4297
4298    memset(&events, 0, sizeof(events));
4299    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4300    if (ret < 0) {
4301       return ret;
4302    }
4303
4304    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4305        env->exception_pending = events.exception.pending;
4306        env->exception_has_payload = events.exception_has_payload;
4307        env->exception_payload = events.exception_payload;
4308    } else {
4309        env->exception_pending = 0;
4310        env->exception_has_payload = false;
4311    }
4312    env->exception_injected = events.exception.injected;
4313    env->exception_nr =
4314        (env->exception_pending || env->exception_injected) ?
4315        events.exception.nr : -1;
4316    env->has_error_code = events.exception.has_error_code;
4317    env->error_code = events.exception.error_code;
4318
4319    env->interrupt_injected =
4320        events.interrupt.injected ? events.interrupt.nr : -1;
4321    env->soft_interrupt = events.interrupt.soft;
4322
4323    env->nmi_injected = events.nmi.injected;
4324    env->nmi_pending = events.nmi.pending;
4325    if (events.nmi.masked) {
4326        env->hflags2 |= HF2_NMI_MASK;
4327    } else {
4328        env->hflags2 &= ~HF2_NMI_MASK;
4329    }
4330
4331    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4332        if (events.smi.smm) {
4333            env->hflags |= HF_SMM_MASK;
4334        } else {
4335            env->hflags &= ~HF_SMM_MASK;
4336        }
4337        if (events.smi.pending) {
4338            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4339        } else {
4340            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4341        }
4342        if (events.smi.smm_inside_nmi) {
4343            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4344        } else {
4345            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4346        }
4347        if (events.smi.latched_init) {
4348            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4349        } else {
4350            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4351        }
4352    }
4353
4354    env->sipi_vector = events.sipi_vector;
4355
4356    return 0;
4357}
4358
4359static int kvm_guest_debug_workarounds(X86CPU *cpu)
4360{
4361    CPUState *cs = CPU(cpu);
4362    CPUX86State *env = &cpu->env;
4363    int ret = 0;
4364    unsigned long reinject_trap = 0;
4365
4366    if (!kvm_has_vcpu_events()) {
4367        if (env->exception_nr == EXCP01_DB) {
4368            reinject_trap = KVM_GUESTDBG_INJECT_DB;
4369        } else if (env->exception_injected == EXCP03_INT3) {
4370            reinject_trap = KVM_GUESTDBG_INJECT_BP;
4371        }
4372        kvm_reset_exception(env);
4373    }
4374
4375    /*
4376     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4377     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4378     * by updating the debug state once again if single-stepping is on.
4379     * Another reason to call kvm_update_guest_debug here is a pending debug
4380     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4381     * reinject them via SET_GUEST_DEBUG.
4382     */
4383    if (reinject_trap ||
4384        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4385        ret = kvm_update_guest_debug(cs, reinject_trap);
4386    }
4387    return ret;
4388}
4389
4390static int kvm_put_debugregs(X86CPU *cpu)
4391{
4392    CPUX86State *env = &cpu->env;
4393    struct kvm_debugregs dbgregs;
4394    int i;
4395
4396    if (!kvm_has_debugregs()) {
4397        return 0;
4398    }
4399
4400    memset(&dbgregs, 0, sizeof(dbgregs));
4401    for (i = 0; i < 4; i++) {
4402        dbgregs.db[i] = env->dr[i];
4403    }
4404    dbgregs.dr6 = env->dr[6];
4405    dbgregs.dr7 = env->dr[7];
4406    dbgregs.flags = 0;
4407
4408    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4409}
4410
4411static int kvm_get_debugregs(X86CPU *cpu)
4412{
4413    CPUX86State *env = &cpu->env;
4414    struct kvm_debugregs dbgregs;
4415    int i, ret;
4416
4417    if (!kvm_has_debugregs()) {
4418        return 0;
4419    }
4420
4421    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4422    if (ret < 0) {
4423        return ret;
4424    }
4425    for (i = 0; i < 4; i++) {
4426        env->dr[i] = dbgregs.db[i];
4427    }
4428    env->dr[4] = env->dr[6] = dbgregs.dr6;
4429    env->dr[5] = env->dr[7] = dbgregs.dr7;
4430
4431    return 0;
4432}
4433
4434static int kvm_put_nested_state(X86CPU *cpu)
4435{
4436    CPUX86State *env = &cpu->env;
4437    int max_nested_state_len = kvm_max_nested_state_length();
4438
4439    if (!env->nested_state) {
4440        return 0;
4441    }
4442
4443    /*
4444     * Copy flags that are affected by reset from env->hflags and env->hflags2.
4445     */
4446    if (env->hflags & HF_GUEST_MASK) {
4447        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4448    } else {
4449        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4450    }
4451
4452    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4453    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4454        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4455    } else {
4456        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4457    }
4458
4459    assert(env->nested_state->size <= max_nested_state_len);
4460    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4461}
4462
4463static int kvm_get_nested_state(X86CPU *cpu)
4464{
4465    CPUX86State *env = &cpu->env;
4466    int max_nested_state_len = kvm_max_nested_state_length();
4467    int ret;
4468
4469    if (!env->nested_state) {
4470        return 0;
4471    }
4472
4473    /*
4474     * It is possible that migration restored a smaller size into
4475     * nested_state->hdr.size than what our kernel support.
4476     * We preserve migration origin nested_state->hdr.size for
4477     * call to KVM_SET_NESTED_STATE but wish that our next call
4478     * to KVM_GET_NESTED_STATE will use max size our kernel support.
4479     */
4480    env->nested_state->size = max_nested_state_len;
4481
4482    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4483    if (ret < 0) {
4484        return ret;
4485    }
4486
4487    /*
4488     * Copy flags that are affected by reset to env->hflags and env->hflags2.
4489     */
4490    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4491        env->hflags |= HF_GUEST_MASK;
4492    } else {
4493        env->hflags &= ~HF_GUEST_MASK;
4494    }
4495
4496    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4497    if (cpu_has_svm(env)) {
4498        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4499            env->hflags2 |= HF2_GIF_MASK;
4500        } else {
4501            env->hflags2 &= ~HF2_GIF_MASK;
4502        }
4503    }
4504
4505    return ret;
4506}
4507
4508int kvm_arch_put_registers(CPUState *cpu, int level)
4509{
4510    X86CPU *x86_cpu = X86_CPU(cpu);
4511    int ret;
4512
4513    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4514
4515    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4516    ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4517    if (ret < 0) {
4518        return ret;
4519    }
4520
4521    if (level >= KVM_PUT_RESET_STATE) {
4522        ret = kvm_put_nested_state(x86_cpu);
4523        if (ret < 0) {
4524            return ret;
4525        }
4526
4527        ret = kvm_put_msr_feature_control(x86_cpu);
4528        if (ret < 0) {
4529            return ret;
4530        }
4531    }
4532
4533    if (level == KVM_PUT_FULL_STATE) {
4534        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4535         * because TSC frequency mismatch shouldn't abort migration,
4536         * unless the user explicitly asked for a more strict TSC
4537         * setting (e.g. using an explicit "tsc-freq" option).
4538         */
4539        kvm_arch_set_tsc_khz(cpu);
4540    }
4541
4542    ret = kvm_getput_regs(x86_cpu, 1);
4543    if (ret < 0) {
4544        return ret;
4545    }
4546    ret = kvm_put_xsave(x86_cpu);
4547    if (ret < 0) {
4548        return ret;
4549    }
4550    ret = kvm_put_xcrs(x86_cpu);
4551    if (ret < 0) {
4552        return ret;
4553    }
4554    /* must be before kvm_put_msrs */
4555    ret = kvm_inject_mce_oldstyle(x86_cpu);
4556    if (ret < 0) {
4557        return ret;
4558    }
4559    ret = kvm_put_msrs(x86_cpu, level);
4560    if (ret < 0) {
4561        return ret;
4562    }
4563    ret = kvm_put_vcpu_events(x86_cpu, level);
4564    if (ret < 0) {
4565        return ret;
4566    }
4567    if (level >= KVM_PUT_RESET_STATE) {
4568        ret = kvm_put_mp_state(x86_cpu);
4569        if (ret < 0) {
4570            return ret;
4571        }
4572    }
4573
4574    ret = kvm_put_tscdeadline_msr(x86_cpu);
4575    if (ret < 0) {
4576        return ret;
4577    }
4578    ret = kvm_put_debugregs(x86_cpu);
4579    if (ret < 0) {
4580        return ret;
4581    }
4582    /* must be last */
4583    ret = kvm_guest_debug_workarounds(x86_cpu);
4584    if (ret < 0) {
4585        return ret;
4586    }
4587    return 0;
4588}
4589
4590int kvm_arch_get_registers(CPUState *cs)
4591{
4592    X86CPU *cpu = X86_CPU(cs);
4593    int ret;
4594
4595    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4596
4597    ret = kvm_get_vcpu_events(cpu);
4598    if (ret < 0) {
4599        goto out;
4600    }
4601    /*
4602     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4603     * KVM_GET_REGS and KVM_GET_SREGS.
4604     */
4605    ret = kvm_get_mp_state(cpu);
4606    if (ret < 0) {
4607        goto out;
4608    }
4609    ret = kvm_getput_regs(cpu, 0);
4610    if (ret < 0) {
4611        goto out;
4612    }
4613    ret = kvm_get_xsave(cpu);
4614    if (ret < 0) {
4615        goto out;
4616    }
4617    ret = kvm_get_xcrs(cpu);
4618    if (ret < 0) {
4619        goto out;
4620    }
4621    ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4622    if (ret < 0) {
4623        goto out;
4624    }
4625    ret = kvm_get_msrs(cpu);
4626    if (ret < 0) {
4627        goto out;
4628    }
4629    ret = kvm_get_apic(cpu);
4630    if (ret < 0) {
4631        goto out;
4632    }
4633    ret = kvm_get_debugregs(cpu);
4634    if (ret < 0) {
4635        goto out;
4636    }
4637    ret = kvm_get_nested_state(cpu);
4638    if (ret < 0) {
4639        goto out;
4640    }
4641    ret = 0;
4642 out:
4643    cpu_sync_bndcs_hflags(&cpu->env);
4644    return ret;
4645}
4646
4647void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4648{
4649    X86CPU *x86_cpu = X86_CPU(cpu);
4650    CPUX86State *env = &x86_cpu->env;
4651    int ret;
4652
4653    /* Inject NMI */
4654    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4655        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4656            qemu_mutex_lock_iothread();
4657            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4658            qemu_mutex_unlock_iothread();
4659            DPRINTF("injected NMI\n");
4660            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4661            if (ret < 0) {
4662                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4663                        strerror(-ret));
4664            }
4665        }
4666        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4667            qemu_mutex_lock_iothread();
4668            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4669            qemu_mutex_unlock_iothread();
4670            DPRINTF("injected SMI\n");
4671            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4672            if (ret < 0) {
4673                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4674                        strerror(-ret));
4675            }
4676        }
4677    }
4678
4679    if (!kvm_pic_in_kernel()) {
4680        qemu_mutex_lock_iothread();
4681    }
4682
4683    /* Force the VCPU out of its inner loop to process any INIT requests
4684     * or (for userspace APIC, but it is cheap to combine the checks here)
4685     * pending TPR access reports.
4686     */
4687    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4688        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4689            !(env->hflags & HF_SMM_MASK)) {
4690            cpu->exit_request = 1;
4691        }
4692        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4693            cpu->exit_request = 1;
4694        }
4695    }
4696
4697    if (!kvm_pic_in_kernel()) {
4698        /* Try to inject an interrupt if the guest can accept it */
4699        if (run->ready_for_interrupt_injection &&
4700            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4701            (env->eflags & IF_MASK)) {
4702            int irq;
4703
4704            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4705            irq = cpu_get_pic_interrupt(env);
4706            if (irq >= 0) {
4707                struct kvm_interrupt intr;
4708
4709                intr.irq = irq;
4710                DPRINTF("injected interrupt %d\n", irq);
4711                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4712                if (ret < 0) {
4713                    fprintf(stderr,
4714                            "KVM: injection failed, interrupt lost (%s)\n",
4715                            strerror(-ret));
4716                }
4717            }
4718        }
4719
4720        /* If we have an interrupt but the guest is not ready to receive an
4721         * interrupt, request an interrupt window exit.  This will
4722         * cause a return to userspace as soon as the guest is ready to
4723         * receive interrupts. */
4724        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4725            run->request_interrupt_window = 1;
4726        } else {
4727            run->request_interrupt_window = 0;
4728        }
4729
4730        DPRINTF("setting tpr\n");
4731        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4732
4733        qemu_mutex_unlock_iothread();
4734    }
4735}
4736
4737static void kvm_rate_limit_on_bus_lock(void)
4738{
4739    uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4740
4741    if (delay_ns) {
4742        g_usleep(delay_ns / SCALE_US);
4743    }
4744}
4745
4746MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4747{
4748    X86CPU *x86_cpu = X86_CPU(cpu);
4749    CPUX86State *env = &x86_cpu->env;
4750
4751    if (run->flags & KVM_RUN_X86_SMM) {
4752        env->hflags |= HF_SMM_MASK;
4753    } else {
4754        env->hflags &= ~HF_SMM_MASK;
4755    }
4756    if (run->if_flag) {
4757        env->eflags |= IF_MASK;
4758    } else {
4759        env->eflags &= ~IF_MASK;
4760    }
4761    if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4762        kvm_rate_limit_on_bus_lock();
4763    }
4764
4765    /* We need to protect the apic state against concurrent accesses from
4766     * different threads in case the userspace irqchip is used. */
4767    if (!kvm_irqchip_in_kernel()) {
4768        qemu_mutex_lock_iothread();
4769    }
4770    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4771    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4772    if (!kvm_irqchip_in_kernel()) {
4773        qemu_mutex_unlock_iothread();
4774    }
4775    return cpu_get_mem_attrs(env);
4776}
4777
4778int kvm_arch_process_async_events(CPUState *cs)
4779{
4780    X86CPU *cpu = X86_CPU(cs);
4781    CPUX86State *env = &cpu->env;
4782
4783    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4784        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4785        assert(env->mcg_cap);
4786
4787        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4788
4789        kvm_cpu_synchronize_state(cs);
4790
4791        if (env->exception_nr == EXCP08_DBLE) {
4792            /* this means triple fault */
4793            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4794            cs->exit_request = 1;
4795            return 0;
4796        }
4797        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4798        env->has_error_code = 0;
4799
4800        cs->halted = 0;
4801        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4802            env->mp_state = KVM_MP_STATE_RUNNABLE;
4803        }
4804    }
4805
4806    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4807        !(env->hflags & HF_SMM_MASK)) {
4808        kvm_cpu_synchronize_state(cs);
4809        do_cpu_init(cpu);
4810    }
4811
4812    if (kvm_irqchip_in_kernel()) {
4813        return 0;
4814    }
4815
4816    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4817        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4818        apic_poll_irq(cpu->apic_state);
4819    }
4820    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4821         (env->eflags & IF_MASK)) ||
4822        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4823        cs->halted = 0;
4824    }
4825    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4826        kvm_cpu_synchronize_state(cs);
4827        do_cpu_sipi(cpu);
4828    }
4829    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4830        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4831        kvm_cpu_synchronize_state(cs);
4832        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4833                                      env->tpr_access_type);
4834    }
4835
4836    return cs->halted;
4837}
4838
4839static int kvm_handle_halt(X86CPU *cpu)
4840{
4841    CPUState *cs = CPU(cpu);
4842    CPUX86State *env = &cpu->env;
4843
4844    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4845          (env->eflags & IF_MASK)) &&
4846        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4847        cs->halted = 1;
4848        return EXCP_HLT;
4849    }
4850
4851    return 0;
4852}
4853
4854static int kvm_handle_tpr_access(X86CPU *cpu)
4855{
4856    CPUState *cs = CPU(cpu);
4857    struct kvm_run *run = cs->kvm_run;
4858
4859    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4860                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
4861                                                           : TPR_ACCESS_READ);
4862    return 1;
4863}
4864
4865int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4866{
4867    static const uint8_t int3 = 0xcc;
4868
4869    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4870        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4871        return -EINVAL;
4872    }
4873    return 0;
4874}
4875
4876int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4877{
4878    uint8_t int3;
4879
4880    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4881        return -EINVAL;
4882    }
4883    if (int3 != 0xcc) {
4884        return 0;
4885    }
4886    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4887        return -EINVAL;
4888    }
4889    return 0;
4890}
4891
4892static struct {
4893    target_ulong addr;
4894    int len;
4895    int type;
4896} hw_breakpoint[4];
4897
4898static int nb_hw_breakpoint;
4899
4900static int find_hw_breakpoint(target_ulong addr, int len, int type)
4901{
4902    int n;
4903
4904    for (n = 0; n < nb_hw_breakpoint; n++) {
4905        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4906            (hw_breakpoint[n].len == len || len == -1)) {
4907            return n;
4908        }
4909    }
4910    return -1;
4911}
4912
4913int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4914                                  target_ulong len, int type)
4915{
4916    switch (type) {
4917    case GDB_BREAKPOINT_HW:
4918        len = 1;
4919        break;
4920    case GDB_WATCHPOINT_WRITE:
4921    case GDB_WATCHPOINT_ACCESS:
4922        switch (len) {
4923        case 1:
4924            break;
4925        case 2:
4926        case 4:
4927        case 8:
4928            if (addr & (len - 1)) {
4929                return -EINVAL;
4930            }
4931            break;
4932        default:
4933            return -EINVAL;
4934        }
4935        break;
4936    default:
4937        return -ENOSYS;
4938    }
4939
4940    if (nb_hw_breakpoint == 4) {
4941        return -ENOBUFS;
4942    }
4943    if (find_hw_breakpoint(addr, len, type) >= 0) {
4944        return -EEXIST;
4945    }
4946    hw_breakpoint[nb_hw_breakpoint].addr = addr;
4947    hw_breakpoint[nb_hw_breakpoint].len = len;
4948    hw_breakpoint[nb_hw_breakpoint].type = type;
4949    nb_hw_breakpoint++;
4950
4951    return 0;
4952}
4953
4954int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4955                                  target_ulong len, int type)
4956{
4957    int n;
4958
4959    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4960    if (n < 0) {
4961        return -ENOENT;
4962    }
4963    nb_hw_breakpoint--;
4964    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4965
4966    return 0;
4967}
4968
4969void kvm_arch_remove_all_hw_breakpoints(void)
4970{
4971    nb_hw_breakpoint = 0;
4972}
4973
4974static CPUWatchpoint hw_watchpoint;
4975
4976static int kvm_handle_debug(X86CPU *cpu,
4977                            struct kvm_debug_exit_arch *arch_info)
4978{
4979    CPUState *cs = CPU(cpu);
4980    CPUX86State *env = &cpu->env;
4981    int ret = 0;
4982    int n;
4983
4984    if (arch_info->exception == EXCP01_DB) {
4985        if (arch_info->dr6 & DR6_BS) {
4986            if (cs->singlestep_enabled) {
4987                ret = EXCP_DEBUG;
4988            }
4989        } else {
4990            for (n = 0; n < 4; n++) {
4991                if (arch_info->dr6 & (1 << n)) {
4992                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4993                    case 0x0:
4994                        ret = EXCP_DEBUG;
4995                        break;
4996                    case 0x1:
4997                        ret = EXCP_DEBUG;
4998                        cs->watchpoint_hit = &hw_watchpoint;
4999                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5000                        hw_watchpoint.flags = BP_MEM_WRITE;
5001                        break;
5002                    case 0x3:
5003                        ret = EXCP_DEBUG;
5004                        cs->watchpoint_hit = &hw_watchpoint;
5005                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5006                        hw_watchpoint.flags = BP_MEM_ACCESS;
5007                        break;
5008                    }
5009                }
5010            }
5011        }
5012    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5013        ret = EXCP_DEBUG;
5014    }
5015    if (ret == 0) {
5016        cpu_synchronize_state(cs);
5017        assert(env->exception_nr == -1);
5018
5019        /* pass to guest */
5020        kvm_queue_exception(env, arch_info->exception,
5021                            arch_info->exception == EXCP01_DB,
5022                            arch_info->dr6);
5023        env->has_error_code = 0;
5024    }
5025
5026    return ret;
5027}
5028
5029void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5030{
5031    const uint8_t type_code[] = {
5032        [GDB_BREAKPOINT_HW] = 0x0,
5033        [GDB_WATCHPOINT_WRITE] = 0x1,
5034        [GDB_WATCHPOINT_ACCESS] = 0x3
5035    };
5036    const uint8_t len_code[] = {
5037        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5038    };
5039    int n;
5040
5041    if (kvm_sw_breakpoints_active(cpu)) {
5042        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5043    }
5044    if (nb_hw_breakpoint > 0) {
5045        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5046        dbg->arch.debugreg[7] = 0x0600;
5047        for (n = 0; n < nb_hw_breakpoint; n++) {
5048            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5049            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5050                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5051                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5052        }
5053    }
5054}
5055
5056static bool has_sgx_provisioning;
5057
5058static bool __kvm_enable_sgx_provisioning(KVMState *s)
5059{
5060    int fd, ret;
5061
5062    if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5063        return false;
5064    }
5065
5066    fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5067    if (fd < 0) {
5068        return false;
5069    }
5070
5071    ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5072    if (ret) {
5073        error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5074        exit(1);
5075    }
5076    close(fd);
5077    return true;
5078}
5079
5080bool kvm_enable_sgx_provisioning(KVMState *s)
5081{
5082    return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5083}
5084
5085static bool host_supports_vmx(void)
5086{
5087    uint32_t ecx, unused;
5088
5089    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5090    return ecx & CPUID_EXT_VMX;
5091}
5092
5093#define VMX_INVALID_GUEST_STATE 0x80000021
5094
5095int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5096{
5097    X86CPU *cpu = X86_CPU(cs);
5098    uint64_t code;
5099    int ret;
5100
5101    switch (run->exit_reason) {
5102    case KVM_EXIT_HLT:
5103        DPRINTF("handle_hlt\n");
5104        qemu_mutex_lock_iothread();
5105        ret = kvm_handle_halt(cpu);
5106        qemu_mutex_unlock_iothread();
5107        break;
5108    case KVM_EXIT_SET_TPR:
5109        ret = 0;
5110        break;
5111    case KVM_EXIT_TPR_ACCESS:
5112        qemu_mutex_lock_iothread();
5113        ret = kvm_handle_tpr_access(cpu);
5114        qemu_mutex_unlock_iothread();
5115        break;
5116    case KVM_EXIT_FAIL_ENTRY:
5117        code = run->fail_entry.hardware_entry_failure_reason;
5118        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5119                code);
5120        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5121            fprintf(stderr,
5122                    "\nIf you're running a guest on an Intel machine without "
5123                        "unrestricted mode\n"
5124                    "support, the failure can be most likely due to the guest "
5125                        "entering an invalid\n"
5126                    "state for Intel VT. For example, the guest maybe running "
5127                        "in big real mode\n"
5128                    "which is not supported on less recent Intel processors."
5129                        "\n\n");
5130        }
5131        ret = -1;
5132        break;
5133    case KVM_EXIT_EXCEPTION:
5134        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5135                run->ex.exception, run->ex.error_code);
5136        ret = -1;
5137        break;
5138    case KVM_EXIT_DEBUG:
5139        DPRINTF("kvm_exit_debug\n");
5140        qemu_mutex_lock_iothread();
5141        ret = kvm_handle_debug(cpu, &run->debug.arch);
5142        qemu_mutex_unlock_iothread();
5143        break;
5144    case KVM_EXIT_HYPERV:
5145        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5146        break;
5147    case KVM_EXIT_IOAPIC_EOI:
5148        ioapic_eoi_broadcast(run->eoi.vector);
5149        ret = 0;
5150        break;
5151    case KVM_EXIT_X86_BUS_LOCK:
5152        /* already handled in kvm_arch_post_run */
5153        ret = 0;
5154        break;
5155    default:
5156        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5157        ret = -1;
5158        break;
5159    }
5160
5161    return ret;
5162}
5163
5164bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5165{
5166    X86CPU *cpu = X86_CPU(cs);
5167    CPUX86State *env = &cpu->env;
5168
5169    kvm_cpu_synchronize_state(cs);
5170    return !(env->cr[0] & CR0_PE_MASK) ||
5171           ((env->segs[R_CS].selector  & 3) != 3);
5172}
5173
5174void kvm_arch_init_irq_routing(KVMState *s)
5175{
5176    /* We know at this point that we're using the in-kernel
5177     * irqchip, so we can use irqfds, and on x86 we know
5178     * we can use msi via irqfd and GSI routing.
5179     */
5180    kvm_msi_via_irqfd_allowed = true;
5181    kvm_gsi_routing_allowed = true;
5182
5183    if (kvm_irqchip_is_split()) {
5184        KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5185        int i;
5186
5187        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5188           MSI routes for signaling interrupts to the local apics. */
5189        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5190            if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5191                error_report("Could not enable split IRQ mode.");
5192                exit(1);
5193            }
5194        }
5195        kvm_irqchip_commit_route_changes(&c);
5196    }
5197}
5198
5199int kvm_arch_irqchip_create(KVMState *s)
5200{
5201    int ret;
5202    if (kvm_kernel_irqchip_split()) {
5203        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5204        if (ret) {
5205            error_report("Could not enable split irqchip mode: %s",
5206                         strerror(-ret));
5207            exit(1);
5208        } else {
5209            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5210            kvm_split_irqchip = true;
5211            return 1;
5212        }
5213    } else {
5214        return 0;
5215    }
5216}
5217
5218uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5219{
5220    CPUX86State *env;
5221    uint64_t ext_id;
5222
5223    if (!first_cpu) {
5224        return address;
5225    }
5226    env = &X86_CPU(first_cpu)->env;
5227    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5228        return address;
5229    }
5230
5231    /*
5232     * If the remappable format bit is set, or the upper bits are
5233     * already set in address_hi, or the low extended bits aren't
5234     * there anyway, do nothing.
5235     */
5236    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5237    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5238        return address;
5239    }
5240
5241    address &= ~ext_id;
5242    address |= ext_id << 35;
5243    return address;
5244}
5245
5246int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5247                             uint64_t address, uint32_t data, PCIDevice *dev)
5248{
5249    X86IOMMUState *iommu = x86_iommu_get_default();
5250
5251    if (iommu) {
5252        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5253
5254        if (class->int_remap) {
5255            int ret;
5256            MSIMessage src, dst;
5257
5258            src.address = route->u.msi.address_hi;
5259            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5260            src.address |= route->u.msi.address_lo;
5261            src.data = route->u.msi.data;
5262
5263            ret = class->int_remap(iommu, &src, &dst, dev ?     \
5264                                   pci_requester_id(dev) :      \
5265                                   X86_IOMMU_SID_INVALID);
5266            if (ret) {
5267                trace_kvm_x86_fixup_msi_error(route->gsi);
5268                return 1;
5269            }
5270
5271            /*
5272             * Handled untranslated compatibilty format interrupt with
5273             * extended destination ID in the low bits 11-5. */
5274            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5275
5276            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5277            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5278            route->u.msi.data = dst.data;
5279            return 0;
5280        }
5281    }
5282
5283    address = kvm_swizzle_msi_ext_dest_id(address);
5284    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5285    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5286    return 0;
5287}
5288
5289typedef struct MSIRouteEntry MSIRouteEntry;
5290
5291struct MSIRouteEntry {
5292    PCIDevice *dev;             /* Device pointer */
5293    int vector;                 /* MSI/MSIX vector index */
5294    int virq;                   /* Virtual IRQ index */
5295    QLIST_ENTRY(MSIRouteEntry) list;
5296};
5297
5298/* List of used GSI routes */
5299static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5300    QLIST_HEAD_INITIALIZER(msi_route_list);
5301
5302static void kvm_update_msi_routes_all(void *private, bool global,
5303                                      uint32_t index, uint32_t mask)
5304{
5305    int cnt = 0, vector;
5306    MSIRouteEntry *entry;
5307    MSIMessage msg;
5308    PCIDevice *dev;
5309
5310    /* TODO: explicit route update */
5311    QLIST_FOREACH(entry, &msi_route_list, list) {
5312        cnt++;
5313        vector = entry->vector;
5314        dev = entry->dev;
5315        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5316            msg = msix_get_message(dev, vector);
5317        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5318            msg = msi_get_message(dev, vector);
5319        } else {
5320            /*
5321             * Either MSI/MSIX is disabled for the device, or the
5322             * specific message was masked out.  Skip this one.
5323             */
5324            continue;
5325        }
5326        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5327    }
5328    kvm_irqchip_commit_routes(kvm_state);
5329    trace_kvm_x86_update_msi_routes(cnt);
5330}
5331
5332int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5333                                int vector, PCIDevice *dev)
5334{
5335    static bool notify_list_inited = false;
5336    MSIRouteEntry *entry;
5337
5338    if (!dev) {
5339        /* These are (possibly) IOAPIC routes only used for split
5340         * kernel irqchip mode, while what we are housekeeping are
5341         * PCI devices only. */
5342        return 0;
5343    }
5344
5345    entry = g_new0(MSIRouteEntry, 1);
5346    entry->dev = dev;
5347    entry->vector = vector;
5348    entry->virq = route->gsi;
5349    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5350
5351    trace_kvm_x86_add_msi_route(route->gsi);
5352
5353    if (!notify_list_inited) {
5354        /* For the first time we do add route, add ourselves into
5355         * IOMMU's IEC notify list if needed. */
5356        X86IOMMUState *iommu = x86_iommu_get_default();
5357        if (iommu) {
5358            x86_iommu_iec_register_notifier(iommu,
5359                                            kvm_update_msi_routes_all,
5360                                            NULL);
5361        }
5362        notify_list_inited = true;
5363    }
5364    return 0;
5365}
5366
5367int kvm_arch_release_virq_post(int virq)
5368{
5369    MSIRouteEntry *entry, *next;
5370    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5371        if (entry->virq == virq) {
5372            trace_kvm_x86_remove_msi_route(virq);
5373            QLIST_REMOVE(entry, list);
5374            g_free(entry);
5375            break;
5376        }
5377    }
5378    return 0;
5379}
5380
5381int kvm_arch_msi_data_to_gsi(uint32_t data)
5382{
5383    abort();
5384}
5385
5386bool kvm_has_waitpkg(void)
5387{
5388    return has_msr_umwait;
5389}
5390
5391bool kvm_arch_cpu_check_are_resettable(void)
5392{
5393    return !sev_es_enabled();
5394}
5395
5396#define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5397
5398void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5399{
5400    KVMState *s = kvm_state;
5401    uint64_t supported;
5402
5403    mask &= XSTATE_DYNAMIC_MASK;
5404    if (!mask) {
5405        return;
5406    }
5407    /*
5408     * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5409     * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5410     * about them already because they are not supported features.
5411     */
5412    supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5413    supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5414    mask &= supported;
5415
5416    while (mask) {
5417        int bit = ctz64(mask);
5418        int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5419        if (rc) {
5420            /*
5421             * Older kernel version (<5.17) do not support
5422             * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5423             * any dynamic feature from kvm_arch_get_supported_cpuid.
5424             */
5425            warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5426                        "for feature bit %d", bit);
5427        }
5428        mask &= ~BIT_ULL(bit);
5429    }
5430}
5431