qemu/target/ppc/kvm.c
<<
>>
Prefs
   1/*
   2 * PowerPC implementation of KVM hooks
   3 *
   4 * Copyright IBM Corp. 2007
   5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
   6 *
   7 * Authors:
   8 *  Jerone Young <jyoung5@us.ibm.com>
   9 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
  10 *  Hollis Blanchard <hollisb@us.ibm.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  13 * See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include <dirent.h>
  19#include <sys/ioctl.h>
  20#include <sys/vfs.h>
  21
  22#include <linux/kvm.h>
  23
  24#include "qapi/error.h"
  25#include "qemu/error-report.h"
  26#include "cpu.h"
  27#include "cpu-models.h"
  28#include "qemu/timer.h"
  29#include "sysemu/hw_accel.h"
  30#include "kvm_ppc.h"
  31#include "sysemu/cpus.h"
  32#include "sysemu/device_tree.h"
  33#include "mmu-hash64.h"
  34
  35#include "hw/sysbus.h"
  36#include "hw/ppc/spapr.h"
  37#include "hw/ppc/spapr_cpu_core.h"
  38#include "hw/hw.h"
  39#include "hw/ppc/ppc.h"
  40#include "migration/qemu-file-types.h"
  41#include "sysemu/watchdog.h"
  42#include "trace.h"
  43#include "exec/gdbstub.h"
  44#include "exec/memattrs.h"
  45#include "exec/ram_addr.h"
  46#include "sysemu/hostmem.h"
  47#include "qemu/cutils.h"
  48#include "qemu/main-loop.h"
  49#include "qemu/mmap-alloc.h"
  50#include "elf.h"
  51#include "sysemu/kvm_int.h"
  52
  53#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
  54
  55#define DEBUG_RETURN_GUEST 0
  56#define DEBUG_RETURN_GDB   1
  57
  58const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  59    KVM_CAP_LAST_INFO
  60};
  61
  62static int cap_interrupt_unset;
  63static int cap_segstate;
  64static int cap_booke_sregs;
  65static int cap_ppc_smt;
  66static int cap_ppc_smt_possible;
  67static int cap_spapr_tce;
  68static int cap_spapr_tce_64;
  69static int cap_spapr_multitce;
  70static int cap_spapr_vfio;
  71static int cap_hior;
  72static int cap_one_reg;
  73static int cap_epr;
  74static int cap_ppc_watchdog;
  75static int cap_papr;
  76static int cap_htab_fd;
  77static int cap_fixup_hcalls;
  78static int cap_htm;             /* Hardware transactional memory support */
  79static int cap_mmu_radix;
  80static int cap_mmu_hash_v3;
  81static int cap_xive;
  82static int cap_resize_hpt;
  83static int cap_ppc_pvr_compat;
  84static int cap_ppc_safe_cache;
  85static int cap_ppc_safe_bounds_check;
  86static int cap_ppc_safe_indirect_branch;
  87static int cap_ppc_count_cache_flush_assist;
  88static int cap_ppc_nested_kvm_hv;
  89static int cap_large_decr;
  90static int cap_fwnmi;
  91static int cap_rpt_invalidate;
  92
  93static uint32_t debug_inst_opcode;
  94
  95/*
  96 * Check whether we are running with KVM-PR (instead of KVM-HV).  This
  97 * should only be used for fallback tests - generally we should use
  98 * explicit capabilities for the features we want, rather than
  99 * assuming what is/isn't available depending on the KVM variant.
 100 */
 101static bool kvmppc_is_pr(KVMState *ks)
 102{
 103    /* Assume KVM-PR if the GET_PVINFO capability is available */
 104    return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
 105}
 106
 107static int kvm_ppc_register_host_cpu_type(void);
 108static void kvmppc_get_cpu_characteristics(KVMState *s);
 109static int kvmppc_get_dec_bits(void);
 110
 111int kvm_arch_init(MachineState *ms, KVMState *s)
 112{
 113    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 114    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 115    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 116    cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
 117    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 118    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
 119    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
 120    cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
 121    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
 122    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
 123    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
 124    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
 125    /*
 126     * Note: we don't set cap_papr here, because this capability is
 127     * only activated after this by kvmppc_set_papr()
 128     */
 129    cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
 130    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
 131    cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
 132    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
 133    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
 134    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
 135    cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
 136    cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
 137    kvmppc_get_cpu_characteristics(s);
 138    cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
 139    cap_large_decr = kvmppc_get_dec_bits();
 140    cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
 141    /*
 142     * Note: setting it to false because there is not such capability
 143     * in KVM at this moment.
 144     *
 145     * TODO: call kvm_vm_check_extension() with the right capability
 146     * after the kernel starts implementing it.
 147     */
 148    cap_ppc_pvr_compat = false;
 149
 150    if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
 151        error_report("KVM: Host kernel doesn't have level irq capability");
 152        exit(1);
 153    }
 154
 155    cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
 156    kvm_ppc_register_host_cpu_type();
 157
 158    return 0;
 159}
 160
 161int kvm_arch_irqchip_create(KVMState *s)
 162{
 163    return 0;
 164}
 165
 166static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
 167{
 168    CPUPPCState *cenv = &cpu->env;
 169    CPUState *cs = CPU(cpu);
 170    struct kvm_sregs sregs;
 171    int ret;
 172
 173    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 174        /*
 175         * What we're really trying to say is "if we're on BookE, we
 176         * use the native PVR for now". This is the only sane way to
 177         * check it though, so we potentially confuse users that they
 178         * can run BookE guests on BookS. Let's hope nobody dares
 179         * enough :)
 180         */
 181        return 0;
 182    } else {
 183        if (!cap_segstate) {
 184            fprintf(stderr, "kvm error: missing PVR setting capability\n");
 185            return -ENOSYS;
 186        }
 187    }
 188
 189    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 190    if (ret) {
 191        return ret;
 192    }
 193
 194    sregs.pvr = cenv->spr[SPR_PVR];
 195    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 196}
 197
 198/* Set up a shared TLB array with KVM */
 199static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
 200{
 201    CPUPPCState *env = &cpu->env;
 202    CPUState *cs = CPU(cpu);
 203    struct kvm_book3e_206_tlb_params params = {};
 204    struct kvm_config_tlb cfg = {};
 205    unsigned int entries = 0;
 206    int ret, i;
 207
 208    if (!kvm_enabled() ||
 209        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
 210        return 0;
 211    }
 212
 213    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 214
 215    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 216        params.tlb_sizes[i] = booke206_tlb_size(env, i);
 217        params.tlb_ways[i] = booke206_tlb_ways(env, i);
 218        entries += params.tlb_sizes[i];
 219    }
 220
 221    assert(entries == env->nb_tlb);
 222    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 223
 224    env->tlb_dirty = true;
 225
 226    cfg.array = (uintptr_t)env->tlb.tlbm;
 227    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 228    cfg.params = (uintptr_t)&params;
 229    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 230
 231    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
 232    if (ret < 0) {
 233        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 234                __func__, strerror(-ret));
 235        return ret;
 236    }
 237
 238    env->kvm_sw_tlb = true;
 239    return 0;
 240}
 241
 242
 243#if defined(TARGET_PPC64)
 244static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
 245{
 246    int ret;
 247
 248    assert(kvm_state != NULL);
 249
 250    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
 251        error_setg(errp, "KVM doesn't expose the MMU features it supports");
 252        error_append_hint(errp, "Consider switching to a newer KVM\n");
 253        return;
 254    }
 255
 256    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
 257    if (ret == 0) {
 258        return;
 259    }
 260
 261    error_setg_errno(errp, -ret,
 262                     "KVM failed to provide the MMU features it supports");
 263}
 264
 265struct ppc_radix_page_info *kvm_get_radix_page_info(void)
 266{
 267    KVMState *s = KVM_STATE(current_accel());
 268    struct ppc_radix_page_info *radix_page_info;
 269    struct kvm_ppc_rmmu_info rmmu_info = { };
 270    int i;
 271
 272    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
 273        return NULL;
 274    }
 275    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
 276        return NULL;
 277    }
 278    radix_page_info = g_malloc0(sizeof(*radix_page_info));
 279    radix_page_info->count = 0;
 280    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 281        if (rmmu_info.ap_encodings[i]) {
 282            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
 283            radix_page_info->count++;
 284        }
 285    }
 286    return radix_page_info;
 287}
 288
 289target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
 290                                     bool radix, bool gtse,
 291                                     uint64_t proc_tbl)
 292{
 293    CPUState *cs = CPU(cpu);
 294    int ret;
 295    uint64_t flags = 0;
 296    struct kvm_ppc_mmuv3_cfg cfg = {
 297        .process_table = proc_tbl,
 298    };
 299
 300    if (radix) {
 301        flags |= KVM_PPC_MMUV3_RADIX;
 302    }
 303    if (gtse) {
 304        flags |= KVM_PPC_MMUV3_GTSE;
 305    }
 306    cfg.flags = flags;
 307    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
 308    switch (ret) {
 309    case 0:
 310        return H_SUCCESS;
 311    case -EINVAL:
 312        return H_PARAMETER;
 313    case -ENODEV:
 314        return H_NOT_AVAILABLE;
 315    default:
 316        return H_HARDWARE;
 317    }
 318}
 319
 320bool kvmppc_hpt_needs_host_contiguous_pages(void)
 321{
 322    static struct kvm_ppc_smmu_info smmu_info;
 323
 324    if (!kvm_enabled()) {
 325        return false;
 326    }
 327
 328    kvm_get_smmu_info(&smmu_info, &error_fatal);
 329    return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
 330}
 331
 332void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
 333{
 334    struct kvm_ppc_smmu_info smmu_info;
 335    int iq, ik, jq, jk;
 336    Error *local_err = NULL;
 337
 338    /* For now, we only have anything to check on hash64 MMUs */
 339    if (!cpu->hash64_opts || !kvm_enabled()) {
 340        return;
 341    }
 342
 343    kvm_get_smmu_info(&smmu_info, &local_err);
 344    if (local_err) {
 345        error_propagate(errp, local_err);
 346        return;
 347    }
 348
 349    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
 350        && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
 351        error_setg(errp,
 352                   "KVM does not support 1TiB segments which guest expects");
 353        return;
 354    }
 355
 356    if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
 357        error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
 358                   smmu_info.slb_size, cpu->hash64_opts->slb_size);
 359        return;
 360    }
 361
 362    /*
 363     * Verify that every pagesize supported by the cpu model is
 364     * supported by KVM with the same encodings
 365     */
 366    for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
 367        PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
 368        struct kvm_ppc_one_seg_page_size *ksps;
 369
 370        for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
 371            if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
 372                break;
 373            }
 374        }
 375        if (ik >= ARRAY_SIZE(smmu_info.sps)) {
 376            error_setg(errp, "KVM doesn't support for base page shift %u",
 377                       qsps->page_shift);
 378            return;
 379        }
 380
 381        ksps = &smmu_info.sps[ik];
 382        if (ksps->slb_enc != qsps->slb_enc) {
 383            error_setg(errp,
 384"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
 385                       ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
 386            return;
 387        }
 388
 389        for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
 390            for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
 391                if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
 392                    break;
 393                }
 394            }
 395
 396            if (jk >= ARRAY_SIZE(ksps->enc)) {
 397                error_setg(errp, "KVM doesn't support page shift %u/%u",
 398                           qsps->enc[jq].page_shift, qsps->page_shift);
 399                return;
 400            }
 401            if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
 402                error_setg(errp,
 403"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
 404                           ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
 405                           qsps->page_shift, qsps->enc[jq].pte_enc);
 406                return;
 407            }
 408        }
 409    }
 410
 411    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 412        /*
 413         * Mostly what guest pagesizes we can use are related to the
 414         * host pages used to map guest RAM, which is handled in the
 415         * platform code. Cache-Inhibited largepages (64k) however are
 416         * used for I/O, so if they're mapped to the host at all it
 417         * will be a normal mapping, not a special hugepage one used
 418         * for RAM.
 419         */
 420        if (qemu_real_host_page_size() < 0x10000) {
 421            error_setg(errp,
 422                       "KVM can't supply 64kiB CI pages, which guest expects");
 423        }
 424    }
 425}
 426#endif /* !defined (TARGET_PPC64) */
 427
 428unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 429{
 430    return POWERPC_CPU(cpu)->vcpu_id;
 431}
 432
 433/*
 434 * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
 435 * only 1 watchpoint, so array size of 4 is sufficient for now.
 436 */
 437#define MAX_HW_BKPTS 4
 438
 439static struct HWBreakpoint {
 440    target_ulong addr;
 441    int type;
 442} hw_debug_points[MAX_HW_BKPTS];
 443
 444static CPUWatchpoint hw_watchpoint;
 445
 446/* Default there is no breakpoint and watchpoint supported */
 447static int max_hw_breakpoint;
 448static int max_hw_watchpoint;
 449static int nb_hw_breakpoint;
 450static int nb_hw_watchpoint;
 451
 452static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
 453{
 454    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 455        max_hw_breakpoint = 2;
 456        max_hw_watchpoint = 2;
 457    }
 458
 459    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
 460        fprintf(stderr, "Error initializing h/w breakpoints\n");
 461        return;
 462    }
 463}
 464
 465int kvm_arch_init_vcpu(CPUState *cs)
 466{
 467    PowerPCCPU *cpu = POWERPC_CPU(cs);
 468    CPUPPCState *cenv = &cpu->env;
 469    int ret;
 470
 471    /* Synchronize sregs with kvm */
 472    ret = kvm_arch_sync_sregs(cpu);
 473    if (ret) {
 474        if (ret == -EINVAL) {
 475            error_report("Register sync failed... If you're using kvm-hv.ko,"
 476                         " only \"-cpu host\" is possible");
 477        }
 478        return ret;
 479    }
 480
 481    switch (cenv->mmu_model) {
 482    case POWERPC_MMU_BOOKE206:
 483        /* This target supports access to KVM's guest TLB */
 484        ret = kvm_booke206_tlb_init(cpu);
 485        break;
 486    case POWERPC_MMU_2_07:
 487        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
 488            /*
 489             * KVM-HV has transactional memory on POWER8 also without
 490             * the KVM_CAP_PPC_HTM extension, so enable it here
 491             * instead as long as it's available to userspace on the
 492             * host.
 493             */
 494            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
 495                cap_htm = true;
 496            }
 497        }
 498        break;
 499    default:
 500        break;
 501    }
 502
 503    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
 504    kvmppc_hw_debug_points_init(cenv);
 505
 506    return ret;
 507}
 508
 509int kvm_arch_destroy_vcpu(CPUState *cs)
 510{
 511    return 0;
 512}
 513
 514static void kvm_sw_tlb_put(PowerPCCPU *cpu)
 515{
 516    CPUPPCState *env = &cpu->env;
 517    CPUState *cs = CPU(cpu);
 518    struct kvm_dirty_tlb dirty_tlb;
 519    unsigned char *bitmap;
 520    int ret;
 521
 522    if (!env->kvm_sw_tlb) {
 523        return;
 524    }
 525
 526    bitmap = g_malloc((env->nb_tlb + 7) / 8);
 527    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 528
 529    dirty_tlb.bitmap = (uintptr_t)bitmap;
 530    dirty_tlb.num_dirty = env->nb_tlb;
 531
 532    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
 533    if (ret) {
 534        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 535                __func__, strerror(-ret));
 536    }
 537
 538    g_free(bitmap);
 539}
 540
 541static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
 542{
 543    PowerPCCPU *cpu = POWERPC_CPU(cs);
 544    CPUPPCState *env = &cpu->env;
 545    /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
 546    union {
 547        uint32_t u32;
 548        uint64_t u64;
 549    } val = { };
 550    struct kvm_one_reg reg = {
 551        .id = id,
 552        .addr = (uintptr_t) &val,
 553    };
 554    int ret;
 555
 556    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 557    if (ret != 0) {
 558        trace_kvm_failed_spr_get(spr, strerror(errno));
 559    } else {
 560        switch (id & KVM_REG_SIZE_MASK) {
 561        case KVM_REG_SIZE_U32:
 562            env->spr[spr] = val.u32;
 563            break;
 564
 565        case KVM_REG_SIZE_U64:
 566            env->spr[spr] = val.u64;
 567            break;
 568
 569        default:
 570            /* Don't handle this size yet */
 571            abort();
 572        }
 573    }
 574}
 575
 576static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
 577{
 578    PowerPCCPU *cpu = POWERPC_CPU(cs);
 579    CPUPPCState *env = &cpu->env;
 580    union {
 581        uint32_t u32;
 582        uint64_t u64;
 583    } val;
 584    struct kvm_one_reg reg = {
 585        .id = id,
 586        .addr = (uintptr_t) &val,
 587    };
 588    int ret;
 589
 590    switch (id & KVM_REG_SIZE_MASK) {
 591    case KVM_REG_SIZE_U32:
 592        val.u32 = env->spr[spr];
 593        break;
 594
 595    case KVM_REG_SIZE_U64:
 596        val.u64 = env->spr[spr];
 597        break;
 598
 599    default:
 600        /* Don't handle this size yet */
 601        abort();
 602    }
 603
 604    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 605    if (ret != 0) {
 606        trace_kvm_failed_spr_set(spr, strerror(errno));
 607    }
 608}
 609
 610static int kvm_put_fp(CPUState *cs)
 611{
 612    PowerPCCPU *cpu = POWERPC_CPU(cs);
 613    CPUPPCState *env = &cpu->env;
 614    struct kvm_one_reg reg;
 615    int i;
 616    int ret;
 617
 618    if (env->insns_flags & PPC_FLOAT) {
 619        uint64_t fpscr = env->fpscr;
 620        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 621
 622        reg.id = KVM_REG_PPC_FPSCR;
 623        reg.addr = (uintptr_t)&fpscr;
 624        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 625        if (ret < 0) {
 626            trace_kvm_failed_fpscr_set(strerror(errno));
 627            return ret;
 628        }
 629
 630        for (i = 0; i < 32; i++) {
 631            uint64_t vsr[2];
 632            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 633            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 634
 635#if HOST_BIG_ENDIAN
 636            vsr[0] = float64_val(*fpr);
 637            vsr[1] = *vsrl;
 638#else
 639            vsr[0] = *vsrl;
 640            vsr[1] = float64_val(*fpr);
 641#endif
 642            reg.addr = (uintptr_t) &vsr;
 643            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 644
 645            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 646            if (ret < 0) {
 647                trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
 648                                        strerror(errno));
 649                return ret;
 650            }
 651        }
 652    }
 653
 654    if (env->insns_flags & PPC_ALTIVEC) {
 655        reg.id = KVM_REG_PPC_VSCR;
 656        reg.addr = (uintptr_t)&env->vscr;
 657        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 658        if (ret < 0) {
 659            trace_kvm_failed_vscr_set(strerror(errno));
 660            return ret;
 661        }
 662
 663        for (i = 0; i < 32; i++) {
 664            reg.id = KVM_REG_PPC_VR(i);
 665            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 666            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 667            if (ret < 0) {
 668                trace_kvm_failed_vr_set(i, strerror(errno));
 669                return ret;
 670            }
 671        }
 672    }
 673
 674    return 0;
 675}
 676
 677static int kvm_get_fp(CPUState *cs)
 678{
 679    PowerPCCPU *cpu = POWERPC_CPU(cs);
 680    CPUPPCState *env = &cpu->env;
 681    struct kvm_one_reg reg;
 682    int i;
 683    int ret;
 684
 685    if (env->insns_flags & PPC_FLOAT) {
 686        uint64_t fpscr;
 687        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 688
 689        reg.id = KVM_REG_PPC_FPSCR;
 690        reg.addr = (uintptr_t)&fpscr;
 691        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 692        if (ret < 0) {
 693            trace_kvm_failed_fpscr_get(strerror(errno));
 694            return ret;
 695        } else {
 696            env->fpscr = fpscr;
 697        }
 698
 699        for (i = 0; i < 32; i++) {
 700            uint64_t vsr[2];
 701            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 702            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 703
 704            reg.addr = (uintptr_t) &vsr;
 705            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 706
 707            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 708            if (ret < 0) {
 709                trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
 710                                        strerror(errno));
 711                return ret;
 712            } else {
 713#if HOST_BIG_ENDIAN
 714                *fpr = vsr[0];
 715                if (vsx) {
 716                    *vsrl = vsr[1];
 717                }
 718#else
 719                *fpr = vsr[1];
 720                if (vsx) {
 721                    *vsrl = vsr[0];
 722                }
 723#endif
 724            }
 725        }
 726    }
 727
 728    if (env->insns_flags & PPC_ALTIVEC) {
 729        reg.id = KVM_REG_PPC_VSCR;
 730        reg.addr = (uintptr_t)&env->vscr;
 731        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 732        if (ret < 0) {
 733            trace_kvm_failed_vscr_get(strerror(errno));
 734            return ret;
 735        }
 736
 737        for (i = 0; i < 32; i++) {
 738            reg.id = KVM_REG_PPC_VR(i);
 739            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 740            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 741            if (ret < 0) {
 742                trace_kvm_failed_vr_get(i, strerror(errno));
 743                return ret;
 744            }
 745        }
 746    }
 747
 748    return 0;
 749}
 750
 751#if defined(TARGET_PPC64)
 752static int kvm_get_vpa(CPUState *cs)
 753{
 754    PowerPCCPU *cpu = POWERPC_CPU(cs);
 755    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 756    struct kvm_one_reg reg;
 757    int ret;
 758
 759    reg.id = KVM_REG_PPC_VPA_ADDR;
 760    reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 761    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 762    if (ret < 0) {
 763        trace_kvm_failed_vpa_addr_get(strerror(errno));
 764        return ret;
 765    }
 766
 767    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 768           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 769    reg.id = KVM_REG_PPC_VPA_SLB;
 770    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 771    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 772    if (ret < 0) {
 773        trace_kvm_failed_slb_get(strerror(errno));
 774        return ret;
 775    }
 776
 777    assert((uintptr_t)&spapr_cpu->dtl_size
 778           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 779    reg.id = KVM_REG_PPC_VPA_DTL;
 780    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 781    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 782    if (ret < 0) {
 783        trace_kvm_failed_dtl_get(strerror(errno));
 784        return ret;
 785    }
 786
 787    return 0;
 788}
 789
 790static int kvm_put_vpa(CPUState *cs)
 791{
 792    PowerPCCPU *cpu = POWERPC_CPU(cs);
 793    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 794    struct kvm_one_reg reg;
 795    int ret;
 796
 797    /*
 798     * SLB shadow or DTL can't be registered unless a master VPA is
 799     * registered.  That means when restoring state, if a VPA *is*
 800     * registered, we need to set that up first.  If not, we need to
 801     * deregister the others before deregistering the master VPA
 802     */
 803    assert(spapr_cpu->vpa_addr
 804           || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
 805
 806    if (spapr_cpu->vpa_addr) {
 807        reg.id = KVM_REG_PPC_VPA_ADDR;
 808        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 809        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 810        if (ret < 0) {
 811            trace_kvm_failed_vpa_addr_set(strerror(errno));
 812            return ret;
 813        }
 814    }
 815
 816    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 817           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 818    reg.id = KVM_REG_PPC_VPA_SLB;
 819    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 820    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 821    if (ret < 0) {
 822        trace_kvm_failed_slb_set(strerror(errno));
 823        return ret;
 824    }
 825
 826    assert((uintptr_t)&spapr_cpu->dtl_size
 827           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 828    reg.id = KVM_REG_PPC_VPA_DTL;
 829    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 830    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 831    if (ret < 0) {
 832        trace_kvm_failed_dtl_set(strerror(errno));
 833        return ret;
 834    }
 835
 836    if (!spapr_cpu->vpa_addr) {
 837        reg.id = KVM_REG_PPC_VPA_ADDR;
 838        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 839        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 840        if (ret < 0) {
 841            trace_kvm_failed_null_vpa_addr_set(strerror(errno));
 842            return ret;
 843        }
 844    }
 845
 846    return 0;
 847}
 848#endif /* TARGET_PPC64 */
 849
 850int kvmppc_put_books_sregs(PowerPCCPU *cpu)
 851{
 852    CPUPPCState *env = &cpu->env;
 853    struct kvm_sregs sregs = { };
 854    int i;
 855
 856    sregs.pvr = env->spr[SPR_PVR];
 857
 858    if (cpu->vhyp) {
 859        PPCVirtualHypervisorClass *vhc =
 860            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 861        sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
 862    } else {
 863        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 864    }
 865
 866    /* Sync SLB */
 867#ifdef TARGET_PPC64
 868    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 869        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
 870        if (env->slb[i].esid & SLB_ESID_V) {
 871            sregs.u.s.ppc64.slb[i].slbe |= i;
 872        }
 873        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
 874    }
 875#endif
 876
 877    /* Sync SRs */
 878    for (i = 0; i < 16; i++) {
 879        sregs.u.s.ppc32.sr[i] = env->sr[i];
 880    }
 881
 882    /* Sync BATs */
 883    for (i = 0; i < 8; i++) {
 884        /* Beware. We have to swap upper and lower bits here */
 885        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
 886            | env->DBAT[1][i];
 887        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
 888            | env->IBAT[1][i];
 889    }
 890
 891    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
 892}
 893
 894int kvm_arch_put_registers(CPUState *cs, int level)
 895{
 896    PowerPCCPU *cpu = POWERPC_CPU(cs);
 897    CPUPPCState *env = &cpu->env;
 898    struct kvm_regs regs;
 899    int ret;
 900    int i;
 901
 902    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 903    if (ret < 0) {
 904        return ret;
 905    }
 906
 907    regs.ctr = env->ctr;
 908    regs.lr  = env->lr;
 909    regs.xer = cpu_read_xer(env);
 910    regs.msr = env->msr;
 911    regs.pc = env->nip;
 912
 913    regs.srr0 = env->spr[SPR_SRR0];
 914    regs.srr1 = env->spr[SPR_SRR1];
 915
 916    regs.sprg0 = env->spr[SPR_SPRG0];
 917    regs.sprg1 = env->spr[SPR_SPRG1];
 918    regs.sprg2 = env->spr[SPR_SPRG2];
 919    regs.sprg3 = env->spr[SPR_SPRG3];
 920    regs.sprg4 = env->spr[SPR_SPRG4];
 921    regs.sprg5 = env->spr[SPR_SPRG5];
 922    regs.sprg6 = env->spr[SPR_SPRG6];
 923    regs.sprg7 = env->spr[SPR_SPRG7];
 924
 925    regs.pid = env->spr[SPR_BOOKE_PID];
 926
 927    for (i = 0; i < 32; i++) {
 928        regs.gpr[i] = env->gpr[i];
 929    }
 930
 931    regs.cr = 0;
 932    for (i = 0; i < 8; i++) {
 933        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
 934    }
 935
 936    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 937    if (ret < 0) {
 938        return ret;
 939    }
 940
 941    kvm_put_fp(cs);
 942
 943    if (env->tlb_dirty) {
 944        kvm_sw_tlb_put(cpu);
 945        env->tlb_dirty = false;
 946    }
 947
 948    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
 949        ret = kvmppc_put_books_sregs(cpu);
 950        if (ret < 0) {
 951            return ret;
 952        }
 953    }
 954
 955    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
 956        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 957    }
 958
 959    if (cap_one_reg) {
 960        int i;
 961
 962        /*
 963         * We deliberately ignore errors here, for kernels which have
 964         * the ONE_REG calls, but don't support the specific
 965         * registers, there's a reasonable chance things will still
 966         * work, at least until we try to migrate.
 967         */
 968        for (i = 0; i < 1024; i++) {
 969            uint64_t id = env->spr_cb[i].one_reg_id;
 970
 971            if (id != 0) {
 972                kvm_put_one_spr(cs, id, i);
 973            }
 974        }
 975
 976#ifdef TARGET_PPC64
 977        if (FIELD_EX64(env->msr, MSR, TS)) {
 978            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 979                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 980            }
 981            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 982                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 983            }
 984            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 985            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 986            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 987            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 988            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 989            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 990            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 991            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 992            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 993            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 994        }
 995
 996        if (cap_papr) {
 997            if (kvm_put_vpa(cs) < 0) {
 998                trace_kvm_failed_put_vpa();
 999            }
1000        }
1001
1002        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1003
1004        if (level > KVM_PUT_RUNTIME_STATE) {
1005            kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1006        }
1007#endif /* TARGET_PPC64 */
1008    }
1009
1010    return ret;
1011}
1012
1013static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1014{
1015     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1016}
1017
1018static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1019{
1020    CPUPPCState *env = &cpu->env;
1021    struct kvm_sregs sregs;
1022    int ret;
1023
1024    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1025    if (ret < 0) {
1026        return ret;
1027    }
1028
1029    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1030        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1031        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1032        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1033        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1034        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1035        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1036        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1037        env->spr[SPR_DECR] = sregs.u.e.dec;
1038        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1039        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1040        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1041    }
1042
1043    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1044        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1045        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1046        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1047        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1048        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1049    }
1050
1051    if (sregs.u.e.features & KVM_SREGS_E_64) {
1052        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1053    }
1054
1055    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1056        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1057    }
1058
1059    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1060        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1061        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1062        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1063        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1064        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1065        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1066        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1067        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1068        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1069        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1070        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1071        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1072        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1073        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1074        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1075        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1076        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1077        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1078        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1079        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1080        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1081        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1082        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1083        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1084        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1085        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1086        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1087        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1088        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1089        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1090        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1091        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1092
1093        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1094            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1095            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1096            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1097            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1098            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1099            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1100        }
1101
1102        if (sregs.u.e.features & KVM_SREGS_E_PM) {
1103            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1104            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1105        }
1106
1107        if (sregs.u.e.features & KVM_SREGS_E_PC) {
1108            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1109            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1110            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1111            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1112        }
1113    }
1114
1115    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1116        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1117        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1118        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1119        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1120        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1121        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1122        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1123        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1124        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1125        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1126    }
1127
1128    if (sregs.u.e.features & KVM_SREGS_EXP) {
1129        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1130    }
1131
1132    if (sregs.u.e.features & KVM_SREGS_E_PD) {
1133        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1134        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1135    }
1136
1137    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1138        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1139        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1140        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1141
1142        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1143            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1144            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1145        }
1146    }
1147
1148    return 0;
1149}
1150
1151static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1152{
1153    CPUPPCState *env = &cpu->env;
1154    struct kvm_sregs sregs;
1155    int ret;
1156    int i;
1157
1158    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1159    if (ret < 0) {
1160        return ret;
1161    }
1162
1163    if (!cpu->vhyp) {
1164        ppc_store_sdr1(env, sregs.u.s.sdr1);
1165    }
1166
1167    /* Sync SLB */
1168#ifdef TARGET_PPC64
1169    /*
1170     * The packed SLB array we get from KVM_GET_SREGS only contains
1171     * information about valid entries. So we flush our internal copy
1172     * to get rid of stale ones, then put all valid SLB entries back
1173     * in.
1174     */
1175    memset(env->slb, 0, sizeof(env->slb));
1176    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1177        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1178        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1179        /*
1180         * Only restore valid entries
1181         */
1182        if (rb & SLB_ESID_V) {
1183            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1184        }
1185    }
1186#endif
1187
1188    /* Sync SRs */
1189    for (i = 0; i < 16; i++) {
1190        env->sr[i] = sregs.u.s.ppc32.sr[i];
1191    }
1192
1193    /* Sync BATs */
1194    for (i = 0; i < 8; i++) {
1195        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1196        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1197        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1198        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1199    }
1200
1201    return 0;
1202}
1203
1204int kvm_arch_get_registers(CPUState *cs)
1205{
1206    PowerPCCPU *cpu = POWERPC_CPU(cs);
1207    CPUPPCState *env = &cpu->env;
1208    struct kvm_regs regs;
1209    uint32_t cr;
1210    int i, ret;
1211
1212    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1213    if (ret < 0) {
1214        return ret;
1215    }
1216
1217    cr = regs.cr;
1218    for (i = 7; i >= 0; i--) {
1219        env->crf[i] = cr & 15;
1220        cr >>= 4;
1221    }
1222
1223    env->ctr = regs.ctr;
1224    env->lr = regs.lr;
1225    cpu_write_xer(env, regs.xer);
1226    env->msr = regs.msr;
1227    env->nip = regs.pc;
1228
1229    env->spr[SPR_SRR0] = regs.srr0;
1230    env->spr[SPR_SRR1] = regs.srr1;
1231
1232    env->spr[SPR_SPRG0] = regs.sprg0;
1233    env->spr[SPR_SPRG1] = regs.sprg1;
1234    env->spr[SPR_SPRG2] = regs.sprg2;
1235    env->spr[SPR_SPRG3] = regs.sprg3;
1236    env->spr[SPR_SPRG4] = regs.sprg4;
1237    env->spr[SPR_SPRG5] = regs.sprg5;
1238    env->spr[SPR_SPRG6] = regs.sprg6;
1239    env->spr[SPR_SPRG7] = regs.sprg7;
1240
1241    env->spr[SPR_BOOKE_PID] = regs.pid;
1242
1243    for (i = 0; i < 32; i++) {
1244        env->gpr[i] = regs.gpr[i];
1245    }
1246
1247    kvm_get_fp(cs);
1248
1249    if (cap_booke_sregs) {
1250        ret = kvmppc_get_booke_sregs(cpu);
1251        if (ret < 0) {
1252            return ret;
1253        }
1254    }
1255
1256    if (cap_segstate) {
1257        ret = kvmppc_get_books_sregs(cpu);
1258        if (ret < 0) {
1259            return ret;
1260        }
1261    }
1262
1263    if (cap_hior) {
1264        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265    }
1266
1267    if (cap_one_reg) {
1268        int i;
1269
1270        /*
1271         * We deliberately ignore errors here, for kernels which have
1272         * the ONE_REG calls, but don't support the specific
1273         * registers, there's a reasonable chance things will still
1274         * work, at least until we try to migrate.
1275         */
1276        for (i = 0; i < 1024; i++) {
1277            uint64_t id = env->spr_cb[i].one_reg_id;
1278
1279            if (id != 0) {
1280                kvm_get_one_spr(cs, id, i);
1281            }
1282        }
1283
1284#ifdef TARGET_PPC64
1285        if (FIELD_EX64(env->msr, MSR, TS)) {
1286            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1287                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1288            }
1289            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1290                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1291            }
1292            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1293            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1294            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1295            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1296            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1297            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1298            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1299            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1300            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1301            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1302        }
1303
1304        if (cap_papr) {
1305            if (kvm_get_vpa(cs) < 0) {
1306                trace_kvm_failed_get_vpa();
1307            }
1308        }
1309
1310        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1311        kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1312#endif
1313    }
1314
1315    return 0;
1316}
1317
1318int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1319{
1320    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1321
1322    if (irq != PPC_INTERRUPT_EXT) {
1323        return 0;
1324    }
1325
1326    if (!kvm_enabled() || !cap_interrupt_unset) {
1327        return 0;
1328    }
1329
1330    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1331
1332    return 0;
1333}
1334
1335void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1336{
1337    return;
1338}
1339
1340MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1341{
1342    return MEMTXATTRS_UNSPECIFIED;
1343}
1344
1345int kvm_arch_process_async_events(CPUState *cs)
1346{
1347    return cs->halted;
1348}
1349
1350static int kvmppc_handle_halt(PowerPCCPU *cpu)
1351{
1352    CPUState *cs = CPU(cpu);
1353    CPUPPCState *env = &cpu->env;
1354
1355    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1356        FIELD_EX64(env->msr, MSR, EE)) {
1357        cs->halted = 1;
1358        cs->exception_index = EXCP_HLT;
1359    }
1360
1361    return 0;
1362}
1363
1364/* map dcr access to existing qemu dcr emulation */
1365static int kvmppc_handle_dcr_read(CPUPPCState *env,
1366                                  uint32_t dcrn, uint32_t *data)
1367{
1368    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1369        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1370    }
1371
1372    return 0;
1373}
1374
1375static int kvmppc_handle_dcr_write(CPUPPCState *env,
1376                                   uint32_t dcrn, uint32_t data)
1377{
1378    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1379        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1380    }
1381
1382    return 0;
1383}
1384
1385int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1386{
1387    /* Mixed endian case is not handled */
1388    uint32_t sc = debug_inst_opcode;
1389
1390    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1391                            sizeof(sc), 0) ||
1392        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1393        return -EINVAL;
1394    }
1395
1396    return 0;
1397}
1398
1399int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1400{
1401    uint32_t sc;
1402
1403    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1404        sc != debug_inst_opcode ||
1405        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1406                            sizeof(sc), 1)) {
1407        return -EINVAL;
1408    }
1409
1410    return 0;
1411}
1412
1413static int find_hw_breakpoint(target_ulong addr, int type)
1414{
1415    int n;
1416
1417    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1418           <= ARRAY_SIZE(hw_debug_points));
1419
1420    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1421        if (hw_debug_points[n].addr == addr &&
1422             hw_debug_points[n].type == type) {
1423            return n;
1424        }
1425    }
1426
1427    return -1;
1428}
1429
1430static int find_hw_watchpoint(target_ulong addr, int *flag)
1431{
1432    int n;
1433
1434    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1435    if (n >= 0) {
1436        *flag = BP_MEM_ACCESS;
1437        return n;
1438    }
1439
1440    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1441    if (n >= 0) {
1442        *flag = BP_MEM_WRITE;
1443        return n;
1444    }
1445
1446    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1447    if (n >= 0) {
1448        *flag = BP_MEM_READ;
1449        return n;
1450    }
1451
1452    return -1;
1453}
1454
1455int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1456                                  target_ulong len, int type)
1457{
1458    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1459        return -ENOBUFS;
1460    }
1461
1462    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1463    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1464
1465    switch (type) {
1466    case GDB_BREAKPOINT_HW:
1467        if (nb_hw_breakpoint >= max_hw_breakpoint) {
1468            return -ENOBUFS;
1469        }
1470
1471        if (find_hw_breakpoint(addr, type) >= 0) {
1472            return -EEXIST;
1473        }
1474
1475        nb_hw_breakpoint++;
1476        break;
1477
1478    case GDB_WATCHPOINT_WRITE:
1479    case GDB_WATCHPOINT_READ:
1480    case GDB_WATCHPOINT_ACCESS:
1481        if (nb_hw_watchpoint >= max_hw_watchpoint) {
1482            return -ENOBUFS;
1483        }
1484
1485        if (find_hw_breakpoint(addr, type) >= 0) {
1486            return -EEXIST;
1487        }
1488
1489        nb_hw_watchpoint++;
1490        break;
1491
1492    default:
1493        return -ENOSYS;
1494    }
1495
1496    return 0;
1497}
1498
1499int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1500                                  target_ulong len, int type)
1501{
1502    int n;
1503
1504    n = find_hw_breakpoint(addr, type);
1505    if (n < 0) {
1506        return -ENOENT;
1507    }
1508
1509    switch (type) {
1510    case GDB_BREAKPOINT_HW:
1511        nb_hw_breakpoint--;
1512        break;
1513
1514    case GDB_WATCHPOINT_WRITE:
1515    case GDB_WATCHPOINT_READ:
1516    case GDB_WATCHPOINT_ACCESS:
1517        nb_hw_watchpoint--;
1518        break;
1519
1520    default:
1521        return -ENOSYS;
1522    }
1523    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1524
1525    return 0;
1526}
1527
1528void kvm_arch_remove_all_hw_breakpoints(void)
1529{
1530    nb_hw_breakpoint = nb_hw_watchpoint = 0;
1531}
1532
1533void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1534{
1535    int n;
1536
1537    /* Software Breakpoint updates */
1538    if (kvm_sw_breakpoints_active(cs)) {
1539        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1540    }
1541
1542    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1543           <= ARRAY_SIZE(hw_debug_points));
1544    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1545
1546    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1547        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1548        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1549        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1550            switch (hw_debug_points[n].type) {
1551            case GDB_BREAKPOINT_HW:
1552                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1553                break;
1554            case GDB_WATCHPOINT_WRITE:
1555                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1556                break;
1557            case GDB_WATCHPOINT_READ:
1558                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1559                break;
1560            case GDB_WATCHPOINT_ACCESS:
1561                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1562                                        KVMPPC_DEBUG_WATCH_READ;
1563                break;
1564            default:
1565                cpu_abort(cs, "Unsupported breakpoint type\n");
1566            }
1567            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1568        }
1569    }
1570}
1571
1572static int kvm_handle_hw_breakpoint(CPUState *cs,
1573                                    struct kvm_debug_exit_arch *arch_info)
1574{
1575    int handle = DEBUG_RETURN_GUEST;
1576    int n;
1577    int flag = 0;
1578
1579    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1580        if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1581            n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1582            if (n >= 0) {
1583                handle = DEBUG_RETURN_GDB;
1584            }
1585        } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1586                                        KVMPPC_DEBUG_WATCH_WRITE)) {
1587            n = find_hw_watchpoint(arch_info->address,  &flag);
1588            if (n >= 0) {
1589                handle = DEBUG_RETURN_GDB;
1590                cs->watchpoint_hit = &hw_watchpoint;
1591                hw_watchpoint.vaddr = hw_debug_points[n].addr;
1592                hw_watchpoint.flags = flag;
1593            }
1594        }
1595    }
1596    return handle;
1597}
1598
1599static int kvm_handle_singlestep(void)
1600{
1601    return DEBUG_RETURN_GDB;
1602}
1603
1604static int kvm_handle_sw_breakpoint(void)
1605{
1606    return DEBUG_RETURN_GDB;
1607}
1608
1609static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1610{
1611    CPUState *cs = CPU(cpu);
1612    CPUPPCState *env = &cpu->env;
1613    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1614
1615    if (cs->singlestep_enabled) {
1616        return kvm_handle_singlestep();
1617    }
1618
1619    if (arch_info->status) {
1620        return kvm_handle_hw_breakpoint(cs, arch_info);
1621    }
1622
1623    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1624        return kvm_handle_sw_breakpoint();
1625    }
1626
1627    /*
1628     * QEMU is not able to handle debug exception, so inject
1629     * program exception to guest;
1630     * Yes program exception NOT debug exception !!
1631     * When QEMU is using debug resources then debug exception must
1632     * be always set. To achieve this we set MSR_DE and also set
1633     * MSRP_DEP so guest cannot change MSR_DE.
1634     * When emulating debug resource for guest we want guest
1635     * to control MSR_DE (enable/disable debug interrupt on need).
1636     * Supporting both configurations are NOT possible.
1637     * So the result is that we cannot share debug resources
1638     * between QEMU and Guest on BOOKE architecture.
1639     * In the current design QEMU gets the priority over guest,
1640     * this means that if QEMU is using debug resources then guest
1641     * cannot use them;
1642     * For software breakpoint QEMU uses a privileged instruction;
1643     * So there cannot be any reason that we are here for guest
1644     * set debug exception, only possibility is guest executed a
1645     * privileged / illegal instruction and that's why we are
1646     * injecting a program interrupt.
1647     */
1648    cpu_synchronize_state(cs);
1649    /*
1650     * env->nip is PC, so increment this by 4 to use
1651     * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1652     */
1653    env->nip += 4;
1654    cs->exception_index = POWERPC_EXCP_PROGRAM;
1655    env->error_code = POWERPC_EXCP_INVAL;
1656    ppc_cpu_do_interrupt(cs);
1657
1658    return DEBUG_RETURN_GUEST;
1659}
1660
1661int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1662{
1663    PowerPCCPU *cpu = POWERPC_CPU(cs);
1664    CPUPPCState *env = &cpu->env;
1665    int ret;
1666
1667    qemu_mutex_lock_iothread();
1668
1669    switch (run->exit_reason) {
1670    case KVM_EXIT_DCR:
1671        if (run->dcr.is_write) {
1672            trace_kvm_handle_dcr_write();
1673            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1674        } else {
1675            trace_kvm_handle_dcr_read();
1676            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1677        }
1678        break;
1679    case KVM_EXIT_HLT:
1680        trace_kvm_handle_halt();
1681        ret = kvmppc_handle_halt(cpu);
1682        break;
1683#if defined(TARGET_PPC64)
1684    case KVM_EXIT_PAPR_HCALL:
1685        trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1686        run->papr_hcall.ret = spapr_hypercall(cpu,
1687                                              run->papr_hcall.nr,
1688                                              run->papr_hcall.args);
1689        ret = 0;
1690        break;
1691#endif
1692    case KVM_EXIT_EPR:
1693        trace_kvm_handle_epr();
1694        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1695        ret = 0;
1696        break;
1697    case KVM_EXIT_WATCHDOG:
1698        trace_kvm_handle_watchdog_expiry();
1699        watchdog_perform_action();
1700        ret = 0;
1701        break;
1702
1703    case KVM_EXIT_DEBUG:
1704        trace_kvm_handle_debug_exception();
1705        if (kvm_handle_debug(cpu, run)) {
1706            ret = EXCP_DEBUG;
1707            break;
1708        }
1709        /* re-enter, this exception was guest-internal */
1710        ret = 0;
1711        break;
1712
1713#if defined(TARGET_PPC64)
1714    case KVM_EXIT_NMI:
1715        trace_kvm_handle_nmi_exception();
1716        ret = kvm_handle_nmi(cpu, run);
1717        break;
1718#endif
1719
1720    default:
1721        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1722        ret = -1;
1723        break;
1724    }
1725
1726    qemu_mutex_unlock_iothread();
1727    return ret;
1728}
1729
1730int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1731{
1732    CPUState *cs = CPU(cpu);
1733    uint32_t bits = tsr_bits;
1734    struct kvm_one_reg reg = {
1735        .id = KVM_REG_PPC_OR_TSR,
1736        .addr = (uintptr_t) &bits,
1737    };
1738
1739    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1740}
1741
1742int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1743{
1744
1745    CPUState *cs = CPU(cpu);
1746    uint32_t bits = tsr_bits;
1747    struct kvm_one_reg reg = {
1748        .id = KVM_REG_PPC_CLEAR_TSR,
1749        .addr = (uintptr_t) &bits,
1750    };
1751
1752    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1753}
1754
1755int kvmppc_set_tcr(PowerPCCPU *cpu)
1756{
1757    CPUState *cs = CPU(cpu);
1758    CPUPPCState *env = &cpu->env;
1759    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1760
1761    struct kvm_one_reg reg = {
1762        .id = KVM_REG_PPC_TCR,
1763        .addr = (uintptr_t) &tcr,
1764    };
1765
1766    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1767}
1768
1769int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1770{
1771    CPUState *cs = CPU(cpu);
1772    int ret;
1773
1774    if (!kvm_enabled()) {
1775        return -1;
1776    }
1777
1778    if (!cap_ppc_watchdog) {
1779        printf("warning: KVM does not support watchdog");
1780        return -1;
1781    }
1782
1783    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1784    if (ret < 0) {
1785        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1786                __func__, strerror(-ret));
1787        return ret;
1788    }
1789
1790    return ret;
1791}
1792
1793static int read_cpuinfo(const char *field, char *value, int len)
1794{
1795    FILE *f;
1796    int ret = -1;
1797    int field_len = strlen(field);
1798    char line[512];
1799
1800    f = fopen("/proc/cpuinfo", "r");
1801    if (!f) {
1802        return -1;
1803    }
1804
1805    do {
1806        if (!fgets(line, sizeof(line), f)) {
1807            break;
1808        }
1809        if (!strncmp(line, field, field_len)) {
1810            pstrcpy(value, len, line);
1811            ret = 0;
1812            break;
1813        }
1814    } while (*line);
1815
1816    fclose(f);
1817
1818    return ret;
1819}
1820
1821static uint32_t kvmppc_get_tbfreq_procfs(void)
1822{
1823    char line[512];
1824    char *ns;
1825    uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1826    uint32_t tbfreq_procfs;
1827
1828    if (read_cpuinfo("timebase", line, sizeof(line))) {
1829        return tbfreq_fallback;
1830    }
1831
1832    ns = strchr(line, ':');
1833    if (!ns) {
1834        return tbfreq_fallback;
1835    }
1836
1837    tbfreq_procfs = atoi(++ns);
1838
1839    /* 0 is certainly not acceptable by the guest, return fallback value */
1840    return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1841}
1842
1843uint32_t kvmppc_get_tbfreq(void)
1844{
1845    static uint32_t cached_tbfreq;
1846
1847    if (!cached_tbfreq) {
1848        cached_tbfreq = kvmppc_get_tbfreq_procfs();
1849    }
1850
1851    return cached_tbfreq;
1852}
1853
1854bool kvmppc_get_host_serial(char **value)
1855{
1856    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1857                               NULL);
1858}
1859
1860bool kvmppc_get_host_model(char **value)
1861{
1862    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1863}
1864
1865/* Try to find a device tree node for a CPU with clock-frequency property */
1866static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1867{
1868    struct dirent *dirp;
1869    DIR *dp;
1870
1871    dp = opendir(PROC_DEVTREE_CPU);
1872    if (!dp) {
1873        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1874        return -1;
1875    }
1876
1877    buf[0] = '\0';
1878    while ((dirp = readdir(dp)) != NULL) {
1879        FILE *f;
1880
1881        /* Don't accidentally read from the current and parent directories */
1882        if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1883            continue;
1884        }
1885
1886        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1887                 dirp->d_name);
1888        f = fopen(buf, "r");
1889        if (f) {
1890            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1891            fclose(f);
1892            break;
1893        }
1894        buf[0] = '\0';
1895    }
1896    closedir(dp);
1897    if (buf[0] == '\0') {
1898        printf("Unknown host!\n");
1899        return -1;
1900    }
1901
1902    return 0;
1903}
1904
1905static uint64_t kvmppc_read_int_dt(const char *filename)
1906{
1907    union {
1908        uint32_t v32;
1909        uint64_t v64;
1910    } u;
1911    FILE *f;
1912    int len;
1913
1914    f = fopen(filename, "rb");
1915    if (!f) {
1916        return -1;
1917    }
1918
1919    len = fread(&u, 1, sizeof(u), f);
1920    fclose(f);
1921    switch (len) {
1922    case 4:
1923        /* property is a 32-bit quantity */
1924        return be32_to_cpu(u.v32);
1925    case 8:
1926        return be64_to_cpu(u.v64);
1927    }
1928
1929    return 0;
1930}
1931
1932/*
1933 * Read a CPU node property from the host device tree that's a single
1934 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1935 * (can't find or open the property, or doesn't understand the format)
1936 */
1937static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1938{
1939    char buf[PATH_MAX], *tmp;
1940    uint64_t val;
1941
1942    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1943        return -1;
1944    }
1945
1946    tmp = g_strdup_printf("%s/%s", buf, propname);
1947    val = kvmppc_read_int_dt(tmp);
1948    g_free(tmp);
1949
1950    return val;
1951}
1952
1953uint64_t kvmppc_get_clockfreq(void)
1954{
1955    return kvmppc_read_int_cpu_dt("clock-frequency");
1956}
1957
1958static int kvmppc_get_dec_bits(void)
1959{
1960    int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1961
1962    if (nr_bits > 0) {
1963        return nr_bits;
1964    }
1965    return 0;
1966}
1967
1968static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1969{
1970    CPUState *cs = env_cpu(env);
1971
1972    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1973        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1974        return 0;
1975    }
1976
1977    return 1;
1978}
1979
1980int kvmppc_get_hasidle(CPUPPCState *env)
1981{
1982    struct kvm_ppc_pvinfo pvinfo;
1983
1984    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1985        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1986        return 1;
1987    }
1988
1989    return 0;
1990}
1991
1992int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1993{
1994    uint32_t *hc = (uint32_t *)buf;
1995    struct kvm_ppc_pvinfo pvinfo;
1996
1997    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1998        memcpy(buf, pvinfo.hcall, buf_len);
1999        return 0;
2000    }
2001
2002    /*
2003     * Fallback to always fail hypercalls regardless of endianness:
2004     *
2005     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2006     *     li r3, -1
2007     *     b .+8       (becomes nop in wrong endian)
2008     *     bswap32(li r3, -1)
2009     */
2010
2011    hc[0] = cpu_to_be32(0x08000048);
2012    hc[1] = cpu_to_be32(0x3860ffff);
2013    hc[2] = cpu_to_be32(0x48000008);
2014    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2015
2016    return 1;
2017}
2018
2019static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2020{
2021    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2022}
2023
2024void kvmppc_enable_logical_ci_hcalls(void)
2025{
2026    /*
2027     * FIXME: it would be nice if we could detect the cases where
2028     * we're using a device which requires the in kernel
2029     * implementation of these hcalls, but the kernel lacks them and
2030     * produce a warning.
2031     */
2032    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2033    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2034}
2035
2036void kvmppc_enable_set_mode_hcall(void)
2037{
2038    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2039}
2040
2041void kvmppc_enable_clear_ref_mod_hcalls(void)
2042{
2043    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2044    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2045}
2046
2047void kvmppc_enable_h_page_init(void)
2048{
2049    kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2050}
2051
2052void kvmppc_enable_h_rpt_invalidate(void)
2053{
2054    kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2055}
2056
2057void kvmppc_set_papr(PowerPCCPU *cpu)
2058{
2059    CPUState *cs = CPU(cpu);
2060    int ret;
2061
2062    if (!kvm_enabled()) {
2063        return;
2064    }
2065
2066    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2067    if (ret) {
2068        error_report("This vCPU type or KVM version does not support PAPR");
2069        exit(1);
2070    }
2071
2072    /*
2073     * Update the capability flag so we sync the right information
2074     * with kvm
2075     */
2076    cap_papr = 1;
2077}
2078
2079int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2080{
2081    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2082}
2083
2084void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2085{
2086    CPUState *cs = CPU(cpu);
2087    int ret;
2088
2089    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2090    if (ret && mpic_proxy) {
2091        error_report("This KVM version does not support EPR");
2092        exit(1);
2093    }
2094}
2095
2096bool kvmppc_get_fwnmi(void)
2097{
2098    return cap_fwnmi;
2099}
2100
2101int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2102{
2103    CPUState *cs = CPU(cpu);
2104
2105    return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2106}
2107
2108int kvmppc_smt_threads(void)
2109{
2110    return cap_ppc_smt ? cap_ppc_smt : 1;
2111}
2112
2113int kvmppc_set_smt_threads(int smt)
2114{
2115    int ret;
2116
2117    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2118    if (!ret) {
2119        cap_ppc_smt = smt;
2120    }
2121    return ret;
2122}
2123
2124void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2125{
2126    int i;
2127    GString *g;
2128    char *s;
2129
2130    assert(kvm_enabled());
2131    if (cap_ppc_smt_possible) {
2132        g = g_string_new("Available VSMT modes:");
2133        for (i = 63; i >= 0; i--) {
2134            if ((1UL << i) & cap_ppc_smt_possible) {
2135                g_string_append_printf(g, " %lu", (1UL << i));
2136            }
2137        }
2138        s = g_string_free(g, false);
2139        error_append_hint(errp, "%s.\n", s);
2140        g_free(s);
2141    } else {
2142        error_append_hint(errp,
2143                          "This KVM seems to be too old to support VSMT.\n");
2144    }
2145}
2146
2147
2148#ifdef TARGET_PPC64
2149uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2150{
2151    struct kvm_ppc_smmu_info info;
2152    long rampagesize, best_page_shift;
2153    int i;
2154
2155    /*
2156     * Find the largest hardware supported page size that's less than
2157     * or equal to the (logical) backing page size of guest RAM
2158     */
2159    kvm_get_smmu_info(&info, &error_fatal);
2160    rampagesize = qemu_minrampagesize();
2161    best_page_shift = 0;
2162
2163    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2164        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2165
2166        if (!sps->page_shift) {
2167            continue;
2168        }
2169
2170        if ((sps->page_shift > best_page_shift)
2171            && ((1UL << sps->page_shift) <= rampagesize)) {
2172            best_page_shift = sps->page_shift;
2173        }
2174    }
2175
2176    return 1ULL << (best_page_shift + hash_shift - 7);
2177}
2178#endif
2179
2180bool kvmppc_spapr_use_multitce(void)
2181{
2182    return cap_spapr_multitce;
2183}
2184
2185int kvmppc_spapr_enable_inkernel_multitce(void)
2186{
2187    int ret;
2188
2189    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2190                            H_PUT_TCE_INDIRECT, 1);
2191    if (!ret) {
2192        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2193                                H_STUFF_TCE, 1);
2194    }
2195
2196    return ret;
2197}
2198
2199void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2200                              uint64_t bus_offset, uint32_t nb_table,
2201                              int *pfd, bool need_vfio)
2202{
2203    long len;
2204    int fd;
2205    void *table;
2206
2207    /*
2208     * Must set fd to -1 so we don't try to munmap when called for
2209     * destroying the table, which the upper layers -will- do
2210     */
2211    *pfd = -1;
2212    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2213        return NULL;
2214    }
2215
2216    if (cap_spapr_tce_64) {
2217        struct kvm_create_spapr_tce_64 args = {
2218            .liobn = liobn,
2219            .page_shift = page_shift,
2220            .offset = bus_offset >> page_shift,
2221            .size = nb_table,
2222            .flags = 0
2223        };
2224        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2225        if (fd < 0) {
2226            fprintf(stderr,
2227                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2228                    liobn);
2229            return NULL;
2230        }
2231    } else if (cap_spapr_tce) {
2232        uint64_t window_size = (uint64_t) nb_table << page_shift;
2233        struct kvm_create_spapr_tce args = {
2234            .liobn = liobn,
2235            .window_size = window_size,
2236        };
2237        if ((window_size != args.window_size) || bus_offset) {
2238            return NULL;
2239        }
2240        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2241        if (fd < 0) {
2242            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2243                    liobn);
2244            return NULL;
2245        }
2246    } else {
2247        return NULL;
2248    }
2249
2250    len = nb_table * sizeof(uint64_t);
2251    /* FIXME: round this up to page size */
2252
2253    table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2254    if (table == MAP_FAILED) {
2255        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2256                liobn);
2257        close(fd);
2258        return NULL;
2259    }
2260
2261    *pfd = fd;
2262    return table;
2263}
2264
2265int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2266{
2267    long len;
2268
2269    if (fd < 0) {
2270        return -1;
2271    }
2272
2273    len = nb_table * sizeof(uint64_t);
2274    if ((munmap(table, len) < 0) ||
2275        (close(fd) < 0)) {
2276        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2277                strerror(errno));
2278        /* Leak the table */
2279    }
2280
2281    return 0;
2282}
2283
2284int kvmppc_reset_htab(int shift_hint)
2285{
2286    uint32_t shift = shift_hint;
2287
2288    if (!kvm_enabled()) {
2289        /* Full emulation, tell caller to allocate htab itself */
2290        return 0;
2291    }
2292    if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2293        int ret;
2294        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2295        if (ret == -ENOTTY) {
2296            /*
2297             * At least some versions of PR KVM advertise the
2298             * capability, but don't implement the ioctl().  Oops.
2299             * Return 0 so that we allocate the htab in qemu, as is
2300             * correct for PR.
2301             */
2302            return 0;
2303        } else if (ret < 0) {
2304            return ret;
2305        }
2306        return shift;
2307    }
2308
2309    /*
2310     * We have a kernel that predates the htab reset calls.  For PR
2311     * KVM, we need to allocate the htab ourselves, for an HV KVM of
2312     * this era, it has allocated a 16MB fixed size hash table
2313     * already.
2314     */
2315    if (kvmppc_is_pr(kvm_state)) {
2316        /* PR - tell caller to allocate htab */
2317        return 0;
2318    } else {
2319        /* HV - assume 16MB kernel allocated htab */
2320        return 24;
2321    }
2322}
2323
2324static inline uint32_t mfpvr(void)
2325{
2326    uint32_t pvr;
2327
2328    asm ("mfpvr %0"
2329         : "=r"(pvr));
2330    return pvr;
2331}
2332
2333static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2334{
2335    if (on) {
2336        *word |= flags;
2337    } else {
2338        *word &= ~flags;
2339    }
2340}
2341
2342static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2343{
2344    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2345    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2346    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2347
2348    /* Now fix up the class with information we can query from the host */
2349    pcc->pvr = mfpvr();
2350
2351    alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2352                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2353    alter_insns(&pcc->insns_flags2, PPC2_VSX,
2354                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2355    alter_insns(&pcc->insns_flags2, PPC2_DFP,
2356                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2357
2358    if (dcache_size != -1) {
2359        pcc->l1_dcache_size = dcache_size;
2360    }
2361
2362    if (icache_size != -1) {
2363        pcc->l1_icache_size = icache_size;
2364    }
2365
2366#if defined(TARGET_PPC64)
2367    pcc->radix_page_info = kvm_get_radix_page_info();
2368
2369    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2370        /*
2371         * POWER9 DD1 has some bugs which make it not really ISA 3.00
2372         * compliant.  More importantly, advertising ISA 3.00
2373         * architected mode may prevent guests from activating
2374         * necessary DD1 workarounds.
2375         */
2376        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2377                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2378    }
2379#endif /* defined(TARGET_PPC64) */
2380}
2381
2382bool kvmppc_has_cap_epr(void)
2383{
2384    return cap_epr;
2385}
2386
2387bool kvmppc_has_cap_fixup_hcalls(void)
2388{
2389    return cap_fixup_hcalls;
2390}
2391
2392bool kvmppc_has_cap_htm(void)
2393{
2394    return cap_htm;
2395}
2396
2397bool kvmppc_has_cap_mmu_radix(void)
2398{
2399    return cap_mmu_radix;
2400}
2401
2402bool kvmppc_has_cap_mmu_hash_v3(void)
2403{
2404    return cap_mmu_hash_v3;
2405}
2406
2407static bool kvmppc_power8_host(void)
2408{
2409    bool ret = false;
2410#ifdef TARGET_PPC64
2411    {
2412        uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2413        ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2414              (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2415              (base_pvr == CPU_POWERPC_POWER8_BASE);
2416    }
2417#endif /* TARGET_PPC64 */
2418    return ret;
2419}
2420
2421static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2422{
2423    bool l1d_thread_priv_req = !kvmppc_power8_host();
2424
2425    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2426        return 2;
2427    } else if ((!l1d_thread_priv_req ||
2428                c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2429               (c.character & c.character_mask
2430                & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2431        return 1;
2432    }
2433
2434    return 0;
2435}
2436
2437static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2438{
2439    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2440        return 2;
2441    } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2442        return 1;
2443    }
2444
2445    return 0;
2446}
2447
2448static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2449{
2450    if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2451        (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2452        (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2453        return SPAPR_CAP_FIXED_NA;
2454    } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2455        return SPAPR_CAP_WORKAROUND;
2456    } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2457        return  SPAPR_CAP_FIXED_CCD;
2458    } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2459        return SPAPR_CAP_FIXED_IBS;
2460    }
2461
2462    return 0;
2463}
2464
2465static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2466{
2467    if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2468        return 1;
2469    }
2470    return 0;
2471}
2472
2473bool kvmppc_has_cap_xive(void)
2474{
2475    return cap_xive;
2476}
2477
2478static void kvmppc_get_cpu_characteristics(KVMState *s)
2479{
2480    struct kvm_ppc_cpu_char c;
2481    int ret;
2482
2483    /* Assume broken */
2484    cap_ppc_safe_cache = 0;
2485    cap_ppc_safe_bounds_check = 0;
2486    cap_ppc_safe_indirect_branch = 0;
2487
2488    ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2489    if (!ret) {
2490        return;
2491    }
2492    ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2493    if (ret < 0) {
2494        return;
2495    }
2496
2497    cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2498    cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2499    cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2500    cap_ppc_count_cache_flush_assist =
2501        parse_cap_ppc_count_cache_flush_assist(c);
2502}
2503
2504int kvmppc_get_cap_safe_cache(void)
2505{
2506    return cap_ppc_safe_cache;
2507}
2508
2509int kvmppc_get_cap_safe_bounds_check(void)
2510{
2511    return cap_ppc_safe_bounds_check;
2512}
2513
2514int kvmppc_get_cap_safe_indirect_branch(void)
2515{
2516    return cap_ppc_safe_indirect_branch;
2517}
2518
2519int kvmppc_get_cap_count_cache_flush_assist(void)
2520{
2521    return cap_ppc_count_cache_flush_assist;
2522}
2523
2524bool kvmppc_has_cap_nested_kvm_hv(void)
2525{
2526    return !!cap_ppc_nested_kvm_hv;
2527}
2528
2529int kvmppc_set_cap_nested_kvm_hv(int enable)
2530{
2531    return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2532}
2533
2534bool kvmppc_has_cap_spapr_vfio(void)
2535{
2536    return cap_spapr_vfio;
2537}
2538
2539int kvmppc_get_cap_large_decr(void)
2540{
2541    return cap_large_decr;
2542}
2543
2544int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2545{
2546    CPUState *cs = CPU(cpu);
2547    uint64_t lpcr = 0;
2548
2549    kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2550    /* Do we need to modify the LPCR? */
2551    if (!!(lpcr & LPCR_LD) != !!enable) {
2552        if (enable) {
2553            lpcr |= LPCR_LD;
2554        } else {
2555            lpcr &= ~LPCR_LD;
2556        }
2557        kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2558        kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2559
2560        if (!!(lpcr & LPCR_LD) != !!enable) {
2561            return -1;
2562        }
2563    }
2564
2565    return 0;
2566}
2567
2568int kvmppc_has_cap_rpt_invalidate(void)
2569{
2570    return cap_rpt_invalidate;
2571}
2572
2573PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2574{
2575    uint32_t host_pvr = mfpvr();
2576    PowerPCCPUClass *pvr_pcc;
2577
2578    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2579    if (pvr_pcc == NULL) {
2580        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2581    }
2582
2583    return pvr_pcc;
2584}
2585
2586static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2587{
2588    MachineClass *mc = MACHINE_CLASS(oc);
2589
2590    mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2591}
2592
2593static int kvm_ppc_register_host_cpu_type(void)
2594{
2595    TypeInfo type_info = {
2596        .name = TYPE_HOST_POWERPC_CPU,
2597        .class_init = kvmppc_host_cpu_class_init,
2598    };
2599    PowerPCCPUClass *pvr_pcc;
2600    ObjectClass *oc;
2601    DeviceClass *dc;
2602    int i;
2603
2604    pvr_pcc = kvm_ppc_get_host_cpu_class();
2605    if (pvr_pcc == NULL) {
2606        return -1;
2607    }
2608    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2609    type_register(&type_info);
2610    /* override TCG default cpu type with 'host' cpu model */
2611    object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2612                         false, NULL);
2613
2614    oc = object_class_by_name(type_info.name);
2615    g_assert(oc);
2616
2617    /*
2618     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2619     * we want "POWER8" to be a "family" alias that points to the current
2620     * host CPU type, too)
2621     */
2622    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2623    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2624        if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2625            char *suffix;
2626
2627            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2628            suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2629            if (suffix) {
2630                *suffix = 0;
2631            }
2632            break;
2633        }
2634    }
2635
2636    return 0;
2637}
2638
2639int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2640{
2641    struct kvm_rtas_token_args args = {
2642        .token = token,
2643    };
2644
2645    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2646        return -ENOENT;
2647    }
2648
2649    strncpy(args.name, function, sizeof(args.name) - 1);
2650
2651    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2652}
2653
2654int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2655{
2656    struct kvm_get_htab_fd s = {
2657        .flags = write ? KVM_GET_HTAB_WRITE : 0,
2658        .start_index = index,
2659    };
2660    int ret;
2661
2662    if (!cap_htab_fd) {
2663        error_setg(errp, "KVM version doesn't support %s the HPT",
2664                   write ? "writing" : "reading");
2665        return -ENOTSUP;
2666    }
2667
2668    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2669    if (ret < 0) {
2670        error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2671                   write ? "writing" : "reading", write ? "to" : "from",
2672                   strerror(errno));
2673        return -errno;
2674    }
2675
2676    return ret;
2677}
2678
2679int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2680{
2681    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2682    uint8_t buf[bufsize];
2683    ssize_t rc;
2684
2685    do {
2686        rc = read(fd, buf, bufsize);
2687        if (rc < 0) {
2688            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2689                    strerror(errno));
2690            return rc;
2691        } else if (rc) {
2692            uint8_t *buffer = buf;
2693            ssize_t n = rc;
2694            while (n) {
2695                struct kvm_get_htab_header *head =
2696                    (struct kvm_get_htab_header *) buffer;
2697                size_t chunksize = sizeof(*head) +
2698                     HASH_PTE_SIZE_64 * head->n_valid;
2699
2700                qemu_put_be32(f, head->index);
2701                qemu_put_be16(f, head->n_valid);
2702                qemu_put_be16(f, head->n_invalid);
2703                qemu_put_buffer(f, (void *)(head + 1),
2704                                HASH_PTE_SIZE_64 * head->n_valid);
2705
2706                buffer += chunksize;
2707                n -= chunksize;
2708            }
2709        }
2710    } while ((rc != 0)
2711             && ((max_ns < 0) ||
2712                 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2713
2714    return (rc == 0) ? 1 : 0;
2715}
2716
2717int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2718                           uint16_t n_valid, uint16_t n_invalid, Error **errp)
2719{
2720    struct kvm_get_htab_header *buf;
2721    size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2722    ssize_t rc;
2723
2724    buf = alloca(chunksize);
2725    buf->index = index;
2726    buf->n_valid = n_valid;
2727    buf->n_invalid = n_invalid;
2728
2729    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2730
2731    rc = write(fd, buf, chunksize);
2732    if (rc < 0) {
2733        error_setg_errno(errp, errno, "Error writing the KVM hash table");
2734        return -errno;
2735    }
2736    if (rc != chunksize) {
2737        /* We should never get a short write on a single chunk */
2738        error_setg(errp, "Short write while restoring the KVM hash table");
2739        return -ENOSPC;
2740    }
2741    return 0;
2742}
2743
2744bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2745{
2746    return true;
2747}
2748
2749void kvm_arch_init_irq_routing(KVMState *s)
2750{
2751}
2752
2753void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2754{
2755    int fd, rc;
2756    int i;
2757
2758    fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2759
2760    i = 0;
2761    while (i < n) {
2762        struct kvm_get_htab_header *hdr;
2763        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2764        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2765
2766        rc = read(fd, buf, sizeof(buf));
2767        if (rc < 0) {
2768            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2769        }
2770
2771        hdr = (struct kvm_get_htab_header *)buf;
2772        while ((i < n) && ((char *)hdr < (buf + rc))) {
2773            int invalid = hdr->n_invalid, valid = hdr->n_valid;
2774
2775            if (hdr->index != (ptex + i)) {
2776                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2777                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2778            }
2779
2780            if (n - i < valid) {
2781                valid = n - i;
2782            }
2783            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2784            i += valid;
2785
2786            if ((n - i) < invalid) {
2787                invalid = n - i;
2788            }
2789            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2790            i += invalid;
2791
2792            hdr = (struct kvm_get_htab_header *)
2793                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2794        }
2795    }
2796
2797    close(fd);
2798}
2799
2800void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2801{
2802    int fd, rc;
2803    struct {
2804        struct kvm_get_htab_header hdr;
2805        uint64_t pte0;
2806        uint64_t pte1;
2807    } buf;
2808
2809    fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2810
2811    buf.hdr.n_valid = 1;
2812    buf.hdr.n_invalid = 0;
2813    buf.hdr.index = ptex;
2814    buf.pte0 = cpu_to_be64(pte0);
2815    buf.pte1 = cpu_to_be64(pte1);
2816
2817    rc = write(fd, &buf, sizeof(buf));
2818    if (rc != sizeof(buf)) {
2819        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2820    }
2821    close(fd);
2822}
2823
2824int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2825                             uint64_t address, uint32_t data, PCIDevice *dev)
2826{
2827    return 0;
2828}
2829
2830int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2831                                int vector, PCIDevice *dev)
2832{
2833    return 0;
2834}
2835
2836int kvm_arch_release_virq_post(int virq)
2837{
2838    return 0;
2839}
2840
2841int kvm_arch_msi_data_to_gsi(uint32_t data)
2842{
2843    return data & 0xffff;
2844}
2845
2846#if defined(TARGET_PPC64)
2847int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2848{
2849    uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2850
2851    cpu_synchronize_state(CPU(cpu));
2852
2853    spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2854
2855    return 0;
2856}
2857#endif
2858
2859int kvmppc_enable_hwrng(void)
2860{
2861    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2862        return -1;
2863    }
2864
2865    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2866}
2867
2868void kvmppc_check_papr_resize_hpt(Error **errp)
2869{
2870    if (!kvm_enabled()) {
2871        return; /* No KVM, we're good */
2872    }
2873
2874    if (cap_resize_hpt) {
2875        return; /* Kernel has explicit support, we're good */
2876    }
2877
2878    /* Otherwise fallback on looking for PR KVM */
2879    if (kvmppc_is_pr(kvm_state)) {
2880        return;
2881    }
2882
2883    error_setg(errp,
2884               "Hash page table resizing not available with this KVM version");
2885}
2886
2887int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2888{
2889    CPUState *cs = CPU(cpu);
2890    struct kvm_ppc_resize_hpt rhpt = {
2891        .flags = flags,
2892        .shift = shift,
2893    };
2894
2895    if (!cap_resize_hpt) {
2896        return -ENOSYS;
2897    }
2898
2899    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2900}
2901
2902int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2903{
2904    CPUState *cs = CPU(cpu);
2905    struct kvm_ppc_resize_hpt rhpt = {
2906        .flags = flags,
2907        .shift = shift,
2908    };
2909
2910    if (!cap_resize_hpt) {
2911        return -ENOSYS;
2912    }
2913
2914    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2915}
2916
2917/*
2918 * This is a helper function to detect a post migration scenario
2919 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2920 * the guest kernel can't handle a PVR value other than the actual host
2921 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2922 *
2923 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2924 * (so, we're HV), return true. The workaround itself is done in
2925 * cpu_post_load.
2926 *
2927 * The order here is important: we'll only check for KVM PR as a
2928 * fallback if the guest kernel can't handle the situation itself.
2929 * We need to avoid as much as possible querying the running KVM type
2930 * in QEMU level.
2931 */
2932bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2933{
2934    CPUState *cs = CPU(cpu);
2935
2936    if (!kvm_enabled()) {
2937        return false;
2938    }
2939
2940    if (cap_ppc_pvr_compat) {
2941        return false;
2942    }
2943
2944    return !kvmppc_is_pr(cs->kvm_state);
2945}
2946
2947void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2948{
2949    CPUState *cs = CPU(cpu);
2950
2951    if (kvm_enabled()) {
2952        kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2953    }
2954}
2955
2956void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2957{
2958    CPUState *cs = CPU(cpu);
2959
2960    if (kvm_enabled()) {
2961        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2962    }
2963}
2964
2965bool kvm_arch_cpu_check_are_resettable(void)
2966{
2967    return true;
2968}
2969