qemu/target/ppc/machine.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "cpu.h"
   3#include "exec/exec-all.h"
   4#include "sysemu/kvm.h"
   5#include "sysemu/tcg.h"
   6#include "helper_regs.h"
   7#include "mmu-hash64.h"
   8#include "migration/cpu.h"
   9#include "qapi/error.h"
  10#include "qemu/main-loop.h"
  11#include "kvm_ppc.h"
  12#include "power8-pmu.h"
  13
  14static void post_load_update_msr(CPUPPCState *env)
  15{
  16    target_ulong msr = env->msr;
  17
  18    /*
  19     * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
  20     * before restoring.  Note that this recomputes hflags.
  21     */
  22    env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
  23    ppc_store_msr(env, msr);
  24
  25    if (tcg_enabled()) {
  26        pmu_update_summaries(env);
  27    }
  28}
  29
  30static int get_avr(QEMUFile *f, void *pv, size_t size,
  31                   const VMStateField *field)
  32{
  33    ppc_avr_t *v = pv;
  34
  35    v->u64[0] = qemu_get_be64(f);
  36    v->u64[1] = qemu_get_be64(f);
  37
  38    return 0;
  39}
  40
  41static int put_avr(QEMUFile *f, void *pv, size_t size,
  42                   const VMStateField *field, JSONWriter *vmdesc)
  43{
  44    ppc_avr_t *v = pv;
  45
  46    qemu_put_be64(f, v->u64[0]);
  47    qemu_put_be64(f, v->u64[1]);
  48    return 0;
  49}
  50
  51static const VMStateInfo vmstate_info_avr = {
  52    .name = "avr",
  53    .get  = get_avr,
  54    .put  = put_avr,
  55};
  56
  57#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
  58    VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
  59
  60#define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
  61    VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
  62
  63static int get_fpr(QEMUFile *f, void *pv, size_t size,
  64                   const VMStateField *field)
  65{
  66    ppc_vsr_t *v = pv;
  67
  68    v->VsrD(0) = qemu_get_be64(f);
  69
  70    return 0;
  71}
  72
  73static int put_fpr(QEMUFile *f, void *pv, size_t size,
  74                   const VMStateField *field, JSONWriter *vmdesc)
  75{
  76    ppc_vsr_t *v = pv;
  77
  78    qemu_put_be64(f, v->VsrD(0));
  79    return 0;
  80}
  81
  82static const VMStateInfo vmstate_info_fpr = {
  83    .name = "fpr",
  84    .get  = get_fpr,
  85    .put  = put_fpr,
  86};
  87
  88#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
  89    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
  90
  91#define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
  92    VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
  93
  94static int get_vsr(QEMUFile *f, void *pv, size_t size,
  95                   const VMStateField *field)
  96{
  97    ppc_vsr_t *v = pv;
  98
  99    v->VsrD(1) = qemu_get_be64(f);
 100
 101    return 0;
 102}
 103
 104static int put_vsr(QEMUFile *f, void *pv, size_t size,
 105                   const VMStateField *field, JSONWriter *vmdesc)
 106{
 107    ppc_vsr_t *v = pv;
 108
 109    qemu_put_be64(f, v->VsrD(1));
 110    return 0;
 111}
 112
 113static const VMStateInfo vmstate_info_vsr = {
 114    .name = "vsr",
 115    .get  = get_vsr,
 116    .put  = put_vsr,
 117};
 118
 119#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
 120    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
 121
 122#define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
 123    VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
 124
 125static bool cpu_pre_2_8_migration(void *opaque, int version_id)
 126{
 127    PowerPCCPU *cpu = opaque;
 128
 129    return cpu->pre_2_8_migration;
 130}
 131
 132#if defined(TARGET_PPC64)
 133static bool cpu_pre_3_0_migration(void *opaque, int version_id)
 134{
 135    PowerPCCPU *cpu = opaque;
 136
 137    return cpu->pre_3_0_migration;
 138}
 139#endif
 140
 141static int cpu_pre_save(void *opaque)
 142{
 143    PowerPCCPU *cpu = opaque;
 144    CPUPPCState *env = &cpu->env;
 145    int i;
 146    uint64_t insns_compat_mask =
 147        PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
 148        | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
 149        | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
 150        | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
 151        | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
 152        | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
 153        | PPC_64B | PPC_64BX | PPC_ALTIVEC
 154        | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
 155    uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
 156        | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
 157        | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
 158        | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
 159        | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
 160        | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
 161        | PPC2_MEM_LWSYNC;
 162
 163    env->spr[SPR_LR] = env->lr;
 164    env->spr[SPR_CTR] = env->ctr;
 165    env->spr[SPR_XER] = cpu_read_xer(env);
 166#if defined(TARGET_PPC64)
 167    env->spr[SPR_CFAR] = env->cfar;
 168#endif
 169    env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
 170
 171    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 172        env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
 173        env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
 174        env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
 175        env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
 176    }
 177    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
 178        env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
 179        env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
 180        env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
 181        env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
 182    }
 183
 184    /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
 185    if (cpu->pre_2_8_migration) {
 186        /*
 187         * Mask out bits that got added to msr_mask since the versions
 188         * which stupidly included it in the migration stream.
 189         */
 190        target_ulong metamask = 0
 191#if defined(TARGET_PPC64)
 192            | (1ULL << MSR_TS0)
 193            | (1ULL << MSR_TS1)
 194#endif
 195            ;
 196        cpu->mig_msr_mask = env->msr_mask & ~metamask;
 197        cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
 198        /*
 199         * CPU models supported by old machines all have
 200         * PPC_MEM_TLBIE, so we set it unconditionally to allow
 201         * backward migration from a POWER9 host to a POWER8 host.
 202         */
 203        cpu->mig_insns_flags |= PPC_MEM_TLBIE;
 204        cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
 205        cpu->mig_nb_BATs = env->nb_BATs;
 206    }
 207    if (cpu->pre_3_0_migration) {
 208        if (cpu->hash64_opts) {
 209            cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
 210        }
 211    }
 212
 213    /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
 214    env->hflags_compat_nmsr = 0;
 215
 216    return 0;
 217}
 218
 219/*
 220 * Determine if a given PVR is a "close enough" match to the CPU
 221 * object.  For TCG and KVM PR it would probably be sufficient to
 222 * require an exact PVR match.  However for KVM HV the user is
 223 * restricted to a PVR exactly matching the host CPU.  The correct way
 224 * to handle this is to put the guest into an architected
 225 * compatibility mode.  However, to allow a more forgiving transition
 226 * and migration from before this was widely done, we allow migration
 227 * between sufficiently similar PVRs, as determined by the CPU class's
 228 * pvr_match() hook.
 229 */
 230static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
 231{
 232    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 233
 234    if (pvr == pcc->pvr) {
 235        return true;
 236    }
 237    return pcc->pvr_match(pcc, pvr);
 238}
 239
 240static int cpu_post_load(void *opaque, int version_id)
 241{
 242    PowerPCCPU *cpu = opaque;
 243    CPUPPCState *env = &cpu->env;
 244    int i;
 245
 246    /*
 247     * If we're operating in compat mode, we should be ok as long as
 248     * the destination supports the same compatibility mode.
 249     *
 250     * Otherwise, however, we require that the destination has exactly
 251     * the same CPU model as the source.
 252     */
 253
 254#if defined(TARGET_PPC64)
 255    if (cpu->compat_pvr) {
 256        uint32_t compat_pvr = cpu->compat_pvr;
 257        Error *local_err = NULL;
 258        int ret;
 259
 260        cpu->compat_pvr = 0;
 261        ret = ppc_set_compat(cpu, compat_pvr, &local_err);
 262        if (ret < 0) {
 263            error_report_err(local_err);
 264            return ret;
 265        }
 266    } else
 267#endif
 268    {
 269        if (!pvr_match(cpu, env->spr[SPR_PVR])) {
 270            return -EINVAL;
 271        }
 272    }
 273
 274    /*
 275     * If we're running with KVM HV, there is a chance that the guest
 276     * is running with KVM HV and its kernel does not have the
 277     * capability of dealing with a different PVR other than this
 278     * exact host PVR in KVM_SET_SREGS. If that happens, the
 279     * guest freezes after migration.
 280     *
 281     * The function kvmppc_pvr_workaround_required does this verification
 282     * by first checking if the kernel has the cap, returning true immediately
 283     * if that is the case. Otherwise, it checks if we're running in KVM PR.
 284     * If the guest kernel does not have the cap and we're not running KVM-PR
 285     * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
 286     * receive the PVR it expects as a workaround.
 287     *
 288     */
 289    if (kvmppc_pvr_workaround_required(cpu)) {
 290        env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
 291    }
 292
 293    env->lr = env->spr[SPR_LR];
 294    env->ctr = env->spr[SPR_CTR];
 295    cpu_write_xer(env, env->spr[SPR_XER]);
 296#if defined(TARGET_PPC64)
 297    env->cfar = env->spr[SPR_CFAR];
 298#endif
 299    env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
 300
 301    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 302        env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
 303        env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
 304        env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
 305        env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
 306    }
 307    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
 308        env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
 309        env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
 310        env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
 311        env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
 312    }
 313
 314    if (!cpu->vhyp) {
 315        ppc_store_sdr1(env, env->spr[SPR_SDR1]);
 316    }
 317
 318    post_load_update_msr(env);
 319
 320    return 0;
 321}
 322
 323static bool fpu_needed(void *opaque)
 324{
 325    PowerPCCPU *cpu = opaque;
 326
 327    return cpu->env.insns_flags & PPC_FLOAT;
 328}
 329
 330static const VMStateDescription vmstate_fpu = {
 331    .name = "cpu/fpu",
 332    .version_id = 1,
 333    .minimum_version_id = 1,
 334    .needed = fpu_needed,
 335    .fields = (VMStateField[]) {
 336        VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
 337        VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
 338        VMSTATE_END_OF_LIST()
 339    },
 340};
 341
 342static bool altivec_needed(void *opaque)
 343{
 344    PowerPCCPU *cpu = opaque;
 345
 346    return cpu->env.insns_flags & PPC_ALTIVEC;
 347}
 348
 349static int get_vscr(QEMUFile *f, void *opaque, size_t size,
 350                    const VMStateField *field)
 351{
 352    PowerPCCPU *cpu = opaque;
 353    ppc_store_vscr(&cpu->env, qemu_get_be32(f));
 354    return 0;
 355}
 356
 357static int put_vscr(QEMUFile *f, void *opaque, size_t size,
 358                    const VMStateField *field, JSONWriter *vmdesc)
 359{
 360    PowerPCCPU *cpu = opaque;
 361    qemu_put_be32(f, ppc_get_vscr(&cpu->env));
 362    return 0;
 363}
 364
 365static const VMStateInfo vmstate_vscr = {
 366    .name = "cpu/altivec/vscr",
 367    .get = get_vscr,
 368    .put = put_vscr,
 369};
 370
 371static const VMStateDescription vmstate_altivec = {
 372    .name = "cpu/altivec",
 373    .version_id = 1,
 374    .minimum_version_id = 1,
 375    .needed = altivec_needed,
 376    .fields = (VMStateField[]) {
 377        VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
 378        /*
 379         * Save the architecture value of the vscr, not the internally
 380         * expanded version.  Since this architecture value does not
 381         * exist in memory to be stored, this requires a but of hoop
 382         * jumping.  We want OFFSET=0 so that we effectively pass CPU
 383         * to the helper functions.
 384         */
 385        {
 386            .name = "vscr",
 387            .version_id = 0,
 388            .size = sizeof(uint32_t),
 389            .info = &vmstate_vscr,
 390            .flags = VMS_SINGLE,
 391            .offset = 0
 392        },
 393        VMSTATE_END_OF_LIST()
 394    },
 395};
 396
 397static bool vsx_needed(void *opaque)
 398{
 399    PowerPCCPU *cpu = opaque;
 400
 401    return cpu->env.insns_flags2 & PPC2_VSX;
 402}
 403
 404static const VMStateDescription vmstate_vsx = {
 405    .name = "cpu/vsx",
 406    .version_id = 1,
 407    .minimum_version_id = 1,
 408    .needed = vsx_needed,
 409    .fields = (VMStateField[]) {
 410        VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
 411        VMSTATE_END_OF_LIST()
 412    },
 413};
 414
 415#ifdef TARGET_PPC64
 416/* Transactional memory state */
 417static bool tm_needed(void *opaque)
 418{
 419    PowerPCCPU *cpu = opaque;
 420    CPUPPCState *env = &cpu->env;
 421    return FIELD_EX64(env->msr, MSR, TS);
 422}
 423
 424static const VMStateDescription vmstate_tm = {
 425    .name = "cpu/tm",
 426    .version_id = 1,
 427    .minimum_version_id = 1,
 428    .needed = tm_needed,
 429    .fields      = (VMStateField []) {
 430        VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
 431        VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
 432        VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
 433        VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
 434        VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
 435        VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
 436        VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
 437        VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
 438        VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
 439        VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
 440        VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
 441        VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
 442        VMSTATE_END_OF_LIST()
 443    },
 444};
 445#endif
 446
 447static bool sr_needed(void *opaque)
 448{
 449#ifdef TARGET_PPC64
 450    PowerPCCPU *cpu = opaque;
 451
 452    return !mmu_is_64bit(cpu->env.mmu_model);
 453#else
 454    return true;
 455#endif
 456}
 457
 458static const VMStateDescription vmstate_sr = {
 459    .name = "cpu/sr",
 460    .version_id = 1,
 461    .minimum_version_id = 1,
 462    .needed = sr_needed,
 463    .fields = (VMStateField[]) {
 464        VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
 465        VMSTATE_END_OF_LIST()
 466    },
 467};
 468
 469#ifdef TARGET_PPC64
 470static int get_slbe(QEMUFile *f, void *pv, size_t size,
 471                    const VMStateField *field)
 472{
 473    ppc_slb_t *v = pv;
 474
 475    v->esid = qemu_get_be64(f);
 476    v->vsid = qemu_get_be64(f);
 477
 478    return 0;
 479}
 480
 481static int put_slbe(QEMUFile *f, void *pv, size_t size,
 482                    const VMStateField *field, JSONWriter *vmdesc)
 483{
 484    ppc_slb_t *v = pv;
 485
 486    qemu_put_be64(f, v->esid);
 487    qemu_put_be64(f, v->vsid);
 488    return 0;
 489}
 490
 491static const VMStateInfo vmstate_info_slbe = {
 492    .name = "slbe",
 493    .get  = get_slbe,
 494    .put  = put_slbe,
 495};
 496
 497#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
 498    VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
 499
 500#define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
 501    VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
 502
 503static bool slb_needed(void *opaque)
 504{
 505    PowerPCCPU *cpu = opaque;
 506
 507    /* We don't support any of the old segment table based 64-bit CPUs */
 508    return mmu_is_64bit(cpu->env.mmu_model);
 509}
 510
 511static int slb_post_load(void *opaque, int version_id)
 512{
 513    PowerPCCPU *cpu = opaque;
 514    CPUPPCState *env = &cpu->env;
 515    int i;
 516
 517    /*
 518     * We've pulled in the raw esid and vsid values from the migration
 519     * stream, but we need to recompute the page size pointers
 520     */
 521    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
 522        if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
 523            /* Migration source had bad values in its SLB */
 524            return -1;
 525        }
 526    }
 527
 528    return 0;
 529}
 530
 531static const VMStateDescription vmstate_slb = {
 532    .name = "cpu/slb",
 533    .version_id = 1,
 534    .minimum_version_id = 1,
 535    .needed = slb_needed,
 536    .post_load = slb_post_load,
 537    .fields = (VMStateField[]) {
 538        VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
 539        VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
 540        VMSTATE_END_OF_LIST()
 541    }
 542};
 543#endif /* TARGET_PPC64 */
 544
 545static const VMStateDescription vmstate_tlb6xx_entry = {
 546    .name = "cpu/tlb6xx_entry",
 547    .version_id = 1,
 548    .minimum_version_id = 1,
 549    .fields = (VMStateField[]) {
 550        VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
 551        VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
 552        VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
 553        VMSTATE_END_OF_LIST()
 554    },
 555};
 556
 557static bool tlb6xx_needed(void *opaque)
 558{
 559    PowerPCCPU *cpu = opaque;
 560    CPUPPCState *env = &cpu->env;
 561
 562    return env->nb_tlb && (env->tlb_type == TLB_6XX);
 563}
 564
 565static const VMStateDescription vmstate_tlb6xx = {
 566    .name = "cpu/tlb6xx",
 567    .version_id = 1,
 568    .minimum_version_id = 1,
 569    .needed = tlb6xx_needed,
 570    .fields = (VMStateField[]) {
 571        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 572        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
 573                                            env.nb_tlb,
 574                                            vmstate_tlb6xx_entry,
 575                                            ppc6xx_tlb_t),
 576        VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
 577        VMSTATE_END_OF_LIST()
 578    }
 579};
 580
 581static const VMStateDescription vmstate_tlbemb_entry = {
 582    .name = "cpu/tlbemb_entry",
 583    .version_id = 1,
 584    .minimum_version_id = 1,
 585    .fields = (VMStateField[]) {
 586        VMSTATE_UINT64(RPN, ppcemb_tlb_t),
 587        VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
 588        VMSTATE_UINTTL(PID, ppcemb_tlb_t),
 589        VMSTATE_UINTTL(size, ppcemb_tlb_t),
 590        VMSTATE_UINT32(prot, ppcemb_tlb_t),
 591        VMSTATE_UINT32(attr, ppcemb_tlb_t),
 592        VMSTATE_END_OF_LIST()
 593    },
 594};
 595
 596static bool tlbemb_needed(void *opaque)
 597{
 598    PowerPCCPU *cpu = opaque;
 599    CPUPPCState *env = &cpu->env;
 600
 601    return env->nb_tlb && (env->tlb_type == TLB_EMB);
 602}
 603
 604static const VMStateDescription vmstate_tlbemb = {
 605    .name = "cpu/tlb6xx",
 606    .version_id = 1,
 607    .minimum_version_id = 1,
 608    .needed = tlbemb_needed,
 609    .fields = (VMStateField[]) {
 610        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 611        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
 612                                            env.nb_tlb,
 613                                            vmstate_tlbemb_entry,
 614                                            ppcemb_tlb_t),
 615        VMSTATE_END_OF_LIST()
 616    },
 617};
 618
 619static const VMStateDescription vmstate_tlbmas_entry = {
 620    .name = "cpu/tlbmas_entry",
 621    .version_id = 1,
 622    .minimum_version_id = 1,
 623    .fields = (VMStateField[]) {
 624        VMSTATE_UINT32(mas8, ppcmas_tlb_t),
 625        VMSTATE_UINT32(mas1, ppcmas_tlb_t),
 626        VMSTATE_UINT64(mas2, ppcmas_tlb_t),
 627        VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
 628        VMSTATE_END_OF_LIST()
 629    },
 630};
 631
 632static bool tlbmas_needed(void *opaque)
 633{
 634    PowerPCCPU *cpu = opaque;
 635    CPUPPCState *env = &cpu->env;
 636
 637    return env->nb_tlb && (env->tlb_type == TLB_MAS);
 638}
 639
 640static const VMStateDescription vmstate_tlbmas = {
 641    .name = "cpu/tlbmas",
 642    .version_id = 1,
 643    .minimum_version_id = 1,
 644    .needed = tlbmas_needed,
 645    .fields = (VMStateField[]) {
 646        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 647        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
 648                                            env.nb_tlb,
 649                                            vmstate_tlbmas_entry,
 650                                            ppcmas_tlb_t),
 651        VMSTATE_END_OF_LIST()
 652    }
 653};
 654
 655static bool compat_needed(void *opaque)
 656{
 657    PowerPCCPU *cpu = opaque;
 658
 659    assert(!(cpu->compat_pvr && !cpu->vhyp));
 660    return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
 661}
 662
 663static const VMStateDescription vmstate_compat = {
 664    .name = "cpu/compat",
 665    .version_id = 1,
 666    .minimum_version_id = 1,
 667    .needed = compat_needed,
 668    .fields = (VMStateField[]) {
 669        VMSTATE_UINT32(compat_pvr, PowerPCCPU),
 670        VMSTATE_END_OF_LIST()
 671    }
 672};
 673
 674const VMStateDescription vmstate_ppc_cpu = {
 675    .name = "cpu",
 676    .version_id = 5,
 677    .minimum_version_id = 5,
 678    .pre_save = cpu_pre_save,
 679    .post_load = cpu_post_load,
 680    .fields = (VMStateField[]) {
 681        VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
 682
 683        /* User mode architected state */
 684        VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
 685#if !defined(TARGET_PPC64)
 686        VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
 687#endif
 688        VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
 689        VMSTATE_UINTTL(env.nip, PowerPCCPU),
 690
 691        /* SPRs */
 692        VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
 693        VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
 694
 695        /* Reservation */
 696        VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
 697
 698        /* Supervisor mode architected state */
 699        VMSTATE_UINTTL(env.msr, PowerPCCPU),
 700
 701        /* Backward compatible internal state */
 702        VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
 703
 704        /* Sanity checking */
 705        VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
 706        VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
 707        VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
 708                            cpu_pre_2_8_migration),
 709        VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
 710        VMSTATE_END_OF_LIST()
 711    },
 712    .subsections = (const VMStateDescription*[]) {
 713        &vmstate_fpu,
 714        &vmstate_altivec,
 715        &vmstate_vsx,
 716        &vmstate_sr,
 717#ifdef TARGET_PPC64
 718        &vmstate_tm,
 719        &vmstate_slb,
 720#endif /* TARGET_PPC64 */
 721        &vmstate_tlb6xx,
 722        &vmstate_tlbemb,
 723        &vmstate_tlbmas,
 724        &vmstate_compat,
 725        NULL
 726    }
 727};
 728