qemu/accel/kvm/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include "qemu/osdep.h"
  17#include <sys/ioctl.h>
  18#include <poll.h>
  19
  20#include <linux/kvm.h>
  21
  22#include "qemu/atomic.h"
  23#include "qemu/option.h"
  24#include "qemu/config-file.h"
  25#include "qemu/error-report.h"
  26#include "qapi/error.h"
  27#include "hw/pci/msi.h"
  28#include "hw/pci/msix.h"
  29#include "hw/s390x/adapter.h"
  30#include "exec/gdbstub.h"
  31#include "sysemu/kvm_int.h"
  32#include "sysemu/runstate.h"
  33#include "sysemu/cpus.h"
  34#include "qemu/bswap.h"
  35#include "exec/memory.h"
  36#include "exec/ram_addr.h"
  37#include "qemu/event_notifier.h"
  38#include "qemu/main-loop.h"
  39#include "trace.h"
  40#include "hw/irq.h"
  41#include "qapi/visitor.h"
  42#include "qapi/qapi-types-common.h"
  43#include "qapi/qapi-visit-common.h"
  44#include "sysemu/reset.h"
  45#include "qemu/guest-random.h"
  46#include "sysemu/hw_accel.h"
  47#include "kvm-cpus.h"
  48#include "sysemu/dirtylimit.h"
  49
  50#include "hw/boards.h"
  51#include "monitor/stats.h"
  52
  53/* This check must be after config-host.h is included */
  54#ifdef CONFIG_EVENTFD
  55#include <sys/eventfd.h>
  56#endif
  57
  58/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
  59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
  60 */
  61#ifdef PAGE_SIZE
  62#undef PAGE_SIZE
  63#endif
  64#define PAGE_SIZE qemu_real_host_page_size()
  65
  66#ifndef KVM_GUESTDBG_BLOCKIRQ
  67#define KVM_GUESTDBG_BLOCKIRQ 0
  68#endif
  69
  70//#define DEBUG_KVM
  71
  72#ifdef DEBUG_KVM
  73#define DPRINTF(fmt, ...) \
  74    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  75#else
  76#define DPRINTF(fmt, ...) \
  77    do { } while (0)
  78#endif
  79
  80struct KVMParkedVcpu {
  81    unsigned long vcpu_id;
  82    int kvm_fd;
  83    QLIST_ENTRY(KVMParkedVcpu) node;
  84};
  85
  86KVMState *kvm_state;
  87bool kvm_kernel_irqchip;
  88bool kvm_split_irqchip;
  89bool kvm_async_interrupts_allowed;
  90bool kvm_halt_in_kernel_allowed;
  91bool kvm_eventfds_allowed;
  92bool kvm_irqfds_allowed;
  93bool kvm_resamplefds_allowed;
  94bool kvm_msi_via_irqfd_allowed;
  95bool kvm_gsi_routing_allowed;
  96bool kvm_gsi_direct_mapping;
  97bool kvm_allowed;
  98bool kvm_readonly_mem_allowed;
  99bool kvm_vm_attributes_allowed;
 100bool kvm_direct_msi_allowed;
 101bool kvm_ioeventfd_any_length_allowed;
 102bool kvm_msi_use_devid;
 103bool kvm_has_guest_debug;
 104static int kvm_sstep_flags;
 105static bool kvm_immediate_exit;
 106static hwaddr kvm_max_slot_size = ~0;
 107
 108static const KVMCapabilityInfo kvm_required_capabilites[] = {
 109    KVM_CAP_INFO(USER_MEMORY),
 110    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 111    KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
 112    KVM_CAP_LAST_INFO
 113};
 114
 115static NotifierList kvm_irqchip_change_notifiers =
 116    NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
 117
 118struct KVMResampleFd {
 119    int gsi;
 120    EventNotifier *resample_event;
 121    QLIST_ENTRY(KVMResampleFd) node;
 122};
 123typedef struct KVMResampleFd KVMResampleFd;
 124
 125/*
 126 * Only used with split irqchip where we need to do the resample fd
 127 * kick for the kernel from userspace.
 128 */
 129static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
 130    QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
 131
 132static QemuMutex kml_slots_lock;
 133
 134#define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
 135#define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
 136
 137static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
 138
 139static inline void kvm_resample_fd_remove(int gsi)
 140{
 141    KVMResampleFd *rfd;
 142
 143    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 144        if (rfd->gsi == gsi) {
 145            QLIST_REMOVE(rfd, node);
 146            g_free(rfd);
 147            break;
 148        }
 149    }
 150}
 151
 152static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
 153{
 154    KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
 155
 156    rfd->gsi = gsi;
 157    rfd->resample_event = event;
 158
 159    QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
 160}
 161
 162void kvm_resample_fd_notify(int gsi)
 163{
 164    KVMResampleFd *rfd;
 165
 166    QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
 167        if (rfd->gsi == gsi) {
 168            event_notifier_set(rfd->resample_event);
 169            trace_kvm_resample_fd_notify(gsi);
 170            return;
 171        }
 172    }
 173}
 174
 175int kvm_get_max_memslots(void)
 176{
 177    KVMState *s = KVM_STATE(current_accel());
 178
 179    return s->nr_slots;
 180}
 181
 182/* Called with KVMMemoryListener.slots_lock held */
 183static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 184{
 185    KVMState *s = kvm_state;
 186    int i;
 187
 188    for (i = 0; i < s->nr_slots; i++) {
 189        if (kml->slots[i].memory_size == 0) {
 190            return &kml->slots[i];
 191        }
 192    }
 193
 194    return NULL;
 195}
 196
 197bool kvm_has_free_slot(MachineState *ms)
 198{
 199    KVMState *s = KVM_STATE(ms->accelerator);
 200    bool result;
 201    KVMMemoryListener *kml = &s->memory_listener;
 202
 203    kvm_slots_lock();
 204    result = !!kvm_get_free_slot(kml);
 205    kvm_slots_unlock();
 206
 207    return result;
 208}
 209
 210/* Called with KVMMemoryListener.slots_lock held */
 211static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 212{
 213    KVMSlot *slot = kvm_get_free_slot(kml);
 214
 215    if (slot) {
 216        return slot;
 217    }
 218
 219    fprintf(stderr, "%s: no free slot available\n", __func__);
 220    abort();
 221}
 222
 223static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 224                                         hwaddr start_addr,
 225                                         hwaddr size)
 226{
 227    KVMState *s = kvm_state;
 228    int i;
 229
 230    for (i = 0; i < s->nr_slots; i++) {
 231        KVMSlot *mem = &kml->slots[i];
 232
 233        if (start_addr == mem->start_addr && size == mem->memory_size) {
 234            return mem;
 235        }
 236    }
 237
 238    return NULL;
 239}
 240
 241/*
 242 * Calculate and align the start address and the size of the section.
 243 * Return the size. If the size is 0, the aligned section is empty.
 244 */
 245static hwaddr kvm_align_section(MemoryRegionSection *section,
 246                                hwaddr *start)
 247{
 248    hwaddr size = int128_get64(section->size);
 249    hwaddr delta, aligned;
 250
 251    /* kvm works in page size chunks, but the function may be called
 252       with sub-page size and unaligned start address. Pad the start
 253       address to next and truncate size to previous page boundary. */
 254    aligned = ROUND_UP(section->offset_within_address_space,
 255                       qemu_real_host_page_size());
 256    delta = aligned - section->offset_within_address_space;
 257    *start = aligned;
 258    if (delta > size) {
 259        return 0;
 260    }
 261
 262    return (size - delta) & qemu_real_host_page_mask();
 263}
 264
 265int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 266                                       hwaddr *phys_addr)
 267{
 268    KVMMemoryListener *kml = &s->memory_listener;
 269    int i, ret = 0;
 270
 271    kvm_slots_lock();
 272    for (i = 0; i < s->nr_slots; i++) {
 273        KVMSlot *mem = &kml->slots[i];
 274
 275        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 276            *phys_addr = mem->start_addr + (ram - mem->ram);
 277            ret = 1;
 278            break;
 279        }
 280    }
 281    kvm_slots_unlock();
 282
 283    return ret;
 284}
 285
 286static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
 287{
 288    KVMState *s = kvm_state;
 289    struct kvm_userspace_memory_region mem;
 290    int ret;
 291
 292    mem.slot = slot->slot | (kml->as_id << 16);
 293    mem.guest_phys_addr = slot->start_addr;
 294    mem.userspace_addr = (unsigned long)slot->ram;
 295    mem.flags = slot->flags;
 296
 297    if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
 298        /* Set the slot size to 0 before setting the slot to the desired
 299         * value. This is needed based on KVM commit 75d61fbc. */
 300        mem.memory_size = 0;
 301        ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 302        if (ret < 0) {
 303            goto err;
 304        }
 305    }
 306    mem.memory_size = slot->memory_size;
 307    ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 308    slot->old_flags = mem.flags;
 309err:
 310    trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
 311                              mem.memory_size, mem.userspace_addr, ret);
 312    if (ret < 0) {
 313        error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
 314                     " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
 315                     __func__, mem.slot, slot->start_addr,
 316                     (uint64_t)mem.memory_size, strerror(errno));
 317    }
 318    return ret;
 319}
 320
 321static int do_kvm_destroy_vcpu(CPUState *cpu)
 322{
 323    KVMState *s = kvm_state;
 324    long mmap_size;
 325    struct KVMParkedVcpu *vcpu = NULL;
 326    int ret = 0;
 327
 328    DPRINTF("kvm_destroy_vcpu\n");
 329
 330    ret = kvm_arch_destroy_vcpu(cpu);
 331    if (ret < 0) {
 332        goto err;
 333    }
 334
 335    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 336    if (mmap_size < 0) {
 337        ret = mmap_size;
 338        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 339        goto err;
 340    }
 341
 342    ret = munmap(cpu->kvm_run, mmap_size);
 343    if (ret < 0) {
 344        goto err;
 345    }
 346
 347    if (cpu->kvm_dirty_gfns) {
 348        ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
 349        if (ret < 0) {
 350            goto err;
 351        }
 352    }
 353
 354    vcpu = g_malloc0(sizeof(*vcpu));
 355    vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
 356    vcpu->kvm_fd = cpu->kvm_fd;
 357    QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
 358err:
 359    return ret;
 360}
 361
 362void kvm_destroy_vcpu(CPUState *cpu)
 363{
 364    if (do_kvm_destroy_vcpu(cpu) < 0) {
 365        error_report("kvm_destroy_vcpu failed");
 366        exit(EXIT_FAILURE);
 367    }
 368}
 369
 370static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
 371{
 372    struct KVMParkedVcpu *cpu;
 373
 374    QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
 375        if (cpu->vcpu_id == vcpu_id) {
 376            int kvm_fd;
 377
 378            QLIST_REMOVE(cpu, node);
 379            kvm_fd = cpu->kvm_fd;
 380            g_free(cpu);
 381            return kvm_fd;
 382        }
 383    }
 384
 385    return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
 386}
 387
 388int kvm_init_vcpu(CPUState *cpu, Error **errp)
 389{
 390    KVMState *s = kvm_state;
 391    long mmap_size;
 392    int ret;
 393
 394    trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
 395
 396    ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
 397    if (ret < 0) {
 398        error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
 399                         kvm_arch_vcpu_id(cpu));
 400        goto err;
 401    }
 402
 403    cpu->kvm_fd = ret;
 404    cpu->kvm_state = s;
 405    cpu->vcpu_dirty = true;
 406    cpu->dirty_pages = 0;
 407    cpu->throttle_us_per_full = 0;
 408
 409    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 410    if (mmap_size < 0) {
 411        ret = mmap_size;
 412        error_setg_errno(errp, -mmap_size,
 413                         "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
 414        goto err;
 415    }
 416
 417    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 418                        cpu->kvm_fd, 0);
 419    if (cpu->kvm_run == MAP_FAILED) {
 420        ret = -errno;
 421        error_setg_errno(errp, ret,
 422                         "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
 423                         kvm_arch_vcpu_id(cpu));
 424        goto err;
 425    }
 426
 427    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 428        s->coalesced_mmio_ring =
 429            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 430    }
 431
 432    if (s->kvm_dirty_ring_size) {
 433        /* Use MAP_SHARED to share pages with the kernel */
 434        cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
 435                                   PROT_READ | PROT_WRITE, MAP_SHARED,
 436                                   cpu->kvm_fd,
 437                                   PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
 438        if (cpu->kvm_dirty_gfns == MAP_FAILED) {
 439            ret = -errno;
 440            DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
 441            goto err;
 442        }
 443    }
 444
 445    ret = kvm_arch_init_vcpu(cpu);
 446    if (ret < 0) {
 447        error_setg_errno(errp, -ret,
 448                         "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
 449                         kvm_arch_vcpu_id(cpu));
 450    }
 451err:
 452    return ret;
 453}
 454
 455/*
 456 * dirty pages logging control
 457 */
 458
 459static int kvm_mem_flags(MemoryRegion *mr)
 460{
 461    bool readonly = mr->readonly || memory_region_is_romd(mr);
 462    int flags = 0;
 463
 464    if (memory_region_get_dirty_log_mask(mr) != 0) {
 465        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 466    }
 467    if (readonly && kvm_readonly_mem_allowed) {
 468        flags |= KVM_MEM_READONLY;
 469    }
 470    return flags;
 471}
 472
 473/* Called with KVMMemoryListener.slots_lock held */
 474static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 475                                 MemoryRegion *mr)
 476{
 477    mem->flags = kvm_mem_flags(mr);
 478
 479    /* If nothing changed effectively, no need to issue ioctl */
 480    if (mem->flags == mem->old_flags) {
 481        return 0;
 482    }
 483
 484    kvm_slot_init_dirty_bitmap(mem);
 485    return kvm_set_user_memory_region(kml, mem, false);
 486}
 487
 488static int kvm_section_update_flags(KVMMemoryListener *kml,
 489                                    MemoryRegionSection *section)
 490{
 491    hwaddr start_addr, size, slot_size;
 492    KVMSlot *mem;
 493    int ret = 0;
 494
 495    size = kvm_align_section(section, &start_addr);
 496    if (!size) {
 497        return 0;
 498    }
 499
 500    kvm_slots_lock();
 501
 502    while (size && !ret) {
 503        slot_size = MIN(kvm_max_slot_size, size);
 504        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 505        if (!mem) {
 506            /* We don't have a slot if we want to trap every access. */
 507            goto out;
 508        }
 509
 510        ret = kvm_slot_update_flags(kml, mem, section->mr);
 511        start_addr += slot_size;
 512        size -= slot_size;
 513    }
 514
 515out:
 516    kvm_slots_unlock();
 517    return ret;
 518}
 519
 520static void kvm_log_start(MemoryListener *listener,
 521                          MemoryRegionSection *section,
 522                          int old, int new)
 523{
 524    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 525    int r;
 526
 527    if (old != 0) {
 528        return;
 529    }
 530
 531    r = kvm_section_update_flags(kml, section);
 532    if (r < 0) {
 533        abort();
 534    }
 535}
 536
 537static void kvm_log_stop(MemoryListener *listener,
 538                          MemoryRegionSection *section,
 539                          int old, int new)
 540{
 541    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 542    int r;
 543
 544    if (new != 0) {
 545        return;
 546    }
 547
 548    r = kvm_section_update_flags(kml, section);
 549    if (r < 0) {
 550        abort();
 551    }
 552}
 553
 554/* get kvm's dirty pages bitmap and update qemu's */
 555static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
 556{
 557    ram_addr_t start = slot->ram_start_offset;
 558    ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
 559
 560    cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
 561}
 562
 563static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
 564{
 565    memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
 566}
 567
 568#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 569
 570/* Allocate the dirty bitmap for a slot  */
 571static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
 572{
 573    if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
 574        return;
 575    }
 576
 577    /*
 578     * XXX bad kernel interface alert
 579     * For dirty bitmap, kernel allocates array of size aligned to
 580     * bits-per-long.  But for case when the kernel is 64bits and
 581     * the userspace is 32bits, userspace can't align to the same
 582     * bits-per-long, since sizeof(long) is different between kernel
 583     * and user space.  This way, userspace will provide buffer which
 584     * may be 4 bytes less than the kernel will use, resulting in
 585     * userspace memory corruption (which is not detectable by valgrind
 586     * too, in most cases).
 587     * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 588     * a hope that sizeof(long) won't become >8 any time soon.
 589     *
 590     * Note: the granule of kvm dirty log is qemu_real_host_page_size.
 591     * And mem->memory_size is aligned to it (otherwise this mem can't
 592     * be registered to KVM).
 593     */
 594    hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
 595                                        /*HOST_LONG_BITS*/ 64) / 8;
 596    mem->dirty_bmap = g_malloc0(bitmap_size);
 597    mem->dirty_bmap_size = bitmap_size;
 598}
 599
 600/*
 601 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
 602 * succeeded, false otherwise
 603 */
 604static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
 605{
 606    struct kvm_dirty_log d = {};
 607    int ret;
 608
 609    d.dirty_bitmap = slot->dirty_bmap;
 610    d.slot = slot->slot | (slot->as_id << 16);
 611    ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
 612
 613    if (ret == -ENOENT) {
 614        /* kernel does not have dirty bitmap in this slot */
 615        ret = 0;
 616    }
 617    if (ret) {
 618        error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
 619                          __func__, ret);
 620    }
 621    return ret == 0;
 622}
 623
 624/* Should be with all slots_lock held for the address spaces. */
 625static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
 626                                     uint32_t slot_id, uint64_t offset)
 627{
 628    KVMMemoryListener *kml;
 629    KVMSlot *mem;
 630
 631    if (as_id >= s->nr_as) {
 632        return;
 633    }
 634
 635    kml = s->as[as_id].ml;
 636    mem = &kml->slots[slot_id];
 637
 638    if (!mem->memory_size || offset >=
 639        (mem->memory_size / qemu_real_host_page_size())) {
 640        return;
 641    }
 642
 643    set_bit(offset, mem->dirty_bmap);
 644}
 645
 646static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
 647{
 648    /*
 649     * Read the flags before the value.  Pairs with barrier in
 650     * KVM's kvm_dirty_ring_push() function.
 651     */
 652    return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
 653}
 654
 655static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
 656{
 657    /*
 658     * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
 659     * sees the full content of the ring:
 660     *
 661     * CPU0                     CPU1                         CPU2
 662     * ------------------------------------------------------------------------------
 663     *                                                       fill gfn0
 664     *                                                       store-rel flags for gfn0
 665     * load-acq flags for gfn0
 666     * store-rel RESET for gfn0
 667     *                          ioctl(RESET_RINGS)
 668     *                            load-acq flags for gfn0
 669     *                            check if flags have RESET
 670     *
 671     * The synchronization goes from CPU2 to CPU0 to CPU1.
 672     */
 673    qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
 674}
 675
 676/*
 677 * Should be with all slots_lock held for the address spaces.  It returns the
 678 * dirty page we've collected on this dirty ring.
 679 */
 680static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
 681{
 682    struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
 683    uint32_t ring_size = s->kvm_dirty_ring_size;
 684    uint32_t count = 0, fetch = cpu->kvm_fetch_index;
 685
 686    assert(dirty_gfns && ring_size);
 687    trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
 688
 689    while (true) {
 690        cur = &dirty_gfns[fetch % ring_size];
 691        if (!dirty_gfn_is_dirtied(cur)) {
 692            break;
 693        }
 694        kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
 695                                 cur->offset);
 696        dirty_gfn_set_collected(cur);
 697        trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
 698        fetch++;
 699        count++;
 700    }
 701    cpu->kvm_fetch_index = fetch;
 702    cpu->dirty_pages += count;
 703
 704    return count;
 705}
 706
 707/* Must be with slots_lock held */
 708static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
 709{
 710    int ret;
 711    uint64_t total = 0;
 712    int64_t stamp;
 713
 714    stamp = get_clock();
 715
 716    if (cpu) {
 717        total = kvm_dirty_ring_reap_one(s, cpu);
 718    } else {
 719        CPU_FOREACH(cpu) {
 720            total += kvm_dirty_ring_reap_one(s, cpu);
 721        }
 722    }
 723
 724    if (total) {
 725        ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
 726        assert(ret == total);
 727    }
 728
 729    stamp = get_clock() - stamp;
 730
 731    if (total) {
 732        trace_kvm_dirty_ring_reap(total, stamp / 1000);
 733    }
 734
 735    return total;
 736}
 737
 738/*
 739 * Currently for simplicity, we must hold BQL before calling this.  We can
 740 * consider to drop the BQL if we're clear with all the race conditions.
 741 */
 742static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
 743{
 744    uint64_t total;
 745
 746    /*
 747     * We need to lock all kvm slots for all address spaces here,
 748     * because:
 749     *
 750     * (1) We need to mark dirty for dirty bitmaps in multiple slots
 751     *     and for tons of pages, so it's better to take the lock here
 752     *     once rather than once per page.  And more importantly,
 753     *
 754     * (2) We must _NOT_ publish dirty bits to the other threads
 755     *     (e.g., the migration thread) via the kvm memory slot dirty
 756     *     bitmaps before correctly re-protect those dirtied pages.
 757     *     Otherwise we can have potential risk of data corruption if
 758     *     the page data is read in the other thread before we do
 759     *     reset below.
 760     */
 761    kvm_slots_lock();
 762    total = kvm_dirty_ring_reap_locked(s, cpu);
 763    kvm_slots_unlock();
 764
 765    return total;
 766}
 767
 768static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
 769{
 770    /* No need to do anything */
 771}
 772
 773/*
 774 * Kick all vcpus out in a synchronized way.  When returned, we
 775 * guarantee that every vcpu has been kicked and at least returned to
 776 * userspace once.
 777 */
 778static void kvm_cpu_synchronize_kick_all(void)
 779{
 780    CPUState *cpu;
 781
 782    CPU_FOREACH(cpu) {
 783        run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
 784    }
 785}
 786
 787/*
 788 * Flush all the existing dirty pages to the KVM slot buffers.  When
 789 * this call returns, we guarantee that all the touched dirty pages
 790 * before calling this function have been put into the per-kvmslot
 791 * dirty bitmap.
 792 *
 793 * This function must be called with BQL held.
 794 */
 795static void kvm_dirty_ring_flush(void)
 796{
 797    trace_kvm_dirty_ring_flush(0);
 798    /*
 799     * The function needs to be serialized.  Since this function
 800     * should always be with BQL held, serialization is guaranteed.
 801     * However, let's be sure of it.
 802     */
 803    assert(qemu_mutex_iothread_locked());
 804    /*
 805     * First make sure to flush the hardware buffers by kicking all
 806     * vcpus out in a synchronous way.
 807     */
 808    kvm_cpu_synchronize_kick_all();
 809    kvm_dirty_ring_reap(kvm_state, NULL);
 810    trace_kvm_dirty_ring_flush(1);
 811}
 812
 813/**
 814 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
 815 *
 816 * This function will first try to fetch dirty bitmap from the kernel,
 817 * and then updates qemu's dirty bitmap.
 818 *
 819 * NOTE: caller must be with kml->slots_lock held.
 820 *
 821 * @kml: the KVM memory listener object
 822 * @section: the memory section to sync the dirty bitmap with
 823 */
 824static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 825                                           MemoryRegionSection *section)
 826{
 827    KVMState *s = kvm_state;
 828    KVMSlot *mem;
 829    hwaddr start_addr, size;
 830    hwaddr slot_size;
 831
 832    size = kvm_align_section(section, &start_addr);
 833    while (size) {
 834        slot_size = MIN(kvm_max_slot_size, size);
 835        mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
 836        if (!mem) {
 837            /* We don't have a slot if we want to trap every access. */
 838            return;
 839        }
 840        if (kvm_slot_get_dirty_log(s, mem)) {
 841            kvm_slot_sync_dirty_pages(mem);
 842        }
 843        start_addr += slot_size;
 844        size -= slot_size;
 845    }
 846}
 847
 848/* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
 849#define KVM_CLEAR_LOG_SHIFT  6
 850#define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
 851#define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
 852
 853static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
 854                                  uint64_t size)
 855{
 856    KVMState *s = kvm_state;
 857    uint64_t end, bmap_start, start_delta, bmap_npages;
 858    struct kvm_clear_dirty_log d;
 859    unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
 860    int ret;
 861
 862    /*
 863     * We need to extend either the start or the size or both to
 864     * satisfy the KVM interface requirement.  Firstly, do the start
 865     * page alignment on 64 host pages
 866     */
 867    bmap_start = start & KVM_CLEAR_LOG_MASK;
 868    start_delta = start - bmap_start;
 869    bmap_start /= psize;
 870
 871    /*
 872     * The kernel interface has restriction on the size too, that either:
 873     *
 874     * (1) the size is 64 host pages aligned (just like the start), or
 875     * (2) the size fills up until the end of the KVM memslot.
 876     */
 877    bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
 878        << KVM_CLEAR_LOG_SHIFT;
 879    end = mem->memory_size / psize;
 880    if (bmap_npages > end - bmap_start) {
 881        bmap_npages = end - bmap_start;
 882    }
 883    start_delta /= psize;
 884
 885    /*
 886     * Prepare the bitmap to clear dirty bits.  Here we must guarantee
 887     * that we won't clear any unknown dirty bits otherwise we might
 888     * accidentally clear some set bits which are not yet synced from
 889     * the kernel into QEMU's bitmap, then we'll lose track of the
 890     * guest modifications upon those pages (which can directly lead
 891     * to guest data loss or panic after migration).
 892     *
 893     * Layout of the KVMSlot.dirty_bmap:
 894     *
 895     *                   |<-------- bmap_npages -----------..>|
 896     *                                                     [1]
 897     *                     start_delta         size
 898     *  |----------------|-------------|------------------|------------|
 899     *  ^                ^             ^                               ^
 900     *  |                |             |                               |
 901     * start          bmap_start     (start)                         end
 902     * of memslot                                             of memslot
 903     *
 904     * [1] bmap_npages can be aligned to either 64 pages or the end of slot
 905     */
 906
 907    assert(bmap_start % BITS_PER_LONG == 0);
 908    /* We should never do log_clear before log_sync */
 909    assert(mem->dirty_bmap);
 910    if (start_delta || bmap_npages - size / psize) {
 911        /* Slow path - we need to manipulate a temp bitmap */
 912        bmap_clear = bitmap_new(bmap_npages);
 913        bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
 914                                    bmap_start, start_delta + size / psize);
 915        /*
 916         * We need to fill the holes at start because that was not
 917         * specified by the caller and we extended the bitmap only for
 918         * 64 pages alignment
 919         */
 920        bitmap_clear(bmap_clear, 0, start_delta);
 921        d.dirty_bitmap = bmap_clear;
 922    } else {
 923        /*
 924         * Fast path - both start and size align well with BITS_PER_LONG
 925         * (or the end of memory slot)
 926         */
 927        d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
 928    }
 929
 930    d.first_page = bmap_start;
 931    /* It should never overflow.  If it happens, say something */
 932    assert(bmap_npages <= UINT32_MAX);
 933    d.num_pages = bmap_npages;
 934    d.slot = mem->slot | (as_id << 16);
 935
 936    ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
 937    if (ret < 0 && ret != -ENOENT) {
 938        error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
 939                     "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
 940                     __func__, d.slot, (uint64_t)d.first_page,
 941                     (uint32_t)d.num_pages, ret);
 942    } else {
 943        ret = 0;
 944        trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
 945    }
 946
 947    /*
 948     * After we have updated the remote dirty bitmap, we update the
 949     * cached bitmap as well for the memslot, then if another user
 950     * clears the same region we know we shouldn't clear it again on
 951     * the remote otherwise it's data loss as well.
 952     */
 953    bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
 954                 size / psize);
 955    /* This handles the NULL case well */
 956    g_free(bmap_clear);
 957    return ret;
 958}
 959
 960
 961/**
 962 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
 963 *
 964 * NOTE: this will be a no-op if we haven't enabled manual dirty log
 965 * protection in the host kernel because in that case this operation
 966 * will be done within log_sync().
 967 *
 968 * @kml:     the kvm memory listener
 969 * @section: the memory range to clear dirty bitmap
 970 */
 971static int kvm_physical_log_clear(KVMMemoryListener *kml,
 972                                  MemoryRegionSection *section)
 973{
 974    KVMState *s = kvm_state;
 975    uint64_t start, size, offset, count;
 976    KVMSlot *mem;
 977    int ret = 0, i;
 978
 979    if (!s->manual_dirty_log_protect) {
 980        /* No need to do explicit clear */
 981        return ret;
 982    }
 983
 984    start = section->offset_within_address_space;
 985    size = int128_get64(section->size);
 986
 987    if (!size) {
 988        /* Nothing more we can do... */
 989        return ret;
 990    }
 991
 992    kvm_slots_lock();
 993
 994    for (i = 0; i < s->nr_slots; i++) {
 995        mem = &kml->slots[i];
 996        /* Discard slots that are empty or do not overlap the section */
 997        if (!mem->memory_size ||
 998            mem->start_addr > start + size - 1 ||
 999            start > mem->start_addr + mem->memory_size - 1) {
1000            continue;
1001        }
1002
1003        if (start >= mem->start_addr) {
1004            /* The slot starts before section or is aligned to it.  */
1005            offset = start - mem->start_addr;
1006            count = MIN(mem->memory_size - offset, size);
1007        } else {
1008            /* The slot starts after section.  */
1009            offset = 0;
1010            count = MIN(mem->memory_size, size - (mem->start_addr - start));
1011        }
1012        ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1013        if (ret < 0) {
1014            break;
1015        }
1016    }
1017
1018    kvm_slots_unlock();
1019
1020    return ret;
1021}
1022
1023static void kvm_coalesce_mmio_region(MemoryListener *listener,
1024                                     MemoryRegionSection *secion,
1025                                     hwaddr start, hwaddr size)
1026{
1027    KVMState *s = kvm_state;
1028
1029    if (s->coalesced_mmio) {
1030        struct kvm_coalesced_mmio_zone zone;
1031
1032        zone.addr = start;
1033        zone.size = size;
1034        zone.pad = 0;
1035
1036        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1037    }
1038}
1039
1040static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1041                                       MemoryRegionSection *secion,
1042                                       hwaddr start, hwaddr size)
1043{
1044    KVMState *s = kvm_state;
1045
1046    if (s->coalesced_mmio) {
1047        struct kvm_coalesced_mmio_zone zone;
1048
1049        zone.addr = start;
1050        zone.size = size;
1051        zone.pad = 0;
1052
1053        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1054    }
1055}
1056
1057static void kvm_coalesce_pio_add(MemoryListener *listener,
1058                                MemoryRegionSection *section,
1059                                hwaddr start, hwaddr size)
1060{
1061    KVMState *s = kvm_state;
1062
1063    if (s->coalesced_pio) {
1064        struct kvm_coalesced_mmio_zone zone;
1065
1066        zone.addr = start;
1067        zone.size = size;
1068        zone.pio = 1;
1069
1070        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1071    }
1072}
1073
1074static void kvm_coalesce_pio_del(MemoryListener *listener,
1075                                MemoryRegionSection *section,
1076                                hwaddr start, hwaddr size)
1077{
1078    KVMState *s = kvm_state;
1079
1080    if (s->coalesced_pio) {
1081        struct kvm_coalesced_mmio_zone zone;
1082
1083        zone.addr = start;
1084        zone.size = size;
1085        zone.pio = 1;
1086
1087        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1088     }
1089}
1090
1091static MemoryListener kvm_coalesced_pio_listener = {
1092    .name = "kvm-coalesced-pio",
1093    .coalesced_io_add = kvm_coalesce_pio_add,
1094    .coalesced_io_del = kvm_coalesce_pio_del,
1095};
1096
1097int kvm_check_extension(KVMState *s, unsigned int extension)
1098{
1099    int ret;
1100
1101    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1102    if (ret < 0) {
1103        ret = 0;
1104    }
1105
1106    return ret;
1107}
1108
1109int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1110{
1111    int ret;
1112
1113    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1114    if (ret < 0) {
1115        /* VM wide version not implemented, use global one instead */
1116        ret = kvm_check_extension(s, extension);
1117    }
1118
1119    return ret;
1120}
1121
1122typedef struct HWPoisonPage {
1123    ram_addr_t ram_addr;
1124    QLIST_ENTRY(HWPoisonPage) list;
1125} HWPoisonPage;
1126
1127static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1128    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1129
1130static void kvm_unpoison_all(void *param)
1131{
1132    HWPoisonPage *page, *next_page;
1133
1134    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1135        QLIST_REMOVE(page, list);
1136        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1137        g_free(page);
1138    }
1139}
1140
1141void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1142{
1143    HWPoisonPage *page;
1144
1145    QLIST_FOREACH(page, &hwpoison_page_list, list) {
1146        if (page->ram_addr == ram_addr) {
1147            return;
1148        }
1149    }
1150    page = g_new(HWPoisonPage, 1);
1151    page->ram_addr = ram_addr;
1152    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1153}
1154
1155static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1156{
1157#if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1158    /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1159     * endianness, but the memory core hands them in target endianness.
1160     * For example, PPC is always treated as big-endian even if running
1161     * on KVM and on PPC64LE.  Correct here.
1162     */
1163    switch (size) {
1164    case 2:
1165        val = bswap16(val);
1166        break;
1167    case 4:
1168        val = bswap32(val);
1169        break;
1170    }
1171#endif
1172    return val;
1173}
1174
1175static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1176                                  bool assign, uint32_t size, bool datamatch)
1177{
1178    int ret;
1179    struct kvm_ioeventfd iofd = {
1180        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1181        .addr = addr,
1182        .len = size,
1183        .flags = 0,
1184        .fd = fd,
1185    };
1186
1187    trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1188                                 datamatch);
1189    if (!kvm_enabled()) {
1190        return -ENOSYS;
1191    }
1192
1193    if (datamatch) {
1194        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1195    }
1196    if (!assign) {
1197        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1198    }
1199
1200    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1201
1202    if (ret < 0) {
1203        return -errno;
1204    }
1205
1206    return 0;
1207}
1208
1209static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1210                                 bool assign, uint32_t size, bool datamatch)
1211{
1212    struct kvm_ioeventfd kick = {
1213        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1214        .addr = addr,
1215        .flags = KVM_IOEVENTFD_FLAG_PIO,
1216        .len = size,
1217        .fd = fd,
1218    };
1219    int r;
1220    trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1221    if (!kvm_enabled()) {
1222        return -ENOSYS;
1223    }
1224    if (datamatch) {
1225        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1226    }
1227    if (!assign) {
1228        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1229    }
1230    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1231    if (r < 0) {
1232        return r;
1233    }
1234    return 0;
1235}
1236
1237
1238static int kvm_check_many_ioeventfds(void)
1239{
1240    /* Userspace can use ioeventfd for io notification.  This requires a host
1241     * that supports eventfd(2) and an I/O thread; since eventfd does not
1242     * support SIGIO it cannot interrupt the vcpu.
1243     *
1244     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
1245     * can avoid creating too many ioeventfds.
1246     */
1247#if defined(CONFIG_EVENTFD)
1248    int ioeventfds[7];
1249    int i, ret = 0;
1250    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1251        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1252        if (ioeventfds[i] < 0) {
1253            break;
1254        }
1255        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1256        if (ret < 0) {
1257            close(ioeventfds[i]);
1258            break;
1259        }
1260    }
1261
1262    /* Decide whether many devices are supported or not */
1263    ret = i == ARRAY_SIZE(ioeventfds);
1264
1265    while (i-- > 0) {
1266        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1267        close(ioeventfds[i]);
1268    }
1269    return ret;
1270#else
1271    return 0;
1272#endif
1273}
1274
1275static const KVMCapabilityInfo *
1276kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1277{
1278    while (list->name) {
1279        if (!kvm_check_extension(s, list->value)) {
1280            return list;
1281        }
1282        list++;
1283    }
1284    return NULL;
1285}
1286
1287void kvm_set_max_memslot_size(hwaddr max_slot_size)
1288{
1289    g_assert(
1290        ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1291    );
1292    kvm_max_slot_size = max_slot_size;
1293}
1294
1295static void kvm_set_phys_mem(KVMMemoryListener *kml,
1296                             MemoryRegionSection *section, bool add)
1297{
1298    KVMSlot *mem;
1299    int err;
1300    MemoryRegion *mr = section->mr;
1301    bool writable = !mr->readonly && !mr->rom_device;
1302    hwaddr start_addr, size, slot_size, mr_offset;
1303    ram_addr_t ram_start_offset;
1304    void *ram;
1305
1306    if (!memory_region_is_ram(mr)) {
1307        if (writable || !kvm_readonly_mem_allowed) {
1308            return;
1309        } else if (!mr->romd_mode) {
1310            /* If the memory device is not in romd_mode, then we actually want
1311             * to remove the kvm memory slot so all accesses will trap. */
1312            add = false;
1313        }
1314    }
1315
1316    size = kvm_align_section(section, &start_addr);
1317    if (!size) {
1318        return;
1319    }
1320
1321    /* The offset of the kvmslot within the memory region */
1322    mr_offset = section->offset_within_region + start_addr -
1323        section->offset_within_address_space;
1324
1325    /* use aligned delta to align the ram address and offset */
1326    ram = memory_region_get_ram_ptr(mr) + mr_offset;
1327    ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1328
1329    kvm_slots_lock();
1330
1331    if (!add) {
1332        do {
1333            slot_size = MIN(kvm_max_slot_size, size);
1334            mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1335            if (!mem) {
1336                goto out;
1337            }
1338            if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1339                /*
1340                 * NOTE: We should be aware of the fact that here we're only
1341                 * doing a best effort to sync dirty bits.  No matter whether
1342                 * we're using dirty log or dirty ring, we ignored two facts:
1343                 *
1344                 * (1) dirty bits can reside in hardware buffers (PML)
1345                 *
1346                 * (2) after we collected dirty bits here, pages can be dirtied
1347                 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1348                 * remove the slot.
1349                 *
1350                 * Not easy.  Let's cross the fingers until it's fixed.
1351                 */
1352                if (kvm_state->kvm_dirty_ring_size) {
1353                    kvm_dirty_ring_reap_locked(kvm_state, NULL);
1354                } else {
1355                    kvm_slot_get_dirty_log(kvm_state, mem);
1356                }
1357                kvm_slot_sync_dirty_pages(mem);
1358            }
1359
1360            /* unregister the slot */
1361            g_free(mem->dirty_bmap);
1362            mem->dirty_bmap = NULL;
1363            mem->memory_size = 0;
1364            mem->flags = 0;
1365            err = kvm_set_user_memory_region(kml, mem, false);
1366            if (err) {
1367                fprintf(stderr, "%s: error unregistering slot: %s\n",
1368                        __func__, strerror(-err));
1369                abort();
1370            }
1371            start_addr += slot_size;
1372            size -= slot_size;
1373        } while (size);
1374        goto out;
1375    }
1376
1377    /* register the new slot */
1378    do {
1379        slot_size = MIN(kvm_max_slot_size, size);
1380        mem = kvm_alloc_slot(kml);
1381        mem->as_id = kml->as_id;
1382        mem->memory_size = slot_size;
1383        mem->start_addr = start_addr;
1384        mem->ram_start_offset = ram_start_offset;
1385        mem->ram = ram;
1386        mem->flags = kvm_mem_flags(mr);
1387        kvm_slot_init_dirty_bitmap(mem);
1388        err = kvm_set_user_memory_region(kml, mem, true);
1389        if (err) {
1390            fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1391                    strerror(-err));
1392            abort();
1393        }
1394        start_addr += slot_size;
1395        ram_start_offset += slot_size;
1396        ram += slot_size;
1397        size -= slot_size;
1398    } while (size);
1399
1400out:
1401    kvm_slots_unlock();
1402}
1403
1404static void *kvm_dirty_ring_reaper_thread(void *data)
1405{
1406    KVMState *s = data;
1407    struct KVMDirtyRingReaper *r = &s->reaper;
1408
1409    rcu_register_thread();
1410
1411    trace_kvm_dirty_ring_reaper("init");
1412
1413    while (true) {
1414        r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1415        trace_kvm_dirty_ring_reaper("wait");
1416        /*
1417         * TODO: provide a smarter timeout rather than a constant?
1418         */
1419        sleep(1);
1420
1421        /* keep sleeping so that dirtylimit not be interfered by reaper */
1422        if (dirtylimit_in_service()) {
1423            continue;
1424        }
1425
1426        trace_kvm_dirty_ring_reaper("wakeup");
1427        r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1428
1429        qemu_mutex_lock_iothread();
1430        kvm_dirty_ring_reap(s, NULL);
1431        qemu_mutex_unlock_iothread();
1432
1433        r->reaper_iteration++;
1434    }
1435
1436    trace_kvm_dirty_ring_reaper("exit");
1437
1438    rcu_unregister_thread();
1439
1440    return NULL;
1441}
1442
1443static int kvm_dirty_ring_reaper_init(KVMState *s)
1444{
1445    struct KVMDirtyRingReaper *r = &s->reaper;
1446
1447    qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1448                       kvm_dirty_ring_reaper_thread,
1449                       s, QEMU_THREAD_JOINABLE);
1450
1451    return 0;
1452}
1453
1454static void kvm_region_add(MemoryListener *listener,
1455                           MemoryRegionSection *section)
1456{
1457    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1458
1459    memory_region_ref(section->mr);
1460    kvm_set_phys_mem(kml, section, true);
1461}
1462
1463static void kvm_region_del(MemoryListener *listener,
1464                           MemoryRegionSection *section)
1465{
1466    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1467
1468    kvm_set_phys_mem(kml, section, false);
1469    memory_region_unref(section->mr);
1470}
1471
1472static void kvm_log_sync(MemoryListener *listener,
1473                         MemoryRegionSection *section)
1474{
1475    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1476
1477    kvm_slots_lock();
1478    kvm_physical_sync_dirty_bitmap(kml, section);
1479    kvm_slots_unlock();
1480}
1481
1482static void kvm_log_sync_global(MemoryListener *l)
1483{
1484    KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1485    KVMState *s = kvm_state;
1486    KVMSlot *mem;
1487    int i;
1488
1489    /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1490    kvm_dirty_ring_flush();
1491
1492    /*
1493     * TODO: make this faster when nr_slots is big while there are
1494     * only a few used slots (small VMs).
1495     */
1496    kvm_slots_lock();
1497    for (i = 0; i < s->nr_slots; i++) {
1498        mem = &kml->slots[i];
1499        if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1500            kvm_slot_sync_dirty_pages(mem);
1501            /*
1502             * This is not needed by KVM_GET_DIRTY_LOG because the
1503             * ioctl will unconditionally overwrite the whole region.
1504             * However kvm dirty ring has no such side effect.
1505             */
1506            kvm_slot_reset_dirty_pages(mem);
1507        }
1508    }
1509    kvm_slots_unlock();
1510}
1511
1512static void kvm_log_clear(MemoryListener *listener,
1513                          MemoryRegionSection *section)
1514{
1515    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1516    int r;
1517
1518    r = kvm_physical_log_clear(kml, section);
1519    if (r < 0) {
1520        error_report_once("%s: kvm log clear failed: mr=%s "
1521                          "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1522                          section->mr->name, section->offset_within_region,
1523                          int128_get64(section->size));
1524        abort();
1525    }
1526}
1527
1528static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1529                                  MemoryRegionSection *section,
1530                                  bool match_data, uint64_t data,
1531                                  EventNotifier *e)
1532{
1533    int fd = event_notifier_get_fd(e);
1534    int r;
1535
1536    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1537                               data, true, int128_get64(section->size),
1538                               match_data);
1539    if (r < 0) {
1540        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1541                __func__, strerror(-r), -r);
1542        abort();
1543    }
1544}
1545
1546static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1547                                  MemoryRegionSection *section,
1548                                  bool match_data, uint64_t data,
1549                                  EventNotifier *e)
1550{
1551    int fd = event_notifier_get_fd(e);
1552    int r;
1553
1554    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1555                               data, false, int128_get64(section->size),
1556                               match_data);
1557    if (r < 0) {
1558        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1559                __func__, strerror(-r), -r);
1560        abort();
1561    }
1562}
1563
1564static void kvm_io_ioeventfd_add(MemoryListener *listener,
1565                                 MemoryRegionSection *section,
1566                                 bool match_data, uint64_t data,
1567                                 EventNotifier *e)
1568{
1569    int fd = event_notifier_get_fd(e);
1570    int r;
1571
1572    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1573                              data, true, int128_get64(section->size),
1574                              match_data);
1575    if (r < 0) {
1576        fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1577                __func__, strerror(-r), -r);
1578        abort();
1579    }
1580}
1581
1582static void kvm_io_ioeventfd_del(MemoryListener *listener,
1583                                 MemoryRegionSection *section,
1584                                 bool match_data, uint64_t data,
1585                                 EventNotifier *e)
1586
1587{
1588    int fd = event_notifier_get_fd(e);
1589    int r;
1590
1591    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1592                              data, false, int128_get64(section->size),
1593                              match_data);
1594    if (r < 0) {
1595        fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1596                __func__, strerror(-r), -r);
1597        abort();
1598    }
1599}
1600
1601void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1602                                  AddressSpace *as, int as_id, const char *name)
1603{
1604    int i;
1605
1606    kml->slots = g_new0(KVMSlot, s->nr_slots);
1607    kml->as_id = as_id;
1608
1609    for (i = 0; i < s->nr_slots; i++) {
1610        kml->slots[i].slot = i;
1611    }
1612
1613    kml->listener.region_add = kvm_region_add;
1614    kml->listener.region_del = kvm_region_del;
1615    kml->listener.log_start = kvm_log_start;
1616    kml->listener.log_stop = kvm_log_stop;
1617    kml->listener.priority = 10;
1618    kml->listener.name = name;
1619
1620    if (s->kvm_dirty_ring_size) {
1621        kml->listener.log_sync_global = kvm_log_sync_global;
1622    } else {
1623        kml->listener.log_sync = kvm_log_sync;
1624        kml->listener.log_clear = kvm_log_clear;
1625    }
1626
1627    memory_listener_register(&kml->listener, as);
1628
1629    for (i = 0; i < s->nr_as; ++i) {
1630        if (!s->as[i].as) {
1631            s->as[i].as = as;
1632            s->as[i].ml = kml;
1633            break;
1634        }
1635    }
1636}
1637
1638static MemoryListener kvm_io_listener = {
1639    .name = "kvm-io",
1640    .eventfd_add = kvm_io_ioeventfd_add,
1641    .eventfd_del = kvm_io_ioeventfd_del,
1642    .priority = 10,
1643};
1644
1645int kvm_set_irq(KVMState *s, int irq, int level)
1646{
1647    struct kvm_irq_level event;
1648    int ret;
1649
1650    assert(kvm_async_interrupts_enabled());
1651
1652    event.level = level;
1653    event.irq = irq;
1654    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1655    if (ret < 0) {
1656        perror("kvm_set_irq");
1657        abort();
1658    }
1659
1660    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1661}
1662
1663#ifdef KVM_CAP_IRQ_ROUTING
1664typedef struct KVMMSIRoute {
1665    struct kvm_irq_routing_entry kroute;
1666    QTAILQ_ENTRY(KVMMSIRoute) entry;
1667} KVMMSIRoute;
1668
1669static void set_gsi(KVMState *s, unsigned int gsi)
1670{
1671    set_bit(gsi, s->used_gsi_bitmap);
1672}
1673
1674static void clear_gsi(KVMState *s, unsigned int gsi)
1675{
1676    clear_bit(gsi, s->used_gsi_bitmap);
1677}
1678
1679void kvm_init_irq_routing(KVMState *s)
1680{
1681    int gsi_count, i;
1682
1683    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1684    if (gsi_count > 0) {
1685        /* Round up so we can search ints using ffs */
1686        s->used_gsi_bitmap = bitmap_new(gsi_count);
1687        s->gsi_count = gsi_count;
1688    }
1689
1690    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1691    s->nr_allocated_irq_routes = 0;
1692
1693    if (!kvm_direct_msi_allowed) {
1694        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1695            QTAILQ_INIT(&s->msi_hashtab[i]);
1696        }
1697    }
1698
1699    kvm_arch_init_irq_routing(s);
1700}
1701
1702void kvm_irqchip_commit_routes(KVMState *s)
1703{
1704    int ret;
1705
1706    if (kvm_gsi_direct_mapping()) {
1707        return;
1708    }
1709
1710    if (!kvm_gsi_routing_enabled()) {
1711        return;
1712    }
1713
1714    s->irq_routes->flags = 0;
1715    trace_kvm_irqchip_commit_routes();
1716    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1717    assert(ret == 0);
1718}
1719
1720static void kvm_add_routing_entry(KVMState *s,
1721                                  struct kvm_irq_routing_entry *entry)
1722{
1723    struct kvm_irq_routing_entry *new;
1724    int n, size;
1725
1726    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1727        n = s->nr_allocated_irq_routes * 2;
1728        if (n < 64) {
1729            n = 64;
1730        }
1731        size = sizeof(struct kvm_irq_routing);
1732        size += n * sizeof(*new);
1733        s->irq_routes = g_realloc(s->irq_routes, size);
1734        s->nr_allocated_irq_routes = n;
1735    }
1736    n = s->irq_routes->nr++;
1737    new = &s->irq_routes->entries[n];
1738
1739    *new = *entry;
1740
1741    set_gsi(s, entry->gsi);
1742}
1743
1744static int kvm_update_routing_entry(KVMState *s,
1745                                    struct kvm_irq_routing_entry *new_entry)
1746{
1747    struct kvm_irq_routing_entry *entry;
1748    int n;
1749
1750    for (n = 0; n < s->irq_routes->nr; n++) {
1751        entry = &s->irq_routes->entries[n];
1752        if (entry->gsi != new_entry->gsi) {
1753            continue;
1754        }
1755
1756        if(!memcmp(entry, new_entry, sizeof *entry)) {
1757            return 0;
1758        }
1759
1760        *entry = *new_entry;
1761
1762        return 0;
1763    }
1764
1765    return -ESRCH;
1766}
1767
1768void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1769{
1770    struct kvm_irq_routing_entry e = {};
1771
1772    assert(pin < s->gsi_count);
1773
1774    e.gsi = irq;
1775    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1776    e.flags = 0;
1777    e.u.irqchip.irqchip = irqchip;
1778    e.u.irqchip.pin = pin;
1779    kvm_add_routing_entry(s, &e);
1780}
1781
1782void kvm_irqchip_release_virq(KVMState *s, int virq)
1783{
1784    struct kvm_irq_routing_entry *e;
1785    int i;
1786
1787    if (kvm_gsi_direct_mapping()) {
1788        return;
1789    }
1790
1791    for (i = 0; i < s->irq_routes->nr; i++) {
1792        e = &s->irq_routes->entries[i];
1793        if (e->gsi == virq) {
1794            s->irq_routes->nr--;
1795            *e = s->irq_routes->entries[s->irq_routes->nr];
1796        }
1797    }
1798    clear_gsi(s, virq);
1799    kvm_arch_release_virq_post(virq);
1800    trace_kvm_irqchip_release_virq(virq);
1801}
1802
1803void kvm_irqchip_add_change_notifier(Notifier *n)
1804{
1805    notifier_list_add(&kvm_irqchip_change_notifiers, n);
1806}
1807
1808void kvm_irqchip_remove_change_notifier(Notifier *n)
1809{
1810    notifier_remove(n);
1811}
1812
1813void kvm_irqchip_change_notify(void)
1814{
1815    notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1816}
1817
1818static unsigned int kvm_hash_msi(uint32_t data)
1819{
1820    /* This is optimized for IA32 MSI layout. However, no other arch shall
1821     * repeat the mistake of not providing a direct MSI injection API. */
1822    return data & 0xff;
1823}
1824
1825static void kvm_flush_dynamic_msi_routes(KVMState *s)
1826{
1827    KVMMSIRoute *route, *next;
1828    unsigned int hash;
1829
1830    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1831        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1832            kvm_irqchip_release_virq(s, route->kroute.gsi);
1833            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1834            g_free(route);
1835        }
1836    }
1837}
1838
1839static int kvm_irqchip_get_virq(KVMState *s)
1840{
1841    int next_virq;
1842
1843    /*
1844     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1845     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1846     * number can succeed even though a new route entry cannot be added.
1847     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1848     */
1849    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1850        kvm_flush_dynamic_msi_routes(s);
1851    }
1852
1853    /* Return the lowest unused GSI in the bitmap */
1854    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1855    if (next_virq >= s->gsi_count) {
1856        return -ENOSPC;
1857    } else {
1858        return next_virq;
1859    }
1860}
1861
1862static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1863{
1864    unsigned int hash = kvm_hash_msi(msg.data);
1865    KVMMSIRoute *route;
1866
1867    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1868        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1869            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1870            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1871            return route;
1872        }
1873    }
1874    return NULL;
1875}
1876
1877int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1878{
1879    struct kvm_msi msi;
1880    KVMMSIRoute *route;
1881
1882    if (kvm_direct_msi_allowed) {
1883        msi.address_lo = (uint32_t)msg.address;
1884        msi.address_hi = msg.address >> 32;
1885        msi.data = le32_to_cpu(msg.data);
1886        msi.flags = 0;
1887        memset(msi.pad, 0, sizeof(msi.pad));
1888
1889        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1890    }
1891
1892    route = kvm_lookup_msi_route(s, msg);
1893    if (!route) {
1894        int virq;
1895
1896        virq = kvm_irqchip_get_virq(s);
1897        if (virq < 0) {
1898            return virq;
1899        }
1900
1901        route = g_new0(KVMMSIRoute, 1);
1902        route->kroute.gsi = virq;
1903        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1904        route->kroute.flags = 0;
1905        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1906        route->kroute.u.msi.address_hi = msg.address >> 32;
1907        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1908
1909        kvm_add_routing_entry(s, &route->kroute);
1910        kvm_irqchip_commit_routes(s);
1911
1912        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1913                           entry);
1914    }
1915
1916    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1917
1918    return kvm_set_irq(s, route->kroute.gsi, 1);
1919}
1920
1921int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1922{
1923    struct kvm_irq_routing_entry kroute = {};
1924    int virq;
1925    KVMState *s = c->s;
1926    MSIMessage msg = {0, 0};
1927
1928    if (pci_available && dev) {
1929        msg = pci_get_msi_message(dev, vector);
1930    }
1931
1932    if (kvm_gsi_direct_mapping()) {
1933        return kvm_arch_msi_data_to_gsi(msg.data);
1934    }
1935
1936    if (!kvm_gsi_routing_enabled()) {
1937        return -ENOSYS;
1938    }
1939
1940    virq = kvm_irqchip_get_virq(s);
1941    if (virq < 0) {
1942        return virq;
1943    }
1944
1945    kroute.gsi = virq;
1946    kroute.type = KVM_IRQ_ROUTING_MSI;
1947    kroute.flags = 0;
1948    kroute.u.msi.address_lo = (uint32_t)msg.address;
1949    kroute.u.msi.address_hi = msg.address >> 32;
1950    kroute.u.msi.data = le32_to_cpu(msg.data);
1951    if (pci_available && kvm_msi_devid_required()) {
1952        kroute.flags = KVM_MSI_VALID_DEVID;
1953        kroute.u.msi.devid = pci_requester_id(dev);
1954    }
1955    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1956        kvm_irqchip_release_virq(s, virq);
1957        return -EINVAL;
1958    }
1959
1960    trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1961                                    vector, virq);
1962
1963    kvm_add_routing_entry(s, &kroute);
1964    kvm_arch_add_msi_route_post(&kroute, vector, dev);
1965    c->changes++;
1966
1967    return virq;
1968}
1969
1970int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1971                                 PCIDevice *dev)
1972{
1973    struct kvm_irq_routing_entry kroute = {};
1974
1975    if (kvm_gsi_direct_mapping()) {
1976        return 0;
1977    }
1978
1979    if (!kvm_irqchip_in_kernel()) {
1980        return -ENOSYS;
1981    }
1982
1983    kroute.gsi = virq;
1984    kroute.type = KVM_IRQ_ROUTING_MSI;
1985    kroute.flags = 0;
1986    kroute.u.msi.address_lo = (uint32_t)msg.address;
1987    kroute.u.msi.address_hi = msg.address >> 32;
1988    kroute.u.msi.data = le32_to_cpu(msg.data);
1989    if (pci_available && kvm_msi_devid_required()) {
1990        kroute.flags = KVM_MSI_VALID_DEVID;
1991        kroute.u.msi.devid = pci_requester_id(dev);
1992    }
1993    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1994        return -EINVAL;
1995    }
1996
1997    trace_kvm_irqchip_update_msi_route(virq);
1998
1999    return kvm_update_routing_entry(s, &kroute);
2000}
2001
2002static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2003                                    EventNotifier *resample, int virq,
2004                                    bool assign)
2005{
2006    int fd = event_notifier_get_fd(event);
2007    int rfd = resample ? event_notifier_get_fd(resample) : -1;
2008
2009    struct kvm_irqfd irqfd = {
2010        .fd = fd,
2011        .gsi = virq,
2012        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2013    };
2014
2015    if (rfd != -1) {
2016        assert(assign);
2017        if (kvm_irqchip_is_split()) {
2018            /*
2019             * When the slow irqchip (e.g. IOAPIC) is in the
2020             * userspace, KVM kernel resamplefd will not work because
2021             * the EOI of the interrupt will be delivered to userspace
2022             * instead, so the KVM kernel resamplefd kick will be
2023             * skipped.  The userspace here mimics what the kernel
2024             * provides with resamplefd, remember the resamplefd and
2025             * kick it when we receive EOI of this IRQ.
2026             *
2027             * This is hackery because IOAPIC is mostly bypassed
2028             * (except EOI broadcasts) when irqfd is used.  However
2029             * this can bring much performance back for split irqchip
2030             * with INTx IRQs (for VFIO, this gives 93% perf of the
2031             * full fast path, which is 46% perf boost comparing to
2032             * the INTx slow path).
2033             */
2034            kvm_resample_fd_insert(virq, resample);
2035        } else {
2036            irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2037            irqfd.resamplefd = rfd;
2038        }
2039    } else if (!assign) {
2040        if (kvm_irqchip_is_split()) {
2041            kvm_resample_fd_remove(virq);
2042        }
2043    }
2044
2045    if (!kvm_irqfds_enabled()) {
2046        return -ENOSYS;
2047    }
2048
2049    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2050}
2051
2052int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2053{
2054    struct kvm_irq_routing_entry kroute = {};
2055    int virq;
2056
2057    if (!kvm_gsi_routing_enabled()) {
2058        return -ENOSYS;
2059    }
2060
2061    virq = kvm_irqchip_get_virq(s);
2062    if (virq < 0) {
2063        return virq;
2064    }
2065
2066    kroute.gsi = virq;
2067    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2068    kroute.flags = 0;
2069    kroute.u.adapter.summary_addr = adapter->summary_addr;
2070    kroute.u.adapter.ind_addr = adapter->ind_addr;
2071    kroute.u.adapter.summary_offset = adapter->summary_offset;
2072    kroute.u.adapter.ind_offset = adapter->ind_offset;
2073    kroute.u.adapter.adapter_id = adapter->adapter_id;
2074
2075    kvm_add_routing_entry(s, &kroute);
2076
2077    return virq;
2078}
2079
2080int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2081{
2082    struct kvm_irq_routing_entry kroute = {};
2083    int virq;
2084
2085    if (!kvm_gsi_routing_enabled()) {
2086        return -ENOSYS;
2087    }
2088    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2089        return -ENOSYS;
2090    }
2091    virq = kvm_irqchip_get_virq(s);
2092    if (virq < 0) {
2093        return virq;
2094    }
2095
2096    kroute.gsi = virq;
2097    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2098    kroute.flags = 0;
2099    kroute.u.hv_sint.vcpu = vcpu;
2100    kroute.u.hv_sint.sint = sint;
2101
2102    kvm_add_routing_entry(s, &kroute);
2103    kvm_irqchip_commit_routes(s);
2104
2105    return virq;
2106}
2107
2108#else /* !KVM_CAP_IRQ_ROUTING */
2109
2110void kvm_init_irq_routing(KVMState *s)
2111{
2112}
2113
2114void kvm_irqchip_release_virq(KVMState *s, int virq)
2115{
2116}
2117
2118int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2119{
2120    abort();
2121}
2122
2123int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2124{
2125    return -ENOSYS;
2126}
2127
2128int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2129{
2130    return -ENOSYS;
2131}
2132
2133int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2134{
2135    return -ENOSYS;
2136}
2137
2138static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2139                                    EventNotifier *resample, int virq,
2140                                    bool assign)
2141{
2142    abort();
2143}
2144
2145int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2146{
2147    return -ENOSYS;
2148}
2149#endif /* !KVM_CAP_IRQ_ROUTING */
2150
2151int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2152                                       EventNotifier *rn, int virq)
2153{
2154    return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2155}
2156
2157int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2158                                          int virq)
2159{
2160    return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2161}
2162
2163int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2164                                   EventNotifier *rn, qemu_irq irq)
2165{
2166    gpointer key, gsi;
2167    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2168
2169    if (!found) {
2170        return -ENXIO;
2171    }
2172    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2173}
2174
2175int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2176                                      qemu_irq irq)
2177{
2178    gpointer key, gsi;
2179    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2180
2181    if (!found) {
2182        return -ENXIO;
2183    }
2184    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2185}
2186
2187void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2188{
2189    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2190}
2191
2192static void kvm_irqchip_create(KVMState *s)
2193{
2194    int ret;
2195
2196    assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2197    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2198        ;
2199    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2200        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2201        if (ret < 0) {
2202            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2203            exit(1);
2204        }
2205    } else {
2206        return;
2207    }
2208
2209    /* First probe and see if there's a arch-specific hook to create the
2210     * in-kernel irqchip for us */
2211    ret = kvm_arch_irqchip_create(s);
2212    if (ret == 0) {
2213        if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2214            error_report("Split IRQ chip mode not supported.");
2215            exit(1);
2216        } else {
2217            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2218        }
2219    }
2220    if (ret < 0) {
2221        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2222        exit(1);
2223    }
2224
2225    kvm_kernel_irqchip = true;
2226    /* If we have an in-kernel IRQ chip then we must have asynchronous
2227     * interrupt delivery (though the reverse is not necessarily true)
2228     */
2229    kvm_async_interrupts_allowed = true;
2230    kvm_halt_in_kernel_allowed = true;
2231
2232    kvm_init_irq_routing(s);
2233
2234    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2235}
2236
2237/* Find number of supported CPUs using the recommended
2238 * procedure from the kernel API documentation to cope with
2239 * older kernels that may be missing capabilities.
2240 */
2241static int kvm_recommended_vcpus(KVMState *s)
2242{
2243    int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2244    return (ret) ? ret : 4;
2245}
2246
2247static int kvm_max_vcpus(KVMState *s)
2248{
2249    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2250    return (ret) ? ret : kvm_recommended_vcpus(s);
2251}
2252
2253static int kvm_max_vcpu_id(KVMState *s)
2254{
2255    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2256    return (ret) ? ret : kvm_max_vcpus(s);
2257}
2258
2259bool kvm_vcpu_id_is_valid(int vcpu_id)
2260{
2261    KVMState *s = KVM_STATE(current_accel());
2262    return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2263}
2264
2265bool kvm_dirty_ring_enabled(void)
2266{
2267    return kvm_state->kvm_dirty_ring_size ? true : false;
2268}
2269
2270static void query_stats_cb(StatsResultList **result, StatsTarget target,
2271                           strList *names, strList *targets, Error **errp);
2272static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2273
2274uint32_t kvm_dirty_ring_size(void)
2275{
2276    return kvm_state->kvm_dirty_ring_size;
2277}
2278
2279static int kvm_init(MachineState *ms)
2280{
2281    MachineClass *mc = MACHINE_GET_CLASS(ms);
2282    static const char upgrade_note[] =
2283        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2284        "(see http://sourceforge.net/projects/kvm).\n";
2285    struct {
2286        const char *name;
2287        int num;
2288    } num_cpus[] = {
2289        { "SMP",          ms->smp.cpus },
2290        { "hotpluggable", ms->smp.max_cpus },
2291        { NULL, }
2292    }, *nc = num_cpus;
2293    int soft_vcpus_limit, hard_vcpus_limit;
2294    KVMState *s;
2295    const KVMCapabilityInfo *missing_cap;
2296    int ret;
2297    int type = 0;
2298    uint64_t dirty_log_manual_caps;
2299
2300    qemu_mutex_init(&kml_slots_lock);
2301
2302    s = KVM_STATE(ms->accelerator);
2303
2304    /*
2305     * On systems where the kernel can support different base page
2306     * sizes, host page size may be different from TARGET_PAGE_SIZE,
2307     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
2308     * page size for the system though.
2309     */
2310    assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2311
2312    s->sigmask_len = 8;
2313
2314#ifdef KVM_CAP_SET_GUEST_DEBUG
2315    QTAILQ_INIT(&s->kvm_sw_breakpoints);
2316#endif
2317    QLIST_INIT(&s->kvm_parked_vcpus);
2318    s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2319    if (s->fd == -1) {
2320        fprintf(stderr, "Could not access KVM kernel module: %m\n");
2321        ret = -errno;
2322        goto err;
2323    }
2324
2325    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2326    if (ret < KVM_API_VERSION) {
2327        if (ret >= 0) {
2328            ret = -EINVAL;
2329        }
2330        fprintf(stderr, "kvm version too old\n");
2331        goto err;
2332    }
2333
2334    if (ret > KVM_API_VERSION) {
2335        ret = -EINVAL;
2336        fprintf(stderr, "kvm version not supported\n");
2337        goto err;
2338    }
2339
2340    kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2341    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2342
2343    /* If unspecified, use the default value */
2344    if (!s->nr_slots) {
2345        s->nr_slots = 32;
2346    }
2347
2348    s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2349    if (s->nr_as <= 1) {
2350        s->nr_as = 1;
2351    }
2352    s->as = g_new0(struct KVMAs, s->nr_as);
2353
2354    if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2355        g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2356                                                            "kvm-type",
2357                                                            &error_abort);
2358        type = mc->kvm_type(ms, kvm_type);
2359    } else if (mc->kvm_type) {
2360        type = mc->kvm_type(ms, NULL);
2361    }
2362
2363    do {
2364        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2365    } while (ret == -EINTR);
2366
2367    if (ret < 0) {
2368        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2369                strerror(-ret));
2370
2371#ifdef TARGET_S390X
2372        if (ret == -EINVAL) {
2373            fprintf(stderr,
2374                    "Host kernel setup problem detected. Please verify:\n");
2375            fprintf(stderr, "- for kernels supporting the switch_amode or"
2376                    " user_mode parameters, whether\n");
2377            fprintf(stderr,
2378                    "  user space is running in primary address space\n");
2379            fprintf(stderr,
2380                    "- for kernels supporting the vm.allocate_pgste sysctl, "
2381                    "whether it is enabled\n");
2382        }
2383#elif defined(TARGET_PPC)
2384        if (ret == -EINVAL) {
2385            fprintf(stderr,
2386                    "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2387                    (type == 2) ? "pr" : "hv");
2388        }
2389#endif
2390        goto err;
2391    }
2392
2393    s->vmfd = ret;
2394
2395    /* check the vcpu limits */
2396    soft_vcpus_limit = kvm_recommended_vcpus(s);
2397    hard_vcpus_limit = kvm_max_vcpus(s);
2398
2399    while (nc->name) {
2400        if (nc->num > soft_vcpus_limit) {
2401            warn_report("Number of %s cpus requested (%d) exceeds "
2402                        "the recommended cpus supported by KVM (%d)",
2403                        nc->name, nc->num, soft_vcpus_limit);
2404
2405            if (nc->num > hard_vcpus_limit) {
2406                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2407                        "the maximum cpus supported by KVM (%d)\n",
2408                        nc->name, nc->num, hard_vcpus_limit);
2409                exit(1);
2410            }
2411        }
2412        nc++;
2413    }
2414
2415    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2416    if (!missing_cap) {
2417        missing_cap =
2418            kvm_check_extension_list(s, kvm_arch_required_capabilities);
2419    }
2420    if (missing_cap) {
2421        ret = -EINVAL;
2422        fprintf(stderr, "kvm does not support %s\n%s",
2423                missing_cap->name, upgrade_note);
2424        goto err;
2425    }
2426
2427    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2428    s->coalesced_pio = s->coalesced_mmio &&
2429                       kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2430
2431    /*
2432     * Enable KVM dirty ring if supported, otherwise fall back to
2433     * dirty logging mode
2434     */
2435    if (s->kvm_dirty_ring_size > 0) {
2436        uint64_t ring_bytes;
2437
2438        ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2439
2440        /* Read the max supported pages */
2441        ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2442        if (ret > 0) {
2443            if (ring_bytes > ret) {
2444                error_report("KVM dirty ring size %" PRIu32 " too big "
2445                             "(maximum is %ld).  Please use a smaller value.",
2446                             s->kvm_dirty_ring_size,
2447                             (long)ret / sizeof(struct kvm_dirty_gfn));
2448                ret = -EINVAL;
2449                goto err;
2450            }
2451
2452            ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2453            if (ret) {
2454                error_report("Enabling of KVM dirty ring failed: %s. "
2455                             "Suggested minimum value is 1024.", strerror(-ret));
2456                goto err;
2457            }
2458
2459            s->kvm_dirty_ring_bytes = ring_bytes;
2460         } else {
2461             warn_report("KVM dirty ring not available, using bitmap method");
2462             s->kvm_dirty_ring_size = 0;
2463        }
2464    }
2465
2466    /*
2467     * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2468     * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2469     * page is wr-protected initially, which is against how kvm dirty ring is
2470     * usage - kvm dirty ring requires all pages are wr-protected at the very
2471     * beginning.  Enabling this feature for dirty ring causes data corruption.
2472     *
2473     * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2474     * we may expect a higher stall time when starting the migration.  In the
2475     * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2476     * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2477     * guest pages.
2478     */
2479    if (!s->kvm_dirty_ring_size) {
2480        dirty_log_manual_caps =
2481            kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2482        dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2483                                  KVM_DIRTY_LOG_INITIALLY_SET);
2484        s->manual_dirty_log_protect = dirty_log_manual_caps;
2485        if (dirty_log_manual_caps) {
2486            ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2487                                    dirty_log_manual_caps);
2488            if (ret) {
2489                warn_report("Trying to enable capability %"PRIu64" of "
2490                            "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2491                            "Falling back to the legacy mode. ",
2492                            dirty_log_manual_caps);
2493                s->manual_dirty_log_protect = 0;
2494            }
2495        }
2496    }
2497
2498#ifdef KVM_CAP_VCPU_EVENTS
2499    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2500#endif
2501
2502    s->robust_singlestep =
2503        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2504
2505#ifdef KVM_CAP_DEBUGREGS
2506    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2507#endif
2508
2509    s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2510
2511#ifdef KVM_CAP_IRQ_ROUTING
2512    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2513#endif
2514
2515    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2516
2517    s->irq_set_ioctl = KVM_IRQ_LINE;
2518    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2519        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2520    }
2521
2522    kvm_readonly_mem_allowed =
2523        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2524
2525    kvm_eventfds_allowed =
2526        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2527
2528    kvm_irqfds_allowed =
2529        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2530
2531    kvm_resamplefds_allowed =
2532        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2533
2534    kvm_vm_attributes_allowed =
2535        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2536
2537    kvm_ioeventfd_any_length_allowed =
2538        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2539
2540#ifdef KVM_CAP_SET_GUEST_DEBUG
2541    kvm_has_guest_debug =
2542        (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2543#endif
2544
2545    kvm_sstep_flags = 0;
2546    if (kvm_has_guest_debug) {
2547        kvm_sstep_flags = SSTEP_ENABLE;
2548
2549#if defined KVM_CAP_SET_GUEST_DEBUG2
2550        int guest_debug_flags =
2551            kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2552
2553        if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2554            kvm_sstep_flags |= SSTEP_NOIRQ;
2555        }
2556#endif
2557    }
2558
2559    kvm_state = s;
2560
2561    ret = kvm_arch_init(ms, s);
2562    if (ret < 0) {
2563        goto err;
2564    }
2565
2566    if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2567        s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2568    }
2569
2570    qemu_register_reset(kvm_unpoison_all, NULL);
2571
2572    if (s->kernel_irqchip_allowed) {
2573        kvm_irqchip_create(s);
2574    }
2575
2576    if (kvm_eventfds_allowed) {
2577        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2578        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2579    }
2580    s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2581    s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2582
2583    kvm_memory_listener_register(s, &s->memory_listener,
2584                                 &address_space_memory, 0, "kvm-memory");
2585    if (kvm_eventfds_allowed) {
2586        memory_listener_register(&kvm_io_listener,
2587                                 &address_space_io);
2588    }
2589    memory_listener_register(&kvm_coalesced_pio_listener,
2590                             &address_space_io);
2591
2592    s->many_ioeventfds = kvm_check_many_ioeventfds();
2593
2594    s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2595    if (!s->sync_mmu) {
2596        ret = ram_block_discard_disable(true);
2597        assert(!ret);
2598    }
2599
2600    if (s->kvm_dirty_ring_size) {
2601        ret = kvm_dirty_ring_reaper_init(s);
2602        if (ret) {
2603            goto err;
2604        }
2605    }
2606
2607    if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2608        add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2609                            query_stats_schemas_cb);
2610    }
2611
2612    return 0;
2613
2614err:
2615    assert(ret < 0);
2616    if (s->vmfd >= 0) {
2617        close(s->vmfd);
2618    }
2619    if (s->fd != -1) {
2620        close(s->fd);
2621    }
2622    g_free(s->memory_listener.slots);
2623
2624    return ret;
2625}
2626
2627void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2628{
2629    s->sigmask_len = sigmask_len;
2630}
2631
2632static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2633                          int size, uint32_t count)
2634{
2635    int i;
2636    uint8_t *ptr = data;
2637
2638    for (i = 0; i < count; i++) {
2639        address_space_rw(&address_space_io, port, attrs,
2640                         ptr, size,
2641                         direction == KVM_EXIT_IO_OUT);
2642        ptr += size;
2643    }
2644}
2645
2646static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2647{
2648    fprintf(stderr, "KVM internal error. Suberror: %d\n",
2649            run->internal.suberror);
2650
2651    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2652        int i;
2653
2654        for (i = 0; i < run->internal.ndata; ++i) {
2655            fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2656                    i, (uint64_t)run->internal.data[i]);
2657        }
2658    }
2659    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2660        fprintf(stderr, "emulation failure\n");
2661        if (!kvm_arch_stop_on_emulation_error(cpu)) {
2662            cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2663            return EXCP_INTERRUPT;
2664        }
2665    }
2666    /* FIXME: Should trigger a qmp message to let management know
2667     * something went wrong.
2668     */
2669    return -1;
2670}
2671
2672void kvm_flush_coalesced_mmio_buffer(void)
2673{
2674    KVMState *s = kvm_state;
2675
2676    if (s->coalesced_flush_in_progress) {
2677        return;
2678    }
2679
2680    s->coalesced_flush_in_progress = true;
2681
2682    if (s->coalesced_mmio_ring) {
2683        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2684        while (ring->first != ring->last) {
2685            struct kvm_coalesced_mmio *ent;
2686
2687            ent = &ring->coalesced_mmio[ring->first];
2688
2689            if (ent->pio == 1) {
2690                address_space_write(&address_space_io, ent->phys_addr,
2691                                    MEMTXATTRS_UNSPECIFIED, ent->data,
2692                                    ent->len);
2693            } else {
2694                cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2695            }
2696            smp_wmb();
2697            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2698        }
2699    }
2700
2701    s->coalesced_flush_in_progress = false;
2702}
2703
2704bool kvm_cpu_check_are_resettable(void)
2705{
2706    return kvm_arch_cpu_check_are_resettable();
2707}
2708
2709static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2710{
2711    if (!cpu->vcpu_dirty) {
2712        kvm_arch_get_registers(cpu);
2713        cpu->vcpu_dirty = true;
2714    }
2715}
2716
2717void kvm_cpu_synchronize_state(CPUState *cpu)
2718{
2719    if (!cpu->vcpu_dirty) {
2720        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2721    }
2722}
2723
2724static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2725{
2726    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2727    cpu->vcpu_dirty = false;
2728}
2729
2730void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2731{
2732    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2733}
2734
2735static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2736{
2737    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2738    cpu->vcpu_dirty = false;
2739}
2740
2741void kvm_cpu_synchronize_post_init(CPUState *cpu)
2742{
2743    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2744}
2745
2746static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2747{
2748    cpu->vcpu_dirty = true;
2749}
2750
2751void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2752{
2753    run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2754}
2755
2756#ifdef KVM_HAVE_MCE_INJECTION
2757static __thread void *pending_sigbus_addr;
2758static __thread int pending_sigbus_code;
2759static __thread bool have_sigbus_pending;
2760#endif
2761
2762static void kvm_cpu_kick(CPUState *cpu)
2763{
2764    qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2765}
2766
2767static void kvm_cpu_kick_self(void)
2768{
2769    if (kvm_immediate_exit) {
2770        kvm_cpu_kick(current_cpu);
2771    } else {
2772        qemu_cpu_kick_self();
2773    }
2774}
2775
2776static void kvm_eat_signals(CPUState *cpu)
2777{
2778    struct timespec ts = { 0, 0 };
2779    siginfo_t siginfo;
2780    sigset_t waitset;
2781    sigset_t chkset;
2782    int r;
2783
2784    if (kvm_immediate_exit) {
2785        qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2786        /* Write kvm_run->immediate_exit before the cpu->exit_request
2787         * write in kvm_cpu_exec.
2788         */
2789        smp_wmb();
2790        return;
2791    }
2792
2793    sigemptyset(&waitset);
2794    sigaddset(&waitset, SIG_IPI);
2795
2796    do {
2797        r = sigtimedwait(&waitset, &siginfo, &ts);
2798        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2799            perror("sigtimedwait");
2800            exit(1);
2801        }
2802
2803        r = sigpending(&chkset);
2804        if (r == -1) {
2805            perror("sigpending");
2806            exit(1);
2807        }
2808    } while (sigismember(&chkset, SIG_IPI));
2809}
2810
2811int kvm_cpu_exec(CPUState *cpu)
2812{
2813    struct kvm_run *run = cpu->kvm_run;
2814    int ret, run_ret;
2815
2816    DPRINTF("kvm_cpu_exec()\n");
2817
2818    if (kvm_arch_process_async_events(cpu)) {
2819        qatomic_set(&cpu->exit_request, 0);
2820        return EXCP_HLT;
2821    }
2822
2823    qemu_mutex_unlock_iothread();
2824    cpu_exec_start(cpu);
2825
2826    do {
2827        MemTxAttrs attrs;
2828
2829        if (cpu->vcpu_dirty) {
2830            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2831            cpu->vcpu_dirty = false;
2832        }
2833
2834        kvm_arch_pre_run(cpu, run);
2835        if (qatomic_read(&cpu->exit_request)) {
2836            DPRINTF("interrupt exit requested\n");
2837            /*
2838             * KVM requires us to reenter the kernel after IO exits to complete
2839             * instruction emulation. This self-signal will ensure that we
2840             * leave ASAP again.
2841             */
2842            kvm_cpu_kick_self();
2843        }
2844
2845        /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2846         * Matching barrier in kvm_eat_signals.
2847         */
2848        smp_rmb();
2849
2850        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2851
2852        attrs = kvm_arch_post_run(cpu, run);
2853
2854#ifdef KVM_HAVE_MCE_INJECTION
2855        if (unlikely(have_sigbus_pending)) {
2856            qemu_mutex_lock_iothread();
2857            kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2858                                    pending_sigbus_addr);
2859            have_sigbus_pending = false;
2860            qemu_mutex_unlock_iothread();
2861        }
2862#endif
2863
2864        if (run_ret < 0) {
2865            if (run_ret == -EINTR || run_ret == -EAGAIN) {
2866                DPRINTF("io window exit\n");
2867                kvm_eat_signals(cpu);
2868                ret = EXCP_INTERRUPT;
2869                break;
2870            }
2871            fprintf(stderr, "error: kvm run failed %s\n",
2872                    strerror(-run_ret));
2873#ifdef TARGET_PPC
2874            if (run_ret == -EBUSY) {
2875                fprintf(stderr,
2876                        "This is probably because your SMT is enabled.\n"
2877                        "VCPU can only run on primary threads with all "
2878                        "secondary threads offline.\n");
2879            }
2880#endif
2881            ret = -1;
2882            break;
2883        }
2884
2885        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2886        switch (run->exit_reason) {
2887        case KVM_EXIT_IO:
2888            DPRINTF("handle_io\n");
2889            /* Called outside BQL */
2890            kvm_handle_io(run->io.port, attrs,
2891                          (uint8_t *)run + run->io.data_offset,
2892                          run->io.direction,
2893                          run->io.size,
2894                          run->io.count);
2895            ret = 0;
2896            break;
2897        case KVM_EXIT_MMIO:
2898            DPRINTF("handle_mmio\n");
2899            /* Called outside BQL */
2900            address_space_rw(&address_space_memory,
2901                             run->mmio.phys_addr, attrs,
2902                             run->mmio.data,
2903                             run->mmio.len,
2904                             run->mmio.is_write);
2905            ret = 0;
2906            break;
2907        case KVM_EXIT_IRQ_WINDOW_OPEN:
2908            DPRINTF("irq_window_open\n");
2909            ret = EXCP_INTERRUPT;
2910            break;
2911        case KVM_EXIT_SHUTDOWN:
2912            DPRINTF("shutdown\n");
2913            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2914            ret = EXCP_INTERRUPT;
2915            break;
2916        case KVM_EXIT_UNKNOWN:
2917            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2918                    (uint64_t)run->hw.hardware_exit_reason);
2919            ret = -1;
2920            break;
2921        case KVM_EXIT_INTERNAL_ERROR:
2922            ret = kvm_handle_internal_error(cpu, run);
2923            break;
2924        case KVM_EXIT_DIRTY_RING_FULL:
2925            /*
2926             * We shouldn't continue if the dirty ring of this vcpu is
2927             * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
2928             */
2929            trace_kvm_dirty_ring_full(cpu->cpu_index);
2930            qemu_mutex_lock_iothread();
2931            /*
2932             * We throttle vCPU by making it sleep once it exit from kernel
2933             * due to dirty ring full. In the dirtylimit scenario, reaping
2934             * all vCPUs after a single vCPU dirty ring get full result in
2935             * the miss of sleep, so just reap the ring-fulled vCPU.
2936             */
2937            if (dirtylimit_in_service()) {
2938                kvm_dirty_ring_reap(kvm_state, cpu);
2939            } else {
2940                kvm_dirty_ring_reap(kvm_state, NULL);
2941            }
2942            qemu_mutex_unlock_iothread();
2943            dirtylimit_vcpu_execute(cpu);
2944            ret = 0;
2945            break;
2946        case KVM_EXIT_SYSTEM_EVENT:
2947            switch (run->system_event.type) {
2948            case KVM_SYSTEM_EVENT_SHUTDOWN:
2949                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2950                ret = EXCP_INTERRUPT;
2951                break;
2952            case KVM_SYSTEM_EVENT_RESET:
2953                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2954                ret = EXCP_INTERRUPT;
2955                break;
2956            case KVM_SYSTEM_EVENT_CRASH:
2957                kvm_cpu_synchronize_state(cpu);
2958                qemu_mutex_lock_iothread();
2959                qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2960                qemu_mutex_unlock_iothread();
2961                ret = 0;
2962                break;
2963            default:
2964                DPRINTF("kvm_arch_handle_exit\n");
2965                ret = kvm_arch_handle_exit(cpu, run);
2966                break;
2967            }
2968            break;
2969        default:
2970            DPRINTF("kvm_arch_handle_exit\n");
2971            ret = kvm_arch_handle_exit(cpu, run);
2972            break;
2973        }
2974    } while (ret == 0);
2975
2976    cpu_exec_end(cpu);
2977    qemu_mutex_lock_iothread();
2978
2979    if (ret < 0) {
2980        cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2981        vm_stop(RUN_STATE_INTERNAL_ERROR);
2982    }
2983
2984    qatomic_set(&cpu->exit_request, 0);
2985    return ret;
2986}
2987
2988int kvm_ioctl(KVMState *s, int type, ...)
2989{
2990    int ret;
2991    void *arg;
2992    va_list ap;
2993
2994    va_start(ap, type);
2995    arg = va_arg(ap, void *);
2996    va_end(ap);
2997
2998    trace_kvm_ioctl(type, arg);
2999    ret = ioctl(s->fd, type, arg);
3000    if (ret == -1) {
3001        ret = -errno;
3002    }
3003    return ret;
3004}
3005
3006int kvm_vm_ioctl(KVMState *s, int type, ...)
3007{
3008    int ret;
3009    void *arg;
3010    va_list ap;
3011
3012    va_start(ap, type);
3013    arg = va_arg(ap, void *);
3014    va_end(ap);
3015
3016    trace_kvm_vm_ioctl(type, arg);
3017    ret = ioctl(s->vmfd, type, arg);
3018    if (ret == -1) {
3019        ret = -errno;
3020    }
3021    return ret;
3022}
3023
3024int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3025{
3026    int ret;
3027    void *arg;
3028    va_list ap;
3029
3030    va_start(ap, type);
3031    arg = va_arg(ap, void *);
3032    va_end(ap);
3033
3034    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3035    ret = ioctl(cpu->kvm_fd, type, arg);
3036    if (ret == -1) {
3037        ret = -errno;
3038    }
3039    return ret;
3040}
3041
3042int kvm_device_ioctl(int fd, int type, ...)
3043{
3044    int ret;
3045    void *arg;
3046    va_list ap;
3047
3048    va_start(ap, type);
3049    arg = va_arg(ap, void *);
3050    va_end(ap);
3051
3052    trace_kvm_device_ioctl(fd, type, arg);
3053    ret = ioctl(fd, type, arg);
3054    if (ret == -1) {
3055        ret = -errno;
3056    }
3057    return ret;
3058}
3059
3060int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3061{
3062    int ret;
3063    struct kvm_device_attr attribute = {
3064        .group = group,
3065        .attr = attr,
3066    };
3067
3068    if (!kvm_vm_attributes_allowed) {
3069        return 0;
3070    }
3071
3072    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3073    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3074    return ret ? 0 : 1;
3075}
3076
3077int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3078{
3079    struct kvm_device_attr attribute = {
3080        .group = group,
3081        .attr = attr,
3082        .flags = 0,
3083    };
3084
3085    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3086}
3087
3088int kvm_device_access(int fd, int group, uint64_t attr,
3089                      void *val, bool write, Error **errp)
3090{
3091    struct kvm_device_attr kvmattr;
3092    int err;
3093
3094    kvmattr.flags = 0;
3095    kvmattr.group = group;
3096    kvmattr.attr = attr;
3097    kvmattr.addr = (uintptr_t)val;
3098
3099    err = kvm_device_ioctl(fd,
3100                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3101                           &kvmattr);
3102    if (err < 0) {
3103        error_setg_errno(errp, -err,
3104                         "KVM_%s_DEVICE_ATTR failed: Group %d "
3105                         "attr 0x%016" PRIx64,
3106                         write ? "SET" : "GET", group, attr);
3107    }
3108    return err;
3109}
3110
3111bool kvm_has_sync_mmu(void)
3112{
3113    return kvm_state->sync_mmu;
3114}
3115
3116int kvm_has_vcpu_events(void)
3117{
3118    return kvm_state->vcpu_events;
3119}
3120
3121int kvm_has_robust_singlestep(void)
3122{
3123    return kvm_state->robust_singlestep;
3124}
3125
3126int kvm_has_debugregs(void)
3127{
3128    return kvm_state->debugregs;
3129}
3130
3131int kvm_max_nested_state_length(void)
3132{
3133    return kvm_state->max_nested_state_len;
3134}
3135
3136int kvm_has_many_ioeventfds(void)
3137{
3138    if (!kvm_enabled()) {
3139        return 0;
3140    }
3141    return kvm_state->many_ioeventfds;
3142}
3143
3144int kvm_has_gsi_routing(void)
3145{
3146#ifdef KVM_CAP_IRQ_ROUTING
3147    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3148#else
3149    return false;
3150#endif
3151}
3152
3153int kvm_has_intx_set_mask(void)
3154{
3155    return kvm_state->intx_set_mask;
3156}
3157
3158bool kvm_arm_supports_user_irq(void)
3159{
3160    return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3161}
3162
3163#ifdef KVM_CAP_SET_GUEST_DEBUG
3164struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3165                                                 target_ulong pc)
3166{
3167    struct kvm_sw_breakpoint *bp;
3168
3169    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3170        if (bp->pc == pc) {
3171            return bp;
3172        }
3173    }
3174    return NULL;
3175}
3176
3177int kvm_sw_breakpoints_active(CPUState *cpu)
3178{
3179    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3180}
3181
3182struct kvm_set_guest_debug_data {
3183    struct kvm_guest_debug dbg;
3184    int err;
3185};
3186
3187static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3188{
3189    struct kvm_set_guest_debug_data *dbg_data =
3190        (struct kvm_set_guest_debug_data *) data.host_ptr;
3191
3192    dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3193                                   &dbg_data->dbg);
3194}
3195
3196int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3197{
3198    struct kvm_set_guest_debug_data data;
3199
3200    data.dbg.control = reinject_trap;
3201
3202    if (cpu->singlestep_enabled) {
3203        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3204
3205        if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3206            data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3207        }
3208    }
3209    kvm_arch_update_guest_debug(cpu, &data.dbg);
3210
3211    run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3212               RUN_ON_CPU_HOST_PTR(&data));
3213    return data.err;
3214}
3215
3216bool kvm_supports_guest_debug(void)
3217{
3218    /* probed during kvm_init() */
3219    return kvm_has_guest_debug;
3220}
3221
3222int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3223{
3224    struct kvm_sw_breakpoint *bp;
3225    int err;
3226
3227    if (type == GDB_BREAKPOINT_SW) {
3228        bp = kvm_find_sw_breakpoint(cpu, addr);
3229        if (bp) {
3230            bp->use_count++;
3231            return 0;
3232        }
3233
3234        bp = g_new(struct kvm_sw_breakpoint, 1);
3235        bp->pc = addr;
3236        bp->use_count = 1;
3237        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3238        if (err) {
3239            g_free(bp);
3240            return err;
3241        }
3242
3243        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3244    } else {
3245        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3246        if (err) {
3247            return err;
3248        }
3249    }
3250
3251    CPU_FOREACH(cpu) {
3252        err = kvm_update_guest_debug(cpu, 0);
3253        if (err) {
3254            return err;
3255        }
3256    }
3257    return 0;
3258}
3259
3260int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
3261{
3262    struct kvm_sw_breakpoint *bp;
3263    int err;
3264
3265    if (type == GDB_BREAKPOINT_SW) {
3266        bp = kvm_find_sw_breakpoint(cpu, addr);
3267        if (!bp) {
3268            return -ENOENT;
3269        }
3270
3271        if (bp->use_count > 1) {
3272            bp->use_count--;
3273            return 0;
3274        }
3275
3276        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3277        if (err) {
3278            return err;
3279        }
3280
3281        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3282        g_free(bp);
3283    } else {
3284        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3285        if (err) {
3286            return err;
3287        }
3288    }
3289
3290    CPU_FOREACH(cpu) {
3291        err = kvm_update_guest_debug(cpu, 0);
3292        if (err) {
3293            return err;
3294        }
3295    }
3296    return 0;
3297}
3298
3299void kvm_remove_all_breakpoints(CPUState *cpu)
3300{
3301    struct kvm_sw_breakpoint *bp, *next;
3302    KVMState *s = cpu->kvm_state;
3303    CPUState *tmpcpu;
3304
3305    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3306        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3307            /* Try harder to find a CPU that currently sees the breakpoint. */
3308            CPU_FOREACH(tmpcpu) {
3309                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3310                    break;
3311                }
3312            }
3313        }
3314        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3315        g_free(bp);
3316    }
3317    kvm_arch_remove_all_hw_breakpoints();
3318
3319    CPU_FOREACH(cpu) {
3320        kvm_update_guest_debug(cpu, 0);
3321    }
3322}
3323
3324#endif /* !KVM_CAP_SET_GUEST_DEBUG */
3325
3326static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3327{
3328    KVMState *s = kvm_state;
3329    struct kvm_signal_mask *sigmask;
3330    int r;
3331
3332    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3333
3334    sigmask->len = s->sigmask_len;
3335    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3336    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3337    g_free(sigmask);
3338
3339    return r;
3340}
3341
3342static void kvm_ipi_signal(int sig)
3343{
3344    if (current_cpu) {
3345        assert(kvm_immediate_exit);
3346        kvm_cpu_kick(current_cpu);
3347    }
3348}
3349
3350void kvm_init_cpu_signals(CPUState *cpu)
3351{
3352    int r;
3353    sigset_t set;
3354    struct sigaction sigact;
3355
3356    memset(&sigact, 0, sizeof(sigact));
3357    sigact.sa_handler = kvm_ipi_signal;
3358    sigaction(SIG_IPI, &sigact, NULL);
3359
3360    pthread_sigmask(SIG_BLOCK, NULL, &set);
3361#if defined KVM_HAVE_MCE_INJECTION
3362    sigdelset(&set, SIGBUS);
3363    pthread_sigmask(SIG_SETMASK, &set, NULL);
3364#endif
3365    sigdelset(&set, SIG_IPI);
3366    if (kvm_immediate_exit) {
3367        r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3368    } else {
3369        r = kvm_set_signal_mask(cpu, &set);
3370    }
3371    if (r) {
3372        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3373        exit(1);
3374    }
3375}
3376
3377/* Called asynchronously in VCPU thread.  */
3378int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3379{
3380#ifdef KVM_HAVE_MCE_INJECTION
3381    if (have_sigbus_pending) {
3382        return 1;
3383    }
3384    have_sigbus_pending = true;
3385    pending_sigbus_addr = addr;
3386    pending_sigbus_code = code;
3387    qatomic_set(&cpu->exit_request, 1);
3388    return 0;
3389#else
3390    return 1;
3391#endif
3392}
3393
3394/* Called synchronously (via signalfd) in main thread.  */
3395int kvm_on_sigbus(int code, void *addr)
3396{
3397#ifdef KVM_HAVE_MCE_INJECTION
3398    /* Action required MCE kills the process if SIGBUS is blocked.  Because
3399     * that's what happens in the I/O thread, where we handle MCE via signalfd,
3400     * we can only get action optional here.
3401     */
3402    assert(code != BUS_MCEERR_AR);
3403    kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3404    return 0;
3405#else
3406    return 1;
3407#endif
3408}
3409
3410int kvm_create_device(KVMState *s, uint64_t type, bool test)
3411{
3412    int ret;
3413    struct kvm_create_device create_dev;
3414
3415    create_dev.type = type;
3416    create_dev.fd = -1;
3417    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3418
3419    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3420        return -ENOTSUP;
3421    }
3422
3423    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3424    if (ret) {
3425        return ret;
3426    }
3427
3428    return test ? 0 : create_dev.fd;
3429}
3430
3431bool kvm_device_supported(int vmfd, uint64_t type)
3432{
3433    struct kvm_create_device create_dev = {
3434        .type = type,
3435        .fd = -1,
3436        .flags = KVM_CREATE_DEVICE_TEST,
3437    };
3438
3439    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3440        return false;
3441    }
3442
3443    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3444}
3445
3446int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3447{
3448    struct kvm_one_reg reg;
3449    int r;
3450
3451    reg.id = id;
3452    reg.addr = (uintptr_t) source;
3453    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3454    if (r) {
3455        trace_kvm_failed_reg_set(id, strerror(-r));
3456    }
3457    return r;
3458}
3459
3460int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3461{
3462    struct kvm_one_reg reg;
3463    int r;
3464
3465    reg.id = id;
3466    reg.addr = (uintptr_t) target;
3467    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3468    if (r) {
3469        trace_kvm_failed_reg_get(id, strerror(-r));
3470    }
3471    return r;
3472}
3473
3474static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3475                                 hwaddr start_addr, hwaddr size)
3476{
3477    KVMState *kvm = KVM_STATE(ms->accelerator);
3478    int i;
3479
3480    for (i = 0; i < kvm->nr_as; ++i) {
3481        if (kvm->as[i].as == as && kvm->as[i].ml) {
3482            size = MIN(kvm_max_slot_size, size);
3483            return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3484                                                    start_addr, size);
3485        }
3486    }
3487
3488    return false;
3489}
3490
3491static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3492                                   const char *name, void *opaque,
3493                                   Error **errp)
3494{
3495    KVMState *s = KVM_STATE(obj);
3496    int64_t value = s->kvm_shadow_mem;
3497
3498    visit_type_int(v, name, &value, errp);
3499}
3500
3501static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3502                                   const char *name, void *opaque,
3503                                   Error **errp)
3504{
3505    KVMState *s = KVM_STATE(obj);
3506    int64_t value;
3507
3508    if (s->fd != -1) {
3509        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3510        return;
3511    }
3512
3513    if (!visit_type_int(v, name, &value, errp)) {
3514        return;
3515    }
3516
3517    s->kvm_shadow_mem = value;
3518}
3519
3520static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3521                                   const char *name, void *opaque,
3522                                   Error **errp)
3523{
3524    KVMState *s = KVM_STATE(obj);
3525    OnOffSplit mode;
3526
3527    if (s->fd != -1) {
3528        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3529        return;
3530    }
3531
3532    if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3533        return;
3534    }
3535    switch (mode) {
3536    case ON_OFF_SPLIT_ON:
3537        s->kernel_irqchip_allowed = true;
3538        s->kernel_irqchip_required = true;
3539        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3540        break;
3541    case ON_OFF_SPLIT_OFF:
3542        s->kernel_irqchip_allowed = false;
3543        s->kernel_irqchip_required = false;
3544        s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3545        break;
3546    case ON_OFF_SPLIT_SPLIT:
3547        s->kernel_irqchip_allowed = true;
3548        s->kernel_irqchip_required = true;
3549        s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3550        break;
3551    default:
3552        /* The value was checked in visit_type_OnOffSplit() above. If
3553         * we get here, then something is wrong in QEMU.
3554         */
3555        abort();
3556    }
3557}
3558
3559bool kvm_kernel_irqchip_allowed(void)
3560{
3561    return kvm_state->kernel_irqchip_allowed;
3562}
3563
3564bool kvm_kernel_irqchip_required(void)
3565{
3566    return kvm_state->kernel_irqchip_required;
3567}
3568
3569bool kvm_kernel_irqchip_split(void)
3570{
3571    return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3572}
3573
3574static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3575                                    const char *name, void *opaque,
3576                                    Error **errp)
3577{
3578    KVMState *s = KVM_STATE(obj);
3579    uint32_t value = s->kvm_dirty_ring_size;
3580
3581    visit_type_uint32(v, name, &value, errp);
3582}
3583
3584static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3585                                    const char *name, void *opaque,
3586                                    Error **errp)
3587{
3588    KVMState *s = KVM_STATE(obj);
3589    Error *error = NULL;
3590    uint32_t value;
3591
3592    if (s->fd != -1) {
3593        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3594        return;
3595    }
3596
3597    visit_type_uint32(v, name, &value, &error);
3598    if (error) {
3599        error_propagate(errp, error);
3600        return;
3601    }
3602    if (value & (value - 1)) {
3603        error_setg(errp, "dirty-ring-size must be a power of two.");
3604        return;
3605    }
3606
3607    s->kvm_dirty_ring_size = value;
3608}
3609
3610static void kvm_accel_instance_init(Object *obj)
3611{
3612    KVMState *s = KVM_STATE(obj);
3613
3614    s->fd = -1;
3615    s->vmfd = -1;
3616    s->kvm_shadow_mem = -1;
3617    s->kernel_irqchip_allowed = true;
3618    s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3619    /* KVM dirty ring is by default off */
3620    s->kvm_dirty_ring_size = 0;
3621    s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
3622    s->notify_window = 0;
3623}
3624
3625/**
3626 * kvm_gdbstub_sstep_flags():
3627 *
3628 * Returns: SSTEP_* flags that KVM supports for guest debug. The
3629 * support is probed during kvm_init()
3630 */
3631static int kvm_gdbstub_sstep_flags(void)
3632{
3633    return kvm_sstep_flags;
3634}
3635
3636static void kvm_accel_class_init(ObjectClass *oc, void *data)
3637{
3638    AccelClass *ac = ACCEL_CLASS(oc);
3639    ac->name = "KVM";
3640    ac->init_machine = kvm_init;
3641    ac->has_memory = kvm_accel_has_memory;
3642    ac->allowed = &kvm_allowed;
3643    ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
3644
3645    object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3646        NULL, kvm_set_kernel_irqchip,
3647        NULL, NULL);
3648    object_class_property_set_description(oc, "kernel-irqchip",
3649        "Configure KVM in-kernel irqchip");
3650
3651    object_class_property_add(oc, "kvm-shadow-mem", "int",
3652        kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3653        NULL, NULL);
3654    object_class_property_set_description(oc, "kvm-shadow-mem",
3655        "KVM shadow MMU size");
3656
3657    object_class_property_add(oc, "dirty-ring-size", "uint32",
3658        kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3659        NULL, NULL);
3660    object_class_property_set_description(oc, "dirty-ring-size",
3661        "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3662
3663    kvm_arch_accel_class_init(oc);
3664}
3665
3666static const TypeInfo kvm_accel_type = {
3667    .name = TYPE_KVM_ACCEL,
3668    .parent = TYPE_ACCEL,
3669    .instance_init = kvm_accel_instance_init,
3670    .class_init = kvm_accel_class_init,
3671    .instance_size = sizeof(KVMState),
3672};
3673
3674static void kvm_type_init(void)
3675{
3676    type_register_static(&kvm_accel_type);
3677}
3678
3679type_init(kvm_type_init);
3680
3681typedef struct StatsArgs {
3682    union StatsResultsType {
3683        StatsResultList **stats;
3684        StatsSchemaList **schema;
3685    } result;
3686    strList *names;
3687    Error **errp;
3688} StatsArgs;
3689
3690static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3691                                    uint64_t *stats_data,
3692                                    StatsList *stats_list,
3693                                    Error **errp)
3694{
3695
3696    Stats *stats;
3697    uint64List *val_list = NULL;
3698
3699    /* Only add stats that we understand.  */
3700    switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3701    case KVM_STATS_TYPE_CUMULATIVE:
3702    case KVM_STATS_TYPE_INSTANT:
3703    case KVM_STATS_TYPE_PEAK:
3704    case KVM_STATS_TYPE_LINEAR_HIST:
3705    case KVM_STATS_TYPE_LOG_HIST:
3706        break;
3707    default:
3708        return stats_list;
3709    }
3710
3711    switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3712    case KVM_STATS_UNIT_NONE:
3713    case KVM_STATS_UNIT_BYTES:
3714    case KVM_STATS_UNIT_CYCLES:
3715    case KVM_STATS_UNIT_SECONDS:
3716    case KVM_STATS_UNIT_BOOLEAN:
3717        break;
3718    default:
3719        return stats_list;
3720    }
3721
3722    switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3723    case KVM_STATS_BASE_POW10:
3724    case KVM_STATS_BASE_POW2:
3725        break;
3726    default:
3727        return stats_list;
3728    }
3729
3730    /* Alloc and populate data list */
3731    stats = g_new0(Stats, 1);
3732    stats->name = g_strdup(pdesc->name);
3733    stats->value = g_new0(StatsValue, 1);;
3734
3735    if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3736        stats->value->u.boolean = *stats_data;
3737        stats->value->type = QTYPE_QBOOL;
3738    } else if (pdesc->size == 1) {
3739        stats->value->u.scalar = *stats_data;
3740        stats->value->type = QTYPE_QNUM;
3741    } else {
3742        int i;
3743        for (i = 0; i < pdesc->size; i++) {
3744            QAPI_LIST_PREPEND(val_list, stats_data[i]);
3745        }
3746        stats->value->u.list = val_list;
3747        stats->value->type = QTYPE_QLIST;
3748    }
3749
3750    QAPI_LIST_PREPEND(stats_list, stats);
3751    return stats_list;
3752}
3753
3754static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3755                                                 StatsSchemaValueList *list,
3756                                                 Error **errp)
3757{
3758    StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3759    schema_entry->value = g_new0(StatsSchemaValue, 1);
3760
3761    switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3762    case KVM_STATS_TYPE_CUMULATIVE:
3763        schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3764        break;
3765    case KVM_STATS_TYPE_INSTANT:
3766        schema_entry->value->type = STATS_TYPE_INSTANT;
3767        break;
3768    case KVM_STATS_TYPE_PEAK:
3769        schema_entry->value->type = STATS_TYPE_PEAK;
3770        break;
3771    case KVM_STATS_TYPE_LINEAR_HIST:
3772        schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3773        schema_entry->value->bucket_size = pdesc->bucket_size;
3774        schema_entry->value->has_bucket_size = true;
3775        break;
3776    case KVM_STATS_TYPE_LOG_HIST:
3777        schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3778        break;
3779    default:
3780        goto exit;
3781    }
3782
3783    switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3784    case KVM_STATS_UNIT_NONE:
3785        break;
3786    case KVM_STATS_UNIT_BOOLEAN:
3787        schema_entry->value->has_unit = true;
3788        schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3789        break;
3790    case KVM_STATS_UNIT_BYTES:
3791        schema_entry->value->has_unit = true;
3792        schema_entry->value->unit = STATS_UNIT_BYTES;
3793        break;
3794    case KVM_STATS_UNIT_CYCLES:
3795        schema_entry->value->has_unit = true;
3796        schema_entry->value->unit = STATS_UNIT_CYCLES;
3797        break;
3798    case KVM_STATS_UNIT_SECONDS:
3799        schema_entry->value->has_unit = true;
3800        schema_entry->value->unit = STATS_UNIT_SECONDS;
3801        break;
3802    default:
3803        goto exit;
3804    }
3805
3806    schema_entry->value->exponent = pdesc->exponent;
3807    if (pdesc->exponent) {
3808        switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3809        case KVM_STATS_BASE_POW10:
3810            schema_entry->value->has_base = true;
3811            schema_entry->value->base = 10;
3812            break;
3813        case KVM_STATS_BASE_POW2:
3814            schema_entry->value->has_base = true;
3815            schema_entry->value->base = 2;
3816            break;
3817        default:
3818            goto exit;
3819        }
3820    }
3821
3822    schema_entry->value->name = g_strdup(pdesc->name);
3823    schema_entry->next = list;
3824    return schema_entry;
3825exit:
3826    g_free(schema_entry->value);
3827    g_free(schema_entry);
3828    return list;
3829}
3830
3831/* Cached stats descriptors */
3832typedef struct StatsDescriptors {
3833    const char *ident; /* cache key, currently the StatsTarget */
3834    struct kvm_stats_desc *kvm_stats_desc;
3835    struct kvm_stats_header kvm_stats_header;
3836    QTAILQ_ENTRY(StatsDescriptors) next;
3837} StatsDescriptors;
3838
3839static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3840    QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3841
3842/*
3843 * Return the descriptors for 'target', that either have already been read
3844 * or are retrieved from 'stats_fd'.
3845 */
3846static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3847                                                Error **errp)
3848{
3849    StatsDescriptors *descriptors;
3850    const char *ident;
3851    struct kvm_stats_desc *kvm_stats_desc;
3852    struct kvm_stats_header *kvm_stats_header;
3853    size_t size_desc;
3854    ssize_t ret;
3855
3856    ident = StatsTarget_str(target);
3857    QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3858        if (g_str_equal(descriptors->ident, ident)) {
3859            return descriptors;
3860        }
3861    }
3862
3863    descriptors = g_new0(StatsDescriptors, 1);
3864
3865    /* Read stats header */
3866    kvm_stats_header = &descriptors->kvm_stats_header;
3867    ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3868    if (ret != sizeof(*kvm_stats_header)) {
3869        error_setg(errp, "KVM stats: failed to read stats header: "
3870                   "expected %zu actual %zu",
3871                   sizeof(*kvm_stats_header), ret);
3872        g_free(descriptors);
3873        return NULL;
3874    }
3875    size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3876
3877    /* Read stats descriptors */
3878    kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3879    ret = pread(stats_fd, kvm_stats_desc,
3880                size_desc * kvm_stats_header->num_desc,
3881                kvm_stats_header->desc_offset);
3882
3883    if (ret != size_desc * kvm_stats_header->num_desc) {
3884        error_setg(errp, "KVM stats: failed to read stats descriptors: "
3885                   "expected %zu actual %zu",
3886                   size_desc * kvm_stats_header->num_desc, ret);
3887        g_free(descriptors);
3888        g_free(kvm_stats_desc);
3889        return NULL;
3890    }
3891    descriptors->kvm_stats_desc = kvm_stats_desc;
3892    descriptors->ident = ident;
3893    QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3894    return descriptors;
3895}
3896
3897static void query_stats(StatsResultList **result, StatsTarget target,
3898                        strList *names, int stats_fd, Error **errp)
3899{
3900    struct kvm_stats_desc *kvm_stats_desc;
3901    struct kvm_stats_header *kvm_stats_header;
3902    StatsDescriptors *descriptors;
3903    g_autofree uint64_t *stats_data = NULL;
3904    struct kvm_stats_desc *pdesc;
3905    StatsList *stats_list = NULL;
3906    size_t size_desc, size_data = 0;
3907    ssize_t ret;
3908    int i;
3909
3910    descriptors = find_stats_descriptors(target, stats_fd, errp);
3911    if (!descriptors) {
3912        return;
3913    }
3914
3915    kvm_stats_header = &descriptors->kvm_stats_header;
3916    kvm_stats_desc = descriptors->kvm_stats_desc;
3917    size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3918
3919    /* Tally the total data size; read schema data */
3920    for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3921        pdesc = (void *)kvm_stats_desc + i * size_desc;
3922        size_data += pdesc->size * sizeof(*stats_data);
3923    }
3924
3925    stats_data = g_malloc0(size_data);
3926    ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3927
3928    if (ret != size_data) {
3929        error_setg(errp, "KVM stats: failed to read data: "
3930                   "expected %zu actual %zu", size_data, ret);
3931        return;
3932    }
3933
3934    for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3935        uint64_t *stats;
3936        pdesc = (void *)kvm_stats_desc + i * size_desc;
3937
3938        /* Add entry to the list */
3939        stats = (void *)stats_data + pdesc->offset;
3940        if (!apply_str_list_filter(pdesc->name, names)) {
3941            continue;
3942        }
3943        stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
3944    }
3945
3946    if (!stats_list) {
3947        return;
3948    }
3949
3950    switch (target) {
3951    case STATS_TARGET_VM:
3952        add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
3953        break;
3954    case STATS_TARGET_VCPU:
3955        add_stats_entry(result, STATS_PROVIDER_KVM,
3956                        current_cpu->parent_obj.canonical_path,
3957                        stats_list);
3958        break;
3959    default:
3960        g_assert_not_reached();
3961    }
3962}
3963
3964static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
3965                               int stats_fd, Error **errp)
3966{
3967    struct kvm_stats_desc *kvm_stats_desc;
3968    struct kvm_stats_header *kvm_stats_header;
3969    StatsDescriptors *descriptors;
3970    struct kvm_stats_desc *pdesc;
3971    StatsSchemaValueList *stats_list = NULL;
3972    size_t size_desc;
3973    int i;
3974
3975    descriptors = find_stats_descriptors(target, stats_fd, errp);
3976    if (!descriptors) {
3977        return;
3978    }
3979
3980    kvm_stats_header = &descriptors->kvm_stats_header;
3981    kvm_stats_desc = descriptors->kvm_stats_desc;
3982    size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3983
3984    /* Tally the total data size; read schema data */
3985    for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3986        pdesc = (void *)kvm_stats_desc + i * size_desc;
3987        stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
3988    }
3989
3990    add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
3991}
3992
3993static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
3994{
3995    StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
3996    int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
3997    Error *local_err = NULL;
3998
3999    if (stats_fd == -1) {
4000        error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4001        error_propagate(kvm_stats_args->errp, local_err);
4002        return;
4003    }
4004    query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4005                kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4006    close(stats_fd);
4007}
4008
4009static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4010{
4011    StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4012    int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4013    Error *local_err = NULL;
4014
4015    if (stats_fd == -1) {
4016        error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4017        error_propagate(kvm_stats_args->errp, local_err);
4018        return;
4019    }
4020    query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4021                       kvm_stats_args->errp);
4022    close(stats_fd);
4023}
4024
4025static void query_stats_cb(StatsResultList **result, StatsTarget target,
4026                           strList *names, strList *targets, Error **errp)
4027{
4028    KVMState *s = kvm_state;
4029    CPUState *cpu;
4030    int stats_fd;
4031
4032    switch (target) {
4033    case STATS_TARGET_VM:
4034    {
4035        stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4036        if (stats_fd == -1) {
4037            error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4038            return;
4039        }
4040        query_stats(result, target, names, stats_fd, errp);
4041        close(stats_fd);
4042        break;
4043    }
4044    case STATS_TARGET_VCPU:
4045    {
4046        StatsArgs stats_args;
4047        stats_args.result.stats = result;
4048        stats_args.names = names;
4049        stats_args.errp = errp;
4050        CPU_FOREACH(cpu) {
4051            if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4052                continue;
4053            }
4054            run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4055        }
4056        break;
4057    }
4058    default:
4059        break;
4060    }
4061}
4062
4063void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4064{
4065    StatsArgs stats_args;
4066    KVMState *s = kvm_state;
4067    int stats_fd;
4068
4069    stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4070    if (stats_fd == -1) {
4071        error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4072        return;
4073    }
4074    query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4075    close(stats_fd);
4076
4077    if (first_cpu) {
4078        stats_args.result.schema = result;
4079        stats_args.errp = errp;
4080        run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4081    }
4082}
4083