qemu/hw/intc/spapr_xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC sPAPR XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qemu/module.h"
  13#include "qapi/error.h"
  14#include "qemu/error-report.h"
  15#include "target/ppc/cpu.h"
  16#include "sysemu/cpus.h"
  17#include "sysemu/reset.h"
  18#include "migration/vmstate.h"
  19#include "monitor/monitor.h"
  20#include "hw/ppc/fdt.h"
  21#include "hw/ppc/spapr.h"
  22#include "hw/ppc/spapr_cpu_core.h"
  23#include "hw/ppc/spapr_xive.h"
  24#include "hw/ppc/xive.h"
  25#include "hw/ppc/xive_regs.h"
  26#include "hw/qdev-properties.h"
  27#include "trace.h"
  28
  29/*
  30 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
  31 * use for the ESB pages and the TIMA pages
  32 */
  33#define SPAPR_XIVE_VC_BASE   0x0006010000000000ull
  34#define SPAPR_XIVE_TM_BASE   0x0006030203180000ull
  35
  36/*
  37 * The allocation of VP blocks is a complex operation in OPAL and the
  38 * VP identifiers have a relation with the number of HW chips, the
  39 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
  40 * controller model does not have the same constraints and can use a
  41 * simple mapping scheme of the CPU vcpu_id
  42 *
  43 * These identifiers are never returned to the OS.
  44 */
  45
  46#define SPAPR_XIVE_NVT_BASE 0x400
  47
  48/*
  49 * sPAPR NVT and END indexing helpers
  50 */
  51static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
  52{
  53    return nvt_idx - SPAPR_XIVE_NVT_BASE;
  54}
  55
  56static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
  57                                  uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
  58{
  59    assert(cpu);
  60
  61    if (out_nvt_blk) {
  62        *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
  63    }
  64
  65    if (out_nvt_blk) {
  66        *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
  67    }
  68}
  69
  70static int spapr_xive_target_to_nvt(uint32_t target,
  71                                    uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
  72{
  73    PowerPCCPU *cpu = spapr_find_cpu(target);
  74
  75    if (!cpu) {
  76        return -1;
  77    }
  78
  79    spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
  80    return 0;
  81}
  82
  83/*
  84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
  85 * priorities per CPU
  86 */
  87int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
  88                             uint32_t *out_server, uint8_t *out_prio)
  89{
  90
  91    assert(end_blk == SPAPR_XIVE_BLOCK_ID);
  92
  93    if (out_server) {
  94        *out_server = end_idx >> 3;
  95    }
  96
  97    if (out_prio) {
  98        *out_prio = end_idx & 0x7;
  99    }
 100    return 0;
 101}
 102
 103static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
 104                                  uint8_t *out_end_blk, uint32_t *out_end_idx)
 105{
 106    assert(cpu);
 107
 108    if (out_end_blk) {
 109        *out_end_blk = SPAPR_XIVE_BLOCK_ID;
 110    }
 111
 112    if (out_end_idx) {
 113        *out_end_idx = (cpu->vcpu_id << 3) + prio;
 114    }
 115}
 116
 117static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
 118                                    uint8_t *out_end_blk, uint32_t *out_end_idx)
 119{
 120    PowerPCCPU *cpu = spapr_find_cpu(target);
 121
 122    if (!cpu) {
 123        return -1;
 124    }
 125
 126    spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
 127    return 0;
 128}
 129
 130/*
 131 * On sPAPR machines, use a simplified output for the XIVE END
 132 * structure dumping only the information related to the OS EQ.
 133 */
 134static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
 135                                          Monitor *mon)
 136{
 137    uint64_t qaddr_base = xive_end_qaddr(end);
 138    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
 139    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
 140    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
 141    uint32_t qentries = 1 << (qsize + 10);
 142    uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
 143    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
 144
 145    monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
 146                   spapr_xive_nvt_to_target(0, nvt),
 147                   priority, qindex, qentries, qaddr_base, qgen);
 148
 149    xive_end_queue_pic_print_info(end, 6, mon);
 150}
 151
 152/*
 153 * kvm_irqchip_in_kernel() will cause the compiler to turn this
 154 * info a nop if CONFIG_KVM isn't defined.
 155 */
 156#define spapr_xive_in_kernel(xive) \
 157    (kvm_irqchip_in_kernel() && (xive)->fd != -1)
 158
 159static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
 160{
 161    XiveSource *xsrc = &xive->source;
 162    int i;
 163
 164    if (spapr_xive_in_kernel(xive)) {
 165        Error *local_err = NULL;
 166
 167        kvmppc_xive_synchronize_state(xive, &local_err);
 168        if (local_err) {
 169            error_report_err(local_err);
 170            return;
 171        }
 172    }
 173
 174    monitor_printf(mon, "  LISN         PQ    EISN     CPU/PRIO EQ\n");
 175
 176    for (i = 0; i < xive->nr_irqs; i++) {
 177        uint8_t pq = xive_source_esb_get(xsrc, i);
 178        XiveEAS *eas = &xive->eat[i];
 179
 180        if (!xive_eas_is_valid(eas)) {
 181            continue;
 182        }
 183
 184        monitor_printf(mon, "  %08x %s %c%c%c %s %08x ", i,
 185                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
 186                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
 187                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
 188                       xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
 189                       xive_eas_is_masked(eas) ? "M" : " ",
 190                       (int) xive_get_field64(EAS_END_DATA, eas->w));
 191
 192        if (!xive_eas_is_masked(eas)) {
 193            uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
 194            XiveEND *end;
 195
 196            assert(end_idx < xive->nr_ends);
 197            end = &xive->endt[end_idx];
 198
 199            if (xive_end_is_valid(end)) {
 200                spapr_xive_end_pic_print_info(xive, end, mon);
 201            }
 202        }
 203        monitor_printf(mon, "\n");
 204    }
 205}
 206
 207void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
 208{
 209    memory_region_set_enabled(&xive->source.esb_mmio, enable);
 210    memory_region_set_enabled(&xive->tm_mmio, enable);
 211
 212    /* Disable the END ESBs until a guest OS makes use of them */
 213    memory_region_set_enabled(&xive->end_source.esb_mmio, false);
 214}
 215
 216static void spapr_xive_tm_write(void *opaque, hwaddr offset,
 217                          uint64_t value, unsigned size)
 218{
 219    XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 220
 221    xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
 222}
 223
 224static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 225{
 226    XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
 227
 228    return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
 229}
 230
 231const MemoryRegionOps spapr_xive_tm_ops = {
 232    .read = spapr_xive_tm_read,
 233    .write = spapr_xive_tm_write,
 234    .endianness = DEVICE_BIG_ENDIAN,
 235    .valid = {
 236        .min_access_size = 1,
 237        .max_access_size = 8,
 238    },
 239    .impl = {
 240        .min_access_size = 1,
 241        .max_access_size = 8,
 242    },
 243};
 244
 245static void spapr_xive_end_reset(XiveEND *end)
 246{
 247    memset(end, 0, sizeof(*end));
 248
 249    /* switch off the escalation and notification ESBs */
 250    end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
 251}
 252
 253static void spapr_xive_reset(void *dev)
 254{
 255    SpaprXive *xive = SPAPR_XIVE(dev);
 256    int i;
 257
 258    /*
 259     * The XiveSource has its own reset handler, which mask off all
 260     * IRQs (!P|Q)
 261     */
 262
 263    /* Mask all valid EASs in the IRQ number space. */
 264    for (i = 0; i < xive->nr_irqs; i++) {
 265        XiveEAS *eas = &xive->eat[i];
 266        if (xive_eas_is_valid(eas)) {
 267            eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
 268        } else {
 269            eas->w = 0;
 270        }
 271    }
 272
 273    /* Clear all ENDs */
 274    for (i = 0; i < xive->nr_ends; i++) {
 275        spapr_xive_end_reset(&xive->endt[i]);
 276    }
 277}
 278
 279static void spapr_xive_instance_init(Object *obj)
 280{
 281    SpaprXive *xive = SPAPR_XIVE(obj);
 282
 283    object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
 284
 285    object_initialize_child(obj, "end_source", &xive->end_source,
 286                            TYPE_XIVE_END_SOURCE);
 287
 288    /* Not connected to the KVM XIVE device */
 289    xive->fd = -1;
 290}
 291
 292static void spapr_xive_realize(DeviceState *dev, Error **errp)
 293{
 294    SpaprXive *xive = SPAPR_XIVE(dev);
 295    SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
 296    XiveSource *xsrc = &xive->source;
 297    XiveENDSource *end_xsrc = &xive->end_source;
 298    Error *local_err = NULL;
 299
 300    /* Set by spapr_irq_init() */
 301    g_assert(xive->nr_irqs);
 302    g_assert(xive->nr_ends);
 303
 304    sxc->parent_realize(dev, &local_err);
 305    if (local_err) {
 306        error_propagate(errp, local_err);
 307        return;
 308    }
 309
 310    /*
 311     * Initialize the internal sources, for IPIs and virtual devices.
 312     */
 313    object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
 314                            &error_fatal);
 315    object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
 316    if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
 317        return;
 318    }
 319    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
 320
 321    /*
 322     * Initialize the END ESB source
 323     */
 324    object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
 325                            &error_fatal);
 326    object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
 327                             &error_abort);
 328    if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
 329        return;
 330    }
 331    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
 332
 333    /* Set the mapping address of the END ESB pages after the source ESBs */
 334    xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
 335
 336    /*
 337     * Allocate the routing tables
 338     */
 339    xive->eat = g_new0(XiveEAS, xive->nr_irqs);
 340    xive->endt = g_new0(XiveEND, xive->nr_ends);
 341
 342    xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
 343                           xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
 344
 345    qemu_register_reset(spapr_xive_reset, dev);
 346
 347    /* TIMA initialization */
 348    memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
 349                          xive, "xive.tima", 4ull << TM_SHIFT);
 350    sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
 351
 352    /*
 353     * Map all regions. These will be enabled or disabled at reset and
 354     * can also be overridden by KVM memory regions if active
 355     */
 356    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
 357    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
 358    sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
 359}
 360
 361static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
 362                              uint32_t eas_idx, XiveEAS *eas)
 363{
 364    SpaprXive *xive = SPAPR_XIVE(xrtr);
 365
 366    if (eas_idx >= xive->nr_irqs) {
 367        return -1;
 368    }
 369
 370    *eas = xive->eat[eas_idx];
 371    return 0;
 372}
 373
 374static int spapr_xive_get_end(XiveRouter *xrtr,
 375                              uint8_t end_blk, uint32_t end_idx, XiveEND *end)
 376{
 377    SpaprXive *xive = SPAPR_XIVE(xrtr);
 378
 379    if (end_idx >= xive->nr_ends) {
 380        return -1;
 381    }
 382
 383    memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
 384    return 0;
 385}
 386
 387static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
 388                                uint32_t end_idx, XiveEND *end,
 389                                uint8_t word_number)
 390{
 391    SpaprXive *xive = SPAPR_XIVE(xrtr);
 392
 393    if (end_idx >= xive->nr_ends) {
 394        return -1;
 395    }
 396
 397    memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
 398    return 0;
 399}
 400
 401static int spapr_xive_get_nvt(XiveRouter *xrtr,
 402                              uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
 403{
 404    uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
 405    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
 406
 407    if (!cpu) {
 408        /* TODO: should we assert() if we can find a NVT ? */
 409        return -1;
 410    }
 411
 412    /*
 413     * sPAPR does not maintain a NVT table. Return that the NVT is
 414     * valid if we have found a matching CPU
 415     */
 416    nvt->w0 = cpu_to_be32(NVT_W0_VALID);
 417    return 0;
 418}
 419
 420static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
 421                                uint32_t nvt_idx, XiveNVT *nvt,
 422                                uint8_t word_number)
 423{
 424    /*
 425     * We don't need to write back to the NVTs because the sPAPR
 426     * machine should never hit a non-scheduled NVT. It should never
 427     * get called.
 428     */
 429    g_assert_not_reached();
 430}
 431
 432static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
 433                                uint8_t nvt_blk, uint32_t nvt_idx,
 434                                bool cam_ignore, uint8_t priority,
 435                                uint32_t logic_serv, XiveTCTXMatch *match)
 436{
 437    CPUState *cs;
 438    int count = 0;
 439
 440    CPU_FOREACH(cs) {
 441        PowerPCCPU *cpu = POWERPC_CPU(cs);
 442        XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 443        int ring;
 444
 445        /*
 446         * Skip partially initialized vCPUs. This can happen when
 447         * vCPUs are hotplugged.
 448         */
 449        if (!tctx) {
 450            continue;
 451        }
 452
 453        /*
 454         * Check the thread context CAM lines and record matches.
 455         */
 456        ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
 457                                         cam_ignore, logic_serv);
 458        /*
 459         * Save the matching thread interrupt context and follow on to
 460         * check for duplicates which are invalid.
 461         */
 462        if (ring != -1) {
 463            if (match->tctx) {
 464                qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
 465                              "context NVT %x/%x\n", nvt_blk, nvt_idx);
 466                return -1;
 467            }
 468
 469            match->ring = ring;
 470            match->tctx = tctx;
 471            count++;
 472        }
 473    }
 474
 475    return count;
 476}
 477
 478static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
 479{
 480    return SPAPR_XIVE_BLOCK_ID;
 481}
 482
 483static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 484                             uint8_t *pq)
 485{
 486    SpaprXive *xive = SPAPR_XIVE(xrtr);
 487
 488    assert(SPAPR_XIVE_BLOCK_ID == blk);
 489
 490    *pq = xive_source_esb_get(&xive->source, idx);
 491    return 0;
 492}
 493
 494static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
 495                             uint8_t *pq)
 496{
 497    SpaprXive *xive = SPAPR_XIVE(xrtr);
 498
 499    assert(SPAPR_XIVE_BLOCK_ID == blk);
 500
 501    *pq = xive_source_esb_set(&xive->source, idx, *pq);
 502    return 0;
 503}
 504
 505
 506static const VMStateDescription vmstate_spapr_xive_end = {
 507    .name = TYPE_SPAPR_XIVE "/end",
 508    .version_id = 1,
 509    .minimum_version_id = 1,
 510    .fields = (VMStateField []) {
 511        VMSTATE_UINT32(w0, XiveEND),
 512        VMSTATE_UINT32(w1, XiveEND),
 513        VMSTATE_UINT32(w2, XiveEND),
 514        VMSTATE_UINT32(w3, XiveEND),
 515        VMSTATE_UINT32(w4, XiveEND),
 516        VMSTATE_UINT32(w5, XiveEND),
 517        VMSTATE_UINT32(w6, XiveEND),
 518        VMSTATE_UINT32(w7, XiveEND),
 519        VMSTATE_END_OF_LIST()
 520    },
 521};
 522
 523static const VMStateDescription vmstate_spapr_xive_eas = {
 524    .name = TYPE_SPAPR_XIVE "/eas",
 525    .version_id = 1,
 526    .minimum_version_id = 1,
 527    .fields = (VMStateField []) {
 528        VMSTATE_UINT64(w, XiveEAS),
 529        VMSTATE_END_OF_LIST()
 530    },
 531};
 532
 533static int vmstate_spapr_xive_pre_save(void *opaque)
 534{
 535    SpaprXive *xive = SPAPR_XIVE(opaque);
 536
 537    if (spapr_xive_in_kernel(xive)) {
 538        return kvmppc_xive_pre_save(xive);
 539    }
 540
 541    return 0;
 542}
 543
 544/*
 545 * Called by the sPAPR IRQ backend 'post_load' method at the machine
 546 * level.
 547 */
 548static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
 549{
 550    SpaprXive *xive = SPAPR_XIVE(intc);
 551
 552    if (spapr_xive_in_kernel(xive)) {
 553        return kvmppc_xive_post_load(xive, version_id);
 554    }
 555
 556    return 0;
 557}
 558
 559static const VMStateDescription vmstate_spapr_xive = {
 560    .name = TYPE_SPAPR_XIVE,
 561    .version_id = 1,
 562    .minimum_version_id = 1,
 563    .pre_save = vmstate_spapr_xive_pre_save,
 564    .post_load = NULL, /* handled at the machine level */
 565    .fields = (VMStateField[]) {
 566        VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
 567        VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
 568                                     vmstate_spapr_xive_eas, XiveEAS),
 569        VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
 570                                             vmstate_spapr_xive_end, XiveEND),
 571        VMSTATE_END_OF_LIST()
 572    },
 573};
 574
 575static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
 576                                bool lsi, Error **errp)
 577{
 578    SpaprXive *xive = SPAPR_XIVE(intc);
 579    XiveSource *xsrc = &xive->source;
 580
 581    assert(lisn < xive->nr_irqs);
 582
 583    trace_spapr_xive_claim_irq(lisn, lsi);
 584
 585    if (xive_eas_is_valid(&xive->eat[lisn])) {
 586        error_setg(errp, "IRQ %d is not free", lisn);
 587        return -EBUSY;
 588    }
 589
 590    /*
 591     * Set default values when allocating an IRQ number
 592     */
 593    xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
 594    if (lsi) {
 595        xive_source_irq_set_lsi(xsrc, lisn);
 596    }
 597
 598    if (spapr_xive_in_kernel(xive)) {
 599        return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
 600    }
 601
 602    return 0;
 603}
 604
 605static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
 606{
 607    SpaprXive *xive = SPAPR_XIVE(intc);
 608    assert(lisn < xive->nr_irqs);
 609
 610    trace_spapr_xive_free_irq(lisn);
 611
 612    xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
 613}
 614
 615static Property spapr_xive_properties[] = {
 616    DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
 617    DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
 618    DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
 619    DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
 620    DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
 621    DEFINE_PROP_END_OF_LIST(),
 622};
 623
 624static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
 625                                      PowerPCCPU *cpu, Error **errp)
 626{
 627    SpaprXive *xive = SPAPR_XIVE(intc);
 628    Object *obj;
 629    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 630
 631    obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
 632    if (!obj) {
 633        return -1;
 634    }
 635
 636    spapr_cpu->tctx = XIVE_TCTX(obj);
 637    return 0;
 638}
 639
 640static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
 641{
 642    uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
 643    memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
 644}
 645
 646static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
 647                                     PowerPCCPU *cpu)
 648{
 649    XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
 650    uint8_t  nvt_blk;
 651    uint32_t nvt_idx;
 652
 653    xive_tctx_reset(tctx);
 654
 655    /*
 656     * When a Virtual Processor is scheduled to run on a HW thread,
 657     * the hypervisor pushes its identifier in the OS CAM line.
 658     * Emulate the same behavior under QEMU.
 659     */
 660    spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
 661
 662    xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
 663}
 664
 665static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
 666                                        PowerPCCPU *cpu)
 667{
 668    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 669
 670    xive_tctx_destroy(spapr_cpu->tctx);
 671    spapr_cpu->tctx = NULL;
 672}
 673
 674static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
 675{
 676    SpaprXive *xive = SPAPR_XIVE(intc);
 677
 678    trace_spapr_xive_set_irq(irq, val);
 679
 680    if (spapr_xive_in_kernel(xive)) {
 681        kvmppc_xive_source_set_irq(&xive->source, irq, val);
 682    } else {
 683        xive_source_set_irq(&xive->source, irq, val);
 684    }
 685}
 686
 687static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
 688{
 689    SpaprXive *xive = SPAPR_XIVE(intc);
 690    CPUState *cs;
 691
 692    CPU_FOREACH(cs) {
 693        PowerPCCPU *cpu = POWERPC_CPU(cs);
 694
 695        xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
 696    }
 697
 698    spapr_xive_pic_print_info(xive, mon);
 699}
 700
 701static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
 702                          void *fdt, uint32_t phandle)
 703{
 704    SpaprXive *xive = SPAPR_XIVE(intc);
 705    int node;
 706    uint64_t timas[2 * 2];
 707    /* Interrupt number ranges for the IPIs */
 708    uint32_t lisn_ranges[] = {
 709        cpu_to_be32(SPAPR_IRQ_IPI),
 710        cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
 711    };
 712    /*
 713     * EQ size - the sizes of pages supported by the system 4K, 64K,
 714     * 2M, 16M. We only advertise 64K for the moment.
 715     */
 716    uint32_t eq_sizes[] = {
 717        cpu_to_be32(16), /* 64K */
 718    };
 719    /*
 720     * QEMU/KVM only needs to define a single range to reserve the
 721     * escalation priority. A priority bitmask would have been more
 722     * appropriate.
 723     */
 724    uint32_t plat_res_int_priorities[] = {
 725        cpu_to_be32(xive->hv_prio),    /* start */
 726        cpu_to_be32(0xff - xive->hv_prio), /* count */
 727    };
 728
 729    /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
 730    timas[0] = cpu_to_be64(xive->tm_base +
 731                           XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
 732    timas[1] = cpu_to_be64(1ull << TM_SHIFT);
 733    timas[2] = cpu_to_be64(xive->tm_base +
 734                           XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
 735    timas[3] = cpu_to_be64(1ull << TM_SHIFT);
 736
 737    _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
 738
 739    _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
 740    _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
 741
 742    _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
 743    _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
 744                     sizeof(eq_sizes)));
 745    _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
 746                     sizeof(lisn_ranges)));
 747
 748    /* For Linux to link the LSIs to the interrupt controller. */
 749    _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
 750    _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
 751
 752    /* For SLOF */
 753    _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
 754    _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
 755
 756    /*
 757     * The "ibm,plat-res-int-priorities" property defines the priority
 758     * ranges reserved by the hypervisor
 759     */
 760    _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
 761                     plat_res_int_priorities, sizeof(plat_res_int_priorities)));
 762}
 763
 764static int spapr_xive_activate(SpaprInterruptController *intc,
 765                               uint32_t nr_servers, Error **errp)
 766{
 767    SpaprXive *xive = SPAPR_XIVE(intc);
 768
 769    if (kvm_enabled()) {
 770        int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
 771                                    errp);
 772        if (rc < 0) {
 773            return rc;
 774        }
 775    }
 776
 777    /* Activate the XIVE MMIOs */
 778    spapr_xive_mmio_set_enabled(xive, true);
 779
 780    return 0;
 781}
 782
 783static void spapr_xive_deactivate(SpaprInterruptController *intc)
 784{
 785    SpaprXive *xive = SPAPR_XIVE(intc);
 786
 787    spapr_xive_mmio_set_enabled(xive, false);
 788
 789    if (spapr_xive_in_kernel(xive)) {
 790        kvmppc_xive_disconnect(intc);
 791    }
 792}
 793
 794static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
 795{
 796    return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
 797}
 798
 799static void spapr_xive_class_init(ObjectClass *klass, void *data)
 800{
 801    DeviceClass *dc = DEVICE_CLASS(klass);
 802    XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
 803    SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
 804    XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
 805    SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
 806
 807    dc->desc    = "sPAPR XIVE Interrupt Controller";
 808    device_class_set_props(dc, spapr_xive_properties);
 809    device_class_set_parent_realize(dc, spapr_xive_realize,
 810                                    &sxc->parent_realize);
 811    dc->vmsd    = &vmstate_spapr_xive;
 812
 813    xrc->get_eas = spapr_xive_get_eas;
 814    xrc->get_pq  = spapr_xive_get_pq;
 815    xrc->set_pq  = spapr_xive_set_pq;
 816    xrc->get_end = spapr_xive_get_end;
 817    xrc->write_end = spapr_xive_write_end;
 818    xrc->get_nvt = spapr_xive_get_nvt;
 819    xrc->write_nvt = spapr_xive_write_nvt;
 820    xrc->get_block_id = spapr_xive_get_block_id;
 821
 822    sicc->activate = spapr_xive_activate;
 823    sicc->deactivate = spapr_xive_deactivate;
 824    sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
 825    sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
 826    sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
 827    sicc->claim_irq = spapr_xive_claim_irq;
 828    sicc->free_irq = spapr_xive_free_irq;
 829    sicc->set_irq = spapr_xive_set_irq;
 830    sicc->print_info = spapr_xive_print_info;
 831    sicc->dt = spapr_xive_dt;
 832    sicc->post_load = spapr_xive_post_load;
 833
 834    xpc->match_nvt  = spapr_xive_match_nvt;
 835    xpc->in_kernel  = spapr_xive_in_kernel_xptr;
 836}
 837
 838static const TypeInfo spapr_xive_info = {
 839    .name = TYPE_SPAPR_XIVE,
 840    .parent = TYPE_XIVE_ROUTER,
 841    .instance_init = spapr_xive_instance_init,
 842    .instance_size = sizeof(SpaprXive),
 843    .class_init = spapr_xive_class_init,
 844    .class_size = sizeof(SpaprXiveClass),
 845    .interfaces = (InterfaceInfo[]) {
 846        { TYPE_SPAPR_INTC },
 847        { }
 848    },
 849};
 850
 851static void spapr_xive_register_types(void)
 852{
 853    type_register_static(&spapr_xive_info);
 854}
 855
 856type_init(spapr_xive_register_types)
 857
 858/*
 859 * XIVE hcalls
 860 *
 861 * The terminology used by the XIVE hcalls is the following :
 862 *
 863 *   TARGET vCPU number
 864 *   EQ     Event Queue assigned by OS to receive event data
 865 *   ESB    page for source interrupt management
 866 *   LISN   Logical Interrupt Source Number identifying a source in the
 867 *          machine
 868 *   EISN   Effective Interrupt Source Number used by guest OS to
 869 *          identify source in the guest
 870 *
 871 * The EAS, END, NVT structures are not exposed.
 872 */
 873
 874/*
 875 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
 876 * interrupts. So we only allow the guest to use priorities [0..6].
 877 */
 878static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
 879{
 880    return priority >= xive->hv_prio;
 881}
 882
 883/*
 884 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
 885 * real address of the MMIO page through which the Event State Buffer
 886 * entry associated with the value of the "lisn" parameter is managed.
 887 *
 888 * Parameters:
 889 * Input
 890 * - R4: "flags"
 891 *         Bits 0-63 reserved
 892 * - R5: "lisn" is per "interrupts", "interrupt-map", or
 893 *       "ibm,xive-lisn-ranges" properties, or as returned by the
 894 *       ibm,query-interrupt-source-number RTAS call, or as returned
 895 *       by the H_ALLOCATE_VAS_WINDOW hcall
 896 *
 897 * Output
 898 * - R4: "flags"
 899 *         Bits 0-59: Reserved
 900 *         Bit 60: H_INT_ESB must be used for Event State Buffer
 901 *                 management
 902 *         Bit 61: 1 == LSI  0 == MSI
 903 *         Bit 62: the full function page supports trigger
 904 *         Bit 63: Store EOI Supported
 905 * - R5: Logical Real address of full function Event State Buffer
 906 *       management page, -1 if H_INT_ESB hcall flag is set to 1.
 907 * - R6: Logical Real Address of trigger only Event State Buffer
 908 *       management page or -1.
 909 * - R7: Power of 2 page size for the ESB management pages returned in
 910 *       R5 and R6.
 911 */
 912
 913#define SPAPR_XIVE_SRC_H_INT_ESB     PPC_BIT(60) /* ESB manage with H_INT_ESB */
 914#define SPAPR_XIVE_SRC_LSI           PPC_BIT(61) /* Virtual LSI type */
 915#define SPAPR_XIVE_SRC_TRIGGER       PPC_BIT(62) /* Trigger and management
 916                                                    on same page */
 917#define SPAPR_XIVE_SRC_STORE_EOI     PPC_BIT(63) /* Store EOI support */
 918
 919static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
 920                                          SpaprMachineState *spapr,
 921                                          target_ulong opcode,
 922                                          target_ulong *args)
 923{
 924    SpaprXive *xive = spapr->xive;
 925    XiveSource *xsrc = &xive->source;
 926    target_ulong flags  = args[0];
 927    target_ulong lisn   = args[1];
 928
 929    trace_spapr_xive_get_source_info(flags, lisn);
 930
 931    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
 932        return H_FUNCTION;
 933    }
 934
 935    if (flags) {
 936        return H_PARAMETER;
 937    }
 938
 939    if (lisn >= xive->nr_irqs) {
 940        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
 941                      lisn);
 942        return H_P2;
 943    }
 944
 945    if (!xive_eas_is_valid(&xive->eat[lisn])) {
 946        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
 947                      lisn);
 948        return H_P2;
 949    }
 950
 951    /*
 952     * All sources are emulated under the main XIVE object and share
 953     * the same characteristics.
 954     */
 955    args[0] = 0;
 956    if (!xive_source_esb_has_2page(xsrc)) {
 957        args[0] |= SPAPR_XIVE_SRC_TRIGGER;
 958    }
 959    if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
 960        args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
 961    }
 962
 963    /*
 964     * Force the use of the H_INT_ESB hcall in case of an LSI
 965     * interrupt. This is necessary under KVM to re-trigger the
 966     * interrupt if the level is still asserted
 967     */
 968    if (xive_source_irq_is_lsi(xsrc, lisn)) {
 969        args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
 970    }
 971
 972    if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 973        args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
 974    } else {
 975        args[1] = -1;
 976    }
 977
 978    if (xive_source_esb_has_2page(xsrc) &&
 979        !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
 980        args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
 981    } else {
 982        args[2] = -1;
 983    }
 984
 985    if (xive_source_esb_has_2page(xsrc)) {
 986        args[3] = xsrc->esb_shift - 1;
 987    } else {
 988        args[3] = xsrc->esb_shift;
 989    }
 990
 991    return H_SUCCESS;
 992}
 993
 994/*
 995 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
 996 * Interrupt Source to a target. The Logical Interrupt Source is
 997 * designated with the "lisn" parameter and the target is designated
 998 * with the "target" and "priority" parameters.  Upon return from the
 999 * hcall(), no additional interrupts will be directed to the old EQ.
1000 *
1001 * Parameters:
1002 * Input:
1003 * - R4: "flags"
1004 *         Bits 0-61: Reserved
1005 *         Bit 62: set the "eisn" in the EAS
1006 *         Bit 63: masks the interrupt source in the hardware interrupt
1007 *       control structure. An interrupt masked by this mechanism will
1008 *       be dropped, but it's source state bits will still be
1009 *       set. There is no race-free way of unmasking and restoring the
1010 *       source. Thus this should only be used in interrupts that are
1011 *       also masked at the source, and only in cases where the
1012 *       interrupt is not meant to be used for a large amount of time
1013 *       because no valid target exists for it for example
1014 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1015 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1016 *       ibm,query-interrupt-source-number RTAS call, or as returned by
1017 *       the H_ALLOCATE_VAS_WINDOW hcall
1018 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1019 *       "ibm,ppc-interrupt-gserver#s"
1020 * - R7: "priority" is a valid priority not in
1021 *       "ibm,plat-res-int-priorities"
1022 * - R8: "eisn" is the guest EISN associated with the "lisn"
1023 *
1024 * Output:
1025 * - None
1026 */
1027
1028#define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1029#define SPAPR_XIVE_SRC_MASK     PPC_BIT(63)
1030
1031static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1032                                            SpaprMachineState *spapr,
1033                                            target_ulong opcode,
1034                                            target_ulong *args)
1035{
1036    SpaprXive *xive = spapr->xive;
1037    XiveEAS eas, new_eas;
1038    target_ulong flags    = args[0];
1039    target_ulong lisn     = args[1];
1040    target_ulong target   = args[2];
1041    target_ulong priority = args[3];
1042    target_ulong eisn     = args[4];
1043    uint8_t end_blk;
1044    uint32_t end_idx;
1045
1046    trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1047
1048    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1049        return H_FUNCTION;
1050    }
1051
1052    if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1053        return H_PARAMETER;
1054    }
1055
1056    if (lisn >= xive->nr_irqs) {
1057        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1058                      lisn);
1059        return H_P2;
1060    }
1061
1062    eas = xive->eat[lisn];
1063    if (!xive_eas_is_valid(&eas)) {
1064        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1065                      lisn);
1066        return H_P2;
1067    }
1068
1069    /* priority 0xff is used to reset the EAS */
1070    if (priority == 0xff) {
1071        new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1072        goto out;
1073    }
1074
1075    if (flags & SPAPR_XIVE_SRC_MASK) {
1076        new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1077    } else {
1078        new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1079    }
1080
1081    if (spapr_xive_priority_is_reserved(xive, priority)) {
1082        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1083                      " is reserved\n", priority);
1084        return H_P4;
1085    }
1086
1087    /*
1088     * Validate that "target" is part of the list of threads allocated
1089     * to the partition. For that, find the END corresponding to the
1090     * target.
1091     */
1092    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1093        return H_P3;
1094    }
1095
1096    new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1097    new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1098
1099    if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1100        new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1101    }
1102
1103    if (spapr_xive_in_kernel(xive)) {
1104        Error *local_err = NULL;
1105
1106        kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1107        if (local_err) {
1108            error_report_err(local_err);
1109            return H_HARDWARE;
1110        }
1111    }
1112
1113out:
1114    xive->eat[lisn] = new_eas;
1115    return H_SUCCESS;
1116}
1117
1118/*
1119 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1120 * target/priority pair is assigned to the specified Logical Interrupt
1121 * Source.
1122 *
1123 * Parameters:
1124 * Input:
1125 * - R4: "flags"
1126 *         Bits 0-63 Reserved
1127 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1128 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1129 *       ibm,query-interrupt-source-number RTAS call, or as
1130 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1131 *
1132 * Output:
1133 * - R4: Target to which the specified Logical Interrupt Source is
1134 *       assigned
1135 * - R5: Priority to which the specified Logical Interrupt Source is
1136 *       assigned
1137 * - R6: EISN for the specified Logical Interrupt Source (this will be
1138 *       equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1139 */
1140static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1141                                            SpaprMachineState *spapr,
1142                                            target_ulong opcode,
1143                                            target_ulong *args)
1144{
1145    SpaprXive *xive = spapr->xive;
1146    target_ulong flags = args[0];
1147    target_ulong lisn = args[1];
1148    XiveEAS eas;
1149    XiveEND *end;
1150    uint8_t nvt_blk;
1151    uint32_t end_idx, nvt_idx;
1152
1153    trace_spapr_xive_get_source_config(flags, lisn);
1154
1155    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1156        return H_FUNCTION;
1157    }
1158
1159    if (flags) {
1160        return H_PARAMETER;
1161    }
1162
1163    if (lisn >= xive->nr_irqs) {
1164        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1165                      lisn);
1166        return H_P2;
1167    }
1168
1169    eas = xive->eat[lisn];
1170    if (!xive_eas_is_valid(&eas)) {
1171        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1172                      lisn);
1173        return H_P2;
1174    }
1175
1176    /* EAS_END_BLOCK is unused on sPAPR */
1177    end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1178
1179    assert(end_idx < xive->nr_ends);
1180    end = &xive->endt[end_idx];
1181
1182    nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1183    nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1184    args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1185
1186    if (xive_eas_is_masked(&eas)) {
1187        args[1] = 0xff;
1188    } else {
1189        args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1190    }
1191
1192    args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1193
1194    return H_SUCCESS;
1195}
1196
1197/*
1198 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1199 * address of the notification management page associated with the
1200 * specified target and priority.
1201 *
1202 * Parameters:
1203 * Input:
1204 * - R4: "flags"
1205 *         Bits 0-63 Reserved
1206 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1207 *       "ibm,ppc-interrupt-gserver#s"
1208 * - R6: "priority" is a valid priority not in
1209 *       "ibm,plat-res-int-priorities"
1210 *
1211 * Output:
1212 * - R4: Logical real address of notification page
1213 * - R5: Power of 2 page size of the notification page
1214 */
1215static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1216                                         SpaprMachineState *spapr,
1217                                         target_ulong opcode,
1218                                         target_ulong *args)
1219{
1220    SpaprXive *xive = spapr->xive;
1221    XiveENDSource *end_xsrc = &xive->end_source;
1222    target_ulong flags = args[0];
1223    target_ulong target = args[1];
1224    target_ulong priority = args[2];
1225    XiveEND *end;
1226    uint8_t end_blk;
1227    uint32_t end_idx;
1228
1229    trace_spapr_xive_get_queue_info(flags, target, priority);
1230
1231    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1232        return H_FUNCTION;
1233    }
1234
1235    if (flags) {
1236        return H_PARAMETER;
1237    }
1238
1239    /*
1240     * H_STATE should be returned if a H_INT_RESET is in progress.
1241     * This is not needed when running the emulation under QEMU
1242     */
1243
1244    if (spapr_xive_priority_is_reserved(xive, priority)) {
1245        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1246                      " is reserved\n", priority);
1247        return H_P3;
1248    }
1249
1250    /*
1251     * Validate that "target" is part of the list of threads allocated
1252     * to the partition. For that, find the END corresponding to the
1253     * target.
1254     */
1255    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1256        return H_P2;
1257    }
1258
1259    assert(end_idx < xive->nr_ends);
1260    end = &xive->endt[end_idx];
1261
1262    args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1263    if (xive_end_is_enqueue(end)) {
1264        args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1265    } else {
1266        args[1] = 0;
1267    }
1268
1269    return H_SUCCESS;
1270}
1271
1272/*
1273 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1274 * a given "target" and "priority".  It is also used to set the
1275 * notification config associated with the EQ.  An EQ size of 0 is
1276 * used to reset the EQ config for a given target and priority. If
1277 * resetting the EQ config, the END associated with the given "target"
1278 * and "priority" will be changed to disable queueing.
1279 *
1280 * Upon return from the hcall(), no additional interrupts will be
1281 * directed to the old EQ (if one was set). The old EQ (if one was
1282 * set) should be investigated for interrupts that occurred prior to
1283 * or during the hcall().
1284 *
1285 * Parameters:
1286 * Input:
1287 * - R4: "flags"
1288 *         Bits 0-62: Reserved
1289 *         Bit 63: Unconditional Notify (n) per the XIVE spec
1290 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1291 *       "ibm,ppc-interrupt-gserver#s"
1292 * - R6: "priority" is a valid priority not in
1293 *       "ibm,plat-res-int-priorities"
1294 * - R7: "eventQueue": The logical real address of the start of the EQ
1295 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1296 *
1297 * Output:
1298 * - None
1299 */
1300
1301#define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1302
1303static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1304                                           SpaprMachineState *spapr,
1305                                           target_ulong opcode,
1306                                           target_ulong *args)
1307{
1308    SpaprXive *xive = spapr->xive;
1309    target_ulong flags = args[0];
1310    target_ulong target = args[1];
1311    target_ulong priority = args[2];
1312    target_ulong qpage = args[3];
1313    target_ulong qsize = args[4];
1314    XiveEND end;
1315    uint8_t end_blk, nvt_blk;
1316    uint32_t end_idx, nvt_idx;
1317
1318    trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1319
1320    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1321        return H_FUNCTION;
1322    }
1323
1324    if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1325        return H_PARAMETER;
1326    }
1327
1328    /*
1329     * H_STATE should be returned if a H_INT_RESET is in progress.
1330     * This is not needed when running the emulation under QEMU
1331     */
1332
1333    if (spapr_xive_priority_is_reserved(xive, priority)) {
1334        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1335                      " is reserved\n", priority);
1336        return H_P3;
1337    }
1338
1339    /*
1340     * Validate that "target" is part of the list of threads allocated
1341     * to the partition. For that, find the END corresponding to the
1342     * target.
1343     */
1344
1345    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1346        return H_P2;
1347    }
1348
1349    assert(end_idx < xive->nr_ends);
1350    memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1351
1352    switch (qsize) {
1353    case 12:
1354    case 16:
1355    case 21:
1356    case 24:
1357        if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1358            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1359                          " is not naturally aligned with %" HWADDR_PRIx "\n",
1360                          qpage, (hwaddr)1 << qsize);
1361            return H_P4;
1362        }
1363        end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1364        end.w3 = cpu_to_be32(qpage & 0xffffffff);
1365        end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1366        end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1367        break;
1368    case 0:
1369        /* reset queue and disable queueing */
1370        spapr_xive_end_reset(&end);
1371        goto out;
1372
1373    default:
1374        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1375                      qsize);
1376        return H_P5;
1377    }
1378
1379    if (qsize) {
1380        hwaddr plen = 1 << qsize;
1381        void *eq;
1382
1383        /*
1384         * Validate the guest EQ. We should also check that the queue
1385         * has been zeroed by the OS.
1386         */
1387        eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1388                               MEMTXATTRS_UNSPECIFIED);
1389        if (plen != 1 << qsize) {
1390            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1391                          HWADDR_PRIx "\n", qpage);
1392            return H_P4;
1393        }
1394        address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1395    }
1396
1397    /* "target" should have been validated above */
1398    if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1399        g_assert_not_reached();
1400    }
1401
1402    /*
1403     * Ensure the priority and target are correctly set (they will not
1404     * be right after allocation)
1405     */
1406    end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1407        xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1408    end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1409
1410    if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1411        end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1412    } else {
1413        end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1414    }
1415
1416    /*
1417     * The generation bit for the END starts at 1 and The END page
1418     * offset counter starts at 0.
1419     */
1420    end.w1 = cpu_to_be32(END_W1_GENERATION) |
1421        xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1422    end.w0 |= cpu_to_be32(END_W0_VALID);
1423
1424    /*
1425     * TODO: issue syncs required to ensure all in-flight interrupts
1426     * are complete on the old END
1427     */
1428
1429out:
1430    if (spapr_xive_in_kernel(xive)) {
1431        Error *local_err = NULL;
1432
1433        kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1434        if (local_err) {
1435            error_report_err(local_err);
1436            return H_HARDWARE;
1437        }
1438    }
1439
1440    /* Update END */
1441    memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1442    return H_SUCCESS;
1443}
1444
1445/*
1446 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1447 * target and priority.
1448 *
1449 * Parameters:
1450 * Input:
1451 * - R4: "flags"
1452 *         Bits 0-62: Reserved
1453 *         Bit 63: Debug: Return debug data
1454 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1455 *       "ibm,ppc-interrupt-gserver#s"
1456 * - R6: "priority" is a valid priority not in
1457 *       "ibm,plat-res-int-priorities"
1458 *
1459 * Output:
1460 * - R4: "flags":
1461 *       Bits 0-61: Reserved
1462 *       Bit 62: The value of Event Queue Generation Number (g) per
1463 *              the XIVE spec if "Debug" = 1
1464 *       Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1465 * - R5: The logical real address of the start of the EQ
1466 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1467 * - R7: The value of Event Queue Offset Counter per XIVE spec
1468 *       if "Debug" = 1, else 0
1469 *
1470 */
1471
1472#define SPAPR_XIVE_END_DEBUG     PPC_BIT(63)
1473
1474static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1475                                           SpaprMachineState *spapr,
1476                                           target_ulong opcode,
1477                                           target_ulong *args)
1478{
1479    SpaprXive *xive = spapr->xive;
1480    target_ulong flags = args[0];
1481    target_ulong target = args[1];
1482    target_ulong priority = args[2];
1483    XiveEND *end;
1484    uint8_t end_blk;
1485    uint32_t end_idx;
1486
1487    trace_spapr_xive_get_queue_config(flags, target, priority);
1488
1489    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1490        return H_FUNCTION;
1491    }
1492
1493    if (flags & ~SPAPR_XIVE_END_DEBUG) {
1494        return H_PARAMETER;
1495    }
1496
1497    /*
1498     * H_STATE should be returned if a H_INT_RESET is in progress.
1499     * This is not needed when running the emulation under QEMU
1500     */
1501
1502    if (spapr_xive_priority_is_reserved(xive, priority)) {
1503        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1504                      " is reserved\n", priority);
1505        return H_P3;
1506    }
1507
1508    /*
1509     * Validate that "target" is part of the list of threads allocated
1510     * to the partition. For that, find the END corresponding to the
1511     * target.
1512     */
1513    if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1514        return H_P2;
1515    }
1516
1517    assert(end_idx < xive->nr_ends);
1518    end = &xive->endt[end_idx];
1519
1520    args[0] = 0;
1521    if (xive_end_is_notify(end)) {
1522        args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1523    }
1524
1525    if (xive_end_is_enqueue(end)) {
1526        args[1] = xive_end_qaddr(end);
1527        args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1528    } else {
1529        args[1] = 0;
1530        args[2] = 0;
1531    }
1532
1533    if (spapr_xive_in_kernel(xive)) {
1534        Error *local_err = NULL;
1535
1536        kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1537        if (local_err) {
1538            error_report_err(local_err);
1539            return H_HARDWARE;
1540        }
1541    }
1542
1543    /* TODO: do we need any locking on the END ? */
1544    if (flags & SPAPR_XIVE_END_DEBUG) {
1545        /* Load the event queue generation number into the return flags */
1546        args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1547
1548        /* Load R7 with the event queue offset counter */
1549        args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1550    } else {
1551        args[3] = 0;
1552    }
1553
1554    return H_SUCCESS;
1555}
1556
1557/*
1558 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1559 * reporting cache line pair for the calling thread.  The reporting
1560 * cache lines will contain the OS interrupt context when the OS
1561 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1562 * interrupt. The reporting cache lines can be reset by inputting -1
1563 * in "reportingLine".  Issuing the CI store byte without reporting
1564 * cache lines registered will result in the data not being accessible
1565 * to the OS.
1566 *
1567 * Parameters:
1568 * Input:
1569 * - R4: "flags"
1570 *         Bits 0-63: Reserved
1571 * - R5: "reportingLine": The logical real address of the reporting cache
1572 *       line pair
1573 *
1574 * Output:
1575 * - None
1576 */
1577static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1578                                                SpaprMachineState *spapr,
1579                                                target_ulong opcode,
1580                                                target_ulong *args)
1581{
1582    target_ulong flags   = args[0];
1583
1584    trace_spapr_xive_set_os_reporting_line(flags);
1585
1586    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1587        return H_FUNCTION;
1588    }
1589
1590    /*
1591     * H_STATE should be returned if a H_INT_RESET is in progress.
1592     * This is not needed when running the emulation under QEMU
1593     */
1594
1595    /* TODO: H_INT_SET_OS_REPORTING_LINE */
1596    return H_FUNCTION;
1597}
1598
1599/*
1600 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1601 * real address of the reporting cache line pair set for the input
1602 * "target".  If no reporting cache line pair has been set, -1 is
1603 * returned.
1604 *
1605 * Parameters:
1606 * Input:
1607 * - R4: "flags"
1608 *         Bits 0-63: Reserved
1609 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1610 *       "ibm,ppc-interrupt-gserver#s"
1611 * - R6: "reportingLine": The logical real address of the reporting
1612 *        cache line pair
1613 *
1614 * Output:
1615 * - R4: The logical real address of the reporting line if set, else -1
1616 */
1617static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1618                                                SpaprMachineState *spapr,
1619                                                target_ulong opcode,
1620                                                target_ulong *args)
1621{
1622    target_ulong flags   = args[0];
1623
1624    trace_spapr_xive_get_os_reporting_line(flags);
1625
1626    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1627        return H_FUNCTION;
1628    }
1629
1630    /*
1631     * H_STATE should be returned if a H_INT_RESET is in progress.
1632     * This is not needed when running the emulation under QEMU
1633     */
1634
1635    /* TODO: H_INT_GET_OS_REPORTING_LINE */
1636    return H_FUNCTION;
1637}
1638
1639/*
1640 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1641 * page for the input "lisn".  This hcall is only supported for LISNs
1642 * that have the ESB hcall flag set to 1 when returned from hcall()
1643 * H_INT_GET_SOURCE_INFO.
1644 *
1645 * Parameters:
1646 * Input:
1647 * - R4: "flags"
1648 *         Bits 0-62: Reserved
1649 *         bit 63: Store: Store=1, store operation, else load operation
1650 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1651 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1652 *       ibm,query-interrupt-source-number RTAS call, or as
1653 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1654 * - R6: "esbOffset" is the offset into the ESB page for the load or
1655 *       store operation
1656 * - R7: "storeData" is the data to write for a store operation
1657 *
1658 * Output:
1659 * - R4: The value of the load if load operation, else -1
1660 */
1661
1662#define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1663
1664static target_ulong h_int_esb(PowerPCCPU *cpu,
1665                              SpaprMachineState *spapr,
1666                              target_ulong opcode,
1667                              target_ulong *args)
1668{
1669    SpaprXive *xive = spapr->xive;
1670    XiveEAS eas;
1671    target_ulong flags  = args[0];
1672    target_ulong lisn   = args[1];
1673    target_ulong offset = args[2];
1674    target_ulong data   = args[3];
1675    hwaddr mmio_addr;
1676    XiveSource *xsrc = &xive->source;
1677
1678    trace_spapr_xive_esb(flags, lisn, offset, data);
1679
1680    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1681        return H_FUNCTION;
1682    }
1683
1684    if (flags & ~SPAPR_XIVE_ESB_STORE) {
1685        return H_PARAMETER;
1686    }
1687
1688    if (lisn >= xive->nr_irqs) {
1689        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1690                      lisn);
1691        return H_P2;
1692    }
1693
1694    eas = xive->eat[lisn];
1695    if (!xive_eas_is_valid(&eas)) {
1696        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1697                      lisn);
1698        return H_P2;
1699    }
1700
1701    if (offset > (1ull << xsrc->esb_shift)) {
1702        return H_P3;
1703    }
1704
1705    if (spapr_xive_in_kernel(xive)) {
1706        args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1707                                     flags & SPAPR_XIVE_ESB_STORE);
1708    } else {
1709        mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1710
1711        if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1712                          (flags & SPAPR_XIVE_ESB_STORE),
1713                          MEMTXATTRS_UNSPECIFIED)) {
1714            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1715                          HWADDR_PRIx "\n", mmio_addr);
1716            return H_HARDWARE;
1717        }
1718        args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1719    }
1720    return H_SUCCESS;
1721}
1722
1723/*
1724 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1725 * ensure any in flight events for the input lisn are in the event
1726 * queue.
1727 *
1728 * Parameters:
1729 * Input:
1730 * - R4: "flags"
1731 *         Bits 0-63: Reserved
1732 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1733 *       "ibm,xive-lisn-ranges" properties, or as returned by the
1734 *       ibm,query-interrupt-source-number RTAS call, or as
1735 *       returned by the H_ALLOCATE_VAS_WINDOW hcall
1736 *
1737 * Output:
1738 * - None
1739 */
1740static target_ulong h_int_sync(PowerPCCPU *cpu,
1741                               SpaprMachineState *spapr,
1742                               target_ulong opcode,
1743                               target_ulong *args)
1744{
1745    SpaprXive *xive = spapr->xive;
1746    XiveEAS eas;
1747    target_ulong flags = args[0];
1748    target_ulong lisn = args[1];
1749
1750    trace_spapr_xive_sync(flags, lisn);
1751
1752    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1753        return H_FUNCTION;
1754    }
1755
1756    if (flags) {
1757        return H_PARAMETER;
1758    }
1759
1760    if (lisn >= xive->nr_irqs) {
1761        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1762                      lisn);
1763        return H_P2;
1764    }
1765
1766    eas = xive->eat[lisn];
1767    if (!xive_eas_is_valid(&eas)) {
1768        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1769                      lisn);
1770        return H_P2;
1771    }
1772
1773    /*
1774     * H_STATE should be returned if a H_INT_RESET is in progress.
1775     * This is not needed when running the emulation under QEMU
1776     */
1777
1778    /*
1779     * This is not real hardware. Nothing to be done unless when
1780     * under KVM
1781     */
1782
1783    if (spapr_xive_in_kernel(xive)) {
1784        Error *local_err = NULL;
1785
1786        kvmppc_xive_sync_source(xive, lisn, &local_err);
1787        if (local_err) {
1788            error_report_err(local_err);
1789            return H_HARDWARE;
1790        }
1791    }
1792    return H_SUCCESS;
1793}
1794
1795/*
1796 * The H_INT_RESET hcall() is used to reset all of the partition's
1797 * interrupt exploitation structures to their initial state.  This
1798 * means losing all previously set interrupt state set via
1799 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1800 *
1801 * Parameters:
1802 * Input:
1803 * - R4: "flags"
1804 *         Bits 0-63: Reserved
1805 *
1806 * Output:
1807 * - None
1808 */
1809static target_ulong h_int_reset(PowerPCCPU *cpu,
1810                                SpaprMachineState *spapr,
1811                                target_ulong opcode,
1812                                target_ulong *args)
1813{
1814    SpaprXive *xive = spapr->xive;
1815    target_ulong flags   = args[0];
1816
1817    trace_spapr_xive_reset(flags);
1818
1819    if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1820        return H_FUNCTION;
1821    }
1822
1823    if (flags) {
1824        return H_PARAMETER;
1825    }
1826
1827    device_cold_reset(DEVICE(xive));
1828
1829    if (spapr_xive_in_kernel(xive)) {
1830        Error *local_err = NULL;
1831
1832        kvmppc_xive_reset(xive, &local_err);
1833        if (local_err) {
1834            error_report_err(local_err);
1835            return H_HARDWARE;
1836        }
1837    }
1838    return H_SUCCESS;
1839}
1840
1841void spapr_xive_hcall_init(SpaprMachineState *spapr)
1842{
1843    spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1844    spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1845    spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1846    spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1847    spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1848    spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1849    spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1850                             h_int_set_os_reporting_line);
1851    spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1852                             h_int_get_os_reporting_line);
1853    spapr_register_hypercall(H_INT_ESB, h_int_esb);
1854    spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1855    spapr_register_hypercall(H_INT_RESET, h_int_reset);
1856}
1857