qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu/datadir.h"
  29#include "qemu/memalign.h"
  30#include "qemu/guest-random.h"
  31#include "qapi/error.h"
  32#include "qapi/qapi-events-machine.h"
  33#include "qapi/qapi-events-qdev.h"
  34#include "qapi/visitor.h"
  35#include "sysemu/sysemu.h"
  36#include "sysemu/hostmem.h"
  37#include "sysemu/numa.h"
  38#include "sysemu/qtest.h"
  39#include "sysemu/reset.h"
  40#include "sysemu/runstate.h"
  41#include "qemu/log.h"
  42#include "hw/fw-path-provider.h"
  43#include "elf.h"
  44#include "net/net.h"
  45#include "sysemu/device_tree.h"
  46#include "sysemu/cpus.h"
  47#include "sysemu/hw_accel.h"
  48#include "kvm_ppc.h"
  49#include "migration/misc.h"
  50#include "migration/qemu-file-types.h"
  51#include "migration/global_state.h"
  52#include "migration/register.h"
  53#include "migration/blocker.h"
  54#include "mmu-hash64.h"
  55#include "mmu-book3s-v3.h"
  56#include "cpu-models.h"
  57#include "hw/core/cpu.h"
  58
  59#include "hw/ppc/ppc.h"
  60#include "hw/loader.h"
  61
  62#include "hw/ppc/fdt.h"
  63#include "hw/ppc/spapr.h"
  64#include "hw/ppc/spapr_vio.h"
  65#include "hw/qdev-properties.h"
  66#include "hw/pci-host/spapr.h"
  67#include "hw/pci/msi.h"
  68
  69#include "hw/pci/pci.h"
  70#include "hw/scsi/scsi.h"
  71#include "hw/virtio/virtio-scsi.h"
  72#include "hw/virtio/vhost-scsi-common.h"
  73
  74#include "exec/ram_addr.h"
  75#include "hw/usb.h"
  76#include "qemu/config-file.h"
  77#include "qemu/error-report.h"
  78#include "trace.h"
  79#include "hw/nmi.h"
  80#include "hw/intc/intc.h"
  81
  82#include "hw/ppc/spapr_cpu_core.h"
  83#include "hw/mem/memory-device.h"
  84#include "hw/ppc/spapr_tpm_proxy.h"
  85#include "hw/ppc/spapr_nvdimm.h"
  86#include "hw/ppc/spapr_numa.h"
  87#include "hw/ppc/pef.h"
  88
  89#include "monitor/monitor.h"
  90
  91#include <libfdt.h>
  92
  93/* SLOF memory layout:
  94 *
  95 * SLOF raw image loaded at 0, copies its romfs right below the flat
  96 * device-tree, then position SLOF itself 31M below that
  97 *
  98 * So we set FW_OVERHEAD to 40MB which should account for all of that
  99 * and more
 100 *
 101 * We load our kernel at 4M, leaving space for SLOF initial image
 102 */
 103#define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
 104#define FW_MAX_SIZE             0x400000
 105#define FW_FILE_NAME            "slof.bin"
 106#define FW_FILE_NAME_VOF        "vof.bin"
 107#define FW_OVERHEAD             0x2800000
 108#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
 109
 110#define MIN_RMA_SLOF            (128 * MiB)
 111
 112#define PHANDLE_INTC            0x00001111
 113
 114/* These two functions implement the VCPU id numbering: one to compute them
 115 * all and one to identify thread 0 of a VCORE. Any change to the first one
 116 * is likely to have an impact on the second one, so let's keep them close.
 117 */
 118static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 119{
 120    MachineState *ms = MACHINE(spapr);
 121    unsigned int smp_threads = ms->smp.threads;
 122
 123    assert(spapr->vsmt);
 124    return
 125        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 126}
 127static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 128                                      PowerPCCPU *cpu)
 129{
 130    assert(spapr->vsmt);
 131    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 132}
 133
 134static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 135{
 136    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 137     * and newer QEMUs don't even have them. In both cases, we don't want
 138     * to send anything on the wire.
 139     */
 140    return false;
 141}
 142
 143static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 144    .name = "icp/server",
 145    .version_id = 1,
 146    .minimum_version_id = 1,
 147    .needed = pre_2_10_vmstate_dummy_icp_needed,
 148    .fields = (VMStateField[]) {
 149        VMSTATE_UNUSED(4), /* uint32_t xirr */
 150        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 151        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 152        VMSTATE_END_OF_LIST()
 153    },
 154};
 155
 156static void pre_2_10_vmstate_register_dummy_icp(int i)
 157{
 158    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 159                     (void *)(uintptr_t) i);
 160}
 161
 162static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 163{
 164    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 165                       (void *)(uintptr_t) i);
 166}
 167
 168int spapr_max_server_number(SpaprMachineState *spapr)
 169{
 170    MachineState *ms = MACHINE(spapr);
 171
 172    assert(spapr->vsmt);
 173    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 174}
 175
 176static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 177                                  int smt_threads)
 178{
 179    int i, ret = 0;
 180    g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
 181    g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
 182    int index = spapr_get_vcpu_id(cpu);
 183
 184    if (cpu->compat_pvr) {
 185        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 186        if (ret < 0) {
 187            return ret;
 188        }
 189    }
 190
 191    /* Build interrupt servers and gservers properties */
 192    for (i = 0; i < smt_threads; i++) {
 193        servers_prop[i] = cpu_to_be32(index + i);
 194        /* Hack, direct the group queues back to cpu 0 */
 195        gservers_prop[i*2] = cpu_to_be32(index + i);
 196        gservers_prop[i*2 + 1] = 0;
 197    }
 198    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 199                      servers_prop, sizeof(*servers_prop) * smt_threads);
 200    if (ret < 0) {
 201        return ret;
 202    }
 203    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 204                      gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
 205
 206    return ret;
 207}
 208
 209static void spapr_dt_pa_features(SpaprMachineState *spapr,
 210                                 PowerPCCPU *cpu,
 211                                 void *fdt, int offset)
 212{
 213    uint8_t pa_features_206[] = { 6, 0,
 214        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 215    uint8_t pa_features_207[] = { 24, 0,
 216        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 217        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 218        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 219        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 220    uint8_t pa_features_300[] = { 66, 0,
 221        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 222        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 223        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 224        /* 6: DS207 */
 225        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 226        /* 16: Vector */
 227        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 228        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 229        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 230        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 231        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 232        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 233        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 234        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 235        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 236        /* 42: PM, 44: PC RA, 46: SC vec'd */
 237        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 238        /* 48: SIMD, 50: QP BFP, 52: String */
 239        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 240        /* 54: DecFP, 56: DecI, 58: SHA */
 241        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 242        /* 60: NM atomic, 62: RNG */
 243        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 244    };
 245    uint8_t *pa_features = NULL;
 246    size_t pa_size;
 247
 248    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 249        pa_features = pa_features_206;
 250        pa_size = sizeof(pa_features_206);
 251    }
 252    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 253        pa_features = pa_features_207;
 254        pa_size = sizeof(pa_features_207);
 255    }
 256    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 257        pa_features = pa_features_300;
 258        pa_size = sizeof(pa_features_300);
 259    }
 260    if (!pa_features) {
 261        return;
 262    }
 263
 264    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 265        /*
 266         * Note: we keep CI large pages off by default because a 64K capable
 267         * guest provisioned with large pages might otherwise try to map a qemu
 268         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 269         * even if that qemu runs on a 4k host.
 270         * We dd this bit back here if we are confident this is not an issue
 271         */
 272        pa_features[3] |= 0x20;
 273    }
 274    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 275        pa_features[24] |= 0x80;    /* Transactional memory support */
 276    }
 277    if (spapr->cas_pre_isa3_guest && pa_size > 40) {
 278        /* Workaround for broken kernels that attempt (guest) radix
 279         * mode when they can't handle it, if they see the radix bit set
 280         * in pa-features. So hide it from them. */
 281        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 282    }
 283
 284    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 285}
 286
 287static hwaddr spapr_node0_size(MachineState *machine)
 288{
 289    if (machine->numa_state->num_nodes) {
 290        int i;
 291        for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 292            if (machine->numa_state->nodes[i].node_mem) {
 293                return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
 294                           machine->ram_size);
 295            }
 296        }
 297    }
 298    return machine->ram_size;
 299}
 300
 301static void add_str(GString *s, const gchar *s1)
 302{
 303    g_string_append_len(s, s1, strlen(s1) + 1);
 304}
 305
 306static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
 307                                hwaddr start, hwaddr size)
 308{
 309    char mem_name[32];
 310    uint64_t mem_reg_property[2];
 311    int off;
 312
 313    mem_reg_property[0] = cpu_to_be64(start);
 314    mem_reg_property[1] = cpu_to_be64(size);
 315
 316    sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
 317    off = fdt_add_subnode(fdt, 0, mem_name);
 318    _FDT(off);
 319    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 320    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 321                      sizeof(mem_reg_property))));
 322    spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
 323    return off;
 324}
 325
 326static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 327{
 328    MemoryDeviceInfoList *info;
 329
 330    for (info = list; info; info = info->next) {
 331        MemoryDeviceInfo *value = info->value;
 332
 333        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 334            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 335
 336            if (addr >= pcdimm_info->addr &&
 337                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 338                return pcdimm_info->node;
 339            }
 340        }
 341    }
 342
 343    return -1;
 344}
 345
 346struct sPAPRDrconfCellV2 {
 347     uint32_t seq_lmbs;
 348     uint64_t base_addr;
 349     uint32_t drc_index;
 350     uint32_t aa_index;
 351     uint32_t flags;
 352} QEMU_PACKED;
 353
 354typedef struct DrconfCellQueue {
 355    struct sPAPRDrconfCellV2 cell;
 356    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 357} DrconfCellQueue;
 358
 359static DrconfCellQueue *
 360spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 361                      uint32_t drc_index, uint32_t aa_index,
 362                      uint32_t flags)
 363{
 364    DrconfCellQueue *elem;
 365
 366    elem = g_malloc0(sizeof(*elem));
 367    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 368    elem->cell.base_addr = cpu_to_be64(base_addr);
 369    elem->cell.drc_index = cpu_to_be32(drc_index);
 370    elem->cell.aa_index = cpu_to_be32(aa_index);
 371    elem->cell.flags = cpu_to_be32(flags);
 372
 373    return elem;
 374}
 375
 376static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
 377                                      int offset, MemoryDeviceInfoList *dimms)
 378{
 379    MachineState *machine = MACHINE(spapr);
 380    uint8_t *int_buf, *cur_index;
 381    int ret;
 382    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 383    uint64_t addr, cur_addr, size;
 384    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 385    uint64_t mem_end = machine->device_memory->base +
 386                       memory_region_size(&machine->device_memory->mr);
 387    uint32_t node, buf_len, nr_entries = 0;
 388    SpaprDrc *drc;
 389    DrconfCellQueue *elem, *next;
 390    MemoryDeviceInfoList *info;
 391    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 392        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 393
 394    /* Entry to cover RAM and the gap area */
 395    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 396                                 SPAPR_LMB_FLAGS_RESERVED |
 397                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 398    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 399    nr_entries++;
 400
 401    cur_addr = machine->device_memory->base;
 402    for (info = dimms; info; info = info->next) {
 403        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 404
 405        addr = di->addr;
 406        size = di->size;
 407        node = di->node;
 408
 409        /*
 410         * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
 411         * area is marked hotpluggable in the next iteration for the bigger
 412         * chunk including the NVDIMM occupied area.
 413         */
 414        if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
 415            continue;
 416
 417        /* Entry for hot-pluggable area */
 418        if (cur_addr < addr) {
 419            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 420            g_assert(drc);
 421            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 422                                         cur_addr, spapr_drc_index(drc), -1, 0);
 423            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 424            nr_entries++;
 425        }
 426
 427        /* Entry for DIMM */
 428        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 429        g_assert(drc);
 430        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 431                                     spapr_drc_index(drc), node,
 432                                     (SPAPR_LMB_FLAGS_ASSIGNED |
 433                                      SPAPR_LMB_FLAGS_HOTREMOVABLE));
 434        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 435        nr_entries++;
 436        cur_addr = addr + size;
 437    }
 438
 439    /* Entry for remaining hotpluggable area */
 440    if (cur_addr < mem_end) {
 441        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 442        g_assert(drc);
 443        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 444                                     cur_addr, spapr_drc_index(drc), -1, 0);
 445        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 446        nr_entries++;
 447    }
 448
 449    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 450    int_buf = cur_index = g_malloc0(buf_len);
 451    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 452    cur_index += sizeof(nr_entries);
 453
 454    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 455        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 456        cur_index += sizeof(elem->cell);
 457        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 458        g_free(elem);
 459    }
 460
 461    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 462    g_free(int_buf);
 463    if (ret < 0) {
 464        return -1;
 465    }
 466    return 0;
 467}
 468
 469static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
 470                                   int offset, MemoryDeviceInfoList *dimms)
 471{
 472    MachineState *machine = MACHINE(spapr);
 473    int i, ret;
 474    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 475    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 476    uint32_t nr_lmbs = (machine->device_memory->base +
 477                       memory_region_size(&machine->device_memory->mr)) /
 478                       lmb_size;
 479    uint32_t *int_buf, *cur_index, buf_len;
 480
 481    /*
 482     * Allocate enough buffer size to fit in ibm,dynamic-memory
 483     */
 484    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 485    cur_index = int_buf = g_malloc0(buf_len);
 486    int_buf[0] = cpu_to_be32(nr_lmbs);
 487    cur_index++;
 488    for (i = 0; i < nr_lmbs; i++) {
 489        uint64_t addr = i * lmb_size;
 490        uint32_t *dynamic_memory = cur_index;
 491
 492        if (i >= device_lmb_start) {
 493            SpaprDrc *drc;
 494
 495            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 496            g_assert(drc);
 497
 498            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 499            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 500            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 501            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 502            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 503            if (memory_region_present(get_system_memory(), addr)) {
 504                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 505            } else {
 506                dynamic_memory[5] = cpu_to_be32(0);
 507            }
 508        } else {
 509            /*
 510             * LMB information for RMA, boot time RAM and gap b/n RAM and
 511             * device memory region -- all these are marked as reserved
 512             * and as having no valid DRC.
 513             */
 514            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 515            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 516            dynamic_memory[2] = cpu_to_be32(0);
 517            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 518            dynamic_memory[4] = cpu_to_be32(-1);
 519            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 520                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 521        }
 522
 523        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 524    }
 525    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 526    g_free(int_buf);
 527    if (ret < 0) {
 528        return -1;
 529    }
 530    return 0;
 531}
 532
 533/*
 534 * Adds ibm,dynamic-reconfiguration-memory node.
 535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 536 * of this device tree node.
 537 */
 538static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
 539                                                   void *fdt)
 540{
 541    MachineState *machine = MACHINE(spapr);
 542    int ret, offset;
 543    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 544    uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
 545                                cpu_to_be32(lmb_size & 0xffffffff)};
 546    MemoryDeviceInfoList *dimms = NULL;
 547
 548    /*
 549     * Don't create the node if there is no device memory
 550     */
 551    if (machine->ram_size == machine->maxram_size) {
 552        return 0;
 553    }
 554
 555    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 556
 557    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 558                    sizeof(prop_lmb_size));
 559    if (ret < 0) {
 560        return ret;
 561    }
 562
 563    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 564    if (ret < 0) {
 565        return ret;
 566    }
 567
 568    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 569    if (ret < 0) {
 570        return ret;
 571    }
 572
 573    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 574    dimms = qmp_memory_device_list();
 575    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 576        ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
 577    } else {
 578        ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
 579    }
 580    qapi_free_MemoryDeviceInfoList(dimms);
 581
 582    if (ret < 0) {
 583        return ret;
 584    }
 585
 586    ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
 587
 588    return ret;
 589}
 590
 591static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
 592{
 593    MachineState *machine = MACHINE(spapr);
 594    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 595    hwaddr mem_start, node_size;
 596    int i, nb_nodes = machine->numa_state->num_nodes;
 597    NodeInfo *nodes = machine->numa_state->nodes;
 598
 599    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 600        if (!nodes[i].node_mem) {
 601            continue;
 602        }
 603        if (mem_start >= machine->ram_size) {
 604            node_size = 0;
 605        } else {
 606            node_size = nodes[i].node_mem;
 607            if (node_size > machine->ram_size - mem_start) {
 608                node_size = machine->ram_size - mem_start;
 609            }
 610        }
 611        if (!mem_start) {
 612            /* spapr_machine_init() checks for rma_size <= node0_size
 613             * already */
 614            spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
 615            mem_start += spapr->rma_size;
 616            node_size -= spapr->rma_size;
 617        }
 618        for ( ; node_size; ) {
 619            hwaddr sizetmp = pow2floor(node_size);
 620
 621            /* mem_start != 0 here */
 622            if (ctzl(mem_start) < ctzl(sizetmp)) {
 623                sizetmp = 1ULL << ctzl(mem_start);
 624            }
 625
 626            spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
 627            node_size -= sizetmp;
 628            mem_start += sizetmp;
 629        }
 630    }
 631
 632    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 633    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
 634        int ret;
 635
 636        g_assert(smc->dr_lmb_enabled);
 637        ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
 638        if (ret) {
 639            return ret;
 640        }
 641    }
 642
 643    return 0;
 644}
 645
 646static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
 647                         SpaprMachineState *spapr)
 648{
 649    MachineState *ms = MACHINE(spapr);
 650    PowerPCCPU *cpu = POWERPC_CPU(cs);
 651    CPUPPCState *env = &cpu->env;
 652    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 653    int index = spapr_get_vcpu_id(cpu);
 654    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 655                       0xffffffff, 0xffffffff};
 656    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 657        : SPAPR_TIMEBASE_FREQ;
 658    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 659    uint32_t page_sizes_prop[64];
 660    size_t page_sizes_prop_size;
 661    unsigned int smp_threads = ms->smp.threads;
 662    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 663    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 664    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 665    SpaprDrc *drc;
 666    int drc_index;
 667    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 668    int i;
 669
 670    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 671    if (drc) {
 672        drc_index = spapr_drc_index(drc);
 673        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 674    }
 675
 676    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 677    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 678
 679    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 680    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 681                           env->dcache_line_size)));
 682    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 683                           env->dcache_line_size)));
 684    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 685                           env->icache_line_size)));
 686    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 687                           env->icache_line_size)));
 688
 689    if (pcc->l1_dcache_size) {
 690        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 691                               pcc->l1_dcache_size)));
 692    } else {
 693        warn_report("Unknown L1 dcache size for cpu");
 694    }
 695    if (pcc->l1_icache_size) {
 696        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 697                               pcc->l1_icache_size)));
 698    } else {
 699        warn_report("Unknown L1 icache size for cpu");
 700    }
 701
 702    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 703    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 704    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 705    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 706    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 707    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 708
 709    if (ppc_has_spr(cpu, SPR_PURR)) {
 710        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 711    }
 712    if (ppc_has_spr(cpu, SPR_PURR)) {
 713        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 714    }
 715
 716    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 717        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 718                          segs, sizeof(segs))));
 719    }
 720
 721    /* Advertise VSX (vector extensions) if available
 722     *   1               == VMX / Altivec available
 723     *   2               == VSX available
 724     *
 725     * Only CPUs for which we create core types in spapr_cpu_core.c
 726     * are possible, and all of those have VMX */
 727    if (env->insns_flags & PPC_ALTIVEC) {
 728        if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 729            _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 730        } else {
 731            _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 732        }
 733    }
 734
 735    /* Advertise DFP (Decimal Floating Point) if available
 736     *   0 / no property == no DFP
 737     *   1               == DFP available */
 738    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 739        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 740    }
 741
 742    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 743                                                      sizeof(page_sizes_prop));
 744    if (page_sizes_prop_size) {
 745        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 746                          page_sizes_prop, page_sizes_prop_size)));
 747    }
 748
 749    spapr_dt_pa_features(spapr, cpu, fdt, offset);
 750
 751    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 752                           cs->cpu_index / vcpus_per_socket)));
 753
 754    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 755                      pft_size_prop, sizeof(pft_size_prop))));
 756
 757    if (ms->numa_state->num_nodes > 1) {
 758        _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
 759    }
 760
 761    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 762
 763    if (pcc->radix_page_info) {
 764        for (i = 0; i < pcc->radix_page_info->count; i++) {
 765            radix_AP_encodings[i] =
 766                cpu_to_be32(pcc->radix_page_info->entries[i]);
 767        }
 768        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 769                          radix_AP_encodings,
 770                          pcc->radix_page_info->count *
 771                          sizeof(radix_AP_encodings[0]))));
 772    }
 773
 774    /*
 775     * We set this property to let the guest know that it can use the large
 776     * decrementer and its width in bits.
 777     */
 778    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 779        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 780                              pcc->lrg_decr_bits)));
 781}
 782
 783static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
 784{
 785    CPUState **rev;
 786    CPUState *cs;
 787    int n_cpus;
 788    int cpus_offset;
 789    int i;
 790
 791    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 792    _FDT(cpus_offset);
 793    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 794    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 795
 796    /*
 797     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 798     * created by fdt_add_subnode() end up in the right order in FDT
 799     * for the guest kernel the enumerate the CPUs correctly.
 800     *
 801     * The CPU list cannot be traversed in reverse order, so we need
 802     * to do extra work.
 803     */
 804    n_cpus = 0;
 805    rev = NULL;
 806    CPU_FOREACH(cs) {
 807        rev = g_renew(CPUState *, rev, n_cpus + 1);
 808        rev[n_cpus++] = cs;
 809    }
 810
 811    for (i = n_cpus - 1; i >= 0; i--) {
 812        CPUState *cs = rev[i];
 813        PowerPCCPU *cpu = POWERPC_CPU(cs);
 814        int index = spapr_get_vcpu_id(cpu);
 815        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 816        g_autofree char *nodename = NULL;
 817        int offset;
 818
 819        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 820            continue;
 821        }
 822
 823        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 824        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 825        _FDT(offset);
 826        spapr_dt_cpu(cs, fdt, offset, spapr);
 827    }
 828
 829    g_free(rev);
 830}
 831
 832static int spapr_dt_rng(void *fdt)
 833{
 834    int node;
 835    int ret;
 836
 837    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 838    if (node <= 0) {
 839        return -1;
 840    }
 841    ret = fdt_setprop_string(fdt, node, "device_type",
 842                             "ibm,platform-facilities");
 843    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 844    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 845
 846    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 847    if (node <= 0) {
 848        return -1;
 849    }
 850    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 851
 852    return ret ? -1 : 0;
 853}
 854
 855static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
 856{
 857    MachineState *ms = MACHINE(spapr);
 858    int rtas;
 859    GString *hypertas = g_string_sized_new(256);
 860    GString *qemu_hypertas = g_string_sized_new(256);
 861    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
 862        memory_region_size(&MACHINE(spapr)->device_memory->mr);
 863    uint32_t lrdr_capacity[] = {
 864        cpu_to_be32(max_device_addr >> 32),
 865        cpu_to_be32(max_device_addr & 0xffffffff),
 866        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
 867        cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
 868        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
 869    };
 870
 871    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 872
 873    /* hypertas */
 874    add_str(hypertas, "hcall-pft");
 875    add_str(hypertas, "hcall-term");
 876    add_str(hypertas, "hcall-dabr");
 877    add_str(hypertas, "hcall-interrupt");
 878    add_str(hypertas, "hcall-tce");
 879    add_str(hypertas, "hcall-vio");
 880    add_str(hypertas, "hcall-splpar");
 881    add_str(hypertas, "hcall-join");
 882    add_str(hypertas, "hcall-bulk");
 883    add_str(hypertas, "hcall-set-mode");
 884    add_str(hypertas, "hcall-sprg0");
 885    add_str(hypertas, "hcall-copy");
 886    add_str(hypertas, "hcall-debug");
 887    add_str(hypertas, "hcall-vphn");
 888    if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
 889        add_str(hypertas, "hcall-rpt-invalidate");
 890    }
 891
 892    add_str(qemu_hypertas, "hcall-memop1");
 893
 894    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 895        add_str(hypertas, "hcall-multi-tce");
 896    }
 897
 898    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 899        add_str(hypertas, "hcall-hpt-resize");
 900    }
 901
 902    add_str(hypertas, "hcall-watchdog");
 903
 904    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 905                     hypertas->str, hypertas->len));
 906    g_string_free(hypertas, TRUE);
 907    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 908                     qemu_hypertas->str, qemu_hypertas->len));
 909    g_string_free(qemu_hypertas, TRUE);
 910
 911    spapr_numa_write_rtas_dt(spapr, fdt, rtas);
 912
 913    /*
 914     * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
 915     * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
 916     *
 917     * The system reset requirements are driven by existing Linux and PowerVM
 918     * implementation which (contrary to PAPR) saves r3 in the error log
 919     * structure like machine check, so Linux expects to find the saved r3
 920     * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
 921     * does not look at the error value).
 922     *
 923     * System reset interrupts are not subject to interlock like machine
 924     * check, so this memory area could be corrupted if the sreset is
 925     * interrupted by a machine check (or vice versa) if it was shared. To
 926     * prevent this, system reset uses per-CPU areas for the sreset save
 927     * area. A system reset that interrupts a system reset handler could
 928     * still overwrite this area, but Linux doesn't try to recover in that
 929     * case anyway.
 930     *
 931     * The extra 8 bytes is required because Linux's FWNMI error log check
 932     * is off-by-one.
 933     *
 934     * RTAS_MIN_SIZE is required for the RTAS blob itself.
 935     */
 936    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
 937                          RTAS_ERROR_LOG_MAX +
 938                          ms->smp.max_cpus * sizeof(uint64_t) * 2 +
 939                          sizeof(uint64_t)));
 940    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 941                          RTAS_ERROR_LOG_MAX));
 942    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 943                          RTAS_EVENT_SCAN_RATE));
 944
 945    g_assert(msi_nonbroken);
 946    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 947
 948    /*
 949     * According to PAPR, rtas ibm,os-term does not guarantee a return
 950     * back to the guest cpu.
 951     *
 952     * While an additional ibm,extended-os-term property indicates
 953     * that rtas call return will always occur. Set this property.
 954     */
 955    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 956
 957    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 958                     lrdr_capacity, sizeof(lrdr_capacity)));
 959
 960    spapr_dt_rtas_tokens(fdt, rtas);
 961}
 962
 963/*
 964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
 965 * and the XIVE features that the guest may request and thus the valid
 966 * values for bytes 23..26 of option vector 5:
 967 */
 968static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
 969                                          int chosen)
 970{
 971    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 972
 973    char val[2 * 4] = {
 974        23, 0x00, /* XICS / XIVE mode */
 975        24, 0x00, /* Hash/Radix, filled in below. */
 976        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 977        26, 0x40, /* Radix options: GTSE == yes. */
 978    };
 979
 980    if (spapr->irq->xics && spapr->irq->xive) {
 981        val[1] = SPAPR_OV5_XIVE_BOTH;
 982    } else if (spapr->irq->xive) {
 983        val[1] = SPAPR_OV5_XIVE_EXPLOIT;
 984    } else {
 985        assert(spapr->irq->xics);
 986        val[1] = SPAPR_OV5_XIVE_LEGACY;
 987    }
 988
 989    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
 990                          first_ppc_cpu->compat_pvr)) {
 991        /*
 992         * If we're in a pre POWER9 compat mode then the guest should
 993         * do hash and use the legacy interrupt mode
 994         */
 995        val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
 996        val[3] = 0x00; /* Hash */
 997        spapr_check_mmu_mode(false);
 998    } else if (kvm_enabled()) {
 999        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000            val[3] = 0x80; /* OV5_MMU_BOTH */
1001        } else if (kvmppc_has_cap_mmu_radix()) {
1002            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1003        } else {
1004            val[3] = 0x00; /* Hash */
1005        }
1006    } else {
1007        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1008        val[3] = 0xC0;
1009    }
1010    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1011                     val, sizeof(val)));
1012}
1013
1014static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1015{
1016    MachineState *machine = MACHINE(spapr);
1017    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1018    uint8_t rng_seed[32];
1019    int chosen;
1020
1021    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1022
1023    if (reset) {
1024        const char *boot_device = spapr->boot_device;
1025        g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1026        size_t cb = 0;
1027        g_autofree char *bootlist = get_boot_devices_list(&cb);
1028
1029        if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1030            _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1031                                    machine->kernel_cmdline));
1032        }
1033
1034        if (spapr->initrd_size) {
1035            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1036                                  spapr->initrd_base));
1037            _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1038                                  spapr->initrd_base + spapr->initrd_size));
1039        }
1040
1041        if (spapr->kernel_size) {
1042            uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1043                                  cpu_to_be64(spapr->kernel_size) };
1044
1045            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1046                         &kprop, sizeof(kprop)));
1047            if (spapr->kernel_le) {
1048                _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1049            }
1050        }
1051        if (machine->boot_config.has_menu && machine->boot_config.menu) {
1052            _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1053        }
1054        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1055        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1056        _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1057
1058        if (cb && bootlist) {
1059            int i;
1060
1061            for (i = 0; i < cb; i++) {
1062                if (bootlist[i] == '\n') {
1063                    bootlist[i] = ' ';
1064                }
1065            }
1066            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1067        }
1068
1069        if (boot_device && strlen(boot_device)) {
1070            _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1071        }
1072
1073        if (spapr->want_stdout_path && stdout_path) {
1074            /*
1075             * "linux,stdout-path" and "stdout" properties are
1076             * deprecated by linux kernel. New platforms should only
1077             * use the "stdout-path" property. Set the new property
1078             * and continue using older property to remain compatible
1079             * with the existing firmware.
1080             */
1081            _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1082            _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1083        }
1084
1085        /*
1086         * We can deal with BAR reallocation just fine, advertise it
1087         * to the guest
1088         */
1089        if (smc->linux_pci_probe) {
1090            _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1091        }
1092
1093        spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1094    }
1095
1096    qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1097    _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1098
1099    _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1100}
1101
1102static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1103{
1104    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105     * KVM to work under pHyp with some guest co-operation */
1106    int hypervisor;
1107    uint8_t hypercall[16];
1108
1109    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1110    /* indicate KVM hypercall interface */
1111    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1112    if (kvmppc_has_cap_fixup_hcalls()) {
1113        /*
1114         * Older KVM versions with older guest kernels were broken
1115         * with the magic page, don't allow the guest to map it.
1116         */
1117        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1118                                  sizeof(hypercall))) {
1119            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1120                             hypercall, sizeof(hypercall)));
1121        }
1122    }
1123}
1124
1125void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1126{
1127    MachineState *machine = MACHINE(spapr);
1128    MachineClass *mc = MACHINE_GET_CLASS(machine);
1129    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1130    uint32_t root_drc_type_mask = 0;
1131    int ret;
1132    void *fdt;
1133    SpaprPhbState *phb;
1134    char *buf;
1135
1136    fdt = g_malloc0(space);
1137    _FDT((fdt_create_empty_tree(fdt, space)));
1138
1139    /* Root node */
1140    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1141    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1142    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1143
1144    /* Guest UUID & Name*/
1145    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1146    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1147    if (qemu_uuid_set) {
1148        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1149    }
1150    g_free(buf);
1151
1152    if (qemu_get_vm_name()) {
1153        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1154                                qemu_get_vm_name()));
1155    }
1156
1157    /* Host Model & Serial Number */
1158    if (spapr->host_model) {
1159        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1160    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1161        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1162        g_free(buf);
1163    }
1164
1165    if (spapr->host_serial) {
1166        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1167    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1168        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1169        g_free(buf);
1170    }
1171
1172    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1173    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1174
1175    /* /interrupt controller */
1176    spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1177
1178    ret = spapr_dt_memory(spapr, fdt);
1179    if (ret < 0) {
1180        error_report("couldn't setup memory nodes in fdt");
1181        exit(1);
1182    }
1183
1184    /* /vdevice */
1185    spapr_dt_vdevice(spapr->vio_bus, fdt);
1186
1187    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1188        ret = spapr_dt_rng(fdt);
1189        if (ret < 0) {
1190            error_report("could not set up rng device in the fdt");
1191            exit(1);
1192        }
1193    }
1194
1195    QLIST_FOREACH(phb, &spapr->phbs, list) {
1196        ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1197        if (ret < 0) {
1198            error_report("couldn't setup PCI devices in fdt");
1199            exit(1);
1200        }
1201    }
1202
1203    spapr_dt_cpus(fdt, spapr);
1204
1205    /* ibm,drc-indexes and friends */
1206    if (smc->dr_lmb_enabled) {
1207        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1208    }
1209    if (smc->dr_phb_enabled) {
1210        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1211    }
1212    if (mc->nvdimm_supported) {
1213        root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1214    }
1215    if (root_drc_type_mask) {
1216        _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1217    }
1218
1219    if (mc->has_hotpluggable_cpus) {
1220        int offset = fdt_path_offset(fdt, "/cpus");
1221        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1222        if (ret < 0) {
1223            error_report("Couldn't set up CPU DR device tree properties");
1224            exit(1);
1225        }
1226    }
1227
1228    /* /event-sources */
1229    spapr_dt_events(spapr, fdt);
1230
1231    /* /rtas */
1232    spapr_dt_rtas(spapr, fdt);
1233
1234    /* /chosen */
1235    spapr_dt_chosen(spapr, fdt, reset);
1236
1237    /* /hypervisor */
1238    if (kvm_enabled()) {
1239        spapr_dt_hypervisor(spapr, fdt);
1240    }
1241
1242    /* Build memory reserve map */
1243    if (reset) {
1244        if (spapr->kernel_size) {
1245            _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1246                                  spapr->kernel_size)));
1247        }
1248        if (spapr->initrd_size) {
1249            _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250                                  spapr->initrd_size)));
1251        }
1252    }
1253
1254    /* NVDIMM devices */
1255    if (mc->nvdimm_supported) {
1256        spapr_dt_persistent_memory(spapr, fdt);
1257    }
1258
1259    return fdt;
1260}
1261
1262static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1263{
1264    SpaprMachineState *spapr = opaque;
1265
1266    return (addr & 0x0fffffff) + spapr->kernel_addr;
1267}
1268
1269static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1270                                    PowerPCCPU *cpu)
1271{
1272    CPUPPCState *env = &cpu->env;
1273
1274    /* The TCG path should also be holding the BQL at this point */
1275    g_assert(qemu_mutex_iothread_locked());
1276
1277    g_assert(!vhyp_cpu_in_nested(cpu));
1278
1279    if (FIELD_EX64(env->msr, MSR, PR)) {
1280        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281        env->gpr[3] = H_PRIVILEGE;
1282    } else {
1283        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1284    }
1285}
1286
1287struct LPCRSyncState {
1288    target_ulong value;
1289    target_ulong mask;
1290};
1291
1292static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1293{
1294    struct LPCRSyncState *s = arg.host_ptr;
1295    PowerPCCPU *cpu = POWERPC_CPU(cs);
1296    CPUPPCState *env = &cpu->env;
1297    target_ulong lpcr;
1298
1299    cpu_synchronize_state(cs);
1300    lpcr = env->spr[SPR_LPCR];
1301    lpcr &= ~s->mask;
1302    lpcr |= s->value;
1303    ppc_store_lpcr(cpu, lpcr);
1304}
1305
1306void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1307{
1308    CPUState *cs;
1309    struct LPCRSyncState s = {
1310        .value = value,
1311        .mask = mask
1312    };
1313    CPU_FOREACH(cs) {
1314        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1315    }
1316}
1317
1318static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1319                           target_ulong lpid, ppc_v3_pate_t *entry)
1320{
1321    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1322    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1323
1324    if (!spapr_cpu->in_nested) {
1325        assert(lpid == 0);
1326
1327        /* Copy PATE1:GR into PATE0:HR */
1328        entry->dw0 = spapr->patb_entry & PATE0_HR;
1329        entry->dw1 = spapr->patb_entry;
1330
1331    } else {
1332        uint64_t patb, pats;
1333
1334        assert(lpid != 0);
1335
1336        patb = spapr->nested_ptcr & PTCR_PATB;
1337        pats = spapr->nested_ptcr & PTCR_PATS;
1338
1339        /* Check if partition table is properly aligned */
1340        if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1341            return false;
1342        }
1343
1344        /* Calculate number of entries */
1345        pats = 1ull << (pats + 12 - 4);
1346        if (pats <= lpid) {
1347            return false;
1348        }
1349
1350        /* Grab entry */
1351        patb += 16 * lpid;
1352        entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1353        entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1354    }
1355
1356    return true;
1357}
1358
1359#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364
1365/*
1366 * Get the fd to access the kernel htab, re-opening it if necessary
1367 */
1368static int get_htab_fd(SpaprMachineState *spapr)
1369{
1370    Error *local_err = NULL;
1371
1372    if (spapr->htab_fd >= 0) {
1373        return spapr->htab_fd;
1374    }
1375
1376    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1377    if (spapr->htab_fd < 0) {
1378        error_report_err(local_err);
1379    }
1380
1381    return spapr->htab_fd;
1382}
1383
1384void close_htab_fd(SpaprMachineState *spapr)
1385{
1386    if (spapr->htab_fd >= 0) {
1387        close(spapr->htab_fd);
1388    }
1389    spapr->htab_fd = -1;
1390}
1391
1392static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1393{
1394    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395
1396    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397}
1398
1399static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1400{
1401    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402
1403    assert(kvm_enabled());
1404
1405    if (!spapr->htab) {
1406        return 0;
1407    }
1408
1409    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410}
1411
1412static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1413                                                hwaddr ptex, int n)
1414{
1415    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1417
1418    if (!spapr->htab) {
1419        /*
1420         * HTAB is controlled by KVM. Fetch into temporary buffer
1421         */
1422        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1423        kvmppc_read_hptes(hptes, ptex, n);
1424        return hptes;
1425    }
1426
1427    /*
1428     * HTAB is controlled by QEMU. Just point to the internally
1429     * accessible PTEG.
1430     */
1431    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432}
1433
1434static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1435                              const ppc_hash_pte64_t *hptes,
1436                              hwaddr ptex, int n)
1437{
1438    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439
1440    if (!spapr->htab) {
1441        g_free((void *)hptes);
1442    }
1443
1444    /* Nothing to do for qemu managed HPT */
1445}
1446
1447void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1448                      uint64_t pte0, uint64_t pte1)
1449{
1450    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1451    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1452
1453    if (!spapr->htab) {
1454        kvmppc_write_hpte(ptex, pte0, pte1);
1455    } else {
1456        if (pte0 & HPTE64_V_VALID) {
1457            stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1458            /*
1459             * When setting valid, we write PTE1 first. This ensures
1460             * proper synchronization with the reading code in
1461             * ppc_hash64_pteg_search()
1462             */
1463            smp_wmb();
1464            stq_p(spapr->htab + offset, pte0);
1465        } else {
1466            stq_p(spapr->htab + offset, pte0);
1467            /*
1468             * When clearing it we set PTE0 first. This ensures proper
1469             * synchronization with the reading code in
1470             * ppc_hash64_pteg_search()
1471             */
1472            smp_wmb();
1473            stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1474        }
1475    }
1476}
1477
1478static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479                             uint64_t pte1)
1480{
1481    hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1482    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483
1484    if (!spapr->htab) {
1485        /* There should always be a hash table when this is called */
1486        error_report("spapr_hpte_set_c called with no hash table !");
1487        return;
1488    }
1489
1490    /* The HW performs a non-atomic byte update */
1491    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492}
1493
1494static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1495                             uint64_t pte1)
1496{
1497    hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1498    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1499
1500    if (!spapr->htab) {
1501        /* There should always be a hash table when this is called */
1502        error_report("spapr_hpte_set_r called with no hash table !");
1503        return;
1504    }
1505
1506    /* The HW performs a non-atomic byte update */
1507    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508}
1509
1510int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1511{
1512    int shift;
1513
1514    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1516     * that's much more than is needed for Linux guests */
1517    shift = ctz64(pow2ceil(ramsize)) - 7;
1518    shift = MAX(shift, 18); /* Minimum architected size */
1519    shift = MIN(shift, 46); /* Maximum architected size */
1520    return shift;
1521}
1522
1523void spapr_free_hpt(SpaprMachineState *spapr)
1524{
1525    qemu_vfree(spapr->htab);
1526    spapr->htab = NULL;
1527    spapr->htab_shift = 0;
1528    close_htab_fd(spapr);
1529}
1530
1531int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1532{
1533    ERRP_GUARD();
1534    long rc;
1535
1536    /* Clean up any HPT info from a previous boot */
1537    spapr_free_hpt(spapr);
1538
1539    rc = kvmppc_reset_htab(shift);
1540
1541    if (rc == -EOPNOTSUPP) {
1542        error_setg(errp, "HPT not supported in nested guests");
1543        return -EOPNOTSUPP;
1544    }
1545
1546    if (rc < 0) {
1547        /* kernel-side HPT needed, but couldn't allocate one */
1548        error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1549                         shift);
1550        error_append_hint(errp, "Try smaller maxmem?\n");
1551        return -errno;
1552    } else if (rc > 0) {
1553        /* kernel-side HPT allocated */
1554        if (rc != shift) {
1555            error_setg(errp,
1556                       "Requested order %d HPT, but kernel allocated order %ld",
1557                       shift, rc);
1558            error_append_hint(errp, "Try smaller maxmem?\n");
1559            return -ENOSPC;
1560        }
1561
1562        spapr->htab_shift = shift;
1563        spapr->htab = NULL;
1564    } else {
1565        /* kernel-side HPT not needed, allocate in userspace instead */
1566        size_t size = 1ULL << shift;
1567        int i;
1568
1569        spapr->htab = qemu_memalign(size, size);
1570        memset(spapr->htab, 0, size);
1571        spapr->htab_shift = shift;
1572
1573        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1574            DIRTY_HPTE(HPTE(spapr->htab, i));
1575        }
1576    }
1577    /* We're setting up a hash table, so that means we're not radix */
1578    spapr->patb_entry = 0;
1579    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1580    return 0;
1581}
1582
1583void spapr_setup_hpt(SpaprMachineState *spapr)
1584{
1585    int hpt_shift;
1586
1587    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1588        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589    } else {
1590        uint64_t current_ram_size;
1591
1592        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1593        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1594    }
1595    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1596
1597    if (kvm_enabled()) {
1598        hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1599
1600        /* Check our RMA fits in the possible VRMA */
1601        if (vrma_limit < spapr->rma_size) {
1602            error_report("Unable to create %" HWADDR_PRIu
1603                         "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1604                         spapr->rma_size / MiB, vrma_limit / MiB);
1605            exit(EXIT_FAILURE);
1606        }
1607    }
1608}
1609
1610void spapr_check_mmu_mode(bool guest_radix)
1611{
1612    if (guest_radix) {
1613        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614            error_report("Guest requested unavailable MMU mode (radix).");
1615            exit(EXIT_FAILURE);
1616        }
1617    } else {
1618        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619            && !kvmppc_has_cap_mmu_hash_v3()) {
1620            error_report("Guest requested unavailable MMU mode (hash).");
1621            exit(EXIT_FAILURE);
1622        }
1623    }
1624}
1625
1626static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1627{
1628    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1629    PowerPCCPU *first_ppc_cpu;
1630    hwaddr fdt_addr;
1631    void *fdt;
1632    int rc;
1633
1634    pef_kvm_reset(machine->cgs, &error_fatal);
1635    spapr_caps_apply(spapr);
1636
1637    first_ppc_cpu = POWERPC_CPU(first_cpu);
1638    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1640                              spapr->max_compat_pvr)) {
1641        /*
1642         * If using KVM with radix mode available, VCPUs can be started
1643         * without a HPT because KVM will start them in radix mode.
1644         * Set the GR bit in PATE so that we know there is no HPT.
1645         */
1646        spapr->patb_entry = PATE1_GR;
1647        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1648    } else {
1649        spapr_setup_hpt(spapr);
1650    }
1651
1652    qemu_devices_reset(reason);
1653
1654    spapr_ovec_cleanup(spapr->ov5_cas);
1655    spapr->ov5_cas = spapr_ovec_new();
1656
1657    ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658
1659    /*
1660     * This is fixing some of the default configuration of the XIVE
1661     * devices. To be called after the reset of the machine devices.
1662     */
1663    spapr_irq_reset(spapr, &error_fatal);
1664
1665    /*
1666     * There is no CAS under qtest. Simulate one to please the code that
1667     * depends on spapr->ov5_cas. This is especially needed to test device
1668     * unplug, so we do that before resetting the DRCs.
1669     */
1670    if (qtest_enabled()) {
1671        spapr_ovec_cleanup(spapr->ov5_cas);
1672        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1673    }
1674
1675    spapr_nvdimm_finish_flushes();
1676
1677    /* DRC reset may cause a device to be unplugged. This will cause troubles
1678     * if this device is used by another device (eg, a running vhost backend
1679     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680     * situations, we reset DRCs after all devices have been reset.
1681     */
1682    spapr_drc_reset_all(spapr);
1683
1684    spapr_clear_pending_events(spapr);
1685
1686    /*
1687     * We place the device tree just below either the top of the RMA,
1688     * or just below 2GB, whichever is lower, so that it can be
1689     * processed with 32-bit real mode code if necessary
1690     */
1691    fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1692
1693    fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1694    if (spapr->vof) {
1695        spapr_vof_reset(spapr, fdt, &error_fatal);
1696        /*
1697         * Do not pack the FDT as the client may change properties.
1698         * VOF client does not expect the FDT so we do not load it to the VM.
1699         */
1700    } else {
1701        rc = fdt_pack(fdt);
1702        /* Should only fail if we've built a corrupted tree */
1703        assert(rc == 0);
1704
1705        spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1706                                  0, fdt_addr, 0);
1707        cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1708    }
1709    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1710
1711    g_free(spapr->fdt_blob);
1712    spapr->fdt_size = fdt_totalsize(fdt);
1713    spapr->fdt_initial_size = spapr->fdt_size;
1714    spapr->fdt_blob = fdt;
1715
1716    /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1717    machine->fdt = fdt;
1718
1719    /* Set up the entry state */
1720    first_ppc_cpu->env.gpr[5] = 0;
1721
1722    spapr->fwnmi_system_reset_addr = -1;
1723    spapr->fwnmi_machine_check_addr = -1;
1724    spapr->fwnmi_machine_check_interlock = -1;
1725
1726    /* Signal all vCPUs waiting on this condition */
1727    qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1728
1729    migrate_del_blocker(spapr->fwnmi_migration_blocker);
1730}
1731
1732static void spapr_create_nvram(SpaprMachineState *spapr)
1733{
1734    DeviceState *dev = qdev_new("spapr-nvram");
1735    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1736
1737    if (dinfo) {
1738        qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1739                                &error_fatal);
1740    }
1741
1742    qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1743
1744    spapr->nvram = (struct SpaprNvram *)dev;
1745}
1746
1747static void spapr_rtc_create(SpaprMachineState *spapr)
1748{
1749    object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1750                                       sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1751                                       &error_fatal, NULL);
1752    qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1753    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1754                              "date");
1755}
1756
1757/* Returns whether we want to use VGA or not */
1758static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1759{
1760    vga_interface_created = true;
1761    switch (vga_interface_type) {
1762    case VGA_NONE:
1763        return false;
1764    case VGA_DEVICE:
1765        return true;
1766    case VGA_STD:
1767    case VGA_VIRTIO:
1768    case VGA_CIRRUS:
1769        return pci_vga_init(pci_bus) != NULL;
1770    default:
1771        error_setg(errp,
1772                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1773        return false;
1774    }
1775}
1776
1777static int spapr_pre_load(void *opaque)
1778{
1779    int rc;
1780
1781    rc = spapr_caps_pre_load(opaque);
1782    if (rc) {
1783        return rc;
1784    }
1785
1786    return 0;
1787}
1788
1789static int spapr_post_load(void *opaque, int version_id)
1790{
1791    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1792    int err = 0;
1793
1794    err = spapr_caps_post_migration(spapr);
1795    if (err) {
1796        return err;
1797    }
1798
1799    /*
1800     * In earlier versions, there was no separate qdev for the PAPR
1801     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1802     * So when migrating from those versions, poke the incoming offset
1803     * value into the RTC device
1804     */
1805    if (version_id < 3) {
1806        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1807        if (err) {
1808            return err;
1809        }
1810    }
1811
1812    if (kvm_enabled() && spapr->patb_entry) {
1813        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1814        bool radix = !!(spapr->patb_entry & PATE1_GR);
1815        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1816
1817        /*
1818         * Update LPCR:HR and UPRT as they may not be set properly in
1819         * the stream
1820         */
1821        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1822                            LPCR_HR | LPCR_UPRT);
1823
1824        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1825        if (err) {
1826            error_report("Process table config unsupported by the host");
1827            return -EINVAL;
1828        }
1829    }
1830
1831    err = spapr_irq_post_load(spapr, version_id);
1832    if (err) {
1833        return err;
1834    }
1835
1836    return err;
1837}
1838
1839static int spapr_pre_save(void *opaque)
1840{
1841    int rc;
1842
1843    rc = spapr_caps_pre_save(opaque);
1844    if (rc) {
1845        return rc;
1846    }
1847
1848    return 0;
1849}
1850
1851static bool version_before_3(void *opaque, int version_id)
1852{
1853    return version_id < 3;
1854}
1855
1856static bool spapr_pending_events_needed(void *opaque)
1857{
1858    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1859    return !QTAILQ_EMPTY(&spapr->pending_events);
1860}
1861
1862static const VMStateDescription vmstate_spapr_event_entry = {
1863    .name = "spapr_event_log_entry",
1864    .version_id = 1,
1865    .minimum_version_id = 1,
1866    .fields = (VMStateField[]) {
1867        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1868        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1869        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1870                                     NULL, extended_length),
1871        VMSTATE_END_OF_LIST()
1872    },
1873};
1874
1875static const VMStateDescription vmstate_spapr_pending_events = {
1876    .name = "spapr_pending_events",
1877    .version_id = 1,
1878    .minimum_version_id = 1,
1879    .needed = spapr_pending_events_needed,
1880    .fields = (VMStateField[]) {
1881        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1882                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1883        VMSTATE_END_OF_LIST()
1884    },
1885};
1886
1887static bool spapr_ov5_cas_needed(void *opaque)
1888{
1889    SpaprMachineState *spapr = opaque;
1890    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1891    bool cas_needed;
1892
1893    /* Prior to the introduction of SpaprOptionVector, we had two option
1894     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1895     * Both of these options encode machine topology into the device-tree
1896     * in such a way that the now-booted OS should still be able to interact
1897     * appropriately with QEMU regardless of what options were actually
1898     * negotiatied on the source side.
1899     *
1900     * As such, we can avoid migrating the CAS-negotiated options if these
1901     * are the only options available on the current machine/platform.
1902     * Since these are the only options available for pseries-2.7 and
1903     * earlier, this allows us to maintain old->new/new->old migration
1904     * compatibility.
1905     *
1906     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1907     * via default pseries-2.8 machines and explicit command-line parameters.
1908     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1909     * of the actual CAS-negotiated values to continue working properly. For
1910     * example, availability of memory unplug depends on knowing whether
1911     * OV5_HP_EVT was negotiated via CAS.
1912     *
1913     * Thus, for any cases where the set of available CAS-negotiatable
1914     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1915     * include the CAS-negotiated options in the migration stream, unless
1916     * if they affect boot time behaviour only.
1917     */
1918    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1919    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1920    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1921
1922    /* We need extra information if we have any bits outside the mask
1923     * defined above */
1924    cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1925
1926    spapr_ovec_cleanup(ov5_mask);
1927
1928    return cas_needed;
1929}
1930
1931static const VMStateDescription vmstate_spapr_ov5_cas = {
1932    .name = "spapr_option_vector_ov5_cas",
1933    .version_id = 1,
1934    .minimum_version_id = 1,
1935    .needed = spapr_ov5_cas_needed,
1936    .fields = (VMStateField[]) {
1937        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1938                                 vmstate_spapr_ovec, SpaprOptionVector),
1939        VMSTATE_END_OF_LIST()
1940    },
1941};
1942
1943static bool spapr_patb_entry_needed(void *opaque)
1944{
1945    SpaprMachineState *spapr = opaque;
1946
1947    return !!spapr->patb_entry;
1948}
1949
1950static const VMStateDescription vmstate_spapr_patb_entry = {
1951    .name = "spapr_patb_entry",
1952    .version_id = 1,
1953    .minimum_version_id = 1,
1954    .needed = spapr_patb_entry_needed,
1955    .fields = (VMStateField[]) {
1956        VMSTATE_UINT64(patb_entry, SpaprMachineState),
1957        VMSTATE_END_OF_LIST()
1958    },
1959};
1960
1961static bool spapr_irq_map_needed(void *opaque)
1962{
1963    SpaprMachineState *spapr = opaque;
1964
1965    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1966}
1967
1968static const VMStateDescription vmstate_spapr_irq_map = {
1969    .name = "spapr_irq_map",
1970    .version_id = 1,
1971    .minimum_version_id = 1,
1972    .needed = spapr_irq_map_needed,
1973    .fields = (VMStateField[]) {
1974        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1975        VMSTATE_END_OF_LIST()
1976    },
1977};
1978
1979static bool spapr_dtb_needed(void *opaque)
1980{
1981    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1982
1983    return smc->update_dt_enabled;
1984}
1985
1986static int spapr_dtb_pre_load(void *opaque)
1987{
1988    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1989
1990    g_free(spapr->fdt_blob);
1991    spapr->fdt_blob = NULL;
1992    spapr->fdt_size = 0;
1993
1994    return 0;
1995}
1996
1997static const VMStateDescription vmstate_spapr_dtb = {
1998    .name = "spapr_dtb",
1999    .version_id = 1,
2000    .minimum_version_id = 1,
2001    .needed = spapr_dtb_needed,
2002    .pre_load = spapr_dtb_pre_load,
2003    .fields = (VMStateField[]) {
2004        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2005        VMSTATE_UINT32(fdt_size, SpaprMachineState),
2006        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2007                                     fdt_size),
2008        VMSTATE_END_OF_LIST()
2009    },
2010};
2011
2012static bool spapr_fwnmi_needed(void *opaque)
2013{
2014    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2015
2016    return spapr->fwnmi_machine_check_addr != -1;
2017}
2018
2019static int spapr_fwnmi_pre_save(void *opaque)
2020{
2021    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2022
2023    /*
2024     * Check if machine check handling is in progress and print a
2025     * warning message.
2026     */
2027    if (spapr->fwnmi_machine_check_interlock != -1) {
2028        warn_report("A machine check is being handled during migration. The"
2029                "handler may run and log hardware error on the destination");
2030    }
2031
2032    return 0;
2033}
2034
2035static const VMStateDescription vmstate_spapr_fwnmi = {
2036    .name = "spapr_fwnmi",
2037    .version_id = 1,
2038    .minimum_version_id = 1,
2039    .needed = spapr_fwnmi_needed,
2040    .pre_save = spapr_fwnmi_pre_save,
2041    .fields = (VMStateField[]) {
2042        VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2043        VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2044        VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2045        VMSTATE_END_OF_LIST()
2046    },
2047};
2048
2049static const VMStateDescription vmstate_spapr = {
2050    .name = "spapr",
2051    .version_id = 3,
2052    .minimum_version_id = 1,
2053    .pre_load = spapr_pre_load,
2054    .post_load = spapr_post_load,
2055    .pre_save = spapr_pre_save,
2056    .fields = (VMStateField[]) {
2057        /* used to be @next_irq */
2058        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2059
2060        /* RTC offset */
2061        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2062
2063        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2064        VMSTATE_END_OF_LIST()
2065    },
2066    .subsections = (const VMStateDescription*[]) {
2067        &vmstate_spapr_ov5_cas,
2068        &vmstate_spapr_patb_entry,
2069        &vmstate_spapr_pending_events,
2070        &vmstate_spapr_cap_htm,
2071        &vmstate_spapr_cap_vsx,
2072        &vmstate_spapr_cap_dfp,
2073        &vmstate_spapr_cap_cfpc,
2074        &vmstate_spapr_cap_sbbc,
2075        &vmstate_spapr_cap_ibs,
2076        &vmstate_spapr_cap_hpt_maxpagesize,
2077        &vmstate_spapr_irq_map,
2078        &vmstate_spapr_cap_nested_kvm_hv,
2079        &vmstate_spapr_dtb,
2080        &vmstate_spapr_cap_large_decr,
2081        &vmstate_spapr_cap_ccf_assist,
2082        &vmstate_spapr_cap_fwnmi,
2083        &vmstate_spapr_fwnmi,
2084        &vmstate_spapr_cap_rpt_invalidate,
2085        NULL
2086    }
2087};
2088
2089static int htab_save_setup(QEMUFile *f, void *opaque)
2090{
2091    SpaprMachineState *spapr = opaque;
2092
2093    /* "Iteration" header */
2094    if (!spapr->htab_shift) {
2095        qemu_put_be32(f, -1);
2096    } else {
2097        qemu_put_be32(f, spapr->htab_shift);
2098    }
2099
2100    if (spapr->htab) {
2101        spapr->htab_save_index = 0;
2102        spapr->htab_first_pass = true;
2103    } else {
2104        if (spapr->htab_shift) {
2105            assert(kvm_enabled());
2106        }
2107    }
2108
2109
2110    return 0;
2111}
2112
2113static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2114                            int chunkstart, int n_valid, int n_invalid)
2115{
2116    qemu_put_be32(f, chunkstart);
2117    qemu_put_be16(f, n_valid);
2118    qemu_put_be16(f, n_invalid);
2119    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2120                    HASH_PTE_SIZE_64 * n_valid);
2121}
2122
2123static void htab_save_end_marker(QEMUFile *f)
2124{
2125    qemu_put_be32(f, 0);
2126    qemu_put_be16(f, 0);
2127    qemu_put_be16(f, 0);
2128}
2129
2130static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2131                                 int64_t max_ns)
2132{
2133    bool has_timeout = max_ns != -1;
2134    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2135    int index = spapr->htab_save_index;
2136    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2137
2138    assert(spapr->htab_first_pass);
2139
2140    do {
2141        int chunkstart;
2142
2143        /* Consume invalid HPTEs */
2144        while ((index < htabslots)
2145               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2146            CLEAN_HPTE(HPTE(spapr->htab, index));
2147            index++;
2148        }
2149
2150        /* Consume valid HPTEs */
2151        chunkstart = index;
2152        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2153               && HPTE_VALID(HPTE(spapr->htab, index))) {
2154            CLEAN_HPTE(HPTE(spapr->htab, index));
2155            index++;
2156        }
2157
2158        if (index > chunkstart) {
2159            int n_valid = index - chunkstart;
2160
2161            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2162
2163            if (has_timeout &&
2164                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2165                break;
2166            }
2167        }
2168    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2169
2170    if (index >= htabslots) {
2171        assert(index == htabslots);
2172        index = 0;
2173        spapr->htab_first_pass = false;
2174    }
2175    spapr->htab_save_index = index;
2176}
2177
2178static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2179                                int64_t max_ns)
2180{
2181    bool final = max_ns < 0;
2182    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2183    int examined = 0, sent = 0;
2184    int index = spapr->htab_save_index;
2185    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2186
2187    assert(!spapr->htab_first_pass);
2188
2189    do {
2190        int chunkstart, invalidstart;
2191
2192        /* Consume non-dirty HPTEs */
2193        while ((index < htabslots)
2194               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2195            index++;
2196            examined++;
2197        }
2198
2199        chunkstart = index;
2200        /* Consume valid dirty HPTEs */
2201        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2202               && HPTE_DIRTY(HPTE(spapr->htab, index))
2203               && HPTE_VALID(HPTE(spapr->htab, index))) {
2204            CLEAN_HPTE(HPTE(spapr->htab, index));
2205            index++;
2206            examined++;
2207        }
2208
2209        invalidstart = index;
2210        /* Consume invalid dirty HPTEs */
2211        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2212               && HPTE_DIRTY(HPTE(spapr->htab, index))
2213               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2214            CLEAN_HPTE(HPTE(spapr->htab, index));
2215            index++;
2216            examined++;
2217        }
2218
2219        if (index > chunkstart) {
2220            int n_valid = invalidstart - chunkstart;
2221            int n_invalid = index - invalidstart;
2222
2223            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2224            sent += index - chunkstart;
2225
2226            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2227                break;
2228            }
2229        }
2230
2231        if (examined >= htabslots) {
2232            break;
2233        }
2234
2235        if (index >= htabslots) {
2236            assert(index == htabslots);
2237            index = 0;
2238        }
2239    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2240
2241    if (index >= htabslots) {
2242        assert(index == htabslots);
2243        index = 0;
2244    }
2245
2246    spapr->htab_save_index = index;
2247
2248    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2249}
2250
2251#define MAX_ITERATION_NS    5000000 /* 5 ms */
2252#define MAX_KVM_BUF_SIZE    2048
2253
2254static int htab_save_iterate(QEMUFile *f, void *opaque)
2255{
2256    SpaprMachineState *spapr = opaque;
2257    int fd;
2258    int rc = 0;
2259
2260    /* Iteration header */
2261    if (!spapr->htab_shift) {
2262        qemu_put_be32(f, -1);
2263        return 1;
2264    } else {
2265        qemu_put_be32(f, 0);
2266    }
2267
2268    if (!spapr->htab) {
2269        assert(kvm_enabled());
2270
2271        fd = get_htab_fd(spapr);
2272        if (fd < 0) {
2273            return fd;
2274        }
2275
2276        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2277        if (rc < 0) {
2278            return rc;
2279        }
2280    } else  if (spapr->htab_first_pass) {
2281        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2282    } else {
2283        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2284    }
2285
2286    htab_save_end_marker(f);
2287
2288    return rc;
2289}
2290
2291static int htab_save_complete(QEMUFile *f, void *opaque)
2292{
2293    SpaprMachineState *spapr = opaque;
2294    int fd;
2295
2296    /* Iteration header */
2297    if (!spapr->htab_shift) {
2298        qemu_put_be32(f, -1);
2299        return 0;
2300    } else {
2301        qemu_put_be32(f, 0);
2302    }
2303
2304    if (!spapr->htab) {
2305        int rc;
2306
2307        assert(kvm_enabled());
2308
2309        fd = get_htab_fd(spapr);
2310        if (fd < 0) {
2311            return fd;
2312        }
2313
2314        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2315        if (rc < 0) {
2316            return rc;
2317        }
2318    } else {
2319        if (spapr->htab_first_pass) {
2320            htab_save_first_pass(f, spapr, -1);
2321        }
2322        htab_save_later_pass(f, spapr, -1);
2323    }
2324
2325    /* End marker */
2326    htab_save_end_marker(f);
2327
2328    return 0;
2329}
2330
2331static int htab_load(QEMUFile *f, void *opaque, int version_id)
2332{
2333    SpaprMachineState *spapr = opaque;
2334    uint32_t section_hdr;
2335    int fd = -1;
2336    Error *local_err = NULL;
2337
2338    if (version_id < 1 || version_id > 1) {
2339        error_report("htab_load() bad version");
2340        return -EINVAL;
2341    }
2342
2343    section_hdr = qemu_get_be32(f);
2344
2345    if (section_hdr == -1) {
2346        spapr_free_hpt(spapr);
2347        return 0;
2348    }
2349
2350    if (section_hdr) {
2351        int ret;
2352
2353        /* First section gives the htab size */
2354        ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2355        if (ret < 0) {
2356            error_report_err(local_err);
2357            return ret;
2358        }
2359        return 0;
2360    }
2361
2362    if (!spapr->htab) {
2363        assert(kvm_enabled());
2364
2365        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2366        if (fd < 0) {
2367            error_report_err(local_err);
2368            return fd;
2369        }
2370    }
2371
2372    while (true) {
2373        uint32_t index;
2374        uint16_t n_valid, n_invalid;
2375
2376        index = qemu_get_be32(f);
2377        n_valid = qemu_get_be16(f);
2378        n_invalid = qemu_get_be16(f);
2379
2380        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2381            /* End of Stream */
2382            break;
2383        }
2384
2385        if ((index + n_valid + n_invalid) >
2386            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2387            /* Bad index in stream */
2388            error_report(
2389                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390                index, n_valid, n_invalid, spapr->htab_shift);
2391            return -EINVAL;
2392        }
2393
2394        if (spapr->htab) {
2395            if (n_valid) {
2396                qemu_get_buffer(f, HPTE(spapr->htab, index),
2397                                HASH_PTE_SIZE_64 * n_valid);
2398            }
2399            if (n_invalid) {
2400                memset(HPTE(spapr->htab, index + n_valid), 0,
2401                       HASH_PTE_SIZE_64 * n_invalid);
2402            }
2403        } else {
2404            int rc;
2405
2406            assert(fd >= 0);
2407
2408            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2409                                        &local_err);
2410            if (rc < 0) {
2411                error_report_err(local_err);
2412                return rc;
2413            }
2414        }
2415    }
2416
2417    if (!spapr->htab) {
2418        assert(fd >= 0);
2419        close(fd);
2420    }
2421
2422    return 0;
2423}
2424
2425static void htab_save_cleanup(void *opaque)
2426{
2427    SpaprMachineState *spapr = opaque;
2428
2429    close_htab_fd(spapr);
2430}
2431
2432static SaveVMHandlers savevm_htab_handlers = {
2433    .save_setup = htab_save_setup,
2434    .save_live_iterate = htab_save_iterate,
2435    .save_live_complete_precopy = htab_save_complete,
2436    .save_cleanup = htab_save_cleanup,
2437    .load_state = htab_load,
2438};
2439
2440static void spapr_boot_set(void *opaque, const char *boot_device,
2441                           Error **errp)
2442{
2443    SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2444
2445    g_free(spapr->boot_device);
2446    spapr->boot_device = g_strdup(boot_device);
2447}
2448
2449static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2450{
2451    MachineState *machine = MACHINE(spapr);
2452    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2453    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2454    int i;
2455
2456    for (i = 0; i < nr_lmbs; i++) {
2457        uint64_t addr;
2458
2459        addr = i * lmb_size + machine->device_memory->base;
2460        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2461                               addr / lmb_size);
2462    }
2463}
2464
2465/*
2466 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2467 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2468 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2469 */
2470static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2471{
2472    int i;
2473
2474    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2475        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2476                   " is not aligned to %" PRIu64 " MiB",
2477                   machine->ram_size,
2478                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2479        return;
2480    }
2481
2482    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2483        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2484                   " is not aligned to %" PRIu64 " MiB",
2485                   machine->ram_size,
2486                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2487        return;
2488    }
2489
2490    for (i = 0; i < machine->numa_state->num_nodes; i++) {
2491        if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2492            error_setg(errp,
2493                       "Node %d memory size 0x%" PRIx64
2494                       " is not aligned to %" PRIu64 " MiB",
2495                       i, machine->numa_state->nodes[i].node_mem,
2496                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2497            return;
2498        }
2499    }
2500}
2501
2502/* find cpu slot in machine->possible_cpus by core_id */
2503static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2504{
2505    int index = id / ms->smp.threads;
2506
2507    if (index >= ms->possible_cpus->len) {
2508        return NULL;
2509    }
2510    if (idx) {
2511        *idx = index;
2512    }
2513    return &ms->possible_cpus->cpus[index];
2514}
2515
2516static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2517{
2518    MachineState *ms = MACHINE(spapr);
2519    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2520    Error *local_err = NULL;
2521    bool vsmt_user = !!spapr->vsmt;
2522    int kvm_smt = kvmppc_smt_threads();
2523    int ret;
2524    unsigned int smp_threads = ms->smp.threads;
2525
2526    if (!kvm_enabled() && (smp_threads > 1)) {
2527        error_setg(errp, "TCG cannot support more than 1 thread/core "
2528                   "on a pseries machine");
2529        return;
2530    }
2531    if (!is_power_of_2(smp_threads)) {
2532        error_setg(errp, "Cannot support %d threads/core on a pseries "
2533                   "machine because it must be a power of 2", smp_threads);
2534        return;
2535    }
2536
2537    /* Detemine the VSMT mode to use: */
2538    if (vsmt_user) {
2539        if (spapr->vsmt < smp_threads) {
2540            error_setg(errp, "Cannot support VSMT mode %d"
2541                       " because it must be >= threads/core (%d)",
2542                       spapr->vsmt, smp_threads);
2543            return;
2544        }
2545        /* In this case, spapr->vsmt has been set by the command line */
2546    } else if (!smc->smp_threads_vsmt) {
2547        /*
2548         * Default VSMT value is tricky, because we need it to be as
2549         * consistent as possible (for migration), but this requires
2550         * changing it for at least some existing cases.  We pick 8 as
2551         * the value that we'd get with KVM on POWER8, the
2552         * overwhelmingly common case in production systems.
2553         */
2554        spapr->vsmt = MAX(8, smp_threads);
2555    } else {
2556        spapr->vsmt = smp_threads;
2557    }
2558
2559    /* KVM: If necessary, set the SMT mode: */
2560    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2561        ret = kvmppc_set_smt_threads(spapr->vsmt);
2562        if (ret) {
2563            /* Looks like KVM isn't able to change VSMT mode */
2564            error_setg(&local_err,
2565                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2566                       spapr->vsmt, ret);
2567            /* We can live with that if the default one is big enough
2568             * for the number of threads, and a submultiple of the one
2569             * we want.  In this case we'll waste some vcpu ids, but
2570             * behaviour will be correct */
2571            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2572                warn_report_err(local_err);
2573            } else {
2574                if (!vsmt_user) {
2575                    error_append_hint(&local_err,
2576                                      "On PPC, a VM with %d threads/core"
2577                                      " on a host with %d threads/core"
2578                                      " requires the use of VSMT mode %d.\n",
2579                                      smp_threads, kvm_smt, spapr->vsmt);
2580                }
2581                kvmppc_error_append_smt_possible_hint(&local_err);
2582                error_propagate(errp, local_err);
2583            }
2584        }
2585    }
2586    /* else TCG: nothing to do currently */
2587}
2588
2589static void spapr_init_cpus(SpaprMachineState *spapr)
2590{
2591    MachineState *machine = MACHINE(spapr);
2592    MachineClass *mc = MACHINE_GET_CLASS(machine);
2593    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2594    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2595    const CPUArchIdList *possible_cpus;
2596    unsigned int smp_cpus = machine->smp.cpus;
2597    unsigned int smp_threads = machine->smp.threads;
2598    unsigned int max_cpus = machine->smp.max_cpus;
2599    int boot_cores_nr = smp_cpus / smp_threads;
2600    int i;
2601
2602    possible_cpus = mc->possible_cpu_arch_ids(machine);
2603    if (mc->has_hotpluggable_cpus) {
2604        if (smp_cpus % smp_threads) {
2605            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2606                         smp_cpus, smp_threads);
2607            exit(1);
2608        }
2609        if (max_cpus % smp_threads) {
2610            error_report("max_cpus (%u) must be multiple of threads (%u)",
2611                         max_cpus, smp_threads);
2612            exit(1);
2613        }
2614    } else {
2615        if (max_cpus != smp_cpus) {
2616            error_report("This machine version does not support CPU hotplug");
2617            exit(1);
2618        }
2619        boot_cores_nr = possible_cpus->len;
2620    }
2621
2622    if (smc->pre_2_10_has_unused_icps) {
2623        int i;
2624
2625        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2626            /* Dummy entries get deregistered when real ICPState objects
2627             * are registered during CPU core hotplug.
2628             */
2629            pre_2_10_vmstate_register_dummy_icp(i);
2630        }
2631    }
2632
2633    for (i = 0; i < possible_cpus->len; i++) {
2634        int core_id = i * smp_threads;
2635
2636        if (mc->has_hotpluggable_cpus) {
2637            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2638                                   spapr_vcpu_id(spapr, core_id));
2639        }
2640
2641        if (i < boot_cores_nr) {
2642            Object *core  = object_new(type);
2643            int nr_threads = smp_threads;
2644
2645            /* Handle the partially filled core for older machine types */
2646            if ((i + 1) * smp_threads >= smp_cpus) {
2647                nr_threads = smp_cpus - i * smp_threads;
2648            }
2649
2650            object_property_set_int(core, "nr-threads", nr_threads,
2651                                    &error_fatal);
2652            object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2653                                    &error_fatal);
2654            qdev_realize(DEVICE(core), NULL, &error_fatal);
2655
2656            object_unref(core);
2657        }
2658    }
2659}
2660
2661static PCIHostState *spapr_create_default_phb(void)
2662{
2663    DeviceState *dev;
2664
2665    dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2666    qdev_prop_set_uint32(dev, "index", 0);
2667    sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2668
2669    return PCI_HOST_BRIDGE(dev);
2670}
2671
2672static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2673{
2674    MachineState *machine = MACHINE(spapr);
2675    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2676    hwaddr rma_size = machine->ram_size;
2677    hwaddr node0_size = spapr_node0_size(machine);
2678
2679    /* RMA has to fit in the first NUMA node */
2680    rma_size = MIN(rma_size, node0_size);
2681
2682    /*
2683     * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2684     * never exceed that
2685     */
2686    rma_size = MIN(rma_size, 1 * TiB);
2687
2688    /*
2689     * Clamp the RMA size based on machine type.  This is for
2690     * migration compatibility with older qemu versions, which limited
2691     * the RMA size for complicated and mostly bad reasons.
2692     */
2693    if (smc->rma_limit) {
2694        rma_size = MIN(rma_size, smc->rma_limit);
2695    }
2696
2697    if (rma_size < MIN_RMA_SLOF) {
2698        error_setg(errp,
2699                   "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2700                   "ldMiB guest RMA (Real Mode Area memory)",
2701                   MIN_RMA_SLOF / MiB);
2702        return 0;
2703    }
2704
2705    return rma_size;
2706}
2707
2708static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2709{
2710    MachineState *machine = MACHINE(spapr);
2711    int i;
2712
2713    for (i = 0; i < machine->ram_slots; i++) {
2714        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2715    }
2716}
2717
2718/* pSeries LPAR / sPAPR hardware init */
2719static void spapr_machine_init(MachineState *machine)
2720{
2721    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2722    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2723    MachineClass *mc = MACHINE_GET_CLASS(machine);
2724    const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2725    const char *bios_name = machine->firmware ?: bios_default;
2726    g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2727    const char *kernel_filename = machine->kernel_filename;
2728    const char *initrd_filename = machine->initrd_filename;
2729    PCIHostState *phb;
2730    bool has_vga;
2731    int i;
2732    MemoryRegion *sysmem = get_system_memory();
2733    long load_limit, fw_size;
2734    Error *resize_hpt_err = NULL;
2735
2736    if (!filename) {
2737        error_report("Could not find LPAR firmware '%s'", bios_name);
2738        exit(1);
2739    }
2740    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2741    if (fw_size <= 0) {
2742        error_report("Could not load LPAR firmware '%s'", filename);
2743        exit(1);
2744    }
2745
2746    /*
2747     * if Secure VM (PEF) support is configured, then initialize it
2748     */
2749    pef_kvm_init(machine->cgs, &error_fatal);
2750
2751    msi_nonbroken = true;
2752
2753    QLIST_INIT(&spapr->phbs);
2754    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2755
2756    /* Determine capabilities to run with */
2757    spapr_caps_init(spapr);
2758
2759    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2760    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2761        /*
2762         * If the user explicitly requested a mode we should either
2763         * supply it, or fail completely (which we do below).  But if
2764         * it's not set explicitly, we reset our mode to something
2765         * that works
2766         */
2767        if (resize_hpt_err) {
2768            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2769            error_free(resize_hpt_err);
2770            resize_hpt_err = NULL;
2771        } else {
2772            spapr->resize_hpt = smc->resize_hpt_default;
2773        }
2774    }
2775
2776    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2777
2778    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2779        /*
2780         * User requested HPT resize, but this host can't supply it.  Bail out
2781         */
2782        error_report_err(resize_hpt_err);
2783        exit(1);
2784    }
2785    error_free(resize_hpt_err);
2786
2787    spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2788
2789    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790    load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2791
2792    /*
2793     * VSMT must be set in order to be able to compute VCPU ids, ie to
2794     * call spapr_max_server_number() or spapr_vcpu_id().
2795     */
2796    spapr_set_vsmt_mode(spapr, &error_fatal);
2797
2798    /* Set up Interrupt Controller before we create the VCPUs */
2799    spapr_irq_init(spapr, &error_fatal);
2800
2801    /* Set up containers for ibm,client-architecture-support negotiated options
2802     */
2803    spapr->ov5 = spapr_ovec_new();
2804    spapr->ov5_cas = spapr_ovec_new();
2805
2806    if (smc->dr_lmb_enabled) {
2807        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2808        spapr_validate_node_memory(machine, &error_fatal);
2809    }
2810
2811    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2812
2813    /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2814    if (!smc->pre_6_2_numa_affinity) {
2815        spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2816    }
2817
2818    /* advertise support for dedicated HP event source to guests */
2819    if (spapr->use_hotplug_event_source) {
2820        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2821    }
2822
2823    /* advertise support for HPT resizing */
2824    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2825        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2826    }
2827
2828    /* advertise support for ibm,dyamic-memory-v2 */
2829    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2830
2831    /* advertise XIVE on POWER9 machines */
2832    if (spapr->irq->xive) {
2833        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2834    }
2835
2836    /* init CPUs */
2837    spapr_init_cpus(spapr);
2838
2839    spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2840
2841    /* Init numa_assoc_array */
2842    spapr_numa_associativity_init(spapr, machine);
2843
2844    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2845        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2846                              spapr->max_compat_pvr)) {
2847        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2848        /* KVM and TCG always allow GTSE with radix... */
2849        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2850    }
2851    /* ... but not with hash (currently). */
2852
2853    if (kvm_enabled()) {
2854        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2855        kvmppc_enable_logical_ci_hcalls();
2856        kvmppc_enable_set_mode_hcall();
2857
2858        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2859        kvmppc_enable_clear_ref_mod_hcalls();
2860
2861        /* Enable H_PAGE_INIT */
2862        kvmppc_enable_h_page_init();
2863    }
2864
2865    /* map RAM */
2866    memory_region_add_subregion(sysmem, 0, machine->ram);
2867
2868    /* always allocate the device memory information */
2869    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2870
2871    /* initialize hotplug memory address space */
2872    if (machine->ram_size < machine->maxram_size) {
2873        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2874        /*
2875         * Limit the number of hotpluggable memory slots to half the number
2876         * slots that KVM supports, leaving the other half for PCI and other
2877         * devices. However ensure that number of slots doesn't drop below 32.
2878         */
2879        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2880                           SPAPR_MAX_RAM_SLOTS;
2881
2882        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2883            max_memslots = SPAPR_MAX_RAM_SLOTS;
2884        }
2885        if (machine->ram_slots > max_memslots) {
2886            error_report("Specified number of memory slots %"
2887                         PRIu64" exceeds max supported %d",
2888                         machine->ram_slots, max_memslots);
2889            exit(1);
2890        }
2891
2892        machine->device_memory->base = ROUND_UP(machine->ram_size,
2893                                                SPAPR_DEVICE_MEM_ALIGN);
2894        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2895                           "device-memory", device_mem_size);
2896        memory_region_add_subregion(sysmem, machine->device_memory->base,
2897                                    &machine->device_memory->mr);
2898    }
2899
2900    if (smc->dr_lmb_enabled) {
2901        spapr_create_lmb_dr_connectors(spapr);
2902    }
2903
2904    if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2905        /* Create the error string for live migration blocker */
2906        error_setg(&spapr->fwnmi_migration_blocker,
2907            "A machine check is being handled during migration. The handler"
2908            "may run and log hardware error on the destination");
2909    }
2910
2911    if (mc->nvdimm_supported) {
2912        spapr_create_nvdimm_dr_connectors(spapr);
2913    }
2914
2915    /* Set up RTAS event infrastructure */
2916    spapr_events_init(spapr);
2917
2918    /* Set up the RTC RTAS interfaces */
2919    spapr_rtc_create(spapr);
2920
2921    /* Set up VIO bus */
2922    spapr->vio_bus = spapr_vio_bus_init();
2923
2924    for (i = 0; serial_hd(i); i++) {
2925        spapr_vty_create(spapr->vio_bus, serial_hd(i));
2926    }
2927
2928    /* We always have at least the nvram device on VIO */
2929    spapr_create_nvram(spapr);
2930
2931    /*
2932     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2933     * connectors (described in root DT node's "ibm,drc-types" property)
2934     * are pre-initialized here. additional child connectors (such as
2935     * connectors for a PHBs PCI slots) are added as needed during their
2936     * parent's realization.
2937     */
2938    if (smc->dr_phb_enabled) {
2939        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2940            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2941        }
2942    }
2943
2944    /* Set up PCI */
2945    spapr_pci_rtas_init();
2946
2947    phb = spapr_create_default_phb();
2948
2949    for (i = 0; i < nb_nics; i++) {
2950        NICInfo *nd = &nd_table[i];
2951
2952        if (!nd->model) {
2953            nd->model = g_strdup("spapr-vlan");
2954        }
2955
2956        if (g_str_equal(nd->model, "spapr-vlan") ||
2957            g_str_equal(nd->model, "ibmveth")) {
2958            spapr_vlan_create(spapr->vio_bus, nd);
2959        } else {
2960            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2961        }
2962    }
2963
2964    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2965        spapr_vscsi_create(spapr->vio_bus);
2966    }
2967
2968    /* Graphics */
2969    has_vga = spapr_vga_init(phb->bus, &error_fatal);
2970    if (has_vga) {
2971        spapr->want_stdout_path = !machine->enable_graphics;
2972        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2973    } else {
2974        spapr->want_stdout_path = true;
2975    }
2976
2977    if (machine->usb) {
2978        if (smc->use_ohci_by_default) {
2979            pci_create_simple(phb->bus, -1, "pci-ohci");
2980        } else {
2981            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2982        }
2983
2984        if (has_vga) {
2985            USBBus *usb_bus = usb_bus_find(-1);
2986
2987            usb_create_simple(usb_bus, "usb-kbd");
2988            usb_create_simple(usb_bus, "usb-mouse");
2989        }
2990    }
2991
2992    if (kernel_filename) {
2993        uint64_t loaded_addr = 0;
2994
2995        spapr->kernel_size = load_elf(kernel_filename, NULL,
2996                                      translate_kernel_address, spapr,
2997                                      NULL, &loaded_addr, NULL, NULL, 1,
2998                                      PPC_ELF_MACHINE, 0, 0);
2999        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3000            spapr->kernel_size = load_elf(kernel_filename, NULL,
3001                                          translate_kernel_address, spapr,
3002                                          NULL, &loaded_addr, NULL, NULL, 0,
3003                                          PPC_ELF_MACHINE, 0, 0);
3004            spapr->kernel_le = spapr->kernel_size > 0;
3005        }
3006        if (spapr->kernel_size < 0) {
3007            error_report("error loading %s: %s", kernel_filename,
3008                         load_elf_strerror(spapr->kernel_size));
3009            exit(1);
3010        }
3011
3012        if (spapr->kernel_addr != loaded_addr) {
3013            warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3014                        " to 0x%"PRIx64,
3015                        spapr->kernel_addr, loaded_addr);
3016            spapr->kernel_addr = loaded_addr;
3017        }
3018
3019        /* load initrd */
3020        if (initrd_filename) {
3021            /* Try to locate the initrd in the gap between the kernel
3022             * and the firmware. Add a bit of space just in case
3023             */
3024            spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3025                                  + 0x1ffff) & ~0xffff;
3026            spapr->initrd_size = load_image_targphys(initrd_filename,
3027                                                     spapr->initrd_base,
3028                                                     load_limit
3029                                                     - spapr->initrd_base);
3030            if (spapr->initrd_size < 0) {
3031                error_report("could not load initial ram disk '%s'",
3032                             initrd_filename);
3033                exit(1);
3034            }
3035        }
3036    }
3037
3038    /* FIXME: Should register things through the MachineState's qdev
3039     * interface, this is a legacy from the sPAPREnvironment structure
3040     * which predated MachineState but had a similar function */
3041    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3042    register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3043                         &savevm_htab_handlers, spapr);
3044
3045    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3046
3047    qemu_register_boot_set(spapr_boot_set, spapr);
3048
3049    /*
3050     * Nothing needs to be done to resume a suspended guest because
3051     * suspending does not change the machine state, so no need for
3052     * a ->wakeup method.
3053     */
3054    qemu_register_wakeup_support();
3055
3056    if (kvm_enabled()) {
3057        /* to stop and start vmclock */
3058        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3059                                         &spapr->tb);
3060
3061        kvmppc_spapr_enable_inkernel_multitce();
3062    }
3063
3064    qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3065    if (spapr->vof) {
3066        spapr->vof->fw_size = fw_size; /* for claim() on itself */
3067        spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3068    }
3069
3070    spapr_watchdog_init(spapr);
3071}
3072
3073#define DEFAULT_KVM_TYPE "auto"
3074static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3075{
3076    /*
3077     * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3078     * accomodate the 'HV' and 'PV' formats that exists in the
3079     * wild. The 'auto' mode is being introduced already as
3080     * lower-case, thus we don't need to bother checking for
3081     * "AUTO".
3082     */
3083    if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3084        return 0;
3085    }
3086
3087    if (!g_ascii_strcasecmp(vm_type, "hv")) {
3088        return 1;
3089    }
3090
3091    if (!g_ascii_strcasecmp(vm_type, "pr")) {
3092        return 2;
3093    }
3094
3095    error_report("Unknown kvm-type specified '%s'", vm_type);
3096    exit(1);
3097}
3098
3099/*
3100 * Implementation of an interface to adjust firmware path
3101 * for the bootindex property handling.
3102 */
3103static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3104                                   DeviceState *dev)
3105{
3106#define CAST(type, obj, name) \
3107    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3108    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3109    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3110    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3111    PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3112
3113    if (d && bus) {
3114        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3115        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3116        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3117
3118        if (spapr) {
3119            /*
3120             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3121             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3122             * 0x8000 | (target << 8) | (bus << 5) | lun
3123             * (see the "Logical unit addressing format" table in SAM5)
3124             */
3125            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3126            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3127                                   (uint64_t)id << 48);
3128        } else if (virtio) {
3129            /*
3130             * We use SRP luns of the form 01000000 | (target << 8) | lun
3131             * in the top 32 bits of the 64-bit LUN
3132             * Note: the quote above is from SLOF and it is wrong,
3133             * the actual binding is:
3134             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3135             */
3136            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3137            if (d->lun >= 256) {
3138                /* Use the LUN "flat space addressing method" */
3139                id |= 0x4000;
3140            }
3141            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3142                                   (uint64_t)id << 32);
3143        } else if (usb) {
3144            /*
3145             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3146             * in the top 32 bits of the 64-bit LUN
3147             */
3148            unsigned usb_port = atoi(usb->port->path);
3149            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3150            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3151                                   (uint64_t)id << 32);
3152        }
3153    }
3154
3155    /*
3156     * SLOF probes the USB devices, and if it recognizes that the device is a
3157     * storage device, it changes its name to "storage" instead of "usb-host",
3158     * and additionally adds a child node for the SCSI LUN, so the correct
3159     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3160     */
3161    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3162        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3163        if (usb_device_is_scsi_storage(usbdev)) {
3164            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3165        }
3166    }
3167
3168    if (phb) {
3169        /* Replace "pci" with "pci@800000020000000" */
3170        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3171    }
3172
3173    if (vsc) {
3174        /* Same logic as virtio above */
3175        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3176        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3177    }
3178
3179    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3180        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3181        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3182        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3183    }
3184
3185    if (pcidev) {
3186        return spapr_pci_fw_dev_name(pcidev);
3187    }
3188
3189    return NULL;
3190}
3191
3192static char *spapr_get_kvm_type(Object *obj, Error **errp)
3193{
3194    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3195
3196    return g_strdup(spapr->kvm_type);
3197}
3198
3199static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3200{
3201    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202
3203    g_free(spapr->kvm_type);
3204    spapr->kvm_type = g_strdup(value);
3205}
3206
3207static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3208{
3209    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210
3211    return spapr->use_hotplug_event_source;
3212}
3213
3214static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3215                                            Error **errp)
3216{
3217    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218
3219    spapr->use_hotplug_event_source = value;
3220}
3221
3222static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3223{
3224    return true;
3225}
3226
3227static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3228{
3229    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230
3231    switch (spapr->resize_hpt) {
3232    case SPAPR_RESIZE_HPT_DEFAULT:
3233        return g_strdup("default");
3234    case SPAPR_RESIZE_HPT_DISABLED:
3235        return g_strdup("disabled");
3236    case SPAPR_RESIZE_HPT_ENABLED:
3237        return g_strdup("enabled");
3238    case SPAPR_RESIZE_HPT_REQUIRED:
3239        return g_strdup("required");
3240    }
3241    g_assert_not_reached();
3242}
3243
3244static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3245{
3246    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247
3248    if (strcmp(value, "default") == 0) {
3249        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3250    } else if (strcmp(value, "disabled") == 0) {
3251        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3252    } else if (strcmp(value, "enabled") == 0) {
3253        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3254    } else if (strcmp(value, "required") == 0) {
3255        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3256    } else {
3257        error_setg(errp, "Bad value for \"resize-hpt\" property");
3258    }
3259}
3260
3261static bool spapr_get_vof(Object *obj, Error **errp)
3262{
3263    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265    return spapr->vof != NULL;
3266}
3267
3268static void spapr_set_vof(Object *obj, bool value, Error **errp)
3269{
3270    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271
3272    if (spapr->vof) {
3273        vof_cleanup(spapr->vof);
3274        g_free(spapr->vof);
3275        spapr->vof = NULL;
3276    }
3277    if (!value) {
3278        return;
3279    }
3280    spapr->vof = g_malloc0(sizeof(*spapr->vof));
3281}
3282
3283static char *spapr_get_ic_mode(Object *obj, Error **errp)
3284{
3285    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286
3287    if (spapr->irq == &spapr_irq_xics_legacy) {
3288        return g_strdup("legacy");
3289    } else if (spapr->irq == &spapr_irq_xics) {
3290        return g_strdup("xics");
3291    } else if (spapr->irq == &spapr_irq_xive) {
3292        return g_strdup("xive");
3293    } else if (spapr->irq == &spapr_irq_dual) {
3294        return g_strdup("dual");
3295    }
3296    g_assert_not_reached();
3297}
3298
3299static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3300{
3301    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302
3303    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3304        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3305        return;
3306    }
3307
3308    /* The legacy IRQ backend can not be set */
3309    if (strcmp(value, "xics") == 0) {
3310        spapr->irq = &spapr_irq_xics;
3311    } else if (strcmp(value, "xive") == 0) {
3312        spapr->irq = &spapr_irq_xive;
3313    } else if (strcmp(value, "dual") == 0) {
3314        spapr->irq = &spapr_irq_dual;
3315    } else {
3316        error_setg(errp, "Bad value for \"ic-mode\" property");
3317    }
3318}
3319
3320static char *spapr_get_host_model(Object *obj, Error **errp)
3321{
3322    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323
3324    return g_strdup(spapr->host_model);
3325}
3326
3327static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3328{
3329    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330
3331    g_free(spapr->host_model);
3332    spapr->host_model = g_strdup(value);
3333}
3334
3335static char *spapr_get_host_serial(Object *obj, Error **errp)
3336{
3337    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338
3339    return g_strdup(spapr->host_serial);
3340}
3341
3342static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3343{
3344    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345
3346    g_free(spapr->host_serial);
3347    spapr->host_serial = g_strdup(value);
3348}
3349
3350static void spapr_instance_init(Object *obj)
3351{
3352    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3353    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3354    MachineState *ms = MACHINE(spapr);
3355    MachineClass *mc = MACHINE_GET_CLASS(ms);
3356
3357    /*
3358     * NVDIMM support went live in 5.1 without considering that, in
3359     * other archs, the user needs to enable NVDIMM support with the
3360     * 'nvdimm' machine option and the default behavior is NVDIMM
3361     * support disabled. It is too late to roll back to the standard
3362     * behavior without breaking 5.1 guests.
3363     */
3364    if (mc->nvdimm_supported) {
3365        ms->nvdimms_state->is_enabled = true;
3366    }
3367
3368    spapr->htab_fd = -1;
3369    spapr->use_hotplug_event_source = true;
3370    spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3371    object_property_add_str(obj, "kvm-type",
3372                            spapr_get_kvm_type, spapr_set_kvm_type);
3373    object_property_set_description(obj, "kvm-type",
3374                                    "Specifies the KVM virtualization mode (auto,"
3375                                    " hv, pr). Defaults to 'auto'. This mode will use"
3376                                    " any available KVM module loaded in the host,"
3377                                    " where kvm_hv takes precedence if both kvm_hv and"
3378                                    " kvm_pr are loaded.");
3379    object_property_add_bool(obj, "modern-hotplug-events",
3380                            spapr_get_modern_hotplug_events,
3381                            spapr_set_modern_hotplug_events);
3382    object_property_set_description(obj, "modern-hotplug-events",
3383                                    "Use dedicated hotplug event mechanism in"
3384                                    " place of standard EPOW events when possible"
3385                                    " (required for memory hot-unplug support)");
3386    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3387                            "Maximum permitted CPU compatibility mode");
3388
3389    object_property_add_str(obj, "resize-hpt",
3390                            spapr_get_resize_hpt, spapr_set_resize_hpt);
3391    object_property_set_description(obj, "resize-hpt",
3392                                    "Resizing of the Hash Page Table (enabled, disabled, required)");
3393    object_property_add_uint32_ptr(obj, "vsmt",
3394                                   &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3395    object_property_set_description(obj, "vsmt",
3396                                    "Virtual SMT: KVM behaves as if this were"
3397                                    " the host's SMT mode");
3398
3399    object_property_add_bool(obj, "vfio-no-msix-emulation",
3400                             spapr_get_msix_emulation, NULL);
3401
3402    object_property_add_uint64_ptr(obj, "kernel-addr",
3403                                   &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3404    object_property_set_description(obj, "kernel-addr",
3405                                    stringify(KERNEL_LOAD_ADDR)
3406                                    " for -kernel is the default");
3407    spapr->kernel_addr = KERNEL_LOAD_ADDR;
3408
3409    object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3410    object_property_set_description(obj, "x-vof",
3411                                    "Enable Virtual Open Firmware (experimental)");
3412
3413    /* The machine class defines the default interrupt controller mode */
3414    spapr->irq = smc->irq;
3415    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3416                            spapr_set_ic_mode);
3417    object_property_set_description(obj, "ic-mode",
3418                 "Specifies the interrupt controller mode (xics, xive, dual)");
3419
3420    object_property_add_str(obj, "host-model",
3421        spapr_get_host_model, spapr_set_host_model);
3422    object_property_set_description(obj, "host-model",
3423        "Host model to advertise in guest device tree");
3424    object_property_add_str(obj, "host-serial",
3425        spapr_get_host_serial, spapr_set_host_serial);
3426    object_property_set_description(obj, "host-serial",
3427        "Host serial number to advertise in guest device tree");
3428}
3429
3430static void spapr_machine_finalizefn(Object *obj)
3431{
3432    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3433
3434    g_free(spapr->kvm_type);
3435}
3436
3437void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3438{
3439    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3440    PowerPCCPU *cpu = POWERPC_CPU(cs);
3441    CPUPPCState *env = &cpu->env;
3442
3443    cpu_synchronize_state(cs);
3444    /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3445    if (spapr->fwnmi_system_reset_addr != -1) {
3446        uint64_t rtas_addr, addr;
3447
3448        /* get rtas addr from fdt */
3449        rtas_addr = spapr_get_rtas_addr();
3450        if (!rtas_addr) {
3451            qemu_system_guest_panicked(NULL);
3452            return;
3453        }
3454
3455        addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3456        stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3457        stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3458        env->gpr[3] = addr;
3459    }
3460    ppc_cpu_do_system_reset(cs);
3461    if (spapr->fwnmi_system_reset_addr != -1) {
3462        env->nip = spapr->fwnmi_system_reset_addr;
3463    }
3464}
3465
3466static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3467{
3468    CPUState *cs;
3469
3470    CPU_FOREACH(cs) {
3471        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3472    }
3473}
3474
3475int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3476                          void *fdt, int *fdt_start_offset, Error **errp)
3477{
3478    uint64_t addr;
3479    uint32_t node;
3480
3481    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3482    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3483                                    &error_abort);
3484    *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3485                                             SPAPR_MEMORY_BLOCK_SIZE);
3486    return 0;
3487}
3488
3489static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3490                           bool dedicated_hp_event_source)
3491{
3492    SpaprDrc *drc;
3493    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3494    int i;
3495    uint64_t addr = addr_start;
3496    bool hotplugged = spapr_drc_hotplugged(dev);
3497
3498    for (i = 0; i < nr_lmbs; i++) {
3499        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3501        g_assert(drc);
3502
3503        /*
3504         * memory_device_get_free_addr() provided a range of free addresses
3505         * that doesn't overlap with any existing mapping at pre-plug. The
3506         * corresponding LMB DRCs are thus assumed to be all attachable.
3507         */
3508        spapr_drc_attach(drc, dev);
3509        if (!hotplugged) {
3510            spapr_drc_reset(drc);
3511        }
3512        addr += SPAPR_MEMORY_BLOCK_SIZE;
3513    }
3514    /* send hotplug notification to the
3515     * guest only in case of hotplugged memory
3516     */
3517    if (hotplugged) {
3518        if (dedicated_hp_event_source) {
3519            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3520                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3521            g_assert(drc);
3522            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3523                                                   nr_lmbs,
3524                                                   spapr_drc_index(drc));
3525        } else {
3526            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3527                                           nr_lmbs);
3528        }
3529    }
3530}
3531
3532static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3533{
3534    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3535    PCDIMMDevice *dimm = PC_DIMM(dev);
3536    uint64_t size, addr;
3537    int64_t slot;
3538    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3539
3540    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3541
3542    pc_dimm_plug(dimm, MACHINE(ms));
3543
3544    if (!is_nvdimm) {
3545        addr = object_property_get_uint(OBJECT(dimm),
3546                                        PC_DIMM_ADDR_PROP, &error_abort);
3547        spapr_add_lmbs(dev, addr, size,
3548                       spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3549    } else {
3550        slot = object_property_get_int(OBJECT(dimm),
3551                                       PC_DIMM_SLOT_PROP, &error_abort);
3552        /* We should have valid slot number at this point */
3553        g_assert(slot >= 0);
3554        spapr_add_nvdimm(dev, slot);
3555    }
3556}
3557
3558static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3559                                  Error **errp)
3560{
3561    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3562    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3563    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3564    PCDIMMDevice *dimm = PC_DIMM(dev);
3565    Error *local_err = NULL;
3566    uint64_t size;
3567    Object *memdev;
3568    hwaddr pagesize;
3569
3570    if (!smc->dr_lmb_enabled) {
3571        error_setg(errp, "Memory hotplug not supported for this machine");
3572        return;
3573    }
3574
3575    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3576    if (local_err) {
3577        error_propagate(errp, local_err);
3578        return;
3579    }
3580
3581    if (is_nvdimm) {
3582        if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3583            return;
3584        }
3585    } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3586        error_setg(errp, "Hotplugged memory size must be a multiple of "
3587                   "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3588        return;
3589    }
3590
3591    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3592                                      &error_abort);
3593    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3594    if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3595        return;
3596    }
3597
3598    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3599}
3600
3601struct SpaprDimmState {
3602    PCDIMMDevice *dimm;
3603    uint32_t nr_lmbs;
3604    QTAILQ_ENTRY(SpaprDimmState) next;
3605};
3606
3607static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3608                                                       PCDIMMDevice *dimm)
3609{
3610    SpaprDimmState *dimm_state = NULL;
3611
3612    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3613        if (dimm_state->dimm == dimm) {
3614            break;
3615        }
3616    }
3617    return dimm_state;
3618}
3619
3620static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3621                                                      uint32_t nr_lmbs,
3622                                                      PCDIMMDevice *dimm)
3623{
3624    SpaprDimmState *ds = NULL;
3625
3626    /*
3627     * If this request is for a DIMM whose removal had failed earlier
3628     * (due to guest's refusal to remove the LMBs), we would have this
3629     * dimm already in the pending_dimm_unplugs list. In that
3630     * case don't add again.
3631     */
3632    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3633    if (!ds) {
3634        ds = g_new0(SpaprDimmState, 1);
3635        ds->nr_lmbs = nr_lmbs;
3636        ds->dimm = dimm;
3637        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3638    }
3639    return ds;
3640}
3641
3642static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3643                                              SpaprDimmState *dimm_state)
3644{
3645    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3646    g_free(dimm_state);
3647}
3648
3649static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3650                                                        PCDIMMDevice *dimm)
3651{
3652    SpaprDrc *drc;
3653    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3654                                                  &error_abort);
3655    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3656    uint32_t avail_lmbs = 0;
3657    uint64_t addr_start, addr;
3658    int i;
3659
3660    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3661                                          &error_abort);
3662
3663    addr = addr_start;
3664    for (i = 0; i < nr_lmbs; i++) {
3665        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3667        g_assert(drc);
3668        if (drc->dev) {
3669            avail_lmbs++;
3670        }
3671        addr += SPAPR_MEMORY_BLOCK_SIZE;
3672    }
3673
3674    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3675}
3676
3677void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3678{
3679    SpaprDimmState *ds;
3680    PCDIMMDevice *dimm;
3681    SpaprDrc *drc;
3682    uint32_t nr_lmbs;
3683    uint64_t size, addr_start, addr;
3684    g_autofree char *qapi_error = NULL;
3685    int i;
3686
3687    if (!dev) {
3688        return;
3689    }
3690
3691    dimm = PC_DIMM(dev);
3692    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3693
3694    /*
3695     * 'ds == NULL' would mean that the DIMM doesn't have a pending
3696     * unplug state, but one of its DRC is marked as unplug_requested.
3697     * This is bad and weird enough to g_assert() out.
3698     */
3699    g_assert(ds);
3700
3701    spapr_pending_dimm_unplugs_remove(spapr, ds);
3702
3703    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3704    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3705
3706    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3707                                          &error_abort);
3708
3709    addr = addr_start;
3710    for (i = 0; i < nr_lmbs; i++) {
3711        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3713        g_assert(drc);
3714
3715        drc->unplug_requested = false;
3716        addr += SPAPR_MEMORY_BLOCK_SIZE;
3717    }
3718
3719    /*
3720     * Tell QAPI that something happened and the memory
3721     * hotunplug wasn't successful. Keep sending
3722     * MEM_UNPLUG_ERROR even while sending
3723     * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3724     * MEM_UNPLUG_ERROR is due.
3725     */
3726    qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3727                                 "for device %s", dev->id);
3728
3729    qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3730
3731    qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3732                                              dev->canonical_path);
3733}
3734
3735/* Callback to be called during DRC release. */
3736void spapr_lmb_release(DeviceState *dev)
3737{
3738    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3739    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3740    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3741
3742    /* This information will get lost if a migration occurs
3743     * during the unplug process. In this case recover it. */
3744    if (ds == NULL) {
3745        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3746        g_assert(ds);
3747        /* The DRC being examined by the caller at least must be counted */
3748        g_assert(ds->nr_lmbs);
3749    }
3750
3751    if (--ds->nr_lmbs) {
3752        return;
3753    }
3754
3755    /*
3756     * Now that all the LMBs have been removed by the guest, call the
3757     * unplug handler chain. This can never fail.
3758     */
3759    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3760    object_unparent(OBJECT(dev));
3761}
3762
3763static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3764{
3765    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3766    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3767
3768    /* We really shouldn't get this far without anything to unplug */
3769    g_assert(ds);
3770
3771    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3772    qdev_unrealize(dev);
3773    spapr_pending_dimm_unplugs_remove(spapr, ds);
3774}
3775
3776static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3777                                        DeviceState *dev, Error **errp)
3778{
3779    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3780    PCDIMMDevice *dimm = PC_DIMM(dev);
3781    uint32_t nr_lmbs;
3782    uint64_t size, addr_start, addr;
3783    int i;
3784    SpaprDrc *drc;
3785
3786    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3787        error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3788        return;
3789    }
3790
3791    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3792    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3793
3794    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3795                                          &error_abort);
3796
3797    /*
3798     * An existing pending dimm state for this DIMM means that there is an
3799     * unplug operation in progress, waiting for the spapr_lmb_release
3800     * callback to complete the job (BQL can't cover that far). In this case,
3801     * bail out to avoid detaching DRCs that were already released.
3802     */
3803    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3804        error_setg(errp, "Memory unplug already in progress for device %s",
3805                   dev->id);
3806        return;
3807    }
3808
3809    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3810
3811    addr = addr_start;
3812    for (i = 0; i < nr_lmbs; i++) {
3813        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3814                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3815        g_assert(drc);
3816
3817        spapr_drc_unplug_request(drc);
3818        addr += SPAPR_MEMORY_BLOCK_SIZE;
3819    }
3820
3821    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3822                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3823    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3824                                              nr_lmbs, spapr_drc_index(drc));
3825}
3826
3827/* Callback to be called during DRC release. */
3828void spapr_core_release(DeviceState *dev)
3829{
3830    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3831
3832    /* Call the unplug handler chain. This can never fail. */
3833    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3834    object_unparent(OBJECT(dev));
3835}
3836
3837static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3838{
3839    MachineState *ms = MACHINE(hotplug_dev);
3840    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3841    CPUCore *cc = CPU_CORE(dev);
3842    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3843
3844    if (smc->pre_2_10_has_unused_icps) {
3845        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3846        int i;
3847
3848        for (i = 0; i < cc->nr_threads; i++) {
3849            CPUState *cs = CPU(sc->threads[i]);
3850
3851            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3852        }
3853    }
3854
3855    assert(core_slot);
3856    core_slot->cpu = NULL;
3857    qdev_unrealize(dev);
3858}
3859
3860static
3861void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3862                               Error **errp)
3863{
3864    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3865    int index;
3866    SpaprDrc *drc;
3867    CPUCore *cc = CPU_CORE(dev);
3868
3869    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3870        error_setg(errp, "Unable to find CPU core with core-id: %d",
3871                   cc->core_id);
3872        return;
3873    }
3874    if (index == 0) {
3875        error_setg(errp, "Boot CPU core may not be unplugged");
3876        return;
3877    }
3878
3879    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3880                          spapr_vcpu_id(spapr, cc->core_id));
3881    g_assert(drc);
3882
3883    if (!spapr_drc_unplug_requested(drc)) {
3884        spapr_drc_unplug_request(drc);
3885    }
3886
3887    /*
3888     * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3889     * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3890     * pulses removing the same CPU. Otherwise, in an failed hotunplug
3891     * attempt (e.g. the kernel will refuse to remove the last online
3892     * CPU), we will never attempt it again because unplug_requested
3893     * will still be 'true' in that case.
3894     */
3895    spapr_hotplug_req_remove_by_index(drc);
3896}
3897
3898int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3899                           void *fdt, int *fdt_start_offset, Error **errp)
3900{
3901    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3902    CPUState *cs = CPU(core->threads[0]);
3903    PowerPCCPU *cpu = POWERPC_CPU(cs);
3904    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3905    int id = spapr_get_vcpu_id(cpu);
3906    g_autofree char *nodename = NULL;
3907    int offset;
3908
3909    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3910    offset = fdt_add_subnode(fdt, 0, nodename);
3911
3912    spapr_dt_cpu(cs, fdt, offset, spapr);
3913
3914    /*
3915     * spapr_dt_cpu() does not fill the 'name' property in the
3916     * CPU node. The function is called during boot process, before
3917     * and after CAS, and overwriting the 'name' property written
3918     * by SLOF is not allowed.
3919     *
3920     * Write it manually after spapr_dt_cpu(). This makes the hotplug
3921     * CPUs more compatible with the coldplugged ones, which have
3922     * the 'name' property. Linux Kernel also relies on this
3923     * property to identify CPU nodes.
3924     */
3925    _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3926
3927    *fdt_start_offset = offset;
3928    return 0;
3929}
3930
3931static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3932{
3933    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3934    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3935    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3936    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3937    CPUCore *cc = CPU_CORE(dev);
3938    CPUState *cs;
3939    SpaprDrc *drc;
3940    CPUArchId *core_slot;
3941    int index;
3942    bool hotplugged = spapr_drc_hotplugged(dev);
3943    int i;
3944
3945    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3946    g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3947
3948    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3949                          spapr_vcpu_id(spapr, cc->core_id));
3950
3951    g_assert(drc || !mc->has_hotpluggable_cpus);
3952
3953    if (drc) {
3954        /*
3955         * spapr_core_pre_plug() already buys us this is a brand new
3956         * core being plugged into a free slot. Nothing should already
3957         * be attached to the corresponding DRC.
3958         */
3959        spapr_drc_attach(drc, dev);
3960
3961        if (hotplugged) {
3962            /*
3963             * Send hotplug notification interrupt to the guest only
3964             * in case of hotplugged CPUs.
3965             */
3966            spapr_hotplug_req_add_by_index(drc);
3967        } else {
3968            spapr_drc_reset(drc);
3969        }
3970    }
3971
3972    core_slot->cpu = OBJECT(dev);
3973
3974    /*
3975     * Set compatibility mode to match the boot CPU, which was either set
3976     * by the machine reset code or by CAS. This really shouldn't fail at
3977     * this point.
3978     */
3979    if (hotplugged) {
3980        for (i = 0; i < cc->nr_threads; i++) {
3981            ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3982                           &error_abort);
3983        }
3984    }
3985
3986    if (smc->pre_2_10_has_unused_icps) {
3987        for (i = 0; i < cc->nr_threads; i++) {
3988            cs = CPU(core->threads[i]);
3989            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3990        }
3991    }
3992}
3993
3994static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3995                                Error **errp)
3996{
3997    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3998    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3999    CPUCore *cc = CPU_CORE(dev);
4000    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4001    const char *type = object_get_typename(OBJECT(dev));
4002    CPUArchId *core_slot;
4003    int index;
4004    unsigned int smp_threads = machine->smp.threads;
4005
4006    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4007        error_setg(errp, "CPU hotplug not supported for this machine");
4008        return;
4009    }
4010
4011    if (strcmp(base_core_type, type)) {
4012        error_setg(errp, "CPU core type should be %s", base_core_type);
4013        return;
4014    }
4015
4016    if (cc->core_id % smp_threads) {
4017        error_setg(errp, "invalid core id %d", cc->core_id);
4018        return;
4019    }
4020
4021    /*
4022     * In general we should have homogeneous threads-per-core, but old
4023     * (pre hotplug support) machine types allow the last core to have
4024     * reduced threads as a compatibility hack for when we allowed
4025     * total vcpus not a multiple of threads-per-core.
4026     */
4027    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4028        error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4029                   smp_threads);
4030        return;
4031    }
4032
4033    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4034    if (!core_slot) {
4035        error_setg(errp, "core id %d out of range", cc->core_id);
4036        return;
4037    }
4038
4039    if (core_slot->cpu) {
4040        error_setg(errp, "core %d already populated", cc->core_id);
4041        return;
4042    }
4043
4044    numa_cpu_pre_plug(core_slot, dev, errp);
4045}
4046
4047int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4048                          void *fdt, int *fdt_start_offset, Error **errp)
4049{
4050    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4051    int intc_phandle;
4052
4053    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4054    if (intc_phandle <= 0) {
4055        return -1;
4056    }
4057
4058    if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4059        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4060        return -1;
4061    }
4062
4063    /* generally SLOF creates these, for hotplug it's up to QEMU */
4064    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4065
4066    return 0;
4067}
4068
4069static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4070                               Error **errp)
4071{
4072    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4073    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4074    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4075    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4076    SpaprDrc *drc;
4077
4078    if (dev->hotplugged && !smc->dr_phb_enabled) {
4079        error_setg(errp, "PHB hotplug not supported for this machine");
4080        return false;
4081    }
4082
4083    if (sphb->index == (uint32_t)-1) {
4084        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4085        return false;
4086    }
4087
4088    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089    if (drc && drc->dev) {
4090        error_setg(errp, "PHB %d already attached", sphb->index);
4091        return false;
4092    }
4093
4094    /*
4095     * This will check that sphb->index doesn't exceed the maximum number of
4096     * PHBs for the current machine type.
4097     */
4098    return
4099        smc->phb_placement(spapr, sphb->index,
4100                           &sphb->buid, &sphb->io_win_addr,
4101                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
4102                           windows_supported, sphb->dma_liobn,
4103                           &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4104                           errp);
4105}
4106
4107static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4108{
4109    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4111    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4112    SpaprDrc *drc;
4113    bool hotplugged = spapr_drc_hotplugged(dev);
4114
4115    if (!smc->dr_phb_enabled) {
4116        return;
4117    }
4118
4119    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4120    /* hotplug hooks should check it's enabled before getting this far */
4121    assert(drc);
4122
4123    /* spapr_phb_pre_plug() already checked the DRC is attachable */
4124    spapr_drc_attach(drc, dev);
4125
4126    if (hotplugged) {
4127        spapr_hotplug_req_add_by_index(drc);
4128    } else {
4129        spapr_drc_reset(drc);
4130    }
4131}
4132
4133void spapr_phb_release(DeviceState *dev)
4134{
4135    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4136
4137    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4138    object_unparent(OBJECT(dev));
4139}
4140
4141static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4142{
4143    qdev_unrealize(dev);
4144}
4145
4146static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4147                                     DeviceState *dev, Error **errp)
4148{
4149    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4150    SpaprDrc *drc;
4151
4152    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4153    assert(drc);
4154
4155    if (!spapr_drc_unplug_requested(drc)) {
4156        spapr_drc_unplug_request(drc);
4157        spapr_hotplug_req_remove_by_index(drc);
4158    } else {
4159        error_setg(errp,
4160                   "PCI Host Bridge unplug already in progress for device %s",
4161                   dev->id);
4162    }
4163}
4164
4165static
4166bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4167                              Error **errp)
4168{
4169    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4170
4171    if (spapr->tpm_proxy != NULL) {
4172        error_setg(errp, "Only one TPM proxy can be specified for this machine");
4173        return false;
4174    }
4175
4176    return true;
4177}
4178
4179static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4180{
4181    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4182    SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4183
4184    /* Already checked in spapr_tpm_proxy_pre_plug() */
4185    g_assert(spapr->tpm_proxy == NULL);
4186
4187    spapr->tpm_proxy = tpm_proxy;
4188}
4189
4190static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4191{
4192    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4193
4194    qdev_unrealize(dev);
4195    object_unparent(OBJECT(dev));
4196    spapr->tpm_proxy = NULL;
4197}
4198
4199static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4200                                      DeviceState *dev, Error **errp)
4201{
4202    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4203        spapr_memory_plug(hotplug_dev, dev);
4204    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4205        spapr_core_plug(hotplug_dev, dev);
4206    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4207        spapr_phb_plug(hotplug_dev, dev);
4208    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4209        spapr_tpm_proxy_plug(hotplug_dev, dev);
4210    }
4211}
4212
4213static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4214                                        DeviceState *dev, Error **errp)
4215{
4216    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4217        spapr_memory_unplug(hotplug_dev, dev);
4218    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4219        spapr_core_unplug(hotplug_dev, dev);
4220    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4221        spapr_phb_unplug(hotplug_dev, dev);
4222    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4223        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4224    }
4225}
4226
4227bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4228{
4229    return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4230        /*
4231         * CAS will process all pending unplug requests.
4232         *
4233         * HACK: a guest could theoretically have cleared all bits in OV5,
4234         * but none of the guests we care for do.
4235         */
4236        spapr_ovec_empty(spapr->ov5_cas);
4237}
4238
4239static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4240                                                DeviceState *dev, Error **errp)
4241{
4242    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4243    MachineClass *mc = MACHINE_GET_CLASS(sms);
4244    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4245
4246    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4247        if (spapr_memory_hot_unplug_supported(sms)) {
4248            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4249        } else {
4250            error_setg(errp, "Memory hot unplug not supported for this guest");
4251        }
4252    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4253        if (!mc->has_hotpluggable_cpus) {
4254            error_setg(errp, "CPU hot unplug not supported on this machine");
4255            return;
4256        }
4257        spapr_core_unplug_request(hotplug_dev, dev, errp);
4258    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4259        if (!smc->dr_phb_enabled) {
4260            error_setg(errp, "PHB hot unplug not supported on this machine");
4261            return;
4262        }
4263        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4264    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4265        spapr_tpm_proxy_unplug(hotplug_dev, dev);
4266    }
4267}
4268
4269static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4270                                          DeviceState *dev, Error **errp)
4271{
4272    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4273        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4274    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4275        spapr_core_pre_plug(hotplug_dev, dev, errp);
4276    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4277        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4278    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4279        spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4280    }
4281}
4282
4283static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4284                                                 DeviceState *dev)
4285{
4286    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4287        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4288        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4289        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4290        return HOTPLUG_HANDLER(machine);
4291    }
4292    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4293        PCIDevice *pcidev = PCI_DEVICE(dev);
4294        PCIBus *root = pci_device_root_bus(pcidev);
4295        SpaprPhbState *phb =
4296            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4297                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4298
4299        if (phb) {
4300            return HOTPLUG_HANDLER(phb);
4301        }
4302    }
4303    return NULL;
4304}
4305
4306static CpuInstanceProperties
4307spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4308{
4309    CPUArchId *core_slot;
4310    MachineClass *mc = MACHINE_GET_CLASS(machine);
4311
4312    /* make sure possible_cpu are intialized */
4313    mc->possible_cpu_arch_ids(machine);
4314    /* get CPU core slot containing thread that matches cpu_index */
4315    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4316    assert(core_slot);
4317    return core_slot->props;
4318}
4319
4320static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4321{
4322    return idx / ms->smp.cores % ms->numa_state->num_nodes;
4323}
4324
4325static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4326{
4327    int i;
4328    unsigned int smp_threads = machine->smp.threads;
4329    unsigned int smp_cpus = machine->smp.cpus;
4330    const char *core_type;
4331    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4332    MachineClass *mc = MACHINE_GET_CLASS(machine);
4333
4334    if (!mc->has_hotpluggable_cpus) {
4335        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4336    }
4337    if (machine->possible_cpus) {
4338        assert(machine->possible_cpus->len == spapr_max_cores);
4339        return machine->possible_cpus;
4340    }
4341
4342    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4343    if (!core_type) {
4344        error_report("Unable to find sPAPR CPU Core definition");
4345        exit(1);
4346    }
4347
4348    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4349                             sizeof(CPUArchId) * spapr_max_cores);
4350    machine->possible_cpus->len = spapr_max_cores;
4351    for (i = 0; i < machine->possible_cpus->len; i++) {
4352        int core_id = i * smp_threads;
4353
4354        machine->possible_cpus->cpus[i].type = core_type;
4355        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4356        machine->possible_cpus->cpus[i].arch_id = core_id;
4357        machine->possible_cpus->cpus[i].props.has_core_id = true;
4358        machine->possible_cpus->cpus[i].props.core_id = core_id;
4359    }
4360    return machine->possible_cpus;
4361}
4362
4363static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4364                                uint64_t *buid, hwaddr *pio,
4365                                hwaddr *mmio32, hwaddr *mmio64,
4366                                unsigned n_dma, uint32_t *liobns,
4367                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4368{
4369    /*
4370     * New-style PHB window placement.
4371     *
4372     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4373     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4374     * windows.
4375     *
4376     * Some guest kernels can't work with MMIO windows above 1<<46
4377     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4378     *
4379     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4380     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4381     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4382     * 1TiB 64-bit MMIO windows for each PHB.
4383     */
4384    const uint64_t base_buid = 0x800000020000000ULL;
4385    int i;
4386
4387    /* Sanity check natural alignments */
4388    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4389    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4390    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4391    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4392    /* Sanity check bounds */
4393    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4394                      SPAPR_PCI_MEM32_WIN_SIZE);
4395    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4396                      SPAPR_PCI_MEM64_WIN_SIZE);
4397
4398    if (index >= SPAPR_MAX_PHBS) {
4399        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4400                   SPAPR_MAX_PHBS - 1);
4401        return false;
4402    }
4403
4404    *buid = base_buid + index;
4405    for (i = 0; i < n_dma; ++i) {
4406        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4407    }
4408
4409    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4410    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4411    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4412
4413    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4414    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4415    return true;
4416}
4417
4418static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4419{
4420    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4421
4422    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4423}
4424
4425static void spapr_ics_resend(XICSFabric *dev)
4426{
4427    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4428
4429    ics_resend(spapr->ics);
4430}
4431
4432static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4433{
4434    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4435
4436    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4437}
4438
4439static void spapr_pic_print_info(InterruptStatsProvider *obj,
4440                                 Monitor *mon)
4441{
4442    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4443
4444    spapr_irq_print_info(spapr, mon);
4445    monitor_printf(mon, "irqchip: %s\n",
4446                   kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4447}
4448
4449/*
4450 * This is a XIVE only operation
4451 */
4452static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4453                           uint8_t nvt_blk, uint32_t nvt_idx,
4454                           bool cam_ignore, uint8_t priority,
4455                           uint32_t logic_serv, XiveTCTXMatch *match)
4456{
4457    SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4458    XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4459    XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4460    int count;
4461
4462    count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4463                           priority, logic_serv, match);
4464    if (count < 0) {
4465        return count;
4466    }
4467
4468    /*
4469     * When we implement the save and restore of the thread interrupt
4470     * contexts in the enter/exit CPU handlers of the machine and the
4471     * escalations in QEMU, we should be able to handle non dispatched
4472     * vCPUs.
4473     *
4474     * Until this is done, the sPAPR machine should find at least one
4475     * matching context always.
4476     */
4477    if (count == 0) {
4478        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4479                      nvt_blk, nvt_idx);
4480    }
4481
4482    return count;
4483}
4484
4485int spapr_get_vcpu_id(PowerPCCPU *cpu)
4486{
4487    return cpu->vcpu_id;
4488}
4489
4490bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4491{
4492    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4493    MachineState *ms = MACHINE(spapr);
4494    int vcpu_id;
4495
4496    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4497
4498    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4499        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4500        error_append_hint(errp, "Adjust the number of cpus to %d "
4501                          "or try to raise the number of threads per core\n",
4502                          vcpu_id * ms->smp.threads / spapr->vsmt);
4503        return false;
4504    }
4505
4506    cpu->vcpu_id = vcpu_id;
4507    return true;
4508}
4509
4510PowerPCCPU *spapr_find_cpu(int vcpu_id)
4511{
4512    CPUState *cs;
4513
4514    CPU_FOREACH(cs) {
4515        PowerPCCPU *cpu = POWERPC_CPU(cs);
4516
4517        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4518            return cpu;
4519        }
4520    }
4521
4522    return NULL;
4523}
4524
4525static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4526{
4527    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4528
4529    return spapr_cpu->in_nested;
4530}
4531
4532static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4533{
4534    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4535
4536    /* These are only called by TCG, KVM maintains dispatch state */
4537
4538    spapr_cpu->prod = false;
4539    if (spapr_cpu->vpa_addr) {
4540        CPUState *cs = CPU(cpu);
4541        uint32_t dispatch;
4542
4543        dispatch = ldl_be_phys(cs->as,
4544                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4545        dispatch++;
4546        if ((dispatch & 1) != 0) {
4547            qemu_log_mask(LOG_GUEST_ERROR,
4548                          "VPA: incorrect dispatch counter value for "
4549                          "dispatched partition %u, correcting.\n", dispatch);
4550            dispatch++;
4551        }
4552        stl_be_phys(cs->as,
4553                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4554    }
4555}
4556
4557static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4558{
4559    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4560
4561    if (spapr_cpu->vpa_addr) {
4562        CPUState *cs = CPU(cpu);
4563        uint32_t dispatch;
4564
4565        dispatch = ldl_be_phys(cs->as,
4566                               spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4567        dispatch++;
4568        if ((dispatch & 1) != 1) {
4569            qemu_log_mask(LOG_GUEST_ERROR,
4570                          "VPA: incorrect dispatch counter value for "
4571                          "preempted partition %u, correcting.\n", dispatch);
4572            dispatch++;
4573        }
4574        stl_be_phys(cs->as,
4575                    spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4576    }
4577}
4578
4579static void spapr_machine_class_init(ObjectClass *oc, void *data)
4580{
4581    MachineClass *mc = MACHINE_CLASS(oc);
4582    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4583    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4584    NMIClass *nc = NMI_CLASS(oc);
4585    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4586    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4587    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4588    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4589    XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4590    VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4591
4592    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4593    mc->ignore_boot_device_suffixes = true;
4594
4595    /*
4596     * We set up the default / latest behaviour here.  The class_init
4597     * functions for the specific versioned machine types can override
4598     * these details for backwards compatibility
4599     */
4600    mc->init = spapr_machine_init;
4601    mc->reset = spapr_machine_reset;
4602    mc->block_default_type = IF_SCSI;
4603
4604    /*
4605     * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4606     * should be limited by the host capability instead of hardcoded.
4607     * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4608     * guests are welcome to have as many CPUs as the host are capable
4609     * of emulate.
4610     */
4611    mc->max_cpus = INT32_MAX;
4612
4613    mc->no_parallel = 1;
4614    mc->default_boot_order = "";
4615    mc->default_ram_size = 512 * MiB;
4616    mc->default_ram_id = "ppc_spapr.ram";
4617    mc->default_display = "std";
4618    mc->kvm_type = spapr_kvm_type;
4619    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4620    mc->pci_allow_0_address = true;
4621    assert(!mc->get_hotplug_handler);
4622    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4623    hc->pre_plug = spapr_machine_device_pre_plug;
4624    hc->plug = spapr_machine_device_plug;
4625    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4626    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4627    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4628    hc->unplug_request = spapr_machine_device_unplug_request;
4629    hc->unplug = spapr_machine_device_unplug;
4630
4631    smc->dr_lmb_enabled = true;
4632    smc->update_dt_enabled = true;
4633    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4634    mc->has_hotpluggable_cpus = true;
4635    mc->nvdimm_supported = true;
4636    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4637    fwc->get_dev_path = spapr_get_fw_dev_path;
4638    nc->nmi_monitor_handler = spapr_nmi;
4639    smc->phb_placement = spapr_phb_placement;
4640    vhc->cpu_in_nested = spapr_cpu_in_nested;
4641    vhc->deliver_hv_excp = spapr_exit_nested;
4642    vhc->hypercall = emulate_spapr_hypercall;
4643    vhc->hpt_mask = spapr_hpt_mask;
4644    vhc->map_hptes = spapr_map_hptes;
4645    vhc->unmap_hptes = spapr_unmap_hptes;
4646    vhc->hpte_set_c = spapr_hpte_set_c;
4647    vhc->hpte_set_r = spapr_hpte_set_r;
4648    vhc->get_pate = spapr_get_pate;
4649    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4650    vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4651    vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4652    xic->ics_get = spapr_ics_get;
4653    xic->ics_resend = spapr_ics_resend;
4654    xic->icp_get = spapr_icp_get;
4655    ispc->print_info = spapr_pic_print_info;
4656    /* Force NUMA node memory size to be a multiple of
4657     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4658     * in which LMBs are represented and hot-added
4659     */
4660    mc->numa_mem_align_shift = 28;
4661    mc->auto_enable_numa = true;
4662
4663    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4664    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4665    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4666    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4667    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4668    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4669    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4670    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4671    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4672    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4673    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4674    smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4675    spapr_caps_add_properties(smc);
4676    smc->irq = &spapr_irq_dual;
4677    smc->dr_phb_enabled = true;
4678    smc->linux_pci_probe = true;
4679    smc->smp_threads_vsmt = true;
4680    smc->nr_xirqs = SPAPR_NR_XIRQS;
4681    xfc->match_nvt = spapr_match_nvt;
4682    vmc->client_architecture_support = spapr_vof_client_architecture_support;
4683    vmc->quiesce = spapr_vof_quiesce;
4684    vmc->setprop = spapr_vof_setprop;
4685}
4686
4687static const TypeInfo spapr_machine_info = {
4688    .name          = TYPE_SPAPR_MACHINE,
4689    .parent        = TYPE_MACHINE,
4690    .abstract      = true,
4691    .instance_size = sizeof(SpaprMachineState),
4692    .instance_init = spapr_instance_init,
4693    .instance_finalize = spapr_machine_finalizefn,
4694    .class_size    = sizeof(SpaprMachineClass),
4695    .class_init    = spapr_machine_class_init,
4696    .interfaces = (InterfaceInfo[]) {
4697        { TYPE_FW_PATH_PROVIDER },
4698        { TYPE_NMI },
4699        { TYPE_HOTPLUG_HANDLER },
4700        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4701        { TYPE_XICS_FABRIC },
4702        { TYPE_INTERRUPT_STATS_PROVIDER },
4703        { TYPE_XIVE_FABRIC },
4704        { TYPE_VOF_MACHINE_IF },
4705        { }
4706    },
4707};
4708
4709static void spapr_machine_latest_class_options(MachineClass *mc)
4710{
4711    mc->alias = "pseries";
4712    mc->is_default = true;
4713}
4714
4715#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4716    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4717                                                    void *data)      \
4718    {                                                                \
4719        MachineClass *mc = MACHINE_CLASS(oc);                        \
4720        spapr_machine_##suffix##_class_options(mc);                  \
4721        if (latest) {                                                \
4722            spapr_machine_latest_class_options(mc);                  \
4723        }                                                            \
4724    }                                                                \
4725    static const TypeInfo spapr_machine_##suffix##_info = {          \
4726        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4727        .parent = TYPE_SPAPR_MACHINE,                                \
4728        .class_init = spapr_machine_##suffix##_class_init,           \
4729    };                                                               \
4730    static void spapr_machine_register_##suffix(void)                \
4731    {                                                                \
4732        type_register(&spapr_machine_##suffix##_info);               \
4733    }                                                                \
4734    type_init(spapr_machine_register_##suffix)
4735
4736/*
4737 * pseries-7.2
4738 */
4739static void spapr_machine_7_2_class_options(MachineClass *mc)
4740{
4741    /* Defaults for the latest behaviour inherited from the base class */
4742}
4743
4744DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
4745
4746/*
4747 * pseries-7.1
4748 */
4749static void spapr_machine_7_1_class_options(MachineClass *mc)
4750{
4751    spapr_machine_7_2_class_options(mc);
4752    compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4753}
4754
4755DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4756
4757/*
4758 * pseries-7.0
4759 */
4760static void spapr_machine_7_0_class_options(MachineClass *mc)
4761{
4762    spapr_machine_7_1_class_options(mc);
4763    compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4764}
4765
4766DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4767
4768/*
4769 * pseries-6.2
4770 */
4771static void spapr_machine_6_2_class_options(MachineClass *mc)
4772{
4773    spapr_machine_7_0_class_options(mc);
4774    compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4775}
4776
4777DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4778
4779/*
4780 * pseries-6.1
4781 */
4782static void spapr_machine_6_1_class_options(MachineClass *mc)
4783{
4784    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4785
4786    spapr_machine_6_2_class_options(mc);
4787    compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4788    smc->pre_6_2_numa_affinity = true;
4789    mc->smp_props.prefer_sockets = true;
4790}
4791
4792DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4793
4794/*
4795 * pseries-6.0
4796 */
4797static void spapr_machine_6_0_class_options(MachineClass *mc)
4798{
4799    spapr_machine_6_1_class_options(mc);
4800    compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4801}
4802
4803DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4804
4805/*
4806 * pseries-5.2
4807 */
4808static void spapr_machine_5_2_class_options(MachineClass *mc)
4809{
4810    spapr_machine_6_0_class_options(mc);
4811    compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4812}
4813
4814DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4815
4816/*
4817 * pseries-5.1
4818 */
4819static void spapr_machine_5_1_class_options(MachineClass *mc)
4820{
4821    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822
4823    spapr_machine_5_2_class_options(mc);
4824    compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4825    smc->pre_5_2_numa_associativity = true;
4826}
4827
4828DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4829
4830/*
4831 * pseries-5.0
4832 */
4833static void spapr_machine_5_0_class_options(MachineClass *mc)
4834{
4835    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4836    static GlobalProperty compat[] = {
4837        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4838    };
4839
4840    spapr_machine_5_1_class_options(mc);
4841    compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4842    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4843    mc->numa_mem_supported = true;
4844    smc->pre_5_1_assoc_refpoints = true;
4845}
4846
4847DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4848
4849/*
4850 * pseries-4.2
4851 */
4852static void spapr_machine_4_2_class_options(MachineClass *mc)
4853{
4854    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4855
4856    spapr_machine_5_0_class_options(mc);
4857    compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4858    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4859    smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4860    smc->rma_limit = 16 * GiB;
4861    mc->nvdimm_supported = false;
4862}
4863
4864DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4865
4866/*
4867 * pseries-4.1
4868 */
4869static void spapr_machine_4_1_class_options(MachineClass *mc)
4870{
4871    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4872    static GlobalProperty compat[] = {
4873        /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4874        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4875    };
4876
4877    spapr_machine_4_2_class_options(mc);
4878    smc->linux_pci_probe = false;
4879    smc->smp_threads_vsmt = false;
4880    compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4881    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4882}
4883
4884DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4885
4886/*
4887 * pseries-4.0
4888 */
4889static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4890                              uint64_t *buid, hwaddr *pio,
4891                              hwaddr *mmio32, hwaddr *mmio64,
4892                              unsigned n_dma, uint32_t *liobns,
4893                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4894{
4895    if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4896                             liobns, nv2gpa, nv2atsd, errp)) {
4897        return false;
4898    }
4899
4900    *nv2gpa = 0;
4901    *nv2atsd = 0;
4902    return true;
4903}
4904static void spapr_machine_4_0_class_options(MachineClass *mc)
4905{
4906    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4907
4908    spapr_machine_4_1_class_options(mc);
4909    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4910    smc->phb_placement = phb_placement_4_0;
4911    smc->irq = &spapr_irq_xics;
4912    smc->pre_4_1_migration = true;
4913}
4914
4915DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4916
4917/*
4918 * pseries-3.1
4919 */
4920static void spapr_machine_3_1_class_options(MachineClass *mc)
4921{
4922    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4923
4924    spapr_machine_4_0_class_options(mc);
4925    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4926
4927    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4928    smc->update_dt_enabled = false;
4929    smc->dr_phb_enabled = false;
4930    smc->broken_host_serial_model = true;
4931    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4932    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4933    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4934    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4935}
4936
4937DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4938
4939/*
4940 * pseries-3.0
4941 */
4942
4943static void spapr_machine_3_0_class_options(MachineClass *mc)
4944{
4945    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4946
4947    spapr_machine_3_1_class_options(mc);
4948    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4949
4950    smc->legacy_irq_allocation = true;
4951    smc->nr_xirqs = 0x400;
4952    smc->irq = &spapr_irq_xics_legacy;
4953}
4954
4955DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4956
4957/*
4958 * pseries-2.12
4959 */
4960static void spapr_machine_2_12_class_options(MachineClass *mc)
4961{
4962    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4963    static GlobalProperty compat[] = {
4964        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4965        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4966    };
4967
4968    spapr_machine_3_0_class_options(mc);
4969    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4970    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4971
4972    /* We depend on kvm_enabled() to choose a default value for the
4973     * hpt-max-page-size capability. Of course we can't do it here
4974     * because this is too early and the HW accelerator isn't initialzed
4975     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4976     */
4977    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4978}
4979
4980DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4981
4982static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4983{
4984    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4985
4986    spapr_machine_2_12_class_options(mc);
4987    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4988    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4989    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4990}
4991
4992DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4993
4994/*
4995 * pseries-2.11
4996 */
4997
4998static void spapr_machine_2_11_class_options(MachineClass *mc)
4999{
5000    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5001
5002    spapr_machine_2_12_class_options(mc);
5003    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5004    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5005}
5006
5007DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5008
5009/*
5010 * pseries-2.10
5011 */
5012
5013static void spapr_machine_2_10_class_options(MachineClass *mc)
5014{
5015    spapr_machine_2_11_class_options(mc);
5016    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5017}
5018
5019DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5020
5021/*
5022 * pseries-2.9
5023 */
5024
5025static void spapr_machine_2_9_class_options(MachineClass *mc)
5026{
5027    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5028    static GlobalProperty compat[] = {
5029        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5030    };
5031
5032    spapr_machine_2_10_class_options(mc);
5033    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5034    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5035    smc->pre_2_10_has_unused_icps = true;
5036    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5037}
5038
5039DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5040
5041/*
5042 * pseries-2.8
5043 */
5044
5045static void spapr_machine_2_8_class_options(MachineClass *mc)
5046{
5047    static GlobalProperty compat[] = {
5048        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5049    };
5050
5051    spapr_machine_2_9_class_options(mc);
5052    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5053    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5054    mc->numa_mem_align_shift = 23;
5055}
5056
5057DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5058
5059/*
5060 * pseries-2.7
5061 */
5062
5063static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5064                              uint64_t *buid, hwaddr *pio,
5065                              hwaddr *mmio32, hwaddr *mmio64,
5066                              unsigned n_dma, uint32_t *liobns,
5067                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5068{
5069    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5070    const uint64_t base_buid = 0x800000020000000ULL;
5071    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5072    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5073    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5074    const uint32_t max_index = 255;
5075    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5076
5077    uint64_t ram_top = MACHINE(spapr)->ram_size;
5078    hwaddr phb0_base, phb_base;
5079    int i;
5080
5081    /* Do we have device memory? */
5082    if (MACHINE(spapr)->maxram_size > ram_top) {
5083        /* Can't just use maxram_size, because there may be an
5084         * alignment gap between normal and device memory regions
5085         */
5086        ram_top = MACHINE(spapr)->device_memory->base +
5087            memory_region_size(&MACHINE(spapr)->device_memory->mr);
5088    }
5089
5090    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5091
5092    if (index > max_index) {
5093        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5094                   max_index);
5095        return false;
5096    }
5097
5098    *buid = base_buid + index;
5099    for (i = 0; i < n_dma; ++i) {
5100        liobns[i] = SPAPR_PCI_LIOBN(index, i);
5101    }
5102
5103    phb_base = phb0_base + index * phb_spacing;
5104    *pio = phb_base + pio_offset;
5105    *mmio32 = phb_base + mmio_offset;
5106    /*
5107     * We don't set the 64-bit MMIO window, relying on the PHB's
5108     * fallback behaviour of automatically splitting a large "32-bit"
5109     * window into contiguous 32-bit and 64-bit windows
5110     */
5111
5112    *nv2gpa = 0;
5113    *nv2atsd = 0;
5114    return true;
5115}
5116
5117static void spapr_machine_2_7_class_options(MachineClass *mc)
5118{
5119    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5120    static GlobalProperty compat[] = {
5121        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5122        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5123        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5124        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5125    };
5126
5127    spapr_machine_2_8_class_options(mc);
5128    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5129    mc->default_machine_opts = "modern-hotplug-events=off";
5130    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5131    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5132    smc->phb_placement = phb_placement_2_7;
5133}
5134
5135DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5136
5137/*
5138 * pseries-2.6
5139 */
5140
5141static void spapr_machine_2_6_class_options(MachineClass *mc)
5142{
5143    static GlobalProperty compat[] = {
5144        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5145    };
5146
5147    spapr_machine_2_7_class_options(mc);
5148    mc->has_hotpluggable_cpus = false;
5149    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5150    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5151}
5152
5153DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5154
5155/*
5156 * pseries-2.5
5157 */
5158
5159static void spapr_machine_2_5_class_options(MachineClass *mc)
5160{
5161    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5162    static GlobalProperty compat[] = {
5163        { "spapr-vlan", "use-rx-buffer-pools", "off" },
5164    };
5165
5166    spapr_machine_2_6_class_options(mc);
5167    smc->use_ohci_by_default = true;
5168    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5169    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5170}
5171
5172DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5173
5174/*
5175 * pseries-2.4
5176 */
5177
5178static void spapr_machine_2_4_class_options(MachineClass *mc)
5179{
5180    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5181
5182    spapr_machine_2_5_class_options(mc);
5183    smc->dr_lmb_enabled = false;
5184    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5185}
5186
5187DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5188
5189/*
5190 * pseries-2.3
5191 */
5192
5193static void spapr_machine_2_3_class_options(MachineClass *mc)
5194{
5195    static GlobalProperty compat[] = {
5196        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5197    };
5198    spapr_machine_2_4_class_options(mc);
5199    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5200    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5201}
5202DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5203
5204/*
5205 * pseries-2.2
5206 */
5207
5208static void spapr_machine_2_2_class_options(MachineClass *mc)
5209{
5210    static GlobalProperty compat[] = {
5211        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5212    };
5213
5214    spapr_machine_2_3_class_options(mc);
5215    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5216    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5217    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5218}
5219DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5220
5221/*
5222 * pseries-2.1
5223 */
5224
5225static void spapr_machine_2_1_class_options(MachineClass *mc)
5226{
5227    spapr_machine_2_2_class_options(mc);
5228    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5229}
5230DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5231
5232static void spapr_machine_register_types(void)
5233{
5234    type_register_static(&spapr_machine_info);
5235}
5236
5237type_init(spapr_machine_register_types)
5238