qemu/softmmu/memory.c
<<
>>
Prefs
   1/*
   2 * Physical memory management
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 * Contributions after 2012-01-13 are licensed under the terms of the
  13 * GNU GPL, version 2 or (at your option) any later version.
  14 */
  15
  16#include "qemu/osdep.h"
  17#include "qemu/log.h"
  18#include "qapi/error.h"
  19#include "exec/memory.h"
  20#include "qapi/visitor.h"
  21#include "qemu/bitops.h"
  22#include "qemu/error-report.h"
  23#include "qemu/main-loop.h"
  24#include "qemu/qemu-print.h"
  25#include "qom/object.h"
  26#include "trace.h"
  27
  28#include "exec/memory-internal.h"
  29#include "exec/ram_addr.h"
  30#include "sysemu/kvm.h"
  31#include "sysemu/runstate.h"
  32#include "sysemu/tcg.h"
  33#include "qemu/accel.h"
  34#include "hw/boards.h"
  35#include "migration/vmstate.h"
  36#include "exec/address-spaces.h"
  37
  38//#define DEBUG_UNASSIGNED
  39
  40static unsigned memory_region_transaction_depth;
  41static bool memory_region_update_pending;
  42static bool ioeventfd_update_pending;
  43unsigned int global_dirty_tracking;
  44
  45static QTAILQ_HEAD(, MemoryListener) memory_listeners
  46    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  47
  48static QTAILQ_HEAD(, AddressSpace) address_spaces
  49    = QTAILQ_HEAD_INITIALIZER(address_spaces);
  50
  51static GHashTable *flat_views;
  52
  53typedef struct AddrRange AddrRange;
  54
  55/*
  56 * Note that signed integers are needed for negative offsetting in aliases
  57 * (large MemoryRegion::alias_offset).
  58 */
  59struct AddrRange {
  60    Int128 start;
  61    Int128 size;
  62};
  63
  64static AddrRange addrrange_make(Int128 start, Int128 size)
  65{
  66    return (AddrRange) { start, size };
  67}
  68
  69static bool addrrange_equal(AddrRange r1, AddrRange r2)
  70{
  71    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  72}
  73
  74static Int128 addrrange_end(AddrRange r)
  75{
  76    return int128_add(r.start, r.size);
  77}
  78
  79static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  80{
  81    int128_addto(&range.start, delta);
  82    return range;
  83}
  84
  85static bool addrrange_contains(AddrRange range, Int128 addr)
  86{
  87    return int128_ge(addr, range.start)
  88        && int128_lt(addr, addrrange_end(range));
  89}
  90
  91static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  92{
  93    return addrrange_contains(r1, r2.start)
  94        || addrrange_contains(r2, r1.start);
  95}
  96
  97static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  98{
  99    Int128 start = int128_max(r1.start, r2.start);
 100    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
 101    return addrrange_make(start, int128_sub(end, start));
 102}
 103
 104enum ListenerDirection { Forward, Reverse };
 105
 106#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
 107    do {                                                                \
 108        MemoryListener *_listener;                                      \
 109                                                                        \
 110        switch (_direction) {                                           \
 111        case Forward:                                                   \
 112            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 113                if (_listener->_callback) {                             \
 114                    _listener->_callback(_listener, ##_args);           \
 115                }                                                       \
 116            }                                                           \
 117            break;                                                      \
 118        case Reverse:                                                   \
 119            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
 120                if (_listener->_callback) {                             \
 121                    _listener->_callback(_listener, ##_args);           \
 122                }                                                       \
 123            }                                                           \
 124            break;                                                      \
 125        default:                                                        \
 126            abort();                                                    \
 127        }                                                               \
 128    } while (0)
 129
 130#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
 131    do {                                                                \
 132        MemoryListener *_listener;                                      \
 133                                                                        \
 134        switch (_direction) {                                           \
 135        case Forward:                                                   \
 136            QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
 137                if (_listener->_callback) {                             \
 138                    _listener->_callback(_listener, _section, ##_args); \
 139                }                                                       \
 140            }                                                           \
 141            break;                                                      \
 142        case Reverse:                                                   \
 143            QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
 144                if (_listener->_callback) {                             \
 145                    _listener->_callback(_listener, _section, ##_args); \
 146                }                                                       \
 147            }                                                           \
 148            break;                                                      \
 149        default:                                                        \
 150            abort();                                                    \
 151        }                                                               \
 152    } while (0)
 153
 154/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
 155#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
 156    do {                                                                \
 157        MemoryRegionSection mrs = section_from_flat_range(fr,           \
 158                address_space_to_flatview(as));                         \
 159        MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
 160    } while(0)
 161
 162struct CoalescedMemoryRange {
 163    AddrRange addr;
 164    QTAILQ_ENTRY(CoalescedMemoryRange) link;
 165};
 166
 167struct MemoryRegionIoeventfd {
 168    AddrRange addr;
 169    bool match_data;
 170    uint64_t data;
 171    EventNotifier *e;
 172};
 173
 174static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
 175                                           MemoryRegionIoeventfd *b)
 176{
 177    if (int128_lt(a->addr.start, b->addr.start)) {
 178        return true;
 179    } else if (int128_gt(a->addr.start, b->addr.start)) {
 180        return false;
 181    } else if (int128_lt(a->addr.size, b->addr.size)) {
 182        return true;
 183    } else if (int128_gt(a->addr.size, b->addr.size)) {
 184        return false;
 185    } else if (a->match_data < b->match_data) {
 186        return true;
 187    } else  if (a->match_data > b->match_data) {
 188        return false;
 189    } else if (a->match_data) {
 190        if (a->data < b->data) {
 191            return true;
 192        } else if (a->data > b->data) {
 193            return false;
 194        }
 195    }
 196    if (a->e < b->e) {
 197        return true;
 198    } else if (a->e > b->e) {
 199        return false;
 200    }
 201    return false;
 202}
 203
 204static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
 205                                          MemoryRegionIoeventfd *b)
 206{
 207    if (int128_eq(a->addr.start, b->addr.start) &&
 208        (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
 209         (int128_eq(a->addr.size, b->addr.size) &&
 210          (a->match_data == b->match_data) &&
 211          ((a->match_data && (a->data == b->data)) || !a->match_data) &&
 212          (a->e == b->e))))
 213        return true;
 214
 215    return false;
 216}
 217
 218/* Range of memory in the global map.  Addresses are absolute. */
 219struct FlatRange {
 220    MemoryRegion *mr;
 221    hwaddr offset_in_region;
 222    AddrRange addr;
 223    uint8_t dirty_log_mask;
 224    bool romd_mode;
 225    bool readonly;
 226    bool nonvolatile;
 227};
 228
 229#define FOR_EACH_FLAT_RANGE(var, view)          \
 230    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
 231
 232static inline MemoryRegionSection
 233section_from_flat_range(FlatRange *fr, FlatView *fv)
 234{
 235    return (MemoryRegionSection) {
 236        .mr = fr->mr,
 237        .fv = fv,
 238        .offset_within_region = fr->offset_in_region,
 239        .size = fr->addr.size,
 240        .offset_within_address_space = int128_get64(fr->addr.start),
 241        .readonly = fr->readonly,
 242        .nonvolatile = fr->nonvolatile,
 243    };
 244}
 245
 246static bool flatrange_equal(FlatRange *a, FlatRange *b)
 247{
 248    return a->mr == b->mr
 249        && addrrange_equal(a->addr, b->addr)
 250        && a->offset_in_region == b->offset_in_region
 251        && a->romd_mode == b->romd_mode
 252        && a->readonly == b->readonly
 253        && a->nonvolatile == b->nonvolatile;
 254}
 255
 256static FlatView *flatview_new(MemoryRegion *mr_root)
 257{
 258    FlatView *view;
 259
 260    view = g_new0(FlatView, 1);
 261    view->ref = 1;
 262    view->root = mr_root;
 263    memory_region_ref(mr_root);
 264    trace_flatview_new(view, mr_root);
 265
 266    return view;
 267}
 268
 269/* Insert a range into a given position.  Caller is responsible for maintaining
 270 * sorting order.
 271 */
 272static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
 273{
 274    if (view->nr == view->nr_allocated) {
 275        view->nr_allocated = MAX(2 * view->nr, 10);
 276        view->ranges = g_realloc(view->ranges,
 277                                    view->nr_allocated * sizeof(*view->ranges));
 278    }
 279    memmove(view->ranges + pos + 1, view->ranges + pos,
 280            (view->nr - pos) * sizeof(FlatRange));
 281    view->ranges[pos] = *range;
 282    memory_region_ref(range->mr);
 283    ++view->nr;
 284}
 285
 286static void flatview_destroy(FlatView *view)
 287{
 288    int i;
 289
 290    trace_flatview_destroy(view, view->root);
 291    if (view->dispatch) {
 292        address_space_dispatch_free(view->dispatch);
 293    }
 294    for (i = 0; i < view->nr; i++) {
 295        memory_region_unref(view->ranges[i].mr);
 296    }
 297    g_free(view->ranges);
 298    memory_region_unref(view->root);
 299    g_free(view);
 300}
 301
 302static bool flatview_ref(FlatView *view)
 303{
 304    return qatomic_fetch_inc_nonzero(&view->ref) > 0;
 305}
 306
 307void flatview_unref(FlatView *view)
 308{
 309    if (qatomic_fetch_dec(&view->ref) == 1) {
 310        trace_flatview_destroy_rcu(view, view->root);
 311        assert(view->root);
 312        call_rcu(view, flatview_destroy, rcu);
 313    }
 314}
 315
 316static bool can_merge(FlatRange *r1, FlatRange *r2)
 317{
 318    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
 319        && r1->mr == r2->mr
 320        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
 321                                r1->addr.size),
 322                     int128_make64(r2->offset_in_region))
 323        && r1->dirty_log_mask == r2->dirty_log_mask
 324        && r1->romd_mode == r2->romd_mode
 325        && r1->readonly == r2->readonly
 326        && r1->nonvolatile == r2->nonvolatile;
 327}
 328
 329/* Attempt to simplify a view by merging adjacent ranges */
 330static void flatview_simplify(FlatView *view)
 331{
 332    unsigned i, j, k;
 333
 334    i = 0;
 335    while (i < view->nr) {
 336        j = i + 1;
 337        while (j < view->nr
 338               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
 339            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
 340            ++j;
 341        }
 342        ++i;
 343        for (k = i; k < j; k++) {
 344            memory_region_unref(view->ranges[k].mr);
 345        }
 346        memmove(&view->ranges[i], &view->ranges[j],
 347                (view->nr - j) * sizeof(view->ranges[j]));
 348        view->nr -= j - i;
 349    }
 350}
 351
 352static bool memory_region_big_endian(MemoryRegion *mr)
 353{
 354#if TARGET_BIG_ENDIAN
 355    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
 356#else
 357    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 358#endif
 359}
 360
 361static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
 362{
 363    if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
 364        switch (op & MO_SIZE) {
 365        case MO_8:
 366            break;
 367        case MO_16:
 368            *data = bswap16(*data);
 369            break;
 370        case MO_32:
 371            *data = bswap32(*data);
 372            break;
 373        case MO_64:
 374            *data = bswap64(*data);
 375            break;
 376        default:
 377            g_assert_not_reached();
 378        }
 379    }
 380}
 381
 382static inline void memory_region_shift_read_access(uint64_t *value,
 383                                                   signed shift,
 384                                                   uint64_t mask,
 385                                                   uint64_t tmp)
 386{
 387    if (shift >= 0) {
 388        *value |= (tmp & mask) << shift;
 389    } else {
 390        *value |= (tmp & mask) >> -shift;
 391    }
 392}
 393
 394static inline uint64_t memory_region_shift_write_access(uint64_t *value,
 395                                                        signed shift,
 396                                                        uint64_t mask)
 397{
 398    uint64_t tmp;
 399
 400    if (shift >= 0) {
 401        tmp = (*value >> shift) & mask;
 402    } else {
 403        tmp = (*value << -shift) & mask;
 404    }
 405
 406    return tmp;
 407}
 408
 409static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
 410{
 411    MemoryRegion *root;
 412    hwaddr abs_addr = offset;
 413
 414    abs_addr += mr->addr;
 415    for (root = mr; root->container; ) {
 416        root = root->container;
 417        abs_addr += root->addr;
 418    }
 419
 420    return abs_addr;
 421}
 422
 423static int get_cpu_index(void)
 424{
 425    if (current_cpu) {
 426        return current_cpu->cpu_index;
 427    }
 428    return -1;
 429}
 430
 431static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
 432                                                hwaddr addr,
 433                                                uint64_t *value,
 434                                                unsigned size,
 435                                                signed shift,
 436                                                uint64_t mask,
 437                                                MemTxAttrs attrs)
 438{
 439    uint64_t tmp;
 440
 441    tmp = mr->ops->read(mr->opaque, addr, size);
 442    if (mr->subpage) {
 443        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 444    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
 445        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 446        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
 447                                     memory_region_name(mr));
 448    }
 449    memory_region_shift_read_access(value, shift, mask, tmp);
 450    return MEMTX_OK;
 451}
 452
 453static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
 454                                                          hwaddr addr,
 455                                                          uint64_t *value,
 456                                                          unsigned size,
 457                                                          signed shift,
 458                                                          uint64_t mask,
 459                                                          MemTxAttrs attrs)
 460{
 461    uint64_t tmp = 0;
 462    MemTxResult r;
 463
 464    r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
 465    if (mr->subpage) {
 466        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 467    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
 468        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 469        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
 470                                     memory_region_name(mr));
 471    }
 472    memory_region_shift_read_access(value, shift, mask, tmp);
 473    return r;
 474}
 475
 476static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
 477                                                hwaddr addr,
 478                                                uint64_t *value,
 479                                                unsigned size,
 480                                                signed shift,
 481                                                uint64_t mask,
 482                                                MemTxAttrs attrs)
 483{
 484    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
 485
 486    if (mr->subpage) {
 487        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 488    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
 489        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 490        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
 491                                      memory_region_name(mr));
 492    }
 493    mr->ops->write(mr->opaque, addr, tmp, size);
 494    return MEMTX_OK;
 495}
 496
 497static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
 498                                                           hwaddr addr,
 499                                                           uint64_t *value,
 500                                                           unsigned size,
 501                                                           signed shift,
 502                                                           uint64_t mask,
 503                                                           MemTxAttrs attrs)
 504{
 505    uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
 506
 507    if (mr->subpage) {
 508        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 509    } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
 510        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 511        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
 512                                      memory_region_name(mr));
 513    }
 514    return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
 515}
 516
 517static MemTxResult access_with_adjusted_size(hwaddr addr,
 518                                      uint64_t *value,
 519                                      unsigned size,
 520                                      unsigned access_size_min,
 521                                      unsigned access_size_max,
 522                                      MemTxResult (*access_fn)
 523                                                  (MemoryRegion *mr,
 524                                                   hwaddr addr,
 525                                                   uint64_t *value,
 526                                                   unsigned size,
 527                                                   signed shift,
 528                                                   uint64_t mask,
 529                                                   MemTxAttrs attrs),
 530                                      MemoryRegion *mr,
 531                                      MemTxAttrs attrs)
 532{
 533    uint64_t access_mask;
 534    unsigned access_size;
 535    unsigned i;
 536    MemTxResult r = MEMTX_OK;
 537
 538    if (!access_size_min) {
 539        access_size_min = 1;
 540    }
 541    if (!access_size_max) {
 542        access_size_max = 4;
 543    }
 544
 545    /* FIXME: support unaligned access? */
 546    access_size = MAX(MIN(size, access_size_max), access_size_min);
 547    access_mask = MAKE_64BIT_MASK(0, access_size * 8);
 548    if (memory_region_big_endian(mr)) {
 549        for (i = 0; i < size; i += access_size) {
 550            r |= access_fn(mr, addr + i, value, access_size,
 551                        (size - access_size - i) * 8, access_mask, attrs);
 552        }
 553    } else {
 554        for (i = 0; i < size; i += access_size) {
 555            r |= access_fn(mr, addr + i, value, access_size, i * 8,
 556                        access_mask, attrs);
 557        }
 558    }
 559    return r;
 560}
 561
 562static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
 563{
 564    AddressSpace *as;
 565
 566    while (mr->container) {
 567        mr = mr->container;
 568    }
 569    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 570        if (mr == as->root) {
 571            return as;
 572        }
 573    }
 574    return NULL;
 575}
 576
 577/* Render a memory region into the global view.  Ranges in @view obscure
 578 * ranges in @mr.
 579 */
 580static void render_memory_region(FlatView *view,
 581                                 MemoryRegion *mr,
 582                                 Int128 base,
 583                                 AddrRange clip,
 584                                 bool readonly,
 585                                 bool nonvolatile)
 586{
 587    MemoryRegion *subregion;
 588    unsigned i;
 589    hwaddr offset_in_region;
 590    Int128 remain;
 591    Int128 now;
 592    FlatRange fr;
 593    AddrRange tmp;
 594
 595    if (!mr->enabled) {
 596        return;
 597    }
 598
 599    int128_addto(&base, int128_make64(mr->addr));
 600    readonly |= mr->readonly;
 601    nonvolatile |= mr->nonvolatile;
 602
 603    tmp = addrrange_make(base, mr->size);
 604
 605    if (!addrrange_intersects(tmp, clip)) {
 606        return;
 607    }
 608
 609    clip = addrrange_intersection(tmp, clip);
 610
 611    if (mr->alias) {
 612        int128_subfrom(&base, int128_make64(mr->alias->addr));
 613        int128_subfrom(&base, int128_make64(mr->alias_offset));
 614        render_memory_region(view, mr->alias, base, clip,
 615                             readonly, nonvolatile);
 616        return;
 617    }
 618
 619    /* Render subregions in priority order. */
 620    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
 621        render_memory_region(view, subregion, base, clip,
 622                             readonly, nonvolatile);
 623    }
 624
 625    if (!mr->terminates) {
 626        return;
 627    }
 628
 629    offset_in_region = int128_get64(int128_sub(clip.start, base));
 630    base = clip.start;
 631    remain = clip.size;
 632
 633    fr.mr = mr;
 634    fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 635    fr.romd_mode = mr->romd_mode;
 636    fr.readonly = readonly;
 637    fr.nonvolatile = nonvolatile;
 638
 639    /* Render the region itself into any gaps left by the current view. */
 640    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
 641        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
 642            continue;
 643        }
 644        if (int128_lt(base, view->ranges[i].addr.start)) {
 645            now = int128_min(remain,
 646                             int128_sub(view->ranges[i].addr.start, base));
 647            fr.offset_in_region = offset_in_region;
 648            fr.addr = addrrange_make(base, now);
 649            flatview_insert(view, i, &fr);
 650            ++i;
 651            int128_addto(&base, now);
 652            offset_in_region += int128_get64(now);
 653            int128_subfrom(&remain, now);
 654        }
 655        now = int128_sub(int128_min(int128_add(base, remain),
 656                                    addrrange_end(view->ranges[i].addr)),
 657                         base);
 658        int128_addto(&base, now);
 659        offset_in_region += int128_get64(now);
 660        int128_subfrom(&remain, now);
 661    }
 662    if (int128_nz(remain)) {
 663        fr.offset_in_region = offset_in_region;
 664        fr.addr = addrrange_make(base, remain);
 665        flatview_insert(view, i, &fr);
 666    }
 667}
 668
 669void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
 670{
 671    FlatRange *fr;
 672
 673    assert(fv);
 674    assert(cb);
 675
 676    FOR_EACH_FLAT_RANGE(fr, fv) {
 677        if (cb(fr->addr.start, fr->addr.size, fr->mr,
 678               fr->offset_in_region, opaque)) {
 679            break;
 680        }
 681    }
 682}
 683
 684static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
 685{
 686    while (mr->enabled) {
 687        if (mr->alias) {
 688            if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
 689                /* The alias is included in its entirety.  Use it as
 690                 * the "real" root, so that we can share more FlatViews.
 691                 */
 692                mr = mr->alias;
 693                continue;
 694            }
 695        } else if (!mr->terminates) {
 696            unsigned int found = 0;
 697            MemoryRegion *child, *next = NULL;
 698            QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
 699                if (child->enabled) {
 700                    if (++found > 1) {
 701                        next = NULL;
 702                        break;
 703                    }
 704                    if (!child->addr && int128_ge(mr->size, child->size)) {
 705                        /* A child is included in its entirety.  If it's the only
 706                         * enabled one, use it in the hope of finding an alias down the
 707                         * way. This will also let us share FlatViews.
 708                         */
 709                        next = child;
 710                    }
 711                }
 712            }
 713            if (found == 0) {
 714                return NULL;
 715            }
 716            if (next) {
 717                mr = next;
 718                continue;
 719            }
 720        }
 721
 722        return mr;
 723    }
 724
 725    return NULL;
 726}
 727
 728/* Render a memory topology into a list of disjoint absolute ranges. */
 729static FlatView *generate_memory_topology(MemoryRegion *mr)
 730{
 731    int i;
 732    FlatView *view;
 733
 734    view = flatview_new(mr);
 735
 736    if (mr) {
 737        render_memory_region(view, mr, int128_zero(),
 738                             addrrange_make(int128_zero(), int128_2_64()),
 739                             false, false);
 740    }
 741    flatview_simplify(view);
 742
 743    view->dispatch = address_space_dispatch_new(view);
 744    for (i = 0; i < view->nr; i++) {
 745        MemoryRegionSection mrs =
 746            section_from_flat_range(&view->ranges[i], view);
 747        flatview_add_to_dispatch(view, &mrs);
 748    }
 749    address_space_dispatch_compact(view->dispatch);
 750    g_hash_table_replace(flat_views, mr, view);
 751
 752    return view;
 753}
 754
 755static void address_space_add_del_ioeventfds(AddressSpace *as,
 756                                             MemoryRegionIoeventfd *fds_new,
 757                                             unsigned fds_new_nb,
 758                                             MemoryRegionIoeventfd *fds_old,
 759                                             unsigned fds_old_nb)
 760{
 761    unsigned iold, inew;
 762    MemoryRegionIoeventfd *fd;
 763    MemoryRegionSection section;
 764
 765    /* Generate a symmetric difference of the old and new fd sets, adding
 766     * and deleting as necessary.
 767     */
 768
 769    iold = inew = 0;
 770    while (iold < fds_old_nb || inew < fds_new_nb) {
 771        if (iold < fds_old_nb
 772            && (inew == fds_new_nb
 773                || memory_region_ioeventfd_before(&fds_old[iold],
 774                                                  &fds_new[inew]))) {
 775            fd = &fds_old[iold];
 776            section = (MemoryRegionSection) {
 777                .fv = address_space_to_flatview(as),
 778                .offset_within_address_space = int128_get64(fd->addr.start),
 779                .size = fd->addr.size,
 780            };
 781            MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
 782                                 fd->match_data, fd->data, fd->e);
 783            ++iold;
 784        } else if (inew < fds_new_nb
 785                   && (iold == fds_old_nb
 786                       || memory_region_ioeventfd_before(&fds_new[inew],
 787                                                         &fds_old[iold]))) {
 788            fd = &fds_new[inew];
 789            section = (MemoryRegionSection) {
 790                .fv = address_space_to_flatview(as),
 791                .offset_within_address_space = int128_get64(fd->addr.start),
 792                .size = fd->addr.size,
 793            };
 794            MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
 795                                 fd->match_data, fd->data, fd->e);
 796            ++inew;
 797        } else {
 798            ++iold;
 799            ++inew;
 800        }
 801    }
 802}
 803
 804FlatView *address_space_get_flatview(AddressSpace *as)
 805{
 806    FlatView *view;
 807
 808    RCU_READ_LOCK_GUARD();
 809    do {
 810        view = address_space_to_flatview(as);
 811        /* If somebody has replaced as->current_map concurrently,
 812         * flatview_ref returns false.
 813         */
 814    } while (!flatview_ref(view));
 815    return view;
 816}
 817
 818static void address_space_update_ioeventfds(AddressSpace *as)
 819{
 820    FlatView *view;
 821    FlatRange *fr;
 822    unsigned ioeventfd_nb = 0;
 823    unsigned ioeventfd_max;
 824    MemoryRegionIoeventfd *ioeventfds;
 825    AddrRange tmp;
 826    unsigned i;
 827
 828    /*
 829     * It is likely that the number of ioeventfds hasn't changed much, so use
 830     * the previous size as the starting value, with some headroom to avoid
 831     * gratuitous reallocations.
 832     */
 833    ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
 834    ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
 835
 836    view = address_space_get_flatview(as);
 837    FOR_EACH_FLAT_RANGE(fr, view) {
 838        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
 839            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
 840                                  int128_sub(fr->addr.start,
 841                                             int128_make64(fr->offset_in_region)));
 842            if (addrrange_intersects(fr->addr, tmp)) {
 843                ++ioeventfd_nb;
 844                if (ioeventfd_nb > ioeventfd_max) {
 845                    ioeventfd_max = MAX(ioeventfd_max * 2, 4);
 846                    ioeventfds = g_realloc(ioeventfds,
 847                            ioeventfd_max * sizeof(*ioeventfds));
 848                }
 849                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
 850                ioeventfds[ioeventfd_nb-1].addr = tmp;
 851            }
 852        }
 853    }
 854
 855    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
 856                                     as->ioeventfds, as->ioeventfd_nb);
 857
 858    g_free(as->ioeventfds);
 859    as->ioeventfds = ioeventfds;
 860    as->ioeventfd_nb = ioeventfd_nb;
 861    flatview_unref(view);
 862}
 863
 864/*
 865 * Notify the memory listeners about the coalesced IO change events of
 866 * range `cmr'.  Only the part that has intersection of the specified
 867 * FlatRange will be sent.
 868 */
 869static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
 870                                           CoalescedMemoryRange *cmr, bool add)
 871{
 872    AddrRange tmp;
 873
 874    tmp = addrrange_shift(cmr->addr,
 875                          int128_sub(fr->addr.start,
 876                                     int128_make64(fr->offset_in_region)));
 877    if (!addrrange_intersects(tmp, fr->addr)) {
 878        return;
 879    }
 880    tmp = addrrange_intersection(tmp, fr->addr);
 881
 882    if (add) {
 883        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
 884                                      int128_get64(tmp.start),
 885                                      int128_get64(tmp.size));
 886    } else {
 887        MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
 888                                      int128_get64(tmp.start),
 889                                      int128_get64(tmp.size));
 890    }
 891}
 892
 893static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
 894{
 895    CoalescedMemoryRange *cmr;
 896
 897    QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
 898        flat_range_coalesced_io_notify(fr, as, cmr, false);
 899    }
 900}
 901
 902static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
 903{
 904    MemoryRegion *mr = fr->mr;
 905    CoalescedMemoryRange *cmr;
 906
 907    if (QTAILQ_EMPTY(&mr->coalesced)) {
 908        return;
 909    }
 910
 911    QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
 912        flat_range_coalesced_io_notify(fr, as, cmr, true);
 913    }
 914}
 915
 916static void address_space_update_topology_pass(AddressSpace *as,
 917                                               const FlatView *old_view,
 918                                               const FlatView *new_view,
 919                                               bool adding)
 920{
 921    unsigned iold, inew;
 922    FlatRange *frold, *frnew;
 923
 924    /* Generate a symmetric difference of the old and new memory maps.
 925     * Kill ranges in the old map, and instantiate ranges in the new map.
 926     */
 927    iold = inew = 0;
 928    while (iold < old_view->nr || inew < new_view->nr) {
 929        if (iold < old_view->nr) {
 930            frold = &old_view->ranges[iold];
 931        } else {
 932            frold = NULL;
 933        }
 934        if (inew < new_view->nr) {
 935            frnew = &new_view->ranges[inew];
 936        } else {
 937            frnew = NULL;
 938        }
 939
 940        if (frold
 941            && (!frnew
 942                || int128_lt(frold->addr.start, frnew->addr.start)
 943                || (int128_eq(frold->addr.start, frnew->addr.start)
 944                    && !flatrange_equal(frold, frnew)))) {
 945            /* In old but not in new, or in both but attributes changed. */
 946
 947            if (!adding) {
 948                flat_range_coalesced_io_del(frold, as);
 949                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
 950            }
 951
 952            ++iold;
 953        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
 954            /* In both and unchanged (except logging may have changed) */
 955
 956            if (adding) {
 957                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
 958                if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
 959                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
 960                                                  frold->dirty_log_mask,
 961                                                  frnew->dirty_log_mask);
 962                }
 963                if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
 964                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
 965                                                  frold->dirty_log_mask,
 966                                                  frnew->dirty_log_mask);
 967                }
 968            }
 969
 970            ++iold;
 971            ++inew;
 972        } else {
 973            /* In new */
 974
 975            if (adding) {
 976                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
 977                flat_range_coalesced_io_add(frnew, as);
 978            }
 979
 980            ++inew;
 981        }
 982    }
 983}
 984
 985static void flatviews_init(void)
 986{
 987    static FlatView *empty_view;
 988
 989    if (flat_views) {
 990        return;
 991    }
 992
 993    flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
 994                                       (GDestroyNotify) flatview_unref);
 995    if (!empty_view) {
 996        empty_view = generate_memory_topology(NULL);
 997        /* We keep it alive forever in the global variable.  */
 998        flatview_ref(empty_view);
 999    } else {
1000        g_hash_table_replace(flat_views, NULL, empty_view);
1001        flatview_ref(empty_view);
1002    }
1003}
1004
1005static void flatviews_reset(void)
1006{
1007    AddressSpace *as;
1008
1009    if (flat_views) {
1010        g_hash_table_unref(flat_views);
1011        flat_views = NULL;
1012    }
1013    flatviews_init();
1014
1015    /* Render unique FVs */
1016    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1017        MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1018
1019        if (g_hash_table_lookup(flat_views, physmr)) {
1020            continue;
1021        }
1022
1023        generate_memory_topology(physmr);
1024    }
1025}
1026
1027static void address_space_set_flatview(AddressSpace *as)
1028{
1029    FlatView *old_view = address_space_to_flatview(as);
1030    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1031    FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1032
1033    assert(new_view);
1034
1035    if (old_view == new_view) {
1036        return;
1037    }
1038
1039    if (old_view) {
1040        flatview_ref(old_view);
1041    }
1042
1043    flatview_ref(new_view);
1044
1045    if (!QTAILQ_EMPTY(&as->listeners)) {
1046        FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1047
1048        if (!old_view2) {
1049            old_view2 = &tmpview;
1050        }
1051        address_space_update_topology_pass(as, old_view2, new_view, false);
1052        address_space_update_topology_pass(as, old_view2, new_view, true);
1053    }
1054
1055    /* Writes are protected by the BQL.  */
1056    qatomic_rcu_set(&as->current_map, new_view);
1057    if (old_view) {
1058        flatview_unref(old_view);
1059    }
1060
1061    /* Note that all the old MemoryRegions are still alive up to this
1062     * point.  This relieves most MemoryListeners from the need to
1063     * ref/unref the MemoryRegions they get---unless they use them
1064     * outside the iothread mutex, in which case precise reference
1065     * counting is necessary.
1066     */
1067    if (old_view) {
1068        flatview_unref(old_view);
1069    }
1070}
1071
1072static void address_space_update_topology(AddressSpace *as)
1073{
1074    MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1075
1076    flatviews_init();
1077    if (!g_hash_table_lookup(flat_views, physmr)) {
1078        generate_memory_topology(physmr);
1079    }
1080    address_space_set_flatview(as);
1081}
1082
1083void memory_region_transaction_begin(void)
1084{
1085    qemu_flush_coalesced_mmio_buffer();
1086    ++memory_region_transaction_depth;
1087}
1088
1089void memory_region_transaction_commit(void)
1090{
1091    AddressSpace *as;
1092
1093    assert(memory_region_transaction_depth);
1094    assert(qemu_mutex_iothread_locked());
1095
1096    --memory_region_transaction_depth;
1097    if (!memory_region_transaction_depth) {
1098        if (memory_region_update_pending) {
1099            flatviews_reset();
1100
1101            MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1102
1103            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1104                address_space_set_flatview(as);
1105                address_space_update_ioeventfds(as);
1106            }
1107            memory_region_update_pending = false;
1108            ioeventfd_update_pending = false;
1109            MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1110        } else if (ioeventfd_update_pending) {
1111            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1112                address_space_update_ioeventfds(as);
1113            }
1114            ioeventfd_update_pending = false;
1115        }
1116   }
1117}
1118
1119static void memory_region_destructor_none(MemoryRegion *mr)
1120{
1121}
1122
1123static void memory_region_destructor_ram(MemoryRegion *mr)
1124{
1125    qemu_ram_free(mr->ram_block);
1126}
1127
1128static bool memory_region_need_escape(char c)
1129{
1130    return c == '/' || c == '[' || c == '\\' || c == ']';
1131}
1132
1133static char *memory_region_escape_name(const char *name)
1134{
1135    const char *p;
1136    char *escaped, *q;
1137    uint8_t c;
1138    size_t bytes = 0;
1139
1140    for (p = name; *p; p++) {
1141        bytes += memory_region_need_escape(*p) ? 4 : 1;
1142    }
1143    if (bytes == p - name) {
1144       return g_memdup(name, bytes + 1);
1145    }
1146
1147    escaped = g_malloc(bytes + 1);
1148    for (p = name, q = escaped; *p; p++) {
1149        c = *p;
1150        if (unlikely(memory_region_need_escape(c))) {
1151            *q++ = '\\';
1152            *q++ = 'x';
1153            *q++ = "0123456789abcdef"[c >> 4];
1154            c = "0123456789abcdef"[c & 15];
1155        }
1156        *q++ = c;
1157    }
1158    *q = 0;
1159    return escaped;
1160}
1161
1162static void memory_region_do_init(MemoryRegion *mr,
1163                                  Object *owner,
1164                                  const char *name,
1165                                  uint64_t size)
1166{
1167    mr->size = int128_make64(size);
1168    if (size == UINT64_MAX) {
1169        mr->size = int128_2_64();
1170    }
1171    mr->name = g_strdup(name);
1172    mr->owner = owner;
1173    mr->ram_block = NULL;
1174
1175    if (name) {
1176        char *escaped_name = memory_region_escape_name(name);
1177        char *name_array = g_strdup_printf("%s[*]", escaped_name);
1178
1179        if (!owner) {
1180            owner = container_get(qdev_get_machine(), "/unattached");
1181        }
1182
1183        object_property_add_child(owner, name_array, OBJECT(mr));
1184        object_unref(OBJECT(mr));
1185        g_free(name_array);
1186        g_free(escaped_name);
1187    }
1188}
1189
1190void memory_region_init(MemoryRegion *mr,
1191                        Object *owner,
1192                        const char *name,
1193                        uint64_t size)
1194{
1195    object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1196    memory_region_do_init(mr, owner, name, size);
1197}
1198
1199static void memory_region_get_container(Object *obj, Visitor *v,
1200                                        const char *name, void *opaque,
1201                                        Error **errp)
1202{
1203    MemoryRegion *mr = MEMORY_REGION(obj);
1204    char *path = (char *)"";
1205
1206    if (mr->container) {
1207        path = object_get_canonical_path(OBJECT(mr->container));
1208    }
1209    visit_type_str(v, name, &path, errp);
1210    if (mr->container) {
1211        g_free(path);
1212    }
1213}
1214
1215static Object *memory_region_resolve_container(Object *obj, void *opaque,
1216                                               const char *part)
1217{
1218    MemoryRegion *mr = MEMORY_REGION(obj);
1219
1220    return OBJECT(mr->container);
1221}
1222
1223static void memory_region_get_priority(Object *obj, Visitor *v,
1224                                       const char *name, void *opaque,
1225                                       Error **errp)
1226{
1227    MemoryRegion *mr = MEMORY_REGION(obj);
1228    int32_t value = mr->priority;
1229
1230    visit_type_int32(v, name, &value, errp);
1231}
1232
1233static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1234                                   void *opaque, Error **errp)
1235{
1236    MemoryRegion *mr = MEMORY_REGION(obj);
1237    uint64_t value = memory_region_size(mr);
1238
1239    visit_type_uint64(v, name, &value, errp);
1240}
1241
1242static void memory_region_initfn(Object *obj)
1243{
1244    MemoryRegion *mr = MEMORY_REGION(obj);
1245    ObjectProperty *op;
1246
1247    mr->ops = &unassigned_mem_ops;
1248    mr->enabled = true;
1249    mr->romd_mode = true;
1250    mr->destructor = memory_region_destructor_none;
1251    QTAILQ_INIT(&mr->subregions);
1252    QTAILQ_INIT(&mr->coalesced);
1253
1254    op = object_property_add(OBJECT(mr), "container",
1255                             "link<" TYPE_MEMORY_REGION ">",
1256                             memory_region_get_container,
1257                             NULL, /* memory_region_set_container */
1258                             NULL, NULL);
1259    op->resolve = memory_region_resolve_container;
1260
1261    object_property_add_uint64_ptr(OBJECT(mr), "addr",
1262                                   &mr->addr, OBJ_PROP_FLAG_READ);
1263    object_property_add(OBJECT(mr), "priority", "uint32",
1264                        memory_region_get_priority,
1265                        NULL, /* memory_region_set_priority */
1266                        NULL, NULL);
1267    object_property_add(OBJECT(mr), "size", "uint64",
1268                        memory_region_get_size,
1269                        NULL, /* memory_region_set_size, */
1270                        NULL, NULL);
1271}
1272
1273static void iommu_memory_region_initfn(Object *obj)
1274{
1275    MemoryRegion *mr = MEMORY_REGION(obj);
1276
1277    mr->is_iommu = true;
1278}
1279
1280static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1281                                    unsigned size)
1282{
1283#ifdef DEBUG_UNASSIGNED
1284    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1285#endif
1286    return 0;
1287}
1288
1289static void unassigned_mem_write(void *opaque, hwaddr addr,
1290                                 uint64_t val, unsigned size)
1291{
1292#ifdef DEBUG_UNASSIGNED
1293    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1294#endif
1295}
1296
1297static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1298                                   unsigned size, bool is_write,
1299                                   MemTxAttrs attrs)
1300{
1301    return false;
1302}
1303
1304const MemoryRegionOps unassigned_mem_ops = {
1305    .valid.accepts = unassigned_mem_accepts,
1306    .endianness = DEVICE_NATIVE_ENDIAN,
1307};
1308
1309static uint64_t memory_region_ram_device_read(void *opaque,
1310                                              hwaddr addr, unsigned size)
1311{
1312    MemoryRegion *mr = opaque;
1313    uint64_t data = (uint64_t)~0;
1314
1315    switch (size) {
1316    case 1:
1317        data = *(uint8_t *)(mr->ram_block->host + addr);
1318        break;
1319    case 2:
1320        data = *(uint16_t *)(mr->ram_block->host + addr);
1321        break;
1322    case 4:
1323        data = *(uint32_t *)(mr->ram_block->host + addr);
1324        break;
1325    case 8:
1326        data = *(uint64_t *)(mr->ram_block->host + addr);
1327        break;
1328    }
1329
1330    trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1331
1332    return data;
1333}
1334
1335static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1336                                           uint64_t data, unsigned size)
1337{
1338    MemoryRegion *mr = opaque;
1339
1340    trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1341
1342    switch (size) {
1343    case 1:
1344        *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1345        break;
1346    case 2:
1347        *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1348        break;
1349    case 4:
1350        *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1351        break;
1352    case 8:
1353        *(uint64_t *)(mr->ram_block->host + addr) = data;
1354        break;
1355    }
1356}
1357
1358static const MemoryRegionOps ram_device_mem_ops = {
1359    .read = memory_region_ram_device_read,
1360    .write = memory_region_ram_device_write,
1361    .endianness = DEVICE_HOST_ENDIAN,
1362    .valid = {
1363        .min_access_size = 1,
1364        .max_access_size = 8,
1365        .unaligned = true,
1366    },
1367    .impl = {
1368        .min_access_size = 1,
1369        .max_access_size = 8,
1370        .unaligned = true,
1371    },
1372};
1373
1374bool memory_region_access_valid(MemoryRegion *mr,
1375                                hwaddr addr,
1376                                unsigned size,
1377                                bool is_write,
1378                                MemTxAttrs attrs)
1379{
1380    if (mr->ops->valid.accepts
1381        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1382        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1383                      ", size %u, region '%s', reason: rejected\n",
1384                      is_write ? "write" : "read",
1385                      addr, size, memory_region_name(mr));
1386        return false;
1387    }
1388
1389    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1390        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1391                      ", size %u, region '%s', reason: unaligned\n",
1392                      is_write ? "write" : "read",
1393                      addr, size, memory_region_name(mr));
1394        return false;
1395    }
1396
1397    /* Treat zero as compatibility all valid */
1398    if (!mr->ops->valid.max_access_size) {
1399        return true;
1400    }
1401
1402    if (size > mr->ops->valid.max_access_size
1403        || size < mr->ops->valid.min_access_size) {
1404        qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1405                      ", size %u, region '%s', reason: invalid size "
1406                      "(min:%u max:%u)\n",
1407                      is_write ? "write" : "read",
1408                      addr, size, memory_region_name(mr),
1409                      mr->ops->valid.min_access_size,
1410                      mr->ops->valid.max_access_size);
1411        return false;
1412    }
1413    return true;
1414}
1415
1416static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1417                                                hwaddr addr,
1418                                                uint64_t *pval,
1419                                                unsigned size,
1420                                                MemTxAttrs attrs)
1421{
1422    *pval = 0;
1423
1424    if (mr->ops->read) {
1425        return access_with_adjusted_size(addr, pval, size,
1426                                         mr->ops->impl.min_access_size,
1427                                         mr->ops->impl.max_access_size,
1428                                         memory_region_read_accessor,
1429                                         mr, attrs);
1430    } else {
1431        return access_with_adjusted_size(addr, pval, size,
1432                                         mr->ops->impl.min_access_size,
1433                                         mr->ops->impl.max_access_size,
1434                                         memory_region_read_with_attrs_accessor,
1435                                         mr, attrs);
1436    }
1437}
1438
1439MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1440                                        hwaddr addr,
1441                                        uint64_t *pval,
1442                                        MemOp op,
1443                                        MemTxAttrs attrs)
1444{
1445    unsigned size = memop_size(op);
1446    MemTxResult r;
1447
1448    if (mr->alias) {
1449        return memory_region_dispatch_read(mr->alias,
1450                                           mr->alias_offset + addr,
1451                                           pval, op, attrs);
1452    }
1453    if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1454        *pval = unassigned_mem_read(mr, addr, size);
1455        return MEMTX_DECODE_ERROR;
1456    }
1457
1458    r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1459    adjust_endianness(mr, pval, op);
1460    return r;
1461}
1462
1463/* Return true if an eventfd was signalled */
1464static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1465                                                    hwaddr addr,
1466                                                    uint64_t data,
1467                                                    unsigned size,
1468                                                    MemTxAttrs attrs)
1469{
1470    MemoryRegionIoeventfd ioeventfd = {
1471        .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1472        .data = data,
1473    };
1474    unsigned i;
1475
1476    for (i = 0; i < mr->ioeventfd_nb; i++) {
1477        ioeventfd.match_data = mr->ioeventfds[i].match_data;
1478        ioeventfd.e = mr->ioeventfds[i].e;
1479
1480        if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1481            event_notifier_set(ioeventfd.e);
1482            return true;
1483        }
1484    }
1485
1486    return false;
1487}
1488
1489MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1490                                         hwaddr addr,
1491                                         uint64_t data,
1492                                         MemOp op,
1493                                         MemTxAttrs attrs)
1494{
1495    unsigned size = memop_size(op);
1496
1497    if (mr->alias) {
1498        return memory_region_dispatch_write(mr->alias,
1499                                            mr->alias_offset + addr,
1500                                            data, op, attrs);
1501    }
1502    if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1503        unassigned_mem_write(mr, addr, data, size);
1504        return MEMTX_DECODE_ERROR;
1505    }
1506
1507    adjust_endianness(mr, &data, op);
1508
1509    if ((!kvm_eventfds_enabled()) &&
1510        memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1511        return MEMTX_OK;
1512    }
1513
1514    if (mr->ops->write) {
1515        return access_with_adjusted_size(addr, &data, size,
1516                                         mr->ops->impl.min_access_size,
1517                                         mr->ops->impl.max_access_size,
1518                                         memory_region_write_accessor, mr,
1519                                         attrs);
1520    } else {
1521        return
1522            access_with_adjusted_size(addr, &data, size,
1523                                      mr->ops->impl.min_access_size,
1524                                      mr->ops->impl.max_access_size,
1525                                      memory_region_write_with_attrs_accessor,
1526                                      mr, attrs);
1527    }
1528}
1529
1530void memory_region_init_io(MemoryRegion *mr,
1531                           Object *owner,
1532                           const MemoryRegionOps *ops,
1533                           void *opaque,
1534                           const char *name,
1535                           uint64_t size)
1536{
1537    memory_region_init(mr, owner, name, size);
1538    mr->ops = ops ? ops : &unassigned_mem_ops;
1539    mr->opaque = opaque;
1540    mr->terminates = true;
1541}
1542
1543void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1544                                      Object *owner,
1545                                      const char *name,
1546                                      uint64_t size,
1547                                      Error **errp)
1548{
1549    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1550}
1551
1552void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1553                                            Object *owner,
1554                                            const char *name,
1555                                            uint64_t size,
1556                                            uint32_t ram_flags,
1557                                            Error **errp)
1558{
1559    Error *err = NULL;
1560    memory_region_init(mr, owner, name, size);
1561    mr->ram = true;
1562    mr->terminates = true;
1563    mr->destructor = memory_region_destructor_ram;
1564    mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1565    if (err) {
1566        mr->size = int128_zero();
1567        object_unparent(OBJECT(mr));
1568        error_propagate(errp, err);
1569    }
1570}
1571
1572void memory_region_init_resizeable_ram(MemoryRegion *mr,
1573                                       Object *owner,
1574                                       const char *name,
1575                                       uint64_t size,
1576                                       uint64_t max_size,
1577                                       void (*resized)(const char*,
1578                                                       uint64_t length,
1579                                                       void *host),
1580                                       Error **errp)
1581{
1582    Error *err = NULL;
1583    memory_region_init(mr, owner, name, size);
1584    mr->ram = true;
1585    mr->terminates = true;
1586    mr->destructor = memory_region_destructor_ram;
1587    mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1588                                              mr, &err);
1589    if (err) {
1590        mr->size = int128_zero();
1591        object_unparent(OBJECT(mr));
1592        error_propagate(errp, err);
1593    }
1594}
1595
1596#ifdef CONFIG_POSIX
1597void memory_region_init_ram_from_file(MemoryRegion *mr,
1598                                      Object *owner,
1599                                      const char *name,
1600                                      uint64_t size,
1601                                      uint64_t align,
1602                                      uint32_t ram_flags,
1603                                      const char *path,
1604                                      bool readonly,
1605                                      Error **errp)
1606{
1607    Error *err = NULL;
1608    memory_region_init(mr, owner, name, size);
1609    mr->ram = true;
1610    mr->readonly = readonly;
1611    mr->terminates = true;
1612    mr->destructor = memory_region_destructor_ram;
1613    mr->align = align;
1614    mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1615                                             readonly, &err);
1616    if (err) {
1617        mr->size = int128_zero();
1618        object_unparent(OBJECT(mr));
1619        error_propagate(errp, err);
1620    }
1621}
1622
1623void memory_region_init_ram_from_fd(MemoryRegion *mr,
1624                                    Object *owner,
1625                                    const char *name,
1626                                    uint64_t size,
1627                                    uint32_t ram_flags,
1628                                    int fd,
1629                                    ram_addr_t offset,
1630                                    Error **errp)
1631{
1632    Error *err = NULL;
1633    memory_region_init(mr, owner, name, size);
1634    mr->ram = true;
1635    mr->terminates = true;
1636    mr->destructor = memory_region_destructor_ram;
1637    mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1638                                           false, &err);
1639    if (err) {
1640        mr->size = int128_zero();
1641        object_unparent(OBJECT(mr));
1642        error_propagate(errp, err);
1643    }
1644}
1645#endif
1646
1647void memory_region_init_ram_ptr(MemoryRegion *mr,
1648                                Object *owner,
1649                                const char *name,
1650                                uint64_t size,
1651                                void *ptr)
1652{
1653    memory_region_init(mr, owner, name, size);
1654    mr->ram = true;
1655    mr->terminates = true;
1656    mr->destructor = memory_region_destructor_ram;
1657
1658    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1659    assert(ptr != NULL);
1660    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1661}
1662
1663void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1664                                       Object *owner,
1665                                       const char *name,
1666                                       uint64_t size,
1667                                       void *ptr)
1668{
1669    memory_region_init(mr, owner, name, size);
1670    mr->ram = true;
1671    mr->terminates = true;
1672    mr->ram_device = true;
1673    mr->ops = &ram_device_mem_ops;
1674    mr->opaque = mr;
1675    mr->destructor = memory_region_destructor_ram;
1676
1677    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1678    assert(ptr != NULL);
1679    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1680}
1681
1682void memory_region_init_alias(MemoryRegion *mr,
1683                              Object *owner,
1684                              const char *name,
1685                              MemoryRegion *orig,
1686                              hwaddr offset,
1687                              uint64_t size)
1688{
1689    memory_region_init(mr, owner, name, size);
1690    mr->alias = orig;
1691    mr->alias_offset = offset;
1692}
1693
1694void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1695                                      Object *owner,
1696                                      const char *name,
1697                                      uint64_t size,
1698                                      Error **errp)
1699{
1700    memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1701    mr->readonly = true;
1702}
1703
1704void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1705                                             Object *owner,
1706                                             const MemoryRegionOps *ops,
1707                                             void *opaque,
1708                                             const char *name,
1709                                             uint64_t size,
1710                                             Error **errp)
1711{
1712    Error *err = NULL;
1713    assert(ops);
1714    memory_region_init(mr, owner, name, size);
1715    mr->ops = ops;
1716    mr->opaque = opaque;
1717    mr->terminates = true;
1718    mr->rom_device = true;
1719    mr->destructor = memory_region_destructor_ram;
1720    mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1721    if (err) {
1722        mr->size = int128_zero();
1723        object_unparent(OBJECT(mr));
1724        error_propagate(errp, err);
1725    }
1726}
1727
1728void memory_region_init_iommu(void *_iommu_mr,
1729                              size_t instance_size,
1730                              const char *mrtypename,
1731                              Object *owner,
1732                              const char *name,
1733                              uint64_t size)
1734{
1735    struct IOMMUMemoryRegion *iommu_mr;
1736    struct MemoryRegion *mr;
1737
1738    object_initialize(_iommu_mr, instance_size, mrtypename);
1739    mr = MEMORY_REGION(_iommu_mr);
1740    memory_region_do_init(mr, owner, name, size);
1741    iommu_mr = IOMMU_MEMORY_REGION(mr);
1742    mr->terminates = true;  /* then re-forwards */
1743    QLIST_INIT(&iommu_mr->iommu_notify);
1744    iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1745}
1746
1747static void memory_region_finalize(Object *obj)
1748{
1749    MemoryRegion *mr = MEMORY_REGION(obj);
1750
1751    assert(!mr->container);
1752
1753    /* We know the region is not visible in any address space (it
1754     * does not have a container and cannot be a root either because
1755     * it has no references, so we can blindly clear mr->enabled.
1756     * memory_region_set_enabled instead could trigger a transaction
1757     * and cause an infinite loop.
1758     */
1759    mr->enabled = false;
1760    memory_region_transaction_begin();
1761    while (!QTAILQ_EMPTY(&mr->subregions)) {
1762        MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1763        memory_region_del_subregion(mr, subregion);
1764    }
1765    memory_region_transaction_commit();
1766
1767    mr->destructor(mr);
1768    memory_region_clear_coalescing(mr);
1769    g_free((char *)mr->name);
1770    g_free(mr->ioeventfds);
1771}
1772
1773Object *memory_region_owner(MemoryRegion *mr)
1774{
1775    Object *obj = OBJECT(mr);
1776    return obj->parent;
1777}
1778
1779void memory_region_ref(MemoryRegion *mr)
1780{
1781    /* MMIO callbacks most likely will access data that belongs
1782     * to the owner, hence the need to ref/unref the owner whenever
1783     * the memory region is in use.
1784     *
1785     * The memory region is a child of its owner.  As long as the
1786     * owner doesn't call unparent itself on the memory region,
1787     * ref-ing the owner will also keep the memory region alive.
1788     * Memory regions without an owner are supposed to never go away;
1789     * we do not ref/unref them because it slows down DMA sensibly.
1790     */
1791    if (mr && mr->owner) {
1792        object_ref(mr->owner);
1793    }
1794}
1795
1796void memory_region_unref(MemoryRegion *mr)
1797{
1798    if (mr && mr->owner) {
1799        object_unref(mr->owner);
1800    }
1801}
1802
1803uint64_t memory_region_size(MemoryRegion *mr)
1804{
1805    if (int128_eq(mr->size, int128_2_64())) {
1806        return UINT64_MAX;
1807    }
1808    return int128_get64(mr->size);
1809}
1810
1811const char *memory_region_name(const MemoryRegion *mr)
1812{
1813    if (!mr->name) {
1814        ((MemoryRegion *)mr)->name =
1815            g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1816    }
1817    return mr->name;
1818}
1819
1820bool memory_region_is_ram_device(MemoryRegion *mr)
1821{
1822    return mr->ram_device;
1823}
1824
1825bool memory_region_is_protected(MemoryRegion *mr)
1826{
1827    return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1828}
1829
1830uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1831{
1832    uint8_t mask = mr->dirty_log_mask;
1833    RAMBlock *rb = mr->ram_block;
1834
1835    if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1836                             memory_region_is_iommu(mr))) {
1837        mask |= (1 << DIRTY_MEMORY_MIGRATION);
1838    }
1839
1840    if (tcg_enabled() && rb) {
1841        /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1842        mask |= (1 << DIRTY_MEMORY_CODE);
1843    }
1844    return mask;
1845}
1846
1847bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1848{
1849    return memory_region_get_dirty_log_mask(mr) & (1 << client);
1850}
1851
1852static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1853                                                   Error **errp)
1854{
1855    IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1856    IOMMUNotifier *iommu_notifier;
1857    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1858    int ret = 0;
1859
1860    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1861        flags |= iommu_notifier->notifier_flags;
1862    }
1863
1864    if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1865        ret = imrc->notify_flag_changed(iommu_mr,
1866                                        iommu_mr->iommu_notify_flags,
1867                                        flags, errp);
1868    }
1869
1870    if (!ret) {
1871        iommu_mr->iommu_notify_flags = flags;
1872    }
1873    return ret;
1874}
1875
1876int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1877                                           uint64_t page_size_mask,
1878                                           Error **errp)
1879{
1880    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1881    int ret = 0;
1882
1883    if (imrc->iommu_set_page_size_mask) {
1884        ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1885    }
1886    return ret;
1887}
1888
1889int memory_region_register_iommu_notifier(MemoryRegion *mr,
1890                                          IOMMUNotifier *n, Error **errp)
1891{
1892    IOMMUMemoryRegion *iommu_mr;
1893    int ret;
1894
1895    if (mr->alias) {
1896        return memory_region_register_iommu_notifier(mr->alias, n, errp);
1897    }
1898
1899    /* We need to register for at least one bitfield */
1900    iommu_mr = IOMMU_MEMORY_REGION(mr);
1901    assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1902    assert(n->start <= n->end);
1903    assert(n->iommu_idx >= 0 &&
1904           n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1905
1906    QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1907    ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1908    if (ret) {
1909        QLIST_REMOVE(n, node);
1910    }
1911    return ret;
1912}
1913
1914uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1915{
1916    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1917
1918    if (imrc->get_min_page_size) {
1919        return imrc->get_min_page_size(iommu_mr);
1920    }
1921    return TARGET_PAGE_SIZE;
1922}
1923
1924void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1925{
1926    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1927    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1928    hwaddr addr, granularity;
1929    IOMMUTLBEntry iotlb;
1930
1931    /* If the IOMMU has its own replay callback, override */
1932    if (imrc->replay) {
1933        imrc->replay(iommu_mr, n);
1934        return;
1935    }
1936
1937    granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1938
1939    for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1940        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1941        if (iotlb.perm != IOMMU_NONE) {
1942            n->notify(n, &iotlb);
1943        }
1944
1945        /* if (2^64 - MR size) < granularity, it's possible to get an
1946         * infinite loop here.  This should catch such a wraparound */
1947        if ((addr + granularity) < addr) {
1948            break;
1949        }
1950    }
1951}
1952
1953void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1954                                             IOMMUNotifier *n)
1955{
1956    IOMMUMemoryRegion *iommu_mr;
1957
1958    if (mr->alias) {
1959        memory_region_unregister_iommu_notifier(mr->alias, n);
1960        return;
1961    }
1962    QLIST_REMOVE(n, node);
1963    iommu_mr = IOMMU_MEMORY_REGION(mr);
1964    memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1965}
1966
1967void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1968                                    IOMMUTLBEvent *event)
1969{
1970    IOMMUTLBEntry *entry = &event->entry;
1971    hwaddr entry_end = entry->iova + entry->addr_mask;
1972    IOMMUTLBEntry tmp = *entry;
1973
1974    if (event->type == IOMMU_NOTIFIER_UNMAP) {
1975        assert(entry->perm == IOMMU_NONE);
1976    }
1977
1978    /*
1979     * Skip the notification if the notification does not overlap
1980     * with registered range.
1981     */
1982    if (notifier->start > entry_end || notifier->end < entry->iova) {
1983        return;
1984    }
1985
1986    if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1987        /* Crop (iova, addr_mask) to range */
1988        tmp.iova = MAX(tmp.iova, notifier->start);
1989        tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1990    } else {
1991        assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1992    }
1993
1994    if (event->type & notifier->notifier_flags) {
1995        notifier->notify(notifier, &tmp);
1996    }
1997}
1998
1999void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2000                                int iommu_idx,
2001                                IOMMUTLBEvent event)
2002{
2003    IOMMUNotifier *iommu_notifier;
2004
2005    assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2006
2007    IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2008        if (iommu_notifier->iommu_idx == iommu_idx) {
2009            memory_region_notify_iommu_one(iommu_notifier, &event);
2010        }
2011    }
2012}
2013
2014int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2015                                 enum IOMMUMemoryRegionAttr attr,
2016                                 void *data)
2017{
2018    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2019
2020    if (!imrc->get_attr) {
2021        return -EINVAL;
2022    }
2023
2024    return imrc->get_attr(iommu_mr, attr, data);
2025}
2026
2027int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2028                                       MemTxAttrs attrs)
2029{
2030    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2031
2032    if (!imrc->attrs_to_index) {
2033        return 0;
2034    }
2035
2036    return imrc->attrs_to_index(iommu_mr, attrs);
2037}
2038
2039int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2040{
2041    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2042
2043    if (!imrc->num_indexes) {
2044        return 1;
2045    }
2046
2047    return imrc->num_indexes(iommu_mr);
2048}
2049
2050RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2051{
2052    if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2053        return NULL;
2054    }
2055    return mr->rdm;
2056}
2057
2058void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2059                                           RamDiscardManager *rdm)
2060{
2061    g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2062    g_assert(!rdm || !mr->rdm);
2063    mr->rdm = rdm;
2064}
2065
2066uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2067                                                 const MemoryRegion *mr)
2068{
2069    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2070
2071    g_assert(rdmc->get_min_granularity);
2072    return rdmc->get_min_granularity(rdm, mr);
2073}
2074
2075bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2076                                      const MemoryRegionSection *section)
2077{
2078    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2079
2080    g_assert(rdmc->is_populated);
2081    return rdmc->is_populated(rdm, section);
2082}
2083
2084int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2085                                         MemoryRegionSection *section,
2086                                         ReplayRamPopulate replay_fn,
2087                                         void *opaque)
2088{
2089    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2090
2091    g_assert(rdmc->replay_populated);
2092    return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2093}
2094
2095void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2096                                          MemoryRegionSection *section,
2097                                          ReplayRamDiscard replay_fn,
2098                                          void *opaque)
2099{
2100    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2101
2102    g_assert(rdmc->replay_discarded);
2103    rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2104}
2105
2106void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2107                                           RamDiscardListener *rdl,
2108                                           MemoryRegionSection *section)
2109{
2110    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2111
2112    g_assert(rdmc->register_listener);
2113    rdmc->register_listener(rdm, rdl, section);
2114}
2115
2116void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2117                                             RamDiscardListener *rdl)
2118{
2119    RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2120
2121    g_assert(rdmc->unregister_listener);
2122    rdmc->unregister_listener(rdm, rdl);
2123}
2124
2125/* Called with rcu_read_lock held.  */
2126bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2127                          ram_addr_t *ram_addr, bool *read_only,
2128                          bool *mr_has_discard_manager)
2129{
2130    MemoryRegion *mr;
2131    hwaddr xlat;
2132    hwaddr len = iotlb->addr_mask + 1;
2133    bool writable = iotlb->perm & IOMMU_WO;
2134
2135    if (mr_has_discard_manager) {
2136        *mr_has_discard_manager = false;
2137    }
2138    /*
2139     * The IOMMU TLB entry we have just covers translation through
2140     * this IOMMU to its immediate target.  We need to translate
2141     * it the rest of the way through to memory.
2142     */
2143    mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2144                                 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2145    if (!memory_region_is_ram(mr)) {
2146        error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2147        return false;
2148    } else if (memory_region_has_ram_discard_manager(mr)) {
2149        RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2150        MemoryRegionSection tmp = {
2151            .mr = mr,
2152            .offset_within_region = xlat,
2153            .size = int128_make64(len),
2154        };
2155        if (mr_has_discard_manager) {
2156            *mr_has_discard_manager = true;
2157        }
2158        /*
2159         * Malicious VMs can map memory into the IOMMU, which is expected
2160         * to remain discarded. vfio will pin all pages, populating memory.
2161         * Disallow that. vmstate priorities make sure any RamDiscardManager
2162         * were already restored before IOMMUs are restored.
2163         */
2164        if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2165            error_report("iommu map to discarded memory (e.g., unplugged via"
2166                         " virtio-mem): %" HWADDR_PRIx "",
2167                         iotlb->translated_addr);
2168            return false;
2169        }
2170    }
2171
2172    /*
2173     * Translation truncates length to the IOMMU page size,
2174     * check that it did not truncate too much.
2175     */
2176    if (len & iotlb->addr_mask) {
2177        error_report("iommu has granularity incompatible with target AS");
2178        return false;
2179    }
2180
2181    if (vaddr) {
2182        *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2183    }
2184
2185    if (ram_addr) {
2186        *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2187    }
2188
2189    if (read_only) {
2190        *read_only = !writable || mr->readonly;
2191    }
2192
2193    return true;
2194}
2195
2196void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2197{
2198    uint8_t mask = 1 << client;
2199    uint8_t old_logging;
2200
2201    assert(client == DIRTY_MEMORY_VGA);
2202    old_logging = mr->vga_logging_count;
2203    mr->vga_logging_count += log ? 1 : -1;
2204    if (!!old_logging == !!mr->vga_logging_count) {
2205        return;
2206    }
2207
2208    memory_region_transaction_begin();
2209    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2210    memory_region_update_pending |= mr->enabled;
2211    memory_region_transaction_commit();
2212}
2213
2214void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2215                             hwaddr size)
2216{
2217    assert(mr->ram_block);
2218    cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2219                                        size,
2220                                        memory_region_get_dirty_log_mask(mr));
2221}
2222
2223/*
2224 * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2225 * dirty bitmap for the specified memory region.
2226 */
2227static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2228{
2229    MemoryListener *listener;
2230    AddressSpace *as;
2231    FlatView *view;
2232    FlatRange *fr;
2233
2234    /* If the same address space has multiple log_sync listeners, we
2235     * visit that address space's FlatView multiple times.  But because
2236     * log_sync listeners are rare, it's still cheaper than walking each
2237     * address space once.
2238     */
2239    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2240        if (listener->log_sync) {
2241            as = listener->address_space;
2242            view = address_space_get_flatview(as);
2243            FOR_EACH_FLAT_RANGE(fr, view) {
2244                if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2245                    MemoryRegionSection mrs = section_from_flat_range(fr, view);
2246                    listener->log_sync(listener, &mrs);
2247                }
2248            }
2249            flatview_unref(view);
2250            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2251        } else if (listener->log_sync_global) {
2252            /*
2253             * No matter whether MR is specified, what we can do here
2254             * is to do a global sync, because we are not capable to
2255             * sync in a finer granularity.
2256             */
2257            listener->log_sync_global(listener);
2258            trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2259        }
2260    }
2261}
2262
2263void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2264                                      hwaddr len)
2265{
2266    MemoryRegionSection mrs;
2267    MemoryListener *listener;
2268    AddressSpace *as;
2269    FlatView *view;
2270    FlatRange *fr;
2271    hwaddr sec_start, sec_end, sec_size;
2272
2273    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2274        if (!listener->log_clear) {
2275            continue;
2276        }
2277        as = listener->address_space;
2278        view = address_space_get_flatview(as);
2279        FOR_EACH_FLAT_RANGE(fr, view) {
2280            if (!fr->dirty_log_mask || fr->mr != mr) {
2281                /*
2282                 * Clear dirty bitmap operation only applies to those
2283                 * regions whose dirty logging is at least enabled
2284                 */
2285                continue;
2286            }
2287
2288            mrs = section_from_flat_range(fr, view);
2289
2290            sec_start = MAX(mrs.offset_within_region, start);
2291            sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2292            sec_end = MIN(sec_end, start + len);
2293
2294            if (sec_start >= sec_end) {
2295                /*
2296                 * If this memory region section has no intersection
2297                 * with the requested range, skip.
2298                 */
2299                continue;
2300            }
2301
2302            /* Valid case; shrink the section if needed */
2303            mrs.offset_within_address_space +=
2304                sec_start - mrs.offset_within_region;
2305            mrs.offset_within_region = sec_start;
2306            sec_size = sec_end - sec_start;
2307            mrs.size = int128_make64(sec_size);
2308            listener->log_clear(listener, &mrs);
2309        }
2310        flatview_unref(view);
2311    }
2312}
2313
2314DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2315                                                            hwaddr addr,
2316                                                            hwaddr size,
2317                                                            unsigned client)
2318{
2319    DirtyBitmapSnapshot *snapshot;
2320    assert(mr->ram_block);
2321    memory_region_sync_dirty_bitmap(mr);
2322    snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2323    memory_global_after_dirty_log_sync();
2324    return snapshot;
2325}
2326
2327bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2328                                      hwaddr addr, hwaddr size)
2329{
2330    assert(mr->ram_block);
2331    return cpu_physical_memory_snapshot_get_dirty(snap,
2332                memory_region_get_ram_addr(mr) + addr, size);
2333}
2334
2335void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2336{
2337    if (mr->readonly != readonly) {
2338        memory_region_transaction_begin();
2339        mr->readonly = readonly;
2340        memory_region_update_pending |= mr->enabled;
2341        memory_region_transaction_commit();
2342    }
2343}
2344
2345void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2346{
2347    if (mr->nonvolatile != nonvolatile) {
2348        memory_region_transaction_begin();
2349        mr->nonvolatile = nonvolatile;
2350        memory_region_update_pending |= mr->enabled;
2351        memory_region_transaction_commit();
2352    }
2353}
2354
2355void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2356{
2357    if (mr->romd_mode != romd_mode) {
2358        memory_region_transaction_begin();
2359        mr->romd_mode = romd_mode;
2360        memory_region_update_pending |= mr->enabled;
2361        memory_region_transaction_commit();
2362    }
2363}
2364
2365void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2366                               hwaddr size, unsigned client)
2367{
2368    assert(mr->ram_block);
2369    cpu_physical_memory_test_and_clear_dirty(
2370        memory_region_get_ram_addr(mr) + addr, size, client);
2371}
2372
2373int memory_region_get_fd(MemoryRegion *mr)
2374{
2375    int fd;
2376
2377    RCU_READ_LOCK_GUARD();
2378    while (mr->alias) {
2379        mr = mr->alias;
2380    }
2381    fd = mr->ram_block->fd;
2382
2383    return fd;
2384}
2385
2386void *memory_region_get_ram_ptr(MemoryRegion *mr)
2387{
2388    void *ptr;
2389    uint64_t offset = 0;
2390
2391    RCU_READ_LOCK_GUARD();
2392    while (mr->alias) {
2393        offset += mr->alias_offset;
2394        mr = mr->alias;
2395    }
2396    assert(mr->ram_block);
2397    ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2398
2399    return ptr;
2400}
2401
2402MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2403{
2404    RAMBlock *block;
2405
2406    block = qemu_ram_block_from_host(ptr, false, offset);
2407    if (!block) {
2408        return NULL;
2409    }
2410
2411    return block->mr;
2412}
2413
2414ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2415{
2416    return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2417}
2418
2419void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2420{
2421    assert(mr->ram_block);
2422
2423    qemu_ram_resize(mr->ram_block, newsize, errp);
2424}
2425
2426void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2427{
2428    if (mr->ram_block) {
2429        qemu_ram_msync(mr->ram_block, addr, size);
2430    }
2431}
2432
2433void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2434{
2435    /*
2436     * Might be extended case needed to cover
2437     * different types of memory regions
2438     */
2439    if (mr->dirty_log_mask) {
2440        memory_region_msync(mr, addr, size);
2441    }
2442}
2443
2444/*
2445 * Call proper memory listeners about the change on the newly
2446 * added/removed CoalescedMemoryRange.
2447 */
2448static void memory_region_update_coalesced_range(MemoryRegion *mr,
2449                                                 CoalescedMemoryRange *cmr,
2450                                                 bool add)
2451{
2452    AddressSpace *as;
2453    FlatView *view;
2454    FlatRange *fr;
2455
2456    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2457        view = address_space_get_flatview(as);
2458        FOR_EACH_FLAT_RANGE(fr, view) {
2459            if (fr->mr == mr) {
2460                flat_range_coalesced_io_notify(fr, as, cmr, add);
2461            }
2462        }
2463        flatview_unref(view);
2464    }
2465}
2466
2467void memory_region_set_coalescing(MemoryRegion *mr)
2468{
2469    memory_region_clear_coalescing(mr);
2470    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2471}
2472
2473void memory_region_add_coalescing(MemoryRegion *mr,
2474                                  hwaddr offset,
2475                                  uint64_t size)
2476{
2477    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2478
2479    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2480    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2481    memory_region_update_coalesced_range(mr, cmr, true);
2482    memory_region_set_flush_coalesced(mr);
2483}
2484
2485void memory_region_clear_coalescing(MemoryRegion *mr)
2486{
2487    CoalescedMemoryRange *cmr;
2488
2489    if (QTAILQ_EMPTY(&mr->coalesced)) {
2490        return;
2491    }
2492
2493    qemu_flush_coalesced_mmio_buffer();
2494    mr->flush_coalesced_mmio = false;
2495
2496    while (!QTAILQ_EMPTY(&mr->coalesced)) {
2497        cmr = QTAILQ_FIRST(&mr->coalesced);
2498        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2499        memory_region_update_coalesced_range(mr, cmr, false);
2500        g_free(cmr);
2501    }
2502}
2503
2504void memory_region_set_flush_coalesced(MemoryRegion *mr)
2505{
2506    mr->flush_coalesced_mmio = true;
2507}
2508
2509void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2510{
2511    qemu_flush_coalesced_mmio_buffer();
2512    if (QTAILQ_EMPTY(&mr->coalesced)) {
2513        mr->flush_coalesced_mmio = false;
2514    }
2515}
2516
2517static bool userspace_eventfd_warning;
2518
2519void memory_region_add_eventfd(MemoryRegion *mr,
2520                               hwaddr addr,
2521                               unsigned size,
2522                               bool match_data,
2523                               uint64_t data,
2524                               EventNotifier *e)
2525{
2526    MemoryRegionIoeventfd mrfd = {
2527        .addr.start = int128_make64(addr),
2528        .addr.size = int128_make64(size),
2529        .match_data = match_data,
2530        .data = data,
2531        .e = e,
2532    };
2533    unsigned i;
2534
2535    if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2536                            userspace_eventfd_warning))) {
2537        userspace_eventfd_warning = true;
2538        error_report("Using eventfd without MMIO binding in KVM. "
2539                     "Suboptimal performance expected");
2540    }
2541
2542    if (size) {
2543        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2544    }
2545    memory_region_transaction_begin();
2546    for (i = 0; i < mr->ioeventfd_nb; ++i) {
2547        if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2548            break;
2549        }
2550    }
2551    ++mr->ioeventfd_nb;
2552    mr->ioeventfds = g_realloc(mr->ioeventfds,
2553                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2554    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2555            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2556    mr->ioeventfds[i] = mrfd;
2557    ioeventfd_update_pending |= mr->enabled;
2558    memory_region_transaction_commit();
2559}
2560
2561void memory_region_del_eventfd(MemoryRegion *mr,
2562                               hwaddr addr,
2563                               unsigned size,
2564                               bool match_data,
2565                               uint64_t data,
2566                               EventNotifier *e)
2567{
2568    MemoryRegionIoeventfd mrfd = {
2569        .addr.start = int128_make64(addr),
2570        .addr.size = int128_make64(size),
2571        .match_data = match_data,
2572        .data = data,
2573        .e = e,
2574    };
2575    unsigned i;
2576
2577    if (size) {
2578        adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2579    }
2580    memory_region_transaction_begin();
2581    for (i = 0; i < mr->ioeventfd_nb; ++i) {
2582        if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2583            break;
2584        }
2585    }
2586    assert(i != mr->ioeventfd_nb);
2587    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2588            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2589    --mr->ioeventfd_nb;
2590    mr->ioeventfds = g_realloc(mr->ioeventfds,
2591                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2592    ioeventfd_update_pending |= mr->enabled;
2593    memory_region_transaction_commit();
2594}
2595
2596static void memory_region_update_container_subregions(MemoryRegion *subregion)
2597{
2598    MemoryRegion *mr = subregion->container;
2599    MemoryRegion *other;
2600
2601    memory_region_transaction_begin();
2602
2603    memory_region_ref(subregion);
2604    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2605        if (subregion->priority >= other->priority) {
2606            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2607            goto done;
2608        }
2609    }
2610    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2611done:
2612    memory_region_update_pending |= mr->enabled && subregion->enabled;
2613    memory_region_transaction_commit();
2614}
2615
2616static void memory_region_add_subregion_common(MemoryRegion *mr,
2617                                               hwaddr offset,
2618                                               MemoryRegion *subregion)
2619{
2620    MemoryRegion *alias;
2621
2622    assert(!subregion->container);
2623    subregion->container = mr;
2624    for (alias = subregion->alias; alias; alias = alias->alias) {
2625        alias->mapped_via_alias++;
2626    }
2627    subregion->addr = offset;
2628    memory_region_update_container_subregions(subregion);
2629}
2630
2631void memory_region_add_subregion(MemoryRegion *mr,
2632                                 hwaddr offset,
2633                                 MemoryRegion *subregion)
2634{
2635    subregion->priority = 0;
2636    memory_region_add_subregion_common(mr, offset, subregion);
2637}
2638
2639void memory_region_add_subregion_overlap(MemoryRegion *mr,
2640                                         hwaddr offset,
2641                                         MemoryRegion *subregion,
2642                                         int priority)
2643{
2644    subregion->priority = priority;
2645    memory_region_add_subregion_common(mr, offset, subregion);
2646}
2647
2648void memory_region_del_subregion(MemoryRegion *mr,
2649                                 MemoryRegion *subregion)
2650{
2651    MemoryRegion *alias;
2652
2653    memory_region_transaction_begin();
2654    assert(subregion->container == mr);
2655    subregion->container = NULL;
2656    for (alias = subregion->alias; alias; alias = alias->alias) {
2657        alias->mapped_via_alias--;
2658        assert(alias->mapped_via_alias >= 0);
2659    }
2660    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2661    memory_region_unref(subregion);
2662    memory_region_update_pending |= mr->enabled && subregion->enabled;
2663    memory_region_transaction_commit();
2664}
2665
2666void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2667{
2668    if (enabled == mr->enabled) {
2669        return;
2670    }
2671    memory_region_transaction_begin();
2672    mr->enabled = enabled;
2673    memory_region_update_pending = true;
2674    memory_region_transaction_commit();
2675}
2676
2677void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2678{
2679    Int128 s = int128_make64(size);
2680
2681    if (size == UINT64_MAX) {
2682        s = int128_2_64();
2683    }
2684    if (int128_eq(s, mr->size)) {
2685        return;
2686    }
2687    memory_region_transaction_begin();
2688    mr->size = s;
2689    memory_region_update_pending = true;
2690    memory_region_transaction_commit();
2691}
2692
2693static void memory_region_readd_subregion(MemoryRegion *mr)
2694{
2695    MemoryRegion *container = mr->container;
2696
2697    if (container) {
2698        memory_region_transaction_begin();
2699        memory_region_ref(mr);
2700        memory_region_del_subregion(container, mr);
2701        memory_region_add_subregion_common(container, mr->addr, mr);
2702        memory_region_unref(mr);
2703        memory_region_transaction_commit();
2704    }
2705}
2706
2707void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2708{
2709    if (addr != mr->addr) {
2710        mr->addr = addr;
2711        memory_region_readd_subregion(mr);
2712    }
2713}
2714
2715void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2716{
2717    assert(mr->alias);
2718
2719    if (offset == mr->alias_offset) {
2720        return;
2721    }
2722
2723    memory_region_transaction_begin();
2724    mr->alias_offset = offset;
2725    memory_region_update_pending |= mr->enabled;
2726    memory_region_transaction_commit();
2727}
2728
2729uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2730{
2731    return mr->align;
2732}
2733
2734static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2735{
2736    const AddrRange *addr = addr_;
2737    const FlatRange *fr = fr_;
2738
2739    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2740        return -1;
2741    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2742        return 1;
2743    }
2744    return 0;
2745}
2746
2747static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2748{
2749    return bsearch(&addr, view->ranges, view->nr,
2750                   sizeof(FlatRange), cmp_flatrange_addr);
2751}
2752
2753bool memory_region_is_mapped(MemoryRegion *mr)
2754{
2755    return !!mr->container || mr->mapped_via_alias;
2756}
2757
2758/* Same as memory_region_find, but it does not add a reference to the
2759 * returned region.  It must be called from an RCU critical section.
2760 */
2761static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2762                                                  hwaddr addr, uint64_t size)
2763{
2764    MemoryRegionSection ret = { .mr = NULL };
2765    MemoryRegion *root;
2766    AddressSpace *as;
2767    AddrRange range;
2768    FlatView *view;
2769    FlatRange *fr;
2770
2771    addr += mr->addr;
2772    for (root = mr; root->container; ) {
2773        root = root->container;
2774        addr += root->addr;
2775    }
2776
2777    as = memory_region_to_address_space(root);
2778    if (!as) {
2779        return ret;
2780    }
2781    range = addrrange_make(int128_make64(addr), int128_make64(size));
2782
2783    view = address_space_to_flatview(as);
2784    fr = flatview_lookup(view, range);
2785    if (!fr) {
2786        return ret;
2787    }
2788
2789    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2790        --fr;
2791    }
2792
2793    ret.mr = fr->mr;
2794    ret.fv = view;
2795    range = addrrange_intersection(range, fr->addr);
2796    ret.offset_within_region = fr->offset_in_region;
2797    ret.offset_within_region += int128_get64(int128_sub(range.start,
2798                                                        fr->addr.start));
2799    ret.size = range.size;
2800    ret.offset_within_address_space = int128_get64(range.start);
2801    ret.readonly = fr->readonly;
2802    ret.nonvolatile = fr->nonvolatile;
2803    return ret;
2804}
2805
2806MemoryRegionSection memory_region_find(MemoryRegion *mr,
2807                                       hwaddr addr, uint64_t size)
2808{
2809    MemoryRegionSection ret;
2810    RCU_READ_LOCK_GUARD();
2811    ret = memory_region_find_rcu(mr, addr, size);
2812    if (ret.mr) {
2813        memory_region_ref(ret.mr);
2814    }
2815    return ret;
2816}
2817
2818MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2819{
2820    MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2821
2822    *tmp = *s;
2823    if (tmp->mr) {
2824        memory_region_ref(tmp->mr);
2825    }
2826    if (tmp->fv) {
2827        bool ret  = flatview_ref(tmp->fv);
2828
2829        g_assert(ret);
2830    }
2831    return tmp;
2832}
2833
2834void memory_region_section_free_copy(MemoryRegionSection *s)
2835{
2836    if (s->fv) {
2837        flatview_unref(s->fv);
2838    }
2839    if (s->mr) {
2840        memory_region_unref(s->mr);
2841    }
2842    g_free(s);
2843}
2844
2845bool memory_region_present(MemoryRegion *container, hwaddr addr)
2846{
2847    MemoryRegion *mr;
2848
2849    RCU_READ_LOCK_GUARD();
2850    mr = memory_region_find_rcu(container, addr, 1).mr;
2851    return mr && mr != container;
2852}
2853
2854void memory_global_dirty_log_sync(void)
2855{
2856    memory_region_sync_dirty_bitmap(NULL);
2857}
2858
2859void memory_global_after_dirty_log_sync(void)
2860{
2861    MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2862}
2863
2864/*
2865 * Dirty track stop flags that are postponed due to VM being stopped.  Should
2866 * only be used within vmstate_change hook.
2867 */
2868static unsigned int postponed_stop_flags;
2869static VMChangeStateEntry *vmstate_change;
2870static void memory_global_dirty_log_stop_postponed_run(void);
2871
2872void memory_global_dirty_log_start(unsigned int flags)
2873{
2874    unsigned int old_flags;
2875
2876    assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2877
2878    if (vmstate_change) {
2879        /* If there is postponed stop(), operate on it first */
2880        postponed_stop_flags &= ~flags;
2881        memory_global_dirty_log_stop_postponed_run();
2882    }
2883
2884    flags &= ~global_dirty_tracking;
2885    if (!flags) {
2886        return;
2887    }
2888
2889    old_flags = global_dirty_tracking;
2890    global_dirty_tracking |= flags;
2891    trace_global_dirty_changed(global_dirty_tracking);
2892
2893    if (!old_flags) {
2894        MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2895        memory_region_transaction_begin();
2896        memory_region_update_pending = true;
2897        memory_region_transaction_commit();
2898    }
2899}
2900
2901static void memory_global_dirty_log_do_stop(unsigned int flags)
2902{
2903    assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2904    assert((global_dirty_tracking & flags) == flags);
2905    global_dirty_tracking &= ~flags;
2906
2907    trace_global_dirty_changed(global_dirty_tracking);
2908
2909    if (!global_dirty_tracking) {
2910        memory_region_transaction_begin();
2911        memory_region_update_pending = true;
2912        memory_region_transaction_commit();
2913        MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2914    }
2915}
2916
2917/*
2918 * Execute the postponed dirty log stop operations if there is, then reset
2919 * everything (including the flags and the vmstate change hook).
2920 */
2921static void memory_global_dirty_log_stop_postponed_run(void)
2922{
2923    /* This must be called with the vmstate handler registered */
2924    assert(vmstate_change);
2925
2926    /* Note: postponed_stop_flags can be cleared in log start routine */
2927    if (postponed_stop_flags) {
2928        memory_global_dirty_log_do_stop(postponed_stop_flags);
2929        postponed_stop_flags = 0;
2930    }
2931
2932    qemu_del_vm_change_state_handler(vmstate_change);
2933    vmstate_change = NULL;
2934}
2935
2936static void memory_vm_change_state_handler(void *opaque, bool running,
2937                                           RunState state)
2938{
2939    if (running) {
2940        memory_global_dirty_log_stop_postponed_run();
2941    }
2942}
2943
2944void memory_global_dirty_log_stop(unsigned int flags)
2945{
2946    if (!runstate_is_running()) {
2947        /* Postpone the dirty log stop, e.g., to when VM starts again */
2948        if (vmstate_change) {
2949            /* Batch with previous postponed flags */
2950            postponed_stop_flags |= flags;
2951        } else {
2952            postponed_stop_flags = flags;
2953            vmstate_change = qemu_add_vm_change_state_handler(
2954                memory_vm_change_state_handler, NULL);
2955        }
2956        return;
2957    }
2958
2959    memory_global_dirty_log_do_stop(flags);
2960}
2961
2962static void listener_add_address_space(MemoryListener *listener,
2963                                       AddressSpace *as)
2964{
2965    FlatView *view;
2966    FlatRange *fr;
2967
2968    if (listener->begin) {
2969        listener->begin(listener);
2970    }
2971    if (global_dirty_tracking) {
2972        if (listener->log_global_start) {
2973            listener->log_global_start(listener);
2974        }
2975    }
2976
2977    view = address_space_get_flatview(as);
2978    FOR_EACH_FLAT_RANGE(fr, view) {
2979        MemoryRegionSection section = section_from_flat_range(fr, view);
2980
2981        if (listener->region_add) {
2982            listener->region_add(listener, &section);
2983        }
2984        if (fr->dirty_log_mask && listener->log_start) {
2985            listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2986        }
2987    }
2988    if (listener->commit) {
2989        listener->commit(listener);
2990    }
2991    flatview_unref(view);
2992}
2993
2994static void listener_del_address_space(MemoryListener *listener,
2995                                       AddressSpace *as)
2996{
2997    FlatView *view;
2998    FlatRange *fr;
2999
3000    if (listener->begin) {
3001        listener->begin(listener);
3002    }
3003    view = address_space_get_flatview(as);
3004    FOR_EACH_FLAT_RANGE(fr, view) {
3005        MemoryRegionSection section = section_from_flat_range(fr, view);
3006
3007        if (fr->dirty_log_mask && listener->log_stop) {
3008            listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3009        }
3010        if (listener->region_del) {
3011            listener->region_del(listener, &section);
3012        }
3013    }
3014    if (listener->commit) {
3015        listener->commit(listener);
3016    }
3017    flatview_unref(view);
3018}
3019
3020void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3021{
3022    MemoryListener *other = NULL;
3023
3024    /* Only one of them can be defined for a listener */
3025    assert(!(listener->log_sync && listener->log_sync_global));
3026
3027    listener->address_space = as;
3028    if (QTAILQ_EMPTY(&memory_listeners)
3029        || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3030        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3031    } else {
3032        QTAILQ_FOREACH(other, &memory_listeners, link) {
3033            if (listener->priority < other->priority) {
3034                break;
3035            }
3036        }
3037        QTAILQ_INSERT_BEFORE(other, listener, link);
3038    }
3039
3040    if (QTAILQ_EMPTY(&as->listeners)
3041        || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3042        QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3043    } else {
3044        QTAILQ_FOREACH(other, &as->listeners, link_as) {
3045            if (listener->priority < other->priority) {
3046                break;
3047            }
3048        }
3049        QTAILQ_INSERT_BEFORE(other, listener, link_as);
3050    }
3051
3052    listener_add_address_space(listener, as);
3053}
3054
3055void memory_listener_unregister(MemoryListener *listener)
3056{
3057    if (!listener->address_space) {
3058        return;
3059    }
3060
3061    listener_del_address_space(listener, listener->address_space);
3062    QTAILQ_REMOVE(&memory_listeners, listener, link);
3063    QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3064    listener->address_space = NULL;
3065}
3066
3067void address_space_remove_listeners(AddressSpace *as)
3068{
3069    while (!QTAILQ_EMPTY(&as->listeners)) {
3070        memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3071    }
3072}
3073
3074void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3075{
3076    memory_region_ref(root);
3077    as->root = root;
3078    as->current_map = NULL;
3079    as->ioeventfd_nb = 0;
3080    as->ioeventfds = NULL;
3081    QTAILQ_INIT(&as->listeners);
3082    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3083    as->name = g_strdup(name ? name : "anonymous");
3084    address_space_update_topology(as);
3085    address_space_update_ioeventfds(as);
3086}
3087
3088static void do_address_space_destroy(AddressSpace *as)
3089{
3090    assert(QTAILQ_EMPTY(&as->listeners));
3091
3092    flatview_unref(as->current_map);
3093    g_free(as->name);
3094    g_free(as->ioeventfds);
3095    memory_region_unref(as->root);
3096}
3097
3098void address_space_destroy(AddressSpace *as)
3099{
3100    MemoryRegion *root = as->root;
3101
3102    /* Flush out anything from MemoryListeners listening in on this */
3103    memory_region_transaction_begin();
3104    as->root = NULL;
3105    memory_region_transaction_commit();
3106    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3107
3108    /* At this point, as->dispatch and as->current_map are dummy
3109     * entries that the guest should never use.  Wait for the old
3110     * values to expire before freeing the data.
3111     */
3112    as->root = root;
3113    call_rcu(as, do_address_space_destroy, rcu);
3114}
3115
3116static const char *memory_region_type(MemoryRegion *mr)
3117{
3118    if (mr->alias) {
3119        return memory_region_type(mr->alias);
3120    }
3121    if (memory_region_is_ram_device(mr)) {
3122        return "ramd";
3123    } else if (memory_region_is_romd(mr)) {
3124        return "romd";
3125    } else if (memory_region_is_rom(mr)) {
3126        return "rom";
3127    } else if (memory_region_is_ram(mr)) {
3128        return "ram";
3129    } else {
3130        return "i/o";
3131    }
3132}
3133
3134typedef struct MemoryRegionList MemoryRegionList;
3135
3136struct MemoryRegionList {
3137    const MemoryRegion *mr;
3138    QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3139};
3140
3141typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3142
3143#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3144                           int128_sub((size), int128_one())) : 0)
3145#define MTREE_INDENT "  "
3146
3147static void mtree_expand_owner(const char *label, Object *obj)
3148{
3149    DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3150
3151    qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3152    if (dev && dev->id) {
3153        qemu_printf(" id=%s", dev->id);
3154    } else {
3155        char *canonical_path = object_get_canonical_path(obj);
3156        if (canonical_path) {
3157            qemu_printf(" path=%s", canonical_path);
3158            g_free(canonical_path);
3159        } else {
3160            qemu_printf(" type=%s", object_get_typename(obj));
3161        }
3162    }
3163    qemu_printf("}");
3164}
3165
3166static void mtree_print_mr_owner(const MemoryRegion *mr)
3167{
3168    Object *owner = mr->owner;
3169    Object *parent = memory_region_owner((MemoryRegion *)mr);
3170
3171    if (!owner && !parent) {
3172        qemu_printf(" orphan");
3173        return;
3174    }
3175    if (owner) {
3176        mtree_expand_owner("owner", owner);
3177    }
3178    if (parent && parent != owner) {
3179        mtree_expand_owner("parent", parent);
3180    }
3181}
3182
3183static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3184                           hwaddr base,
3185                           MemoryRegionListHead *alias_print_queue,
3186                           bool owner, bool display_disabled)
3187{
3188    MemoryRegionList *new_ml, *ml, *next_ml;
3189    MemoryRegionListHead submr_print_queue;
3190    const MemoryRegion *submr;
3191    unsigned int i;
3192    hwaddr cur_start, cur_end;
3193
3194    if (!mr) {
3195        return;
3196    }
3197
3198    cur_start = base + mr->addr;
3199    cur_end = cur_start + MR_SIZE(mr->size);
3200
3201    /*
3202     * Try to detect overflow of memory region. This should never
3203     * happen normally. When it happens, we dump something to warn the
3204     * user who is observing this.
3205     */
3206    if (cur_start < base || cur_end < cur_start) {
3207        qemu_printf("[DETECTED OVERFLOW!] ");
3208    }
3209
3210    if (mr->alias) {
3211        MemoryRegionList *ml;
3212        bool found = false;
3213
3214        /* check if the alias is already in the queue */
3215        QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3216            if (ml->mr == mr->alias) {
3217                found = true;
3218            }
3219        }
3220
3221        if (!found) {
3222            ml = g_new(MemoryRegionList, 1);
3223            ml->mr = mr->alias;
3224            QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3225        }
3226        if (mr->enabled || display_disabled) {
3227            for (i = 0; i < level; i++) {
3228                qemu_printf(MTREE_INDENT);
3229            }
3230            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3231                        " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3232                        "-" TARGET_FMT_plx "%s",
3233                        cur_start, cur_end,
3234                        mr->priority,
3235                        mr->nonvolatile ? "nv-" : "",
3236                        memory_region_type((MemoryRegion *)mr),
3237                        memory_region_name(mr),
3238                        memory_region_name(mr->alias),
3239                        mr->alias_offset,
3240                        mr->alias_offset + MR_SIZE(mr->size),
3241                        mr->enabled ? "" : " [disabled]");
3242            if (owner) {
3243                mtree_print_mr_owner(mr);
3244            }
3245            qemu_printf("\n");
3246        }
3247    } else {
3248        if (mr->enabled || display_disabled) {
3249            for (i = 0; i < level; i++) {
3250                qemu_printf(MTREE_INDENT);
3251            }
3252            qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3253                        " (prio %d, %s%s): %s%s",
3254                        cur_start, cur_end,
3255                        mr->priority,
3256                        mr->nonvolatile ? "nv-" : "",
3257                        memory_region_type((MemoryRegion *)mr),
3258                        memory_region_name(mr),
3259                        mr->enabled ? "" : " [disabled]");
3260            if (owner) {
3261                mtree_print_mr_owner(mr);
3262            }
3263            qemu_printf("\n");
3264        }
3265    }
3266
3267    QTAILQ_INIT(&submr_print_queue);
3268
3269    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3270        new_ml = g_new(MemoryRegionList, 1);
3271        new_ml->mr = submr;
3272        QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3273            if (new_ml->mr->addr < ml->mr->addr ||
3274                (new_ml->mr->addr == ml->mr->addr &&
3275                 new_ml->mr->priority > ml->mr->priority)) {
3276                QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3277                new_ml = NULL;
3278                break;
3279            }
3280        }
3281        if (new_ml) {
3282            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3283        }
3284    }
3285
3286    QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3287        mtree_print_mr(ml->mr, level + 1, cur_start,
3288                       alias_print_queue, owner, display_disabled);
3289    }
3290
3291    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3292        g_free(ml);
3293    }
3294}
3295
3296struct FlatViewInfo {
3297    int counter;
3298    bool dispatch_tree;
3299    bool owner;
3300    AccelClass *ac;
3301};
3302
3303static void mtree_print_flatview(gpointer key, gpointer value,
3304                                 gpointer user_data)
3305{
3306    FlatView *view = key;
3307    GArray *fv_address_spaces = value;
3308    struct FlatViewInfo *fvi = user_data;
3309    FlatRange *range = &view->ranges[0];
3310    MemoryRegion *mr;
3311    int n = view->nr;
3312    int i;
3313    AddressSpace *as;
3314
3315    qemu_printf("FlatView #%d\n", fvi->counter);
3316    ++fvi->counter;
3317
3318    for (i = 0; i < fv_address_spaces->len; ++i) {
3319        as = g_array_index(fv_address_spaces, AddressSpace*, i);
3320        qemu_printf(" AS \"%s\", root: %s",
3321                    as->name, memory_region_name(as->root));
3322        if (as->root->alias) {
3323            qemu_printf(", alias %s", memory_region_name(as->root->alias));
3324        }
3325        qemu_printf("\n");
3326    }
3327
3328    qemu_printf(" Root memory region: %s\n",
3329      view->root ? memory_region_name(view->root) : "(none)");
3330
3331    if (n <= 0) {
3332        qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3333        return;
3334    }
3335
3336    while (n--) {
3337        mr = range->mr;
3338        if (range->offset_in_region) {
3339            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3340                        " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3341                        int128_get64(range->addr.start),
3342                        int128_get64(range->addr.start)
3343                        + MR_SIZE(range->addr.size),
3344                        mr->priority,
3345                        range->nonvolatile ? "nv-" : "",
3346                        range->readonly ? "rom" : memory_region_type(mr),
3347                        memory_region_name(mr),
3348                        range->offset_in_region);
3349        } else {
3350            qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3351                        " (prio %d, %s%s): %s",
3352                        int128_get64(range->addr.start),
3353                        int128_get64(range->addr.start)
3354                        + MR_SIZE(range->addr.size),
3355                        mr->priority,
3356                        range->nonvolatile ? "nv-" : "",
3357                        range->readonly ? "rom" : memory_region_type(mr),
3358                        memory_region_name(mr));
3359        }
3360        if (fvi->owner) {
3361            mtree_print_mr_owner(mr);
3362        }
3363
3364        if (fvi->ac) {
3365            for (i = 0; i < fv_address_spaces->len; ++i) {
3366                as = g_array_index(fv_address_spaces, AddressSpace*, i);
3367                if (fvi->ac->has_memory(current_machine, as,
3368                                        int128_get64(range->addr.start),
3369                                        MR_SIZE(range->addr.size) + 1)) {
3370                    qemu_printf(" %s", fvi->ac->name);
3371                }
3372            }
3373        }
3374        qemu_printf("\n");
3375        range++;
3376    }
3377
3378#if !defined(CONFIG_USER_ONLY)
3379    if (fvi->dispatch_tree && view->root) {
3380        mtree_print_dispatch(view->dispatch, view->root);
3381    }
3382#endif
3383
3384    qemu_printf("\n");
3385}
3386
3387static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3388                                      gpointer user_data)
3389{
3390    FlatView *view = key;
3391    GArray *fv_address_spaces = value;
3392
3393    g_array_unref(fv_address_spaces);
3394    flatview_unref(view);
3395
3396    return true;
3397}
3398
3399static void mtree_info_flatview(bool dispatch_tree, bool owner)
3400{
3401    struct FlatViewInfo fvi = {
3402        .counter = 0,
3403        .dispatch_tree = dispatch_tree,
3404        .owner = owner,
3405    };
3406    AddressSpace *as;
3407    FlatView *view;
3408    GArray *fv_address_spaces;
3409    GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3410    AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3411
3412    if (ac->has_memory) {
3413        fvi.ac = ac;
3414    }
3415
3416    /* Gather all FVs in one table */
3417    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3418        view = address_space_get_flatview(as);
3419
3420        fv_address_spaces = g_hash_table_lookup(views, view);
3421        if (!fv_address_spaces) {
3422            fv_address_spaces = g_array_new(false, false, sizeof(as));
3423            g_hash_table_insert(views, view, fv_address_spaces);
3424        }
3425
3426        g_array_append_val(fv_address_spaces, as);
3427    }
3428
3429    /* Print */
3430    g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3431
3432    /* Free */
3433    g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3434    g_hash_table_unref(views);
3435}
3436
3437struct AddressSpaceInfo {
3438    MemoryRegionListHead *ml_head;
3439    bool owner;
3440    bool disabled;
3441};
3442
3443/* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3444static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3445{
3446    const AddressSpace *as_a = a;
3447    const AddressSpace *as_b = b;
3448
3449    return g_strcmp0(as_a->name, as_b->name);
3450}
3451
3452static void mtree_print_as_name(gpointer data, gpointer user_data)
3453{
3454    AddressSpace *as = data;
3455
3456    qemu_printf("address-space: %s\n", as->name);
3457}
3458
3459static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3460{
3461    MemoryRegion *mr = key;
3462    GSList *as_same_root_mr_list = value;
3463    struct AddressSpaceInfo *asi = user_data;
3464
3465    g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3466    mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3467    qemu_printf("\n");
3468}
3469
3470static gboolean mtree_info_as_free(gpointer key, gpointer value,
3471                                   gpointer user_data)
3472{
3473    GSList *as_same_root_mr_list = value;
3474
3475    g_slist_free(as_same_root_mr_list);
3476
3477    return true;
3478}
3479
3480static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3481{
3482    MemoryRegionListHead ml_head;
3483    MemoryRegionList *ml, *ml2;
3484    AddressSpace *as;
3485    GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3486    GSList *as_same_root_mr_list;
3487    struct AddressSpaceInfo asi = {
3488        .ml_head = &ml_head,
3489        .owner = owner,
3490        .disabled = disabled,
3491    };
3492
3493    QTAILQ_INIT(&ml_head);
3494
3495    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3496        /* Create hashtable, key=AS root MR, value = list of AS */
3497        as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3498        as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3499                                                     address_space_compare_name);
3500        g_hash_table_insert(views, as->root, as_same_root_mr_list);
3501    }
3502
3503    /* print address spaces */
3504    g_hash_table_foreach(views, mtree_print_as, &asi);
3505    g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3506    g_hash_table_unref(views);
3507
3508    /* print aliased regions */
3509    QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3510        qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3511        mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3512        qemu_printf("\n");
3513    }
3514
3515    QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3516        g_free(ml);
3517    }
3518}
3519
3520void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3521{
3522    if (flatview) {
3523        mtree_info_flatview(dispatch_tree, owner);
3524    } else {
3525        mtree_info_as(dispatch_tree, owner, disabled);
3526    }
3527}
3528
3529void memory_region_init_ram(MemoryRegion *mr,
3530                            Object *owner,
3531                            const char *name,
3532                            uint64_t size,
3533                            Error **errp)
3534{
3535    DeviceState *owner_dev;
3536    Error *err = NULL;
3537
3538    memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3539    if (err) {
3540        error_propagate(errp, err);
3541        return;
3542    }
3543    /* This will assert if owner is neither NULL nor a DeviceState.
3544     * We only want the owner here for the purposes of defining a
3545     * unique name for migration. TODO: Ideally we should implement
3546     * a naming scheme for Objects which are not DeviceStates, in
3547     * which case we can relax this restriction.
3548     */
3549    owner_dev = DEVICE(owner);
3550    vmstate_register_ram(mr, owner_dev);
3551}
3552
3553void memory_region_init_rom(MemoryRegion *mr,
3554                            Object *owner,
3555                            const char *name,
3556                            uint64_t size,
3557                            Error **errp)
3558{
3559    DeviceState *owner_dev;
3560    Error *err = NULL;
3561
3562    memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3563    if (err) {
3564        error_propagate(errp, err);
3565        return;
3566    }
3567    /* This will assert if owner is neither NULL nor a DeviceState.
3568     * We only want the owner here for the purposes of defining a
3569     * unique name for migration. TODO: Ideally we should implement
3570     * a naming scheme for Objects which are not DeviceStates, in
3571     * which case we can relax this restriction.
3572     */
3573    owner_dev = DEVICE(owner);
3574    vmstate_register_ram(mr, owner_dev);
3575}
3576
3577void memory_region_init_rom_device(MemoryRegion *mr,
3578                                   Object *owner,
3579                                   const MemoryRegionOps *ops,
3580                                   void *opaque,
3581                                   const char *name,
3582                                   uint64_t size,
3583                                   Error **errp)
3584{
3585    DeviceState *owner_dev;
3586    Error *err = NULL;
3587
3588    memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3589                                            name, size, &err);
3590    if (err) {
3591        error_propagate(errp, err);
3592        return;
3593    }
3594    /* This will assert if owner is neither NULL nor a DeviceState.
3595     * We only want the owner here for the purposes of defining a
3596     * unique name for migration. TODO: Ideally we should implement
3597     * a naming scheme for Objects which are not DeviceStates, in
3598     * which case we can relax this restriction.
3599     */
3600    owner_dev = DEVICE(owner);
3601    vmstate_register_ram(mr, owner_dev);
3602}
3603
3604/*
3605 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3606 * the fuzz_dma_read_cb callback
3607 */
3608#ifdef CONFIG_FUZZ
3609void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3610                      size_t len,
3611                      MemoryRegion *mr)
3612{
3613}
3614#endif
3615
3616static const TypeInfo memory_region_info = {
3617    .parent             = TYPE_OBJECT,
3618    .name               = TYPE_MEMORY_REGION,
3619    .class_size         = sizeof(MemoryRegionClass),
3620    .instance_size      = sizeof(MemoryRegion),
3621    .instance_init      = memory_region_initfn,
3622    .instance_finalize  = memory_region_finalize,
3623};
3624
3625static const TypeInfo iommu_memory_region_info = {
3626    .parent             = TYPE_MEMORY_REGION,
3627    .name               = TYPE_IOMMU_MEMORY_REGION,
3628    .class_size         = sizeof(IOMMUMemoryRegionClass),
3629    .instance_size      = sizeof(IOMMUMemoryRegion),
3630    .instance_init      = iommu_memory_region_initfn,
3631    .abstract           = true,
3632};
3633
3634static const TypeInfo ram_discard_manager_info = {
3635    .parent             = TYPE_INTERFACE,
3636    .name               = TYPE_RAM_DISCARD_MANAGER,
3637    .class_size         = sizeof(RamDiscardManagerClass),
3638};
3639
3640static void memory_register_types(void)
3641{
3642    type_register_static(&memory_region_info);
3643    type_register_static(&iommu_memory_region_info);
3644    type_register_static(&ram_discard_manager_info);
3645}
3646
3647type_init(memory_register_types)
3648