qemu/softmmu/physmem.c
<<
>>
Prefs
   1/*
   2 * RAM allocation and memory access
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "exec/page-vary.h"
  22#include "qapi/error.h"
  23
  24#include "qemu/cutils.h"
  25#include "qemu/cacheflush.h"
  26#include "qemu/madvise.h"
  27
  28#ifdef CONFIG_TCG
  29#include "hw/core/tcg-cpu-ops.h"
  30#endif /* CONFIG_TCG */
  31
  32#include "exec/exec-all.h"
  33#include "exec/target_page.h"
  34#include "hw/qdev-core.h"
  35#include "hw/qdev-properties.h"
  36#include "hw/boards.h"
  37#include "hw/xen/xen.h"
  38#include "sysemu/kvm.h"
  39#include "sysemu/tcg.h"
  40#include "sysemu/qtest.h"
  41#include "qemu/timer.h"
  42#include "qemu/config-file.h"
  43#include "qemu/error-report.h"
  44#include "qemu/qemu-print.h"
  45#include "qemu/log.h"
  46#include "qemu/memalign.h"
  47#include "exec/memory.h"
  48#include "exec/ioport.h"
  49#include "sysemu/dma.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/hw_accel.h"
  52#include "sysemu/xen-mapcache.h"
  53#include "trace/trace-root.h"
  54
  55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  56#include <linux/falloc.h>
  57#endif
  58
  59#include "qemu/rcu_queue.h"
  60#include "qemu/main-loop.h"
  61#include "exec/translate-all.h"
  62#include "sysemu/replay.h"
  63
  64#include "exec/memory-internal.h"
  65#include "exec/ram_addr.h"
  66
  67#include "qemu/pmem.h"
  68
  69#include "migration/vmstate.h"
  70
  71#include "qemu/range.h"
  72#ifndef _WIN32
  73#include "qemu/mmap-alloc.h"
  74#endif
  75
  76#include "monitor/monitor.h"
  77
  78#ifdef CONFIG_LIBDAXCTL
  79#include <daxctl/libdaxctl.h>
  80#endif
  81
  82//#define DEBUG_SUBPAGE
  83
  84/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  85 * are protected by the ramlist lock.
  86 */
  87RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  88
  89static MemoryRegion *system_memory;
  90static MemoryRegion *system_io;
  91
  92AddressSpace address_space_io;
  93AddressSpace address_space_memory;
  94
  95static MemoryRegion io_mem_unassigned;
  96
  97typedef struct PhysPageEntry PhysPageEntry;
  98
  99struct PhysPageEntry {
 100    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 101    uint32_t skip : 6;
 102     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 103    uint32_t ptr : 26;
 104};
 105
 106#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 107
 108/* Size of the L2 (and L3, etc) page tables.  */
 109#define ADDR_SPACE_BITS 64
 110
 111#define P_L2_BITS 9
 112#define P_L2_SIZE (1 << P_L2_BITS)
 113
 114#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 115
 116typedef PhysPageEntry Node[P_L2_SIZE];
 117
 118typedef struct PhysPageMap {
 119    struct rcu_head rcu;
 120
 121    unsigned sections_nb;
 122    unsigned sections_nb_alloc;
 123    unsigned nodes_nb;
 124    unsigned nodes_nb_alloc;
 125    Node *nodes;
 126    MemoryRegionSection *sections;
 127} PhysPageMap;
 128
 129struct AddressSpaceDispatch {
 130    MemoryRegionSection *mru_section;
 131    /* This is a multi-level map on the physical address space.
 132     * The bottom level has pointers to MemoryRegionSections.
 133     */
 134    PhysPageEntry phys_map;
 135    PhysPageMap map;
 136};
 137
 138#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 139typedef struct subpage_t {
 140    MemoryRegion iomem;
 141    FlatView *fv;
 142    hwaddr base;
 143    uint16_t sub_section[];
 144} subpage_t;
 145
 146#define PHYS_SECTION_UNASSIGNED 0
 147
 148static void io_mem_init(void);
 149static void memory_map_init(void);
 150static void tcg_log_global_after_sync(MemoryListener *listener);
 151static void tcg_commit(MemoryListener *listener);
 152
 153/**
 154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 155 * @cpu: the CPU whose AddressSpace this is
 156 * @as: the AddressSpace itself
 157 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 158 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 159 */
 160struct CPUAddressSpace {
 161    CPUState *cpu;
 162    AddressSpace *as;
 163    struct AddressSpaceDispatch *memory_dispatch;
 164    MemoryListener tcg_as_listener;
 165};
 166
 167struct DirtyBitmapSnapshot {
 168    ram_addr_t start;
 169    ram_addr_t end;
 170    unsigned long dirty[];
 171};
 172
 173static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 174{
 175    static unsigned alloc_hint = 16;
 176    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 177        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
 178        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 179        alloc_hint = map->nodes_nb_alloc;
 180    }
 181}
 182
 183static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 184{
 185    unsigned i;
 186    uint32_t ret;
 187    PhysPageEntry e;
 188    PhysPageEntry *p;
 189
 190    ret = map->nodes_nb++;
 191    p = map->nodes[ret];
 192    assert(ret != PHYS_MAP_NODE_NIL);
 193    assert(ret != map->nodes_nb_alloc);
 194
 195    e.skip = leaf ? 0 : 1;
 196    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 197    for (i = 0; i < P_L2_SIZE; ++i) {
 198        memcpy(&p[i], &e, sizeof(e));
 199    }
 200    return ret;
 201}
 202
 203static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 204                                hwaddr *index, uint64_t *nb, uint16_t leaf,
 205                                int level)
 206{
 207    PhysPageEntry *p;
 208    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 209
 210    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 211        lp->ptr = phys_map_node_alloc(map, level == 0);
 212    }
 213    p = map->nodes[lp->ptr];
 214    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 215
 216    while (*nb && lp < &p[P_L2_SIZE]) {
 217        if ((*index & (step - 1)) == 0 && *nb >= step) {
 218            lp->skip = 0;
 219            lp->ptr = leaf;
 220            *index += step;
 221            *nb -= step;
 222        } else {
 223            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 224        }
 225        ++lp;
 226    }
 227}
 228
 229static void phys_page_set(AddressSpaceDispatch *d,
 230                          hwaddr index, uint64_t nb,
 231                          uint16_t leaf)
 232{
 233    /* Wildly overreserve - it doesn't matter much. */
 234    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 235
 236    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 237}
 238
 239/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 240 * and update our entry so we can skip it and go directly to the destination.
 241 */
 242static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 243{
 244    unsigned valid_ptr = P_L2_SIZE;
 245    int valid = 0;
 246    PhysPageEntry *p;
 247    int i;
 248
 249    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 250        return;
 251    }
 252
 253    p = nodes[lp->ptr];
 254    for (i = 0; i < P_L2_SIZE; i++) {
 255        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 256            continue;
 257        }
 258
 259        valid_ptr = i;
 260        valid++;
 261        if (p[i].skip) {
 262            phys_page_compact(&p[i], nodes);
 263        }
 264    }
 265
 266    /* We can only compress if there's only one child. */
 267    if (valid != 1) {
 268        return;
 269    }
 270
 271    assert(valid_ptr < P_L2_SIZE);
 272
 273    /* Don't compress if it won't fit in the # of bits we have. */
 274    if (P_L2_LEVELS >= (1 << 6) &&
 275        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
 276        return;
 277    }
 278
 279    lp->ptr = p[valid_ptr].ptr;
 280    if (!p[valid_ptr].skip) {
 281        /* If our only child is a leaf, make this a leaf. */
 282        /* By design, we should have made this node a leaf to begin with so we
 283         * should never reach here.
 284         * But since it's so simple to handle this, let's do it just in case we
 285         * change this rule.
 286         */
 287        lp->skip = 0;
 288    } else {
 289        lp->skip += p[valid_ptr].skip;
 290    }
 291}
 292
 293void address_space_dispatch_compact(AddressSpaceDispatch *d)
 294{
 295    if (d->phys_map.skip) {
 296        phys_page_compact(&d->phys_map, d->map.nodes);
 297    }
 298}
 299
 300static inline bool section_covers_addr(const MemoryRegionSection *section,
 301                                       hwaddr addr)
 302{
 303    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 304     * the section must cover the entire address space.
 305     */
 306    return int128_gethi(section->size) ||
 307           range_covers_byte(section->offset_within_address_space,
 308                             int128_getlo(section->size), addr);
 309}
 310
 311static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 312{
 313    PhysPageEntry lp = d->phys_map, *p;
 314    Node *nodes = d->map.nodes;
 315    MemoryRegionSection *sections = d->map.sections;
 316    hwaddr index = addr >> TARGET_PAGE_BITS;
 317    int i;
 318
 319    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 320        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 321            return &sections[PHYS_SECTION_UNASSIGNED];
 322        }
 323        p = nodes[lp.ptr];
 324        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 325    }
 326
 327    if (section_covers_addr(&sections[lp.ptr], addr)) {
 328        return &sections[lp.ptr];
 329    } else {
 330        return &sections[PHYS_SECTION_UNASSIGNED];
 331    }
 332}
 333
 334/* Called from RCU critical section */
 335static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 336                                                        hwaddr addr,
 337                                                        bool resolve_subpage)
 338{
 339    MemoryRegionSection *section = qatomic_read(&d->mru_section);
 340    subpage_t *subpage;
 341
 342    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 343        !section_covers_addr(section, addr)) {
 344        section = phys_page_find(d, addr);
 345        qatomic_set(&d->mru_section, section);
 346    }
 347    if (resolve_subpage && section->mr->subpage) {
 348        subpage = container_of(section->mr, subpage_t, iomem);
 349        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 350    }
 351    return section;
 352}
 353
 354/* Called from RCU critical section */
 355static MemoryRegionSection *
 356address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 357                                 hwaddr *plen, bool resolve_subpage)
 358{
 359    MemoryRegionSection *section;
 360    MemoryRegion *mr;
 361    Int128 diff;
 362
 363    section = address_space_lookup_region(d, addr, resolve_subpage);
 364    /* Compute offset within MemoryRegionSection */
 365    addr -= section->offset_within_address_space;
 366
 367    /* Compute offset within MemoryRegion */
 368    *xlat = addr + section->offset_within_region;
 369
 370    mr = section->mr;
 371
 372    /* MMIO registers can be expected to perform full-width accesses based only
 373     * on their address, without considering adjacent registers that could
 374     * decode to completely different MemoryRegions.  When such registers
 375     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 376     * regions overlap wildly.  For this reason we cannot clamp the accesses
 377     * here.
 378     *
 379     * If the length is small (as is the case for address_space_ldl/stl),
 380     * everything works fine.  If the incoming length is large, however,
 381     * the caller really has to do the clamping through memory_access_size.
 382     */
 383    if (memory_region_is_ram(mr)) {
 384        diff = int128_sub(section->size, int128_make64(addr));
 385        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 386    }
 387    return section;
 388}
 389
 390/**
 391 * address_space_translate_iommu - translate an address through an IOMMU
 392 * memory region and then through the target address space.
 393 *
 394 * @iommu_mr: the IOMMU memory region that we start the translation from
 395 * @addr: the address to be translated through the MMU
 396 * @xlat: the translated address offset within the destination memory region.
 397 *        It cannot be %NULL.
 398 * @plen_out: valid read/write length of the translated address. It
 399 *            cannot be %NULL.
 400 * @page_mask_out: page mask for the translated address. This
 401 *            should only be meaningful for IOMMU translated
 402 *            addresses, since there may be huge pages that this bit
 403 *            would tell. It can be %NULL if we don't care about it.
 404 * @is_write: whether the translation operation is for write
 405 * @is_mmio: whether this can be MMIO, set true if it can
 406 * @target_as: the address space targeted by the IOMMU
 407 * @attrs: transaction attributes
 408 *
 409 * This function is called from RCU critical section.  It is the common
 410 * part of flatview_do_translate and address_space_translate_cached.
 411 */
 412static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 413                                                         hwaddr *xlat,
 414                                                         hwaddr *plen_out,
 415                                                         hwaddr *page_mask_out,
 416                                                         bool is_write,
 417                                                         bool is_mmio,
 418                                                         AddressSpace **target_as,
 419                                                         MemTxAttrs attrs)
 420{
 421    MemoryRegionSection *section;
 422    hwaddr page_mask = (hwaddr)-1;
 423
 424    do {
 425        hwaddr addr = *xlat;
 426        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 427        int iommu_idx = 0;
 428        IOMMUTLBEntry iotlb;
 429
 430        if (imrc->attrs_to_index) {
 431            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 432        }
 433
 434        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 435                                IOMMU_WO : IOMMU_RO, iommu_idx);
 436
 437        if (!(iotlb.perm & (1 << is_write))) {
 438            goto unassigned;
 439        }
 440
 441        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 442                | (addr & iotlb.addr_mask));
 443        page_mask &= iotlb.addr_mask;
 444        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 445        *target_as = iotlb.target_as;
 446
 447        section = address_space_translate_internal(
 448                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 449                plen_out, is_mmio);
 450
 451        iommu_mr = memory_region_get_iommu(section->mr);
 452    } while (unlikely(iommu_mr));
 453
 454    if (page_mask_out) {
 455        *page_mask_out = page_mask;
 456    }
 457    return *section;
 458
 459unassigned:
 460    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 461}
 462
 463/**
 464 * flatview_do_translate - translate an address in FlatView
 465 *
 466 * @fv: the flat view that we want to translate on
 467 * @addr: the address to be translated in above address space
 468 * @xlat: the translated address offset within memory region. It
 469 *        cannot be @NULL.
 470 * @plen_out: valid read/write length of the translated address. It
 471 *            can be @NULL when we don't care about it.
 472 * @page_mask_out: page mask for the translated address. This
 473 *            should only be meaningful for IOMMU translated
 474 *            addresses, since there may be huge pages that this bit
 475 *            would tell. It can be @NULL if we don't care about it.
 476 * @is_write: whether the translation operation is for write
 477 * @is_mmio: whether this can be MMIO, set true if it can
 478 * @target_as: the address space targeted by the IOMMU
 479 * @attrs: memory transaction attributes
 480 *
 481 * This function is called from RCU critical section
 482 */
 483static MemoryRegionSection flatview_do_translate(FlatView *fv,
 484                                                 hwaddr addr,
 485                                                 hwaddr *xlat,
 486                                                 hwaddr *plen_out,
 487                                                 hwaddr *page_mask_out,
 488                                                 bool is_write,
 489                                                 bool is_mmio,
 490                                                 AddressSpace **target_as,
 491                                                 MemTxAttrs attrs)
 492{
 493    MemoryRegionSection *section;
 494    IOMMUMemoryRegion *iommu_mr;
 495    hwaddr plen = (hwaddr)(-1);
 496
 497    if (!plen_out) {
 498        plen_out = &plen;
 499    }
 500
 501    section = address_space_translate_internal(
 502            flatview_to_dispatch(fv), addr, xlat,
 503            plen_out, is_mmio);
 504
 505    iommu_mr = memory_region_get_iommu(section->mr);
 506    if (unlikely(iommu_mr)) {
 507        return address_space_translate_iommu(iommu_mr, xlat,
 508                                             plen_out, page_mask_out,
 509                                             is_write, is_mmio,
 510                                             target_as, attrs);
 511    }
 512    if (page_mask_out) {
 513        /* Not behind an IOMMU, use default page size. */
 514        *page_mask_out = ~TARGET_PAGE_MASK;
 515    }
 516
 517    return *section;
 518}
 519
 520/* Called from RCU critical section */
 521IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 522                                            bool is_write, MemTxAttrs attrs)
 523{
 524    MemoryRegionSection section;
 525    hwaddr xlat, page_mask;
 526
 527    /*
 528     * This can never be MMIO, and we don't really care about plen,
 529     * but page mask.
 530     */
 531    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 532                                    NULL, &page_mask, is_write, false, &as,
 533                                    attrs);
 534
 535    /* Illegal translation */
 536    if (section.mr == &io_mem_unassigned) {
 537        goto iotlb_fail;
 538    }
 539
 540    /* Convert memory region offset into address space offset */
 541    xlat += section.offset_within_address_space -
 542        section.offset_within_region;
 543
 544    return (IOMMUTLBEntry) {
 545        .target_as = as,
 546        .iova = addr & ~page_mask,
 547        .translated_addr = xlat & ~page_mask,
 548        .addr_mask = page_mask,
 549        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 550        .perm = IOMMU_RW,
 551    };
 552
 553iotlb_fail:
 554    return (IOMMUTLBEntry) {0};
 555}
 556
 557/* Called from RCU critical section */
 558MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 559                                 hwaddr *plen, bool is_write,
 560                                 MemTxAttrs attrs)
 561{
 562    MemoryRegion *mr;
 563    MemoryRegionSection section;
 564    AddressSpace *as = NULL;
 565
 566    /* This can be MMIO, so setup MMIO bit. */
 567    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 568                                    is_write, true, &as, attrs);
 569    mr = section.mr;
 570
 571    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 572        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 573        *plen = MIN(page, *plen);
 574    }
 575
 576    return mr;
 577}
 578
 579typedef struct TCGIOMMUNotifier {
 580    IOMMUNotifier n;
 581    MemoryRegion *mr;
 582    CPUState *cpu;
 583    int iommu_idx;
 584    bool active;
 585} TCGIOMMUNotifier;
 586
 587static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 588{
 589    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 590
 591    if (!notifier->active) {
 592        return;
 593    }
 594    tlb_flush(notifier->cpu);
 595    notifier->active = false;
 596    /* We leave the notifier struct on the list to avoid reallocating it later.
 597     * Generally the number of IOMMUs a CPU deals with will be small.
 598     * In any case we can't unregister the iommu notifier from a notify
 599     * callback.
 600     */
 601}
 602
 603static void tcg_register_iommu_notifier(CPUState *cpu,
 604                                        IOMMUMemoryRegion *iommu_mr,
 605                                        int iommu_idx)
 606{
 607    /* Make sure this CPU has an IOMMU notifier registered for this
 608     * IOMMU/IOMMU index combination, so that we can flush its TLB
 609     * when the IOMMU tells us the mappings we've cached have changed.
 610     */
 611    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 612    TCGIOMMUNotifier *notifier = NULL;
 613    int i;
 614
 615    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 616        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 617        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 618            break;
 619        }
 620    }
 621    if (i == cpu->iommu_notifiers->len) {
 622        /* Not found, add a new entry at the end of the array */
 623        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 624        notifier = g_new0(TCGIOMMUNotifier, 1);
 625        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 626
 627        notifier->mr = mr;
 628        notifier->iommu_idx = iommu_idx;
 629        notifier->cpu = cpu;
 630        /* Rather than trying to register interest in the specific part
 631         * of the iommu's address space that we've accessed and then
 632         * expand it later as subsequent accesses touch more of it, we
 633         * just register interest in the whole thing, on the assumption
 634         * that iommu reconfiguration will be rare.
 635         */
 636        iommu_notifier_init(&notifier->n,
 637                            tcg_iommu_unmap_notify,
 638                            IOMMU_NOTIFIER_UNMAP,
 639                            0,
 640                            HWADDR_MAX,
 641                            iommu_idx);
 642        memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
 643                                              &error_fatal);
 644    }
 645
 646    if (!notifier->active) {
 647        notifier->active = true;
 648    }
 649}
 650
 651void tcg_iommu_free_notifier_list(CPUState *cpu)
 652{
 653    /* Destroy the CPU's notifier list */
 654    int i;
 655    TCGIOMMUNotifier *notifier;
 656
 657    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 658        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 659        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 660        g_free(notifier);
 661    }
 662    g_array_free(cpu->iommu_notifiers, true);
 663}
 664
 665void tcg_iommu_init_notifier_list(CPUState *cpu)
 666{
 667    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 668}
 669
 670/* Called from RCU critical section */
 671MemoryRegionSection *
 672address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
 673                                  hwaddr *xlat, hwaddr *plen,
 674                                  MemTxAttrs attrs, int *prot)
 675{
 676    MemoryRegionSection *section;
 677    IOMMUMemoryRegion *iommu_mr;
 678    IOMMUMemoryRegionClass *imrc;
 679    IOMMUTLBEntry iotlb;
 680    int iommu_idx;
 681    hwaddr addr = orig_addr;
 682    AddressSpaceDispatch *d =
 683        qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 684
 685    for (;;) {
 686        section = address_space_translate_internal(d, addr, &addr, plen, false);
 687
 688        iommu_mr = memory_region_get_iommu(section->mr);
 689        if (!iommu_mr) {
 690            break;
 691        }
 692
 693        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 694
 695        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 696        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 697        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 698         * doesn't short-cut its translation table walk.
 699         */
 700        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 701        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 702                | (addr & iotlb.addr_mask));
 703        /* Update the caller's prot bits to remove permissions the IOMMU
 704         * is giving us a failure response for. If we get down to no
 705         * permissions left at all we can give up now.
 706         */
 707        if (!(iotlb.perm & IOMMU_RO)) {
 708            *prot &= ~(PAGE_READ | PAGE_EXEC);
 709        }
 710        if (!(iotlb.perm & IOMMU_WO)) {
 711            *prot &= ~PAGE_WRITE;
 712        }
 713
 714        if (!*prot) {
 715            goto translate_fail;
 716        }
 717
 718        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 719    }
 720
 721    assert(!memory_region_is_iommu(section->mr));
 722    *xlat = addr;
 723    return section;
 724
 725translate_fail:
 726    /*
 727     * We should be given a page-aligned address -- certainly
 728     * tlb_set_page_with_attrs() does so.  The page offset of xlat
 729     * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
 730     * The page portion of xlat will be logged by memory_region_access_valid()
 731     * when this memory access is rejected, so use the original untranslated
 732     * physical address.
 733     */
 734    assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
 735    *xlat = orig_addr;
 736    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 737}
 738
 739void cpu_address_space_init(CPUState *cpu, int asidx,
 740                            const char *prefix, MemoryRegion *mr)
 741{
 742    CPUAddressSpace *newas;
 743    AddressSpace *as = g_new0(AddressSpace, 1);
 744    char *as_name;
 745
 746    assert(mr);
 747    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 748    address_space_init(as, mr, as_name);
 749    g_free(as_name);
 750
 751    /* Target code should have set num_ases before calling us */
 752    assert(asidx < cpu->num_ases);
 753
 754    if (asidx == 0) {
 755        /* address space 0 gets the convenience alias */
 756        cpu->as = as;
 757    }
 758
 759    /* KVM cannot currently support multiple address spaces. */
 760    assert(asidx == 0 || !kvm_enabled());
 761
 762    if (!cpu->cpu_ases) {
 763        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 764    }
 765
 766    newas = &cpu->cpu_ases[asidx];
 767    newas->cpu = cpu;
 768    newas->as = as;
 769    if (tcg_enabled()) {
 770        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
 771        newas->tcg_as_listener.commit = tcg_commit;
 772        newas->tcg_as_listener.name = "tcg";
 773        memory_listener_register(&newas->tcg_as_listener, as);
 774    }
 775}
 776
 777AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 778{
 779    /* Return the AddressSpace corresponding to the specified index */
 780    return cpu->cpu_ases[asidx].as;
 781}
 782
 783/* Add a watchpoint.  */
 784int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 785                          int flags, CPUWatchpoint **watchpoint)
 786{
 787    CPUWatchpoint *wp;
 788    vaddr in_page;
 789
 790    /* forbid ranges which are empty or run off the end of the address space */
 791    if (len == 0 || (addr + len - 1) < addr) {
 792        error_report("tried to set invalid watchpoint at %"
 793                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
 794        return -EINVAL;
 795    }
 796    wp = g_malloc(sizeof(*wp));
 797
 798    wp->vaddr = addr;
 799    wp->len = len;
 800    wp->flags = flags;
 801
 802    /* keep all GDB-injected watchpoints in front */
 803    if (flags & BP_GDB) {
 804        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
 805    } else {
 806        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
 807    }
 808
 809    in_page = -(addr | TARGET_PAGE_MASK);
 810    if (len <= in_page) {
 811        tlb_flush_page(cpu, addr);
 812    } else {
 813        tlb_flush(cpu);
 814    }
 815
 816    if (watchpoint)
 817        *watchpoint = wp;
 818    return 0;
 819}
 820
 821/* Remove a specific watchpoint.  */
 822int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 823                          int flags)
 824{
 825    CPUWatchpoint *wp;
 826
 827    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 828        if (addr == wp->vaddr && len == wp->len
 829                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 830            cpu_watchpoint_remove_by_ref(cpu, wp);
 831            return 0;
 832        }
 833    }
 834    return -ENOENT;
 835}
 836
 837/* Remove a specific watchpoint by reference.  */
 838void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 839{
 840    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
 841
 842    tlb_flush_page(cpu, watchpoint->vaddr);
 843
 844    g_free(watchpoint);
 845}
 846
 847/* Remove all matching watchpoints.  */
 848void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 849{
 850    CPUWatchpoint *wp, *next;
 851
 852    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
 853        if (wp->flags & mask) {
 854            cpu_watchpoint_remove_by_ref(cpu, wp);
 855        }
 856    }
 857}
 858
 859#ifdef CONFIG_TCG
 860/* Return true if this watchpoint address matches the specified
 861 * access (ie the address range covered by the watchpoint overlaps
 862 * partially or completely with the address range covered by the
 863 * access).
 864 */
 865static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
 866                                              vaddr addr, vaddr len)
 867{
 868    /* We know the lengths are non-zero, but a little caution is
 869     * required to avoid errors in the case where the range ends
 870     * exactly at the top of the address space and so addr + len
 871     * wraps round to zero.
 872     */
 873    vaddr wpend = wp->vaddr + wp->len - 1;
 874    vaddr addrend = addr + len - 1;
 875
 876    return !(addr > wpend || wp->vaddr > addrend);
 877}
 878
 879/* Return flags for watchpoints that match addr + prot.  */
 880int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
 881{
 882    CPUWatchpoint *wp;
 883    int ret = 0;
 884
 885    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 886        if (watchpoint_address_matches(wp, addr, len)) {
 887            ret |= wp->flags;
 888        }
 889    }
 890    return ret;
 891}
 892
 893/* Generate a debug exception if a watchpoint has been hit.  */
 894void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
 895                          MemTxAttrs attrs, int flags, uintptr_t ra)
 896{
 897    CPUClass *cc = CPU_GET_CLASS(cpu);
 898    CPUWatchpoint *wp;
 899
 900    assert(tcg_enabled());
 901    if (cpu->watchpoint_hit) {
 902        /*
 903         * We re-entered the check after replacing the TB.
 904         * Now raise the debug interrupt so that it will
 905         * trigger after the current instruction.
 906         */
 907        qemu_mutex_lock_iothread();
 908        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
 909        qemu_mutex_unlock_iothread();
 910        return;
 911    }
 912
 913    if (cc->tcg_ops->adjust_watchpoint_address) {
 914        /* this is currently used only by ARM BE32 */
 915        addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
 916    }
 917    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 918        if (watchpoint_address_matches(wp, addr, len)
 919            && (wp->flags & flags)) {
 920            if (replay_running_debug()) {
 921                /*
 922                 * replay_breakpoint reads icount.
 923                 * Force recompile to succeed, because icount may
 924                 * be read only at the end of the block.
 925                 */
 926                if (!cpu->can_do_io) {
 927                    /* Force execution of one insn next time.  */
 928                    cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
 929                    cpu_loop_exit_restore(cpu, ra);
 930                }
 931                /*
 932                 * Don't process the watchpoints when we are
 933                 * in a reverse debugging operation.
 934                 */
 935                replay_breakpoint();
 936                return;
 937            }
 938            if (flags == BP_MEM_READ) {
 939                wp->flags |= BP_WATCHPOINT_HIT_READ;
 940            } else {
 941                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
 942            }
 943            wp->hitaddr = MAX(addr, wp->vaddr);
 944            wp->hitattrs = attrs;
 945
 946            if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
 947                !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
 948                wp->flags &= ~BP_WATCHPOINT_HIT;
 949                continue;
 950            }
 951            cpu->watchpoint_hit = wp;
 952
 953            mmap_lock();
 954            /* This call also restores vCPU state */
 955            tb_check_watchpoint(cpu, ra);
 956            if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 957                cpu->exception_index = EXCP_DEBUG;
 958                mmap_unlock();
 959                cpu_loop_exit(cpu);
 960            } else {
 961                /* Force execution of one insn next time.  */
 962                cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
 963                mmap_unlock();
 964                cpu_loop_exit_noexc(cpu);
 965            }
 966        } else {
 967            wp->flags &= ~BP_WATCHPOINT_HIT;
 968        }
 969    }
 970}
 971
 972#endif /* CONFIG_TCG */
 973
 974/* Called from RCU critical section */
 975static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 976{
 977    RAMBlock *block;
 978
 979    block = qatomic_rcu_read(&ram_list.mru_block);
 980    if (block && addr - block->offset < block->max_length) {
 981        return block;
 982    }
 983    RAMBLOCK_FOREACH(block) {
 984        if (addr - block->offset < block->max_length) {
 985            goto found;
 986        }
 987    }
 988
 989    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 990    abort();
 991
 992found:
 993    /* It is safe to write mru_block outside the iothread lock.  This
 994     * is what happens:
 995     *
 996     *     mru_block = xxx
 997     *     rcu_read_unlock()
 998     *                                        xxx removed from list
 999     *                  rcu_read_lock()
1000     *                  read mru_block
1001     *                                        mru_block = NULL;
1002     *                                        call_rcu(reclaim_ramblock, xxx);
1003     *                  rcu_read_unlock()
1004     *
1005     * qatomic_rcu_set is not needed here.  The block was already published
1006     * when it was placed into the list.  Here we're just making an extra
1007     * copy of the pointer.
1008     */
1009    ram_list.mru_block = block;
1010    return block;
1011}
1012
1013static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1014{
1015    CPUState *cpu;
1016    ram_addr_t start1;
1017    RAMBlock *block;
1018    ram_addr_t end;
1019
1020    assert(tcg_enabled());
1021    end = TARGET_PAGE_ALIGN(start + length);
1022    start &= TARGET_PAGE_MASK;
1023
1024    RCU_READ_LOCK_GUARD();
1025    block = qemu_get_ram_block(start);
1026    assert(block == qemu_get_ram_block(end - 1));
1027    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1028    CPU_FOREACH(cpu) {
1029        tlb_reset_dirty(cpu, start1, length);
1030    }
1031}
1032
1033/* Note: start and end must be within the same ram block.  */
1034bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1035                                              ram_addr_t length,
1036                                              unsigned client)
1037{
1038    DirtyMemoryBlocks *blocks;
1039    unsigned long end, page, start_page;
1040    bool dirty = false;
1041    RAMBlock *ramblock;
1042    uint64_t mr_offset, mr_size;
1043
1044    if (length == 0) {
1045        return false;
1046    }
1047
1048    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1049    start_page = start >> TARGET_PAGE_BITS;
1050    page = start_page;
1051
1052    WITH_RCU_READ_LOCK_GUARD() {
1053        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1054        ramblock = qemu_get_ram_block(start);
1055        /* Range sanity check on the ramblock */
1056        assert(start >= ramblock->offset &&
1057               start + length <= ramblock->offset + ramblock->used_length);
1058
1059        while (page < end) {
1060            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1061            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1062            unsigned long num = MIN(end - page,
1063                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1064
1065            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1066                                                  offset, num);
1067            page += num;
1068        }
1069
1070        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1071        mr_size = (end - start_page) << TARGET_PAGE_BITS;
1072        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1073    }
1074
1075    if (dirty && tcg_enabled()) {
1076        tlb_reset_dirty_range_all(start, length);
1077    }
1078
1079    return dirty;
1080}
1081
1082DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1083    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1084{
1085    DirtyMemoryBlocks *blocks;
1086    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1087    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1088    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1089    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1090    DirtyBitmapSnapshot *snap;
1091    unsigned long page, end, dest;
1092
1093    snap = g_malloc0(sizeof(*snap) +
1094                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1095    snap->start = first;
1096    snap->end   = last;
1097
1098    page = first >> TARGET_PAGE_BITS;
1099    end  = last  >> TARGET_PAGE_BITS;
1100    dest = 0;
1101
1102    WITH_RCU_READ_LOCK_GUARD() {
1103        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1104
1105        while (page < end) {
1106            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1107            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1108            unsigned long num = MIN(end - page,
1109                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1110
1111            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1112            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1113            offset >>= BITS_PER_LEVEL;
1114
1115            bitmap_copy_and_clear_atomic(snap->dirty + dest,
1116                                         blocks->blocks[idx] + offset,
1117                                         num);
1118            page += num;
1119            dest += num >> BITS_PER_LEVEL;
1120        }
1121    }
1122
1123    if (tcg_enabled()) {
1124        tlb_reset_dirty_range_all(start, length);
1125    }
1126
1127    memory_region_clear_dirty_bitmap(mr, offset, length);
1128
1129    return snap;
1130}
1131
1132bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1133                                            ram_addr_t start,
1134                                            ram_addr_t length)
1135{
1136    unsigned long page, end;
1137
1138    assert(start >= snap->start);
1139    assert(start + length <= snap->end);
1140
1141    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1142    page = (start - snap->start) >> TARGET_PAGE_BITS;
1143
1144    while (page < end) {
1145        if (test_bit(page, snap->dirty)) {
1146            return true;
1147        }
1148        page++;
1149    }
1150    return false;
1151}
1152
1153/* Called from RCU critical section */
1154hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1155                                       MemoryRegionSection *section)
1156{
1157    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1158    return section - d->map.sections;
1159}
1160
1161static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1162                            uint16_t section);
1163static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1164
1165static uint16_t phys_section_add(PhysPageMap *map,
1166                                 MemoryRegionSection *section)
1167{
1168    /* The physical section number is ORed with a page-aligned
1169     * pointer to produce the iotlb entries.  Thus it should
1170     * never overflow into the page-aligned value.
1171     */
1172    assert(map->sections_nb < TARGET_PAGE_SIZE);
1173
1174    if (map->sections_nb == map->sections_nb_alloc) {
1175        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1176        map->sections = g_renew(MemoryRegionSection, map->sections,
1177                                map->sections_nb_alloc);
1178    }
1179    map->sections[map->sections_nb] = *section;
1180    memory_region_ref(section->mr);
1181    return map->sections_nb++;
1182}
1183
1184static void phys_section_destroy(MemoryRegion *mr)
1185{
1186    bool have_sub_page = mr->subpage;
1187
1188    memory_region_unref(mr);
1189
1190    if (have_sub_page) {
1191        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1192        object_unref(OBJECT(&subpage->iomem));
1193        g_free(subpage);
1194    }
1195}
1196
1197static void phys_sections_free(PhysPageMap *map)
1198{
1199    while (map->sections_nb > 0) {
1200        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1201        phys_section_destroy(section->mr);
1202    }
1203    g_free(map->sections);
1204    g_free(map->nodes);
1205}
1206
1207static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1208{
1209    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1210    subpage_t *subpage;
1211    hwaddr base = section->offset_within_address_space
1212        & TARGET_PAGE_MASK;
1213    MemoryRegionSection *existing = phys_page_find(d, base);
1214    MemoryRegionSection subsection = {
1215        .offset_within_address_space = base,
1216        .size = int128_make64(TARGET_PAGE_SIZE),
1217    };
1218    hwaddr start, end;
1219
1220    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1221
1222    if (!(existing->mr->subpage)) {
1223        subpage = subpage_init(fv, base);
1224        subsection.fv = fv;
1225        subsection.mr = &subpage->iomem;
1226        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1227                      phys_section_add(&d->map, &subsection));
1228    } else {
1229        subpage = container_of(existing->mr, subpage_t, iomem);
1230    }
1231    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1232    end = start + int128_get64(section->size) - 1;
1233    subpage_register(subpage, start, end,
1234                     phys_section_add(&d->map, section));
1235}
1236
1237
1238static void register_multipage(FlatView *fv,
1239                               MemoryRegionSection *section)
1240{
1241    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1242    hwaddr start_addr = section->offset_within_address_space;
1243    uint16_t section_index = phys_section_add(&d->map, section);
1244    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1245                                                    TARGET_PAGE_BITS));
1246
1247    assert(num_pages);
1248    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1249}
1250
1251/*
1252 * The range in *section* may look like this:
1253 *
1254 *      |s|PPPPPPP|s|
1255 *
1256 * where s stands for subpage and P for page.
1257 */
1258void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1259{
1260    MemoryRegionSection remain = *section;
1261    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1262
1263    /* register first subpage */
1264    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1265        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1266                        - remain.offset_within_address_space;
1267
1268        MemoryRegionSection now = remain;
1269        now.size = int128_min(int128_make64(left), now.size);
1270        register_subpage(fv, &now);
1271        if (int128_eq(remain.size, now.size)) {
1272            return;
1273        }
1274        remain.size = int128_sub(remain.size, now.size);
1275        remain.offset_within_address_space += int128_get64(now.size);
1276        remain.offset_within_region += int128_get64(now.size);
1277    }
1278
1279    /* register whole pages */
1280    if (int128_ge(remain.size, page_size)) {
1281        MemoryRegionSection now = remain;
1282        now.size = int128_and(now.size, int128_neg(page_size));
1283        register_multipage(fv, &now);
1284        if (int128_eq(remain.size, now.size)) {
1285            return;
1286        }
1287        remain.size = int128_sub(remain.size, now.size);
1288        remain.offset_within_address_space += int128_get64(now.size);
1289        remain.offset_within_region += int128_get64(now.size);
1290    }
1291
1292    /* register last subpage */
1293    register_subpage(fv, &remain);
1294}
1295
1296void qemu_flush_coalesced_mmio_buffer(void)
1297{
1298    if (kvm_enabled())
1299        kvm_flush_coalesced_mmio_buffer();
1300}
1301
1302void qemu_mutex_lock_ramlist(void)
1303{
1304    qemu_mutex_lock(&ram_list.mutex);
1305}
1306
1307void qemu_mutex_unlock_ramlist(void)
1308{
1309    qemu_mutex_unlock(&ram_list.mutex);
1310}
1311
1312GString *ram_block_format(void)
1313{
1314    RAMBlock *block;
1315    char *psize;
1316    GString *buf = g_string_new("");
1317
1318    RCU_READ_LOCK_GUARD();
1319    g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1320                           "Block Name", "PSize", "Offset", "Used", "Total");
1321    RAMBLOCK_FOREACH(block) {
1322        psize = size_to_str(block->page_size);
1323        g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1324                               " 0x%016" PRIx64 "\n", block->idstr, psize,
1325                               (uint64_t)block->offset,
1326                               (uint64_t)block->used_length,
1327                               (uint64_t)block->max_length);
1328        g_free(psize);
1329    }
1330
1331    return buf;
1332}
1333
1334static int find_min_backend_pagesize(Object *obj, void *opaque)
1335{
1336    long *hpsize_min = opaque;
1337
1338    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1339        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1340        long hpsize = host_memory_backend_pagesize(backend);
1341
1342        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1343            *hpsize_min = hpsize;
1344        }
1345    }
1346
1347    return 0;
1348}
1349
1350static int find_max_backend_pagesize(Object *obj, void *opaque)
1351{
1352    long *hpsize_max = opaque;
1353
1354    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1355        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1356        long hpsize = host_memory_backend_pagesize(backend);
1357
1358        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1359            *hpsize_max = hpsize;
1360        }
1361    }
1362
1363    return 0;
1364}
1365
1366/*
1367 * TODO: We assume right now that all mapped host memory backends are
1368 * used as RAM, however some might be used for different purposes.
1369 */
1370long qemu_minrampagesize(void)
1371{
1372    long hpsize = LONG_MAX;
1373    Object *memdev_root = object_resolve_path("/objects", NULL);
1374
1375    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1376    return hpsize;
1377}
1378
1379long qemu_maxrampagesize(void)
1380{
1381    long pagesize = 0;
1382    Object *memdev_root = object_resolve_path("/objects", NULL);
1383
1384    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1385    return pagesize;
1386}
1387
1388#ifdef CONFIG_POSIX
1389static int64_t get_file_size(int fd)
1390{
1391    int64_t size;
1392#if defined(__linux__)
1393    struct stat st;
1394
1395    if (fstat(fd, &st) < 0) {
1396        return -errno;
1397    }
1398
1399    /* Special handling for devdax character devices */
1400    if (S_ISCHR(st.st_mode)) {
1401        g_autofree char *subsystem_path = NULL;
1402        g_autofree char *subsystem = NULL;
1403
1404        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1405                                         major(st.st_rdev), minor(st.st_rdev));
1406        subsystem = g_file_read_link(subsystem_path, NULL);
1407
1408        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1409            g_autofree char *size_path = NULL;
1410            g_autofree char *size_str = NULL;
1411
1412            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1413                                    major(st.st_rdev), minor(st.st_rdev));
1414
1415            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1416                return g_ascii_strtoll(size_str, NULL, 0);
1417            }
1418        }
1419    }
1420#endif /* defined(__linux__) */
1421
1422    /* st.st_size may be zero for special files yet lseek(2) works */
1423    size = lseek(fd, 0, SEEK_END);
1424    if (size < 0) {
1425        return -errno;
1426    }
1427    return size;
1428}
1429
1430static int64_t get_file_align(int fd)
1431{
1432    int64_t align = -1;
1433#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1434    struct stat st;
1435
1436    if (fstat(fd, &st) < 0) {
1437        return -errno;
1438    }
1439
1440    /* Special handling for devdax character devices */
1441    if (S_ISCHR(st.st_mode)) {
1442        g_autofree char *path = NULL;
1443        g_autofree char *rpath = NULL;
1444        struct daxctl_ctx *ctx;
1445        struct daxctl_region *region;
1446        int rc = 0;
1447
1448        path = g_strdup_printf("/sys/dev/char/%d:%d",
1449                    major(st.st_rdev), minor(st.st_rdev));
1450        rpath = realpath(path, NULL);
1451        if (!rpath) {
1452            return -errno;
1453        }
1454
1455        rc = daxctl_new(&ctx);
1456        if (rc) {
1457            return -1;
1458        }
1459
1460        daxctl_region_foreach(ctx, region) {
1461            if (strstr(rpath, daxctl_region_get_path(region))) {
1462                align = daxctl_region_get_align(region);
1463                break;
1464            }
1465        }
1466        daxctl_unref(ctx);
1467    }
1468#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1469
1470    return align;
1471}
1472
1473static int file_ram_open(const char *path,
1474                         const char *region_name,
1475                         bool readonly,
1476                         bool *created,
1477                         Error **errp)
1478{
1479    char *filename;
1480    char *sanitized_name;
1481    char *c;
1482    int fd = -1;
1483
1484    *created = false;
1485    for (;;) {
1486        fd = open(path, readonly ? O_RDONLY : O_RDWR);
1487        if (fd >= 0) {
1488            /* @path names an existing file, use it */
1489            break;
1490        }
1491        if (errno == ENOENT) {
1492            /* @path names a file that doesn't exist, create it */
1493            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1494            if (fd >= 0) {
1495                *created = true;
1496                break;
1497            }
1498        } else if (errno == EISDIR) {
1499            /* @path names a directory, create a file there */
1500            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1501            sanitized_name = g_strdup(region_name);
1502            for (c = sanitized_name; *c != '\0'; c++) {
1503                if (*c == '/') {
1504                    *c = '_';
1505                }
1506            }
1507
1508            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1509                                       sanitized_name);
1510            g_free(sanitized_name);
1511
1512            fd = mkstemp(filename);
1513            if (fd >= 0) {
1514                unlink(filename);
1515                g_free(filename);
1516                break;
1517            }
1518            g_free(filename);
1519        }
1520        if (errno != EEXIST && errno != EINTR) {
1521            error_setg_errno(errp, errno,
1522                             "can't open backing store %s for guest RAM",
1523                             path);
1524            return -1;
1525        }
1526        /*
1527         * Try again on EINTR and EEXIST.  The latter happens when
1528         * something else creates the file between our two open().
1529         */
1530    }
1531
1532    return fd;
1533}
1534
1535static void *file_ram_alloc(RAMBlock *block,
1536                            ram_addr_t memory,
1537                            int fd,
1538                            bool readonly,
1539                            bool truncate,
1540                            off_t offset,
1541                            Error **errp)
1542{
1543    uint32_t qemu_map_flags;
1544    void *area;
1545
1546    block->page_size = qemu_fd_getpagesize(fd);
1547    if (block->mr->align % block->page_size) {
1548        error_setg(errp, "alignment 0x%" PRIx64
1549                   " must be multiples of page size 0x%zx",
1550                   block->mr->align, block->page_size);
1551        return NULL;
1552    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1553        error_setg(errp, "alignment 0x%" PRIx64
1554                   " must be a power of two", block->mr->align);
1555        return NULL;
1556    }
1557    block->mr->align = MAX(block->page_size, block->mr->align);
1558#if defined(__s390x__)
1559    if (kvm_enabled()) {
1560        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1561    }
1562#endif
1563
1564    if (memory < block->page_size) {
1565        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1566                   "or larger than page size 0x%zx",
1567                   memory, block->page_size);
1568        return NULL;
1569    }
1570
1571    memory = ROUND_UP(memory, block->page_size);
1572
1573    /*
1574     * ftruncate is not supported by hugetlbfs in older
1575     * hosts, so don't bother bailing out on errors.
1576     * If anything goes wrong with it under other filesystems,
1577     * mmap will fail.
1578     *
1579     * Do not truncate the non-empty backend file to avoid corrupting
1580     * the existing data in the file. Disabling shrinking is not
1581     * enough. For example, the current vNVDIMM implementation stores
1582     * the guest NVDIMM labels at the end of the backend file. If the
1583     * backend file is later extended, QEMU will not be able to find
1584     * those labels. Therefore, extending the non-empty backend file
1585     * is disabled as well.
1586     */
1587    if (truncate && ftruncate(fd, memory)) {
1588        perror("ftruncate");
1589    }
1590
1591    qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1592    qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1593    qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1594    qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1595    area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1596    if (area == MAP_FAILED) {
1597        error_setg_errno(errp, errno,
1598                         "unable to map backing store for guest RAM");
1599        return NULL;
1600    }
1601
1602    block->fd = fd;
1603    return area;
1604}
1605#endif
1606
1607/* Allocate space within the ram_addr_t space that governs the
1608 * dirty bitmaps.
1609 * Called with the ramlist lock held.
1610 */
1611static ram_addr_t find_ram_offset(ram_addr_t size)
1612{
1613    RAMBlock *block, *next_block;
1614    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1615
1616    assert(size != 0); /* it would hand out same offset multiple times */
1617
1618    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1619        return 0;
1620    }
1621
1622    RAMBLOCK_FOREACH(block) {
1623        ram_addr_t candidate, next = RAM_ADDR_MAX;
1624
1625        /* Align blocks to start on a 'long' in the bitmap
1626         * which makes the bitmap sync'ing take the fast path.
1627         */
1628        candidate = block->offset + block->max_length;
1629        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1630
1631        /* Search for the closest following block
1632         * and find the gap.
1633         */
1634        RAMBLOCK_FOREACH(next_block) {
1635            if (next_block->offset >= candidate) {
1636                next = MIN(next, next_block->offset);
1637            }
1638        }
1639
1640        /* If it fits remember our place and remember the size
1641         * of gap, but keep going so that we might find a smaller
1642         * gap to fill so avoiding fragmentation.
1643         */
1644        if (next - candidate >= size && next - candidate < mingap) {
1645            offset = candidate;
1646            mingap = next - candidate;
1647        }
1648
1649        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1650    }
1651
1652    if (offset == RAM_ADDR_MAX) {
1653        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1654                (uint64_t)size);
1655        abort();
1656    }
1657
1658    trace_find_ram_offset(size, offset);
1659
1660    return offset;
1661}
1662
1663static unsigned long last_ram_page(void)
1664{
1665    RAMBlock *block;
1666    ram_addr_t last = 0;
1667
1668    RCU_READ_LOCK_GUARD();
1669    RAMBLOCK_FOREACH(block) {
1670        last = MAX(last, block->offset + block->max_length);
1671    }
1672    return last >> TARGET_PAGE_BITS;
1673}
1674
1675static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1676{
1677    int ret;
1678
1679    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1680    if (!machine_dump_guest_core(current_machine)) {
1681        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1682        if (ret) {
1683            perror("qemu_madvise");
1684            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1685                            "but dump_guest_core=off specified\n");
1686        }
1687    }
1688}
1689
1690const char *qemu_ram_get_idstr(RAMBlock *rb)
1691{
1692    return rb->idstr;
1693}
1694
1695void *qemu_ram_get_host_addr(RAMBlock *rb)
1696{
1697    return rb->host;
1698}
1699
1700ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1701{
1702    return rb->offset;
1703}
1704
1705ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1706{
1707    return rb->used_length;
1708}
1709
1710ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1711{
1712    return rb->max_length;
1713}
1714
1715bool qemu_ram_is_shared(RAMBlock *rb)
1716{
1717    return rb->flags & RAM_SHARED;
1718}
1719
1720bool qemu_ram_is_noreserve(RAMBlock *rb)
1721{
1722    return rb->flags & RAM_NORESERVE;
1723}
1724
1725/* Note: Only set at the start of postcopy */
1726bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1727{
1728    return rb->flags & RAM_UF_ZEROPAGE;
1729}
1730
1731void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1732{
1733    rb->flags |= RAM_UF_ZEROPAGE;
1734}
1735
1736bool qemu_ram_is_migratable(RAMBlock *rb)
1737{
1738    return rb->flags & RAM_MIGRATABLE;
1739}
1740
1741void qemu_ram_set_migratable(RAMBlock *rb)
1742{
1743    rb->flags |= RAM_MIGRATABLE;
1744}
1745
1746void qemu_ram_unset_migratable(RAMBlock *rb)
1747{
1748    rb->flags &= ~RAM_MIGRATABLE;
1749}
1750
1751int qemu_ram_get_fd(RAMBlock *rb)
1752{
1753    return rb->fd;
1754}
1755
1756/* Called with iothread lock held.  */
1757void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1758{
1759    RAMBlock *block;
1760
1761    assert(new_block);
1762    assert(!new_block->idstr[0]);
1763
1764    if (dev) {
1765        char *id = qdev_get_dev_path(dev);
1766        if (id) {
1767            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1768            g_free(id);
1769        }
1770    }
1771    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1772
1773    RCU_READ_LOCK_GUARD();
1774    RAMBLOCK_FOREACH(block) {
1775        if (block != new_block &&
1776            !strcmp(block->idstr, new_block->idstr)) {
1777            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1778                    new_block->idstr);
1779            abort();
1780        }
1781    }
1782}
1783
1784/* Called with iothread lock held.  */
1785void qemu_ram_unset_idstr(RAMBlock *block)
1786{
1787    /* FIXME: arch_init.c assumes that this is not called throughout
1788     * migration.  Ignore the problem since hot-unplug during migration
1789     * does not work anyway.
1790     */
1791    if (block) {
1792        memset(block->idstr, 0, sizeof(block->idstr));
1793    }
1794}
1795
1796size_t qemu_ram_pagesize(RAMBlock *rb)
1797{
1798    return rb->page_size;
1799}
1800
1801/* Returns the largest size of page in use */
1802size_t qemu_ram_pagesize_largest(void)
1803{
1804    RAMBlock *block;
1805    size_t largest = 0;
1806
1807    RAMBLOCK_FOREACH(block) {
1808        largest = MAX(largest, qemu_ram_pagesize(block));
1809    }
1810
1811    return largest;
1812}
1813
1814static int memory_try_enable_merging(void *addr, size_t len)
1815{
1816    if (!machine_mem_merge(current_machine)) {
1817        /* disabled by the user */
1818        return 0;
1819    }
1820
1821    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1822}
1823
1824/*
1825 * Resizing RAM while migrating can result in the migration being canceled.
1826 * Care has to be taken if the guest might have already detected the memory.
1827 *
1828 * As memory core doesn't know how is memory accessed, it is up to
1829 * resize callback to update device state and/or add assertions to detect
1830 * misuse, if necessary.
1831 */
1832int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1833{
1834    const ram_addr_t oldsize = block->used_length;
1835    const ram_addr_t unaligned_size = newsize;
1836
1837    assert(block);
1838
1839    newsize = HOST_PAGE_ALIGN(newsize);
1840
1841    if (block->used_length == newsize) {
1842        /*
1843         * We don't have to resize the ram block (which only knows aligned
1844         * sizes), however, we have to notify if the unaligned size changed.
1845         */
1846        if (unaligned_size != memory_region_size(block->mr)) {
1847            memory_region_set_size(block->mr, unaligned_size);
1848            if (block->resized) {
1849                block->resized(block->idstr, unaligned_size, block->host);
1850            }
1851        }
1852        return 0;
1853    }
1854
1855    if (!(block->flags & RAM_RESIZEABLE)) {
1856        error_setg_errno(errp, EINVAL,
1857                         "Size mismatch: %s: 0x" RAM_ADDR_FMT
1858                         " != 0x" RAM_ADDR_FMT, block->idstr,
1859                         newsize, block->used_length);
1860        return -EINVAL;
1861    }
1862
1863    if (block->max_length < newsize) {
1864        error_setg_errno(errp, EINVAL,
1865                         "Size too large: %s: 0x" RAM_ADDR_FMT
1866                         " > 0x" RAM_ADDR_FMT, block->idstr,
1867                         newsize, block->max_length);
1868        return -EINVAL;
1869    }
1870
1871    /* Notify before modifying the ram block and touching the bitmaps. */
1872    if (block->host) {
1873        ram_block_notify_resize(block->host, oldsize, newsize);
1874    }
1875
1876    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1877    block->used_length = newsize;
1878    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1879                                        DIRTY_CLIENTS_ALL);
1880    memory_region_set_size(block->mr, unaligned_size);
1881    if (block->resized) {
1882        block->resized(block->idstr, unaligned_size, block->host);
1883    }
1884    return 0;
1885}
1886
1887/*
1888 * Trigger sync on the given ram block for range [start, start + length]
1889 * with the backing store if one is available.
1890 * Otherwise no-op.
1891 * @Note: this is supposed to be a synchronous op.
1892 */
1893void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1894{
1895    /* The requested range should fit in within the block range */
1896    g_assert((start + length) <= block->used_length);
1897
1898#ifdef CONFIG_LIBPMEM
1899    /* The lack of support for pmem should not block the sync */
1900    if (ramblock_is_pmem(block)) {
1901        void *addr = ramblock_ptr(block, start);
1902        pmem_persist(addr, length);
1903        return;
1904    }
1905#endif
1906    if (block->fd >= 0) {
1907        /**
1908         * Case there is no support for PMEM or the memory has not been
1909         * specified as persistent (or is not one) - use the msync.
1910         * Less optimal but still achieves the same goal
1911         */
1912        void *addr = ramblock_ptr(block, start);
1913        if (qemu_msync(addr, length, block->fd)) {
1914            warn_report("%s: failed to sync memory range: start: "
1915                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1916                    __func__, start, length);
1917        }
1918    }
1919}
1920
1921/* Called with ram_list.mutex held */
1922static void dirty_memory_extend(ram_addr_t old_ram_size,
1923                                ram_addr_t new_ram_size)
1924{
1925    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1926                                             DIRTY_MEMORY_BLOCK_SIZE);
1927    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1928                                             DIRTY_MEMORY_BLOCK_SIZE);
1929    int i;
1930
1931    /* Only need to extend if block count increased */
1932    if (new_num_blocks <= old_num_blocks) {
1933        return;
1934    }
1935
1936    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1937        DirtyMemoryBlocks *old_blocks;
1938        DirtyMemoryBlocks *new_blocks;
1939        int j;
1940
1941        old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1942        new_blocks = g_malloc(sizeof(*new_blocks) +
1943                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
1944
1945        if (old_num_blocks) {
1946            memcpy(new_blocks->blocks, old_blocks->blocks,
1947                   old_num_blocks * sizeof(old_blocks->blocks[0]));
1948        }
1949
1950        for (j = old_num_blocks; j < new_num_blocks; j++) {
1951            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1952        }
1953
1954        qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1955
1956        if (old_blocks) {
1957            g_free_rcu(old_blocks, rcu);
1958        }
1959    }
1960}
1961
1962static void ram_block_add(RAMBlock *new_block, Error **errp)
1963{
1964    const bool noreserve = qemu_ram_is_noreserve(new_block);
1965    const bool shared = qemu_ram_is_shared(new_block);
1966    RAMBlock *block;
1967    RAMBlock *last_block = NULL;
1968    ram_addr_t old_ram_size, new_ram_size;
1969    Error *err = NULL;
1970
1971    old_ram_size = last_ram_page();
1972
1973    qemu_mutex_lock_ramlist();
1974    new_block->offset = find_ram_offset(new_block->max_length);
1975
1976    if (!new_block->host) {
1977        if (xen_enabled()) {
1978            xen_ram_alloc(new_block->offset, new_block->max_length,
1979                          new_block->mr, &err);
1980            if (err) {
1981                error_propagate(errp, err);
1982                qemu_mutex_unlock_ramlist();
1983                return;
1984            }
1985        } else {
1986            new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1987                                                  &new_block->mr->align,
1988                                                  shared, noreserve);
1989            if (!new_block->host) {
1990                error_setg_errno(errp, errno,
1991                                 "cannot set up guest memory '%s'",
1992                                 memory_region_name(new_block->mr));
1993                qemu_mutex_unlock_ramlist();
1994                return;
1995            }
1996            memory_try_enable_merging(new_block->host, new_block->max_length);
1997        }
1998    }
1999
2000    new_ram_size = MAX(old_ram_size,
2001              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2002    if (new_ram_size > old_ram_size) {
2003        dirty_memory_extend(old_ram_size, new_ram_size);
2004    }
2005    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2006     * QLIST (which has an RCU-friendly variant) does not have insertion at
2007     * tail, so save the last element in last_block.
2008     */
2009    RAMBLOCK_FOREACH(block) {
2010        last_block = block;
2011        if (block->max_length < new_block->max_length) {
2012            break;
2013        }
2014    }
2015    if (block) {
2016        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2017    } else if (last_block) {
2018        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2019    } else { /* list is empty */
2020        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2021    }
2022    ram_list.mru_block = NULL;
2023
2024    /* Write list before version */
2025    smp_wmb();
2026    ram_list.version++;
2027    qemu_mutex_unlock_ramlist();
2028
2029    cpu_physical_memory_set_dirty_range(new_block->offset,
2030                                        new_block->used_length,
2031                                        DIRTY_CLIENTS_ALL);
2032
2033    if (new_block->host) {
2034        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2035        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2036        /*
2037         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2038         * Configure it unless the machine is a qtest server, in which case
2039         * KVM is not used and it may be forked (eg for fuzzing purposes).
2040         */
2041        if (!qtest_enabled()) {
2042            qemu_madvise(new_block->host, new_block->max_length,
2043                         QEMU_MADV_DONTFORK);
2044        }
2045        ram_block_notify_add(new_block->host, new_block->used_length,
2046                             new_block->max_length);
2047    }
2048}
2049
2050#ifdef CONFIG_POSIX
2051RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2052                                 uint32_t ram_flags, int fd, off_t offset,
2053                                 bool readonly, Error **errp)
2054{
2055    RAMBlock *new_block;
2056    Error *local_err = NULL;
2057    int64_t file_size, file_align;
2058
2059    /* Just support these ram flags by now. */
2060    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2061                          RAM_PROTECTED)) == 0);
2062
2063    if (xen_enabled()) {
2064        error_setg(errp, "-mem-path not supported with Xen");
2065        return NULL;
2066    }
2067
2068    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2069        error_setg(errp,
2070                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2071        return NULL;
2072    }
2073
2074    size = HOST_PAGE_ALIGN(size);
2075    file_size = get_file_size(fd);
2076    if (file_size > 0 && file_size < size) {
2077        error_setg(errp, "backing store size 0x%" PRIx64
2078                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2079                   file_size, size);
2080        return NULL;
2081    }
2082
2083    file_align = get_file_align(fd);
2084    if (file_align > 0 && file_align > mr->align) {
2085        error_setg(errp, "backing store align 0x%" PRIx64
2086                   " is larger than 'align' option 0x%" PRIx64,
2087                   file_align, mr->align);
2088        return NULL;
2089    }
2090
2091    new_block = g_malloc0(sizeof(*new_block));
2092    new_block->mr = mr;
2093    new_block->used_length = size;
2094    new_block->max_length = size;
2095    new_block->flags = ram_flags;
2096    new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2097                                     !file_size, offset, errp);
2098    if (!new_block->host) {
2099        g_free(new_block);
2100        return NULL;
2101    }
2102
2103    ram_block_add(new_block, &local_err);
2104    if (local_err) {
2105        g_free(new_block);
2106        error_propagate(errp, local_err);
2107        return NULL;
2108    }
2109    return new_block;
2110
2111}
2112
2113
2114RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2115                                   uint32_t ram_flags, const char *mem_path,
2116                                   bool readonly, Error **errp)
2117{
2118    int fd;
2119    bool created;
2120    RAMBlock *block;
2121
2122    fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2123                       errp);
2124    if (fd < 0) {
2125        return NULL;
2126    }
2127
2128    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2129    if (!block) {
2130        if (created) {
2131            unlink(mem_path);
2132        }
2133        close(fd);
2134        return NULL;
2135    }
2136
2137    return block;
2138}
2139#endif
2140
2141static
2142RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2143                                  void (*resized)(const char*,
2144                                                  uint64_t length,
2145                                                  void *host),
2146                                  void *host, uint32_t ram_flags,
2147                                  MemoryRegion *mr, Error **errp)
2148{
2149    RAMBlock *new_block;
2150    Error *local_err = NULL;
2151
2152    assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2153                          RAM_NORESERVE)) == 0);
2154    assert(!host ^ (ram_flags & RAM_PREALLOC));
2155
2156    size = HOST_PAGE_ALIGN(size);
2157    max_size = HOST_PAGE_ALIGN(max_size);
2158    new_block = g_malloc0(sizeof(*new_block));
2159    new_block->mr = mr;
2160    new_block->resized = resized;
2161    new_block->used_length = size;
2162    new_block->max_length = max_size;
2163    assert(max_size >= size);
2164    new_block->fd = -1;
2165    new_block->page_size = qemu_real_host_page_size();
2166    new_block->host = host;
2167    new_block->flags = ram_flags;
2168    ram_block_add(new_block, &local_err);
2169    if (local_err) {
2170        g_free(new_block);
2171        error_propagate(errp, local_err);
2172        return NULL;
2173    }
2174    return new_block;
2175}
2176
2177RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2178                                   MemoryRegion *mr, Error **errp)
2179{
2180    return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2181                                   errp);
2182}
2183
2184RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2185                         MemoryRegion *mr, Error **errp)
2186{
2187    assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2188    return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2189}
2190
2191RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2192                                     void (*resized)(const char*,
2193                                                     uint64_t length,
2194                                                     void *host),
2195                                     MemoryRegion *mr, Error **errp)
2196{
2197    return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2198                                   RAM_RESIZEABLE, mr, errp);
2199}
2200
2201static void reclaim_ramblock(RAMBlock *block)
2202{
2203    if (block->flags & RAM_PREALLOC) {
2204        ;
2205    } else if (xen_enabled()) {
2206        xen_invalidate_map_cache_entry(block->host);
2207#ifndef _WIN32
2208    } else if (block->fd >= 0) {
2209        qemu_ram_munmap(block->fd, block->host, block->max_length);
2210        close(block->fd);
2211#endif
2212    } else {
2213        qemu_anon_ram_free(block->host, block->max_length);
2214    }
2215    g_free(block);
2216}
2217
2218void qemu_ram_free(RAMBlock *block)
2219{
2220    if (!block) {
2221        return;
2222    }
2223
2224    if (block->host) {
2225        ram_block_notify_remove(block->host, block->used_length,
2226                                block->max_length);
2227    }
2228
2229    qemu_mutex_lock_ramlist();
2230    QLIST_REMOVE_RCU(block, next);
2231    ram_list.mru_block = NULL;
2232    /* Write list before version */
2233    smp_wmb();
2234    ram_list.version++;
2235    call_rcu(block, reclaim_ramblock, rcu);
2236    qemu_mutex_unlock_ramlist();
2237}
2238
2239#ifndef _WIN32
2240void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2241{
2242    RAMBlock *block;
2243    ram_addr_t offset;
2244    int flags;
2245    void *area, *vaddr;
2246
2247    RAMBLOCK_FOREACH(block) {
2248        offset = addr - block->offset;
2249        if (offset < block->max_length) {
2250            vaddr = ramblock_ptr(block, offset);
2251            if (block->flags & RAM_PREALLOC) {
2252                ;
2253            } else if (xen_enabled()) {
2254                abort();
2255            } else {
2256                flags = MAP_FIXED;
2257                flags |= block->flags & RAM_SHARED ?
2258                         MAP_SHARED : MAP_PRIVATE;
2259                flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2260                if (block->fd >= 0) {
2261                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2262                                flags, block->fd, offset);
2263                } else {
2264                    flags |= MAP_ANONYMOUS;
2265                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2266                                flags, -1, 0);
2267                }
2268                if (area != vaddr) {
2269                    error_report("Could not remap addr: "
2270                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2271                                 length, addr);
2272                    exit(1);
2273                }
2274                memory_try_enable_merging(vaddr, length);
2275                qemu_ram_setup_dump(vaddr, length);
2276            }
2277        }
2278    }
2279}
2280#endif /* !_WIN32 */
2281
2282/* Return a host pointer to ram allocated with qemu_ram_alloc.
2283 * This should not be used for general purpose DMA.  Use address_space_map
2284 * or address_space_rw instead. For local memory (e.g. video ram) that the
2285 * device owns, use memory_region_get_ram_ptr.
2286 *
2287 * Called within RCU critical section.
2288 */
2289void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2290{
2291    RAMBlock *block = ram_block;
2292
2293    if (block == NULL) {
2294        block = qemu_get_ram_block(addr);
2295        addr -= block->offset;
2296    }
2297
2298    if (xen_enabled() && block->host == NULL) {
2299        /* We need to check if the requested address is in the RAM
2300         * because we don't want to map the entire memory in QEMU.
2301         * In that case just map until the end of the page.
2302         */
2303        if (block->offset == 0) {
2304            return xen_map_cache(addr, 0, 0, false);
2305        }
2306
2307        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2308    }
2309    return ramblock_ptr(block, addr);
2310}
2311
2312/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2313 * but takes a size argument.
2314 *
2315 * Called within RCU critical section.
2316 */
2317static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2318                                 hwaddr *size, bool lock)
2319{
2320    RAMBlock *block = ram_block;
2321    if (*size == 0) {
2322        return NULL;
2323    }
2324
2325    if (block == NULL) {
2326        block = qemu_get_ram_block(addr);
2327        addr -= block->offset;
2328    }
2329    *size = MIN(*size, block->max_length - addr);
2330
2331    if (xen_enabled() && block->host == NULL) {
2332        /* We need to check if the requested address is in the RAM
2333         * because we don't want to map the entire memory in QEMU.
2334         * In that case just map the requested area.
2335         */
2336        if (block->offset == 0) {
2337            return xen_map_cache(addr, *size, lock, lock);
2338        }
2339
2340        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2341    }
2342
2343    return ramblock_ptr(block, addr);
2344}
2345
2346/* Return the offset of a hostpointer within a ramblock */
2347ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2348{
2349    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2350    assert((uintptr_t)host >= (uintptr_t)rb->host);
2351    assert(res < rb->max_length);
2352
2353    return res;
2354}
2355
2356/*
2357 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2358 * in that RAMBlock.
2359 *
2360 * ptr: Host pointer to look up
2361 * round_offset: If true round the result offset down to a page boundary
2362 * *ram_addr: set to result ram_addr
2363 * *offset: set to result offset within the RAMBlock
2364 *
2365 * Returns: RAMBlock (or NULL if not found)
2366 *
2367 * By the time this function returns, the returned pointer is not protected
2368 * by RCU anymore.  If the caller is not within an RCU critical section and
2369 * does not hold the iothread lock, it must have other means of protecting the
2370 * pointer, such as a reference to the region that includes the incoming
2371 * ram_addr_t.
2372 */
2373RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2374                                   ram_addr_t *offset)
2375{
2376    RAMBlock *block;
2377    uint8_t *host = ptr;
2378
2379    if (xen_enabled()) {
2380        ram_addr_t ram_addr;
2381        RCU_READ_LOCK_GUARD();
2382        ram_addr = xen_ram_addr_from_mapcache(ptr);
2383        block = qemu_get_ram_block(ram_addr);
2384        if (block) {
2385            *offset = ram_addr - block->offset;
2386        }
2387        return block;
2388    }
2389
2390    RCU_READ_LOCK_GUARD();
2391    block = qatomic_rcu_read(&ram_list.mru_block);
2392    if (block && block->host && host - block->host < block->max_length) {
2393        goto found;
2394    }
2395
2396    RAMBLOCK_FOREACH(block) {
2397        /* This case append when the block is not mapped. */
2398        if (block->host == NULL) {
2399            continue;
2400        }
2401        if (host - block->host < block->max_length) {
2402            goto found;
2403        }
2404    }
2405
2406    return NULL;
2407
2408found:
2409    *offset = (host - block->host);
2410    if (round_offset) {
2411        *offset &= TARGET_PAGE_MASK;
2412    }
2413    return block;
2414}
2415
2416/*
2417 * Finds the named RAMBlock
2418 *
2419 * name: The name of RAMBlock to find
2420 *
2421 * Returns: RAMBlock (or NULL if not found)
2422 */
2423RAMBlock *qemu_ram_block_by_name(const char *name)
2424{
2425    RAMBlock *block;
2426
2427    RAMBLOCK_FOREACH(block) {
2428        if (!strcmp(name, block->idstr)) {
2429            return block;
2430        }
2431    }
2432
2433    return NULL;
2434}
2435
2436/* Some of the softmmu routines need to translate from a host pointer
2437   (typically a TLB entry) back to a ram offset.  */
2438ram_addr_t qemu_ram_addr_from_host(void *ptr)
2439{
2440    RAMBlock *block;
2441    ram_addr_t offset;
2442
2443    block = qemu_ram_block_from_host(ptr, false, &offset);
2444    if (!block) {
2445        return RAM_ADDR_INVALID;
2446    }
2447
2448    return block->offset + offset;
2449}
2450
2451ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2452{
2453    ram_addr_t ram_addr;
2454
2455    ram_addr = qemu_ram_addr_from_host(ptr);
2456    if (ram_addr == RAM_ADDR_INVALID) {
2457        error_report("Bad ram pointer %p", ptr);
2458        abort();
2459    }
2460    return ram_addr;
2461}
2462
2463static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2464                                 MemTxAttrs attrs, void *buf, hwaddr len);
2465static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2466                                  const void *buf, hwaddr len);
2467static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2468                                  bool is_write, MemTxAttrs attrs);
2469
2470static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2471                                unsigned len, MemTxAttrs attrs)
2472{
2473    subpage_t *subpage = opaque;
2474    uint8_t buf[8];
2475    MemTxResult res;
2476
2477#if defined(DEBUG_SUBPAGE)
2478    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2479           subpage, len, addr);
2480#endif
2481    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2482    if (res) {
2483        return res;
2484    }
2485    *data = ldn_p(buf, len);
2486    return MEMTX_OK;
2487}
2488
2489static MemTxResult subpage_write(void *opaque, hwaddr addr,
2490                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2491{
2492    subpage_t *subpage = opaque;
2493    uint8_t buf[8];
2494
2495#if defined(DEBUG_SUBPAGE)
2496    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2497           " value %"PRIx64"\n",
2498           __func__, subpage, len, addr, value);
2499#endif
2500    stn_p(buf, len, value);
2501    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2502}
2503
2504static bool subpage_accepts(void *opaque, hwaddr addr,
2505                            unsigned len, bool is_write,
2506                            MemTxAttrs attrs)
2507{
2508    subpage_t *subpage = opaque;
2509#if defined(DEBUG_SUBPAGE)
2510    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2511           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2512#endif
2513
2514    return flatview_access_valid(subpage->fv, addr + subpage->base,
2515                                 len, is_write, attrs);
2516}
2517
2518static const MemoryRegionOps subpage_ops = {
2519    .read_with_attrs = subpage_read,
2520    .write_with_attrs = subpage_write,
2521    .impl.min_access_size = 1,
2522    .impl.max_access_size = 8,
2523    .valid.min_access_size = 1,
2524    .valid.max_access_size = 8,
2525    .valid.accepts = subpage_accepts,
2526    .endianness = DEVICE_NATIVE_ENDIAN,
2527};
2528
2529static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2530                            uint16_t section)
2531{
2532    int idx, eidx;
2533
2534    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2535        return -1;
2536    idx = SUBPAGE_IDX(start);
2537    eidx = SUBPAGE_IDX(end);
2538#if defined(DEBUG_SUBPAGE)
2539    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2540           __func__, mmio, start, end, idx, eidx, section);
2541#endif
2542    for (; idx <= eidx; idx++) {
2543        mmio->sub_section[idx] = section;
2544    }
2545
2546    return 0;
2547}
2548
2549static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2550{
2551    subpage_t *mmio;
2552
2553    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2554    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2555    mmio->fv = fv;
2556    mmio->base = base;
2557    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2558                          NULL, TARGET_PAGE_SIZE);
2559    mmio->iomem.subpage = true;
2560#if defined(DEBUG_SUBPAGE)
2561    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2562           mmio, base, TARGET_PAGE_SIZE);
2563#endif
2564
2565    return mmio;
2566}
2567
2568static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2569{
2570    assert(fv);
2571    MemoryRegionSection section = {
2572        .fv = fv,
2573        .mr = mr,
2574        .offset_within_address_space = 0,
2575        .offset_within_region = 0,
2576        .size = int128_2_64(),
2577    };
2578
2579    return phys_section_add(map, &section);
2580}
2581
2582MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2583                                      hwaddr index, MemTxAttrs attrs)
2584{
2585    int asidx = cpu_asidx_from_attrs(cpu, attrs);
2586    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2587    AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2588    MemoryRegionSection *sections = d->map.sections;
2589
2590    return &sections[index & ~TARGET_PAGE_MASK];
2591}
2592
2593static void io_mem_init(void)
2594{
2595    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2596                          NULL, UINT64_MAX);
2597}
2598
2599AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2600{
2601    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2602    uint16_t n;
2603
2604    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2605    assert(n == PHYS_SECTION_UNASSIGNED);
2606
2607    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2608
2609    return d;
2610}
2611
2612void address_space_dispatch_free(AddressSpaceDispatch *d)
2613{
2614    phys_sections_free(&d->map);
2615    g_free(d);
2616}
2617
2618static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2619{
2620}
2621
2622static void tcg_log_global_after_sync(MemoryListener *listener)
2623{
2624    CPUAddressSpace *cpuas;
2625
2626    /* Wait for the CPU to end the current TB.  This avoids the following
2627     * incorrect race:
2628     *
2629     *      vCPU                         migration
2630     *      ----------------------       -------------------------
2631     *      TLB check -> slow path
2632     *        notdirty_mem_write
2633     *          write to RAM
2634     *          mark dirty
2635     *                                   clear dirty flag
2636     *      TLB check -> fast path
2637     *                                   read memory
2638     *        write to RAM
2639     *
2640     * by pushing the migration thread's memory read after the vCPU thread has
2641     * written the memory.
2642     */
2643    if (replay_mode == REPLAY_MODE_NONE) {
2644        /*
2645         * VGA can make calls to this function while updating the screen.
2646         * In record/replay mode this causes a deadlock, because
2647         * run_on_cpu waits for rr mutex. Therefore no races are possible
2648         * in this case and no need for making run_on_cpu when
2649         * record/replay is enabled.
2650         */
2651        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2653    }
2654}
2655
2656static void tcg_commit(MemoryListener *listener)
2657{
2658    CPUAddressSpace *cpuas;
2659    AddressSpaceDispatch *d;
2660
2661    assert(tcg_enabled());
2662    /* since each CPU stores ram addresses in its TLB cache, we must
2663       reset the modified entries */
2664    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2665    cpu_reloading_memory_map();
2666    /* The CPU and TLB are protected by the iothread lock.
2667     * We reload the dispatch pointer now because cpu_reloading_memory_map()
2668     * may have split the RCU critical section.
2669     */
2670    d = address_space_to_dispatch(cpuas->as);
2671    qatomic_rcu_set(&cpuas->memory_dispatch, d);
2672    tlb_flush(cpuas->cpu);
2673}
2674
2675static void memory_map_init(void)
2676{
2677    system_memory = g_malloc(sizeof(*system_memory));
2678
2679    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2680    address_space_init(&address_space_memory, system_memory, "memory");
2681
2682    system_io = g_malloc(sizeof(*system_io));
2683    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2684                          65536);
2685    address_space_init(&address_space_io, system_io, "I/O");
2686}
2687
2688MemoryRegion *get_system_memory(void)
2689{
2690    return system_memory;
2691}
2692
2693MemoryRegion *get_system_io(void)
2694{
2695    return system_io;
2696}
2697
2698static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2699                                     hwaddr length)
2700{
2701    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2702    addr += memory_region_get_ram_addr(mr);
2703
2704    /* No early return if dirty_log_mask is or becomes 0, because
2705     * cpu_physical_memory_set_dirty_range will still call
2706     * xen_modified_memory.
2707     */
2708    if (dirty_log_mask) {
2709        dirty_log_mask =
2710            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2711    }
2712    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2713        assert(tcg_enabled());
2714        tb_invalidate_phys_range(addr, addr + length);
2715        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2716    }
2717    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2718}
2719
2720void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2721{
2722    /*
2723     * In principle this function would work on other memory region types too,
2724     * but the ROM device use case is the only one where this operation is
2725     * necessary.  Other memory regions should use the
2726     * address_space_read/write() APIs.
2727     */
2728    assert(memory_region_is_romd(mr));
2729
2730    invalidate_and_set_dirty(mr, addr, size);
2731}
2732
2733int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2734{
2735    unsigned access_size_max = mr->ops->valid.max_access_size;
2736
2737    /* Regions are assumed to support 1-4 byte accesses unless
2738       otherwise specified.  */
2739    if (access_size_max == 0) {
2740        access_size_max = 4;
2741    }
2742
2743    /* Bound the maximum access by the alignment of the address.  */
2744    if (!mr->ops->impl.unaligned) {
2745        unsigned align_size_max = addr & -addr;
2746        if (align_size_max != 0 && align_size_max < access_size_max) {
2747            access_size_max = align_size_max;
2748        }
2749    }
2750
2751    /* Don't attempt accesses larger than the maximum.  */
2752    if (l > access_size_max) {
2753        l = access_size_max;
2754    }
2755    l = pow2floor(l);
2756
2757    return l;
2758}
2759
2760bool prepare_mmio_access(MemoryRegion *mr)
2761{
2762    bool release_lock = false;
2763
2764    if (!qemu_mutex_iothread_locked()) {
2765        qemu_mutex_lock_iothread();
2766        release_lock = true;
2767    }
2768    if (mr->flush_coalesced_mmio) {
2769        qemu_flush_coalesced_mmio_buffer();
2770    }
2771
2772    return release_lock;
2773}
2774
2775/**
2776 * flatview_access_allowed
2777 * @mr: #MemoryRegion to be accessed
2778 * @attrs: memory transaction attributes
2779 * @addr: address within that memory region
2780 * @len: the number of bytes to access
2781 *
2782 * Check if a memory transaction is allowed.
2783 *
2784 * Returns: true if transaction is allowed, false if denied.
2785 */
2786static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2787                                    hwaddr addr, hwaddr len)
2788{
2789    if (likely(!attrs.memory)) {
2790        return true;
2791    }
2792    if (memory_region_is_ram(mr)) {
2793        return true;
2794    }
2795    qemu_log_mask(LOG_GUEST_ERROR,
2796                  "Invalid access to non-RAM device at "
2797                  "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2798                  "region '%s'\n", addr, len, memory_region_name(mr));
2799    return false;
2800}
2801
2802/* Called within RCU critical section.  */
2803static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2804                                           MemTxAttrs attrs,
2805                                           const void *ptr,
2806                                           hwaddr len, hwaddr addr1,
2807                                           hwaddr l, MemoryRegion *mr)
2808{
2809    uint8_t *ram_ptr;
2810    uint64_t val;
2811    MemTxResult result = MEMTX_OK;
2812    bool release_lock = false;
2813    const uint8_t *buf = ptr;
2814
2815    for (;;) {
2816        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2817            result |= MEMTX_ACCESS_ERROR;
2818            /* Keep going. */
2819        } else if (!memory_access_is_direct(mr, true)) {
2820            release_lock |= prepare_mmio_access(mr);
2821            l = memory_access_size(mr, l, addr1);
2822            /* XXX: could force current_cpu to NULL to avoid
2823               potential bugs */
2824            val = ldn_he_p(buf, l);
2825            result |= memory_region_dispatch_write(mr, addr1, val,
2826                                                   size_memop(l), attrs);
2827        } else {
2828            /* RAM case */
2829            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2830            memcpy(ram_ptr, buf, l);
2831            invalidate_and_set_dirty(mr, addr1, l);
2832        }
2833
2834        if (release_lock) {
2835            qemu_mutex_unlock_iothread();
2836            release_lock = false;
2837        }
2838
2839        len -= l;
2840        buf += l;
2841        addr += l;
2842
2843        if (!len) {
2844            break;
2845        }
2846
2847        l = len;
2848        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2849    }
2850
2851    return result;
2852}
2853
2854/* Called from RCU critical section.  */
2855static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2856                                  const void *buf, hwaddr len)
2857{
2858    hwaddr l;
2859    hwaddr addr1;
2860    MemoryRegion *mr;
2861
2862    l = len;
2863    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2864    if (!flatview_access_allowed(mr, attrs, addr, len)) {
2865        return MEMTX_ACCESS_ERROR;
2866    }
2867    return flatview_write_continue(fv, addr, attrs, buf, len,
2868                                   addr1, l, mr);
2869}
2870
2871/* Called within RCU critical section.  */
2872MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2873                                   MemTxAttrs attrs, void *ptr,
2874                                   hwaddr len, hwaddr addr1, hwaddr l,
2875                                   MemoryRegion *mr)
2876{
2877    uint8_t *ram_ptr;
2878    uint64_t val;
2879    MemTxResult result = MEMTX_OK;
2880    bool release_lock = false;
2881    uint8_t *buf = ptr;
2882
2883    fuzz_dma_read_cb(addr, len, mr);
2884    for (;;) {
2885        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2886            result |= MEMTX_ACCESS_ERROR;
2887            /* Keep going. */
2888        } else if (!memory_access_is_direct(mr, false)) {
2889            /* I/O case */
2890            release_lock |= prepare_mmio_access(mr);
2891            l = memory_access_size(mr, l, addr1);
2892            result |= memory_region_dispatch_read(mr, addr1, &val,
2893                                                  size_memop(l), attrs);
2894            stn_he_p(buf, l, val);
2895        } else {
2896            /* RAM case */
2897            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2898            memcpy(buf, ram_ptr, l);
2899        }
2900
2901        if (release_lock) {
2902            qemu_mutex_unlock_iothread();
2903            release_lock = false;
2904        }
2905
2906        len -= l;
2907        buf += l;
2908        addr += l;
2909
2910        if (!len) {
2911            break;
2912        }
2913
2914        l = len;
2915        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2916    }
2917
2918    return result;
2919}
2920
2921/* Called from RCU critical section.  */
2922static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2923                                 MemTxAttrs attrs, void *buf, hwaddr len)
2924{
2925    hwaddr l;
2926    hwaddr addr1;
2927    MemoryRegion *mr;
2928
2929    l = len;
2930    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2931    if (!flatview_access_allowed(mr, attrs, addr, len)) {
2932        return MEMTX_ACCESS_ERROR;
2933    }
2934    return flatview_read_continue(fv, addr, attrs, buf, len,
2935                                  addr1, l, mr);
2936}
2937
2938MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2939                                    MemTxAttrs attrs, void *buf, hwaddr len)
2940{
2941    MemTxResult result = MEMTX_OK;
2942    FlatView *fv;
2943
2944    if (len > 0) {
2945        RCU_READ_LOCK_GUARD();
2946        fv = address_space_to_flatview(as);
2947        result = flatview_read(fv, addr, attrs, buf, len);
2948    }
2949
2950    return result;
2951}
2952
2953MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2954                                MemTxAttrs attrs,
2955                                const void *buf, hwaddr len)
2956{
2957    MemTxResult result = MEMTX_OK;
2958    FlatView *fv;
2959
2960    if (len > 0) {
2961        RCU_READ_LOCK_GUARD();
2962        fv = address_space_to_flatview(as);
2963        result = flatview_write(fv, addr, attrs, buf, len);
2964    }
2965
2966    return result;
2967}
2968
2969MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2970                             void *buf, hwaddr len, bool is_write)
2971{
2972    if (is_write) {
2973        return address_space_write(as, addr, attrs, buf, len);
2974    } else {
2975        return address_space_read_full(as, addr, attrs, buf, len);
2976    }
2977}
2978
2979MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2980                              uint8_t c, hwaddr len, MemTxAttrs attrs)
2981{
2982#define FILLBUF_SIZE 512
2983    uint8_t fillbuf[FILLBUF_SIZE];
2984    int l;
2985    MemTxResult error = MEMTX_OK;
2986
2987    memset(fillbuf, c, FILLBUF_SIZE);
2988    while (len > 0) {
2989        l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2990        error |= address_space_write(as, addr, attrs, fillbuf, l);
2991        len -= l;
2992        addr += l;
2993    }
2994
2995    return error;
2996}
2997
2998void cpu_physical_memory_rw(hwaddr addr, void *buf,
2999                            hwaddr len, bool is_write)
3000{
3001    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3002                     buf, len, is_write);
3003}
3004
3005enum write_rom_type {
3006    WRITE_DATA,
3007    FLUSH_CACHE,
3008};
3009
3010static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3011                                                           hwaddr addr,
3012                                                           MemTxAttrs attrs,
3013                                                           const void *ptr,
3014                                                           hwaddr len,
3015                                                           enum write_rom_type type)
3016{
3017    hwaddr l;
3018    uint8_t *ram_ptr;
3019    hwaddr addr1;
3020    MemoryRegion *mr;
3021    const uint8_t *buf = ptr;
3022
3023    RCU_READ_LOCK_GUARD();
3024    while (len > 0) {
3025        l = len;
3026        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3027
3028        if (!(memory_region_is_ram(mr) ||
3029              memory_region_is_romd(mr))) {
3030            l = memory_access_size(mr, l, addr1);
3031        } else {
3032            /* ROM/RAM case */
3033            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3034            switch (type) {
3035            case WRITE_DATA:
3036                memcpy(ram_ptr, buf, l);
3037                invalidate_and_set_dirty(mr, addr1, l);
3038                break;
3039            case FLUSH_CACHE:
3040                flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3041                break;
3042            }
3043        }
3044        len -= l;
3045        buf += l;
3046        addr += l;
3047    }
3048    return MEMTX_OK;
3049}
3050
3051/* used for ROM loading : can write in RAM and ROM */
3052MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3053                                    MemTxAttrs attrs,
3054                                    const void *buf, hwaddr len)
3055{
3056    return address_space_write_rom_internal(as, addr, attrs,
3057                                            buf, len, WRITE_DATA);
3058}
3059
3060void cpu_flush_icache_range(hwaddr start, hwaddr len)
3061{
3062    /*
3063     * This function should do the same thing as an icache flush that was
3064     * triggered from within the guest. For TCG we are always cache coherent,
3065     * so there is no need to flush anything. For KVM / Xen we need to flush
3066     * the host's instruction cache at least.
3067     */
3068    if (tcg_enabled()) {
3069        return;
3070    }
3071
3072    address_space_write_rom_internal(&address_space_memory,
3073                                     start, MEMTXATTRS_UNSPECIFIED,
3074                                     NULL, len, FLUSH_CACHE);
3075}
3076
3077typedef struct {
3078    MemoryRegion *mr;
3079    void *buffer;
3080    hwaddr addr;
3081    hwaddr len;
3082    bool in_use;
3083} BounceBuffer;
3084
3085static BounceBuffer bounce;
3086
3087typedef struct MapClient {
3088    QEMUBH *bh;
3089    QLIST_ENTRY(MapClient) link;
3090} MapClient;
3091
3092QemuMutex map_client_list_lock;
3093static QLIST_HEAD(, MapClient) map_client_list
3094    = QLIST_HEAD_INITIALIZER(map_client_list);
3095
3096static void cpu_unregister_map_client_do(MapClient *client)
3097{
3098    QLIST_REMOVE(client, link);
3099    g_free(client);
3100}
3101
3102static void cpu_notify_map_clients_locked(void)
3103{
3104    MapClient *client;
3105
3106    while (!QLIST_EMPTY(&map_client_list)) {
3107        client = QLIST_FIRST(&map_client_list);
3108        qemu_bh_schedule(client->bh);
3109        cpu_unregister_map_client_do(client);
3110    }
3111}
3112
3113void cpu_register_map_client(QEMUBH *bh)
3114{
3115    MapClient *client = g_malloc(sizeof(*client));
3116
3117    qemu_mutex_lock(&map_client_list_lock);
3118    client->bh = bh;
3119    QLIST_INSERT_HEAD(&map_client_list, client, link);
3120    if (!qatomic_read(&bounce.in_use)) {
3121        cpu_notify_map_clients_locked();
3122    }
3123    qemu_mutex_unlock(&map_client_list_lock);
3124}
3125
3126void cpu_exec_init_all(void)
3127{
3128    qemu_mutex_init(&ram_list.mutex);
3129    /* The data structures we set up here depend on knowing the page size,
3130     * so no more changes can be made after this point.
3131     * In an ideal world, nothing we did before we had finished the
3132     * machine setup would care about the target page size, and we could
3133     * do this much later, rather than requiring board models to state
3134     * up front what their requirements are.
3135     */
3136    finalize_target_page_bits();
3137    io_mem_init();
3138    memory_map_init();
3139    qemu_mutex_init(&map_client_list_lock);
3140}
3141
3142void cpu_unregister_map_client(QEMUBH *bh)
3143{
3144    MapClient *client;
3145
3146    qemu_mutex_lock(&map_client_list_lock);
3147    QLIST_FOREACH(client, &map_client_list, link) {
3148        if (client->bh == bh) {
3149            cpu_unregister_map_client_do(client);
3150            break;
3151        }
3152    }
3153    qemu_mutex_unlock(&map_client_list_lock);
3154}
3155
3156static void cpu_notify_map_clients(void)
3157{
3158    qemu_mutex_lock(&map_client_list_lock);
3159    cpu_notify_map_clients_locked();
3160    qemu_mutex_unlock(&map_client_list_lock);
3161}
3162
3163static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164                                  bool is_write, MemTxAttrs attrs)
3165{
3166    MemoryRegion *mr;
3167    hwaddr l, xlat;
3168
3169    while (len > 0) {
3170        l = len;
3171        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172        if (!memory_access_is_direct(mr, is_write)) {
3173            l = memory_access_size(mr, l, addr);
3174            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175                return false;
3176            }
3177        }
3178
3179        len -= l;
3180        addr += l;
3181    }
3182    return true;
3183}
3184
3185bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186                                hwaddr len, bool is_write,
3187                                MemTxAttrs attrs)
3188{
3189    FlatView *fv;
3190
3191    RCU_READ_LOCK_GUARD();
3192    fv = address_space_to_flatview(as);
3193    return flatview_access_valid(fv, addr, len, is_write, attrs);
3194}
3195
3196static hwaddr
3197flatview_extend_translation(FlatView *fv, hwaddr addr,
3198                            hwaddr target_len,
3199                            MemoryRegion *mr, hwaddr base, hwaddr len,
3200                            bool is_write, MemTxAttrs attrs)
3201{
3202    hwaddr done = 0;
3203    hwaddr xlat;
3204    MemoryRegion *this_mr;
3205
3206    for (;;) {
3207        target_len -= len;
3208        addr += len;
3209        done += len;
3210        if (target_len == 0) {
3211            return done;
3212        }
3213
3214        len = target_len;
3215        this_mr = flatview_translate(fv, addr, &xlat,
3216                                     &len, is_write, attrs);
3217        if (this_mr != mr || xlat != base + done) {
3218            return done;
3219        }
3220    }
3221}
3222
3223/* Map a physical memory region into a host virtual address.
3224 * May map a subset of the requested range, given by and returned in *plen.
3225 * May return NULL if resources needed to perform the mapping are exhausted.
3226 * Use only for reads OR writes - not for read-modify-write operations.
3227 * Use cpu_register_map_client() to know when retrying the map operation is
3228 * likely to succeed.
3229 */
3230void *address_space_map(AddressSpace *as,
3231                        hwaddr addr,
3232                        hwaddr *plen,
3233                        bool is_write,
3234                        MemTxAttrs attrs)
3235{
3236    hwaddr len = *plen;
3237    hwaddr l, xlat;
3238    MemoryRegion *mr;
3239    void *ptr;
3240    FlatView *fv;
3241
3242    if (len == 0) {
3243        return NULL;
3244    }
3245
3246    l = len;
3247    RCU_READ_LOCK_GUARD();
3248    fv = address_space_to_flatview(as);
3249    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3250
3251    if (!memory_access_is_direct(mr, is_write)) {
3252        if (qatomic_xchg(&bounce.in_use, true)) {
3253            *plen = 0;
3254            return NULL;
3255        }
3256        /* Avoid unbounded allocations */
3257        l = MIN(l, TARGET_PAGE_SIZE);
3258        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3259        bounce.addr = addr;
3260        bounce.len = l;
3261
3262        memory_region_ref(mr);
3263        bounce.mr = mr;
3264        if (!is_write) {
3265            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3266                               bounce.buffer, l);
3267        }
3268
3269        *plen = l;
3270        return bounce.buffer;
3271    }
3272
3273
3274    memory_region_ref(mr);
3275    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3276                                        l, is_write, attrs);
3277    fuzz_dma_read_cb(addr, *plen, mr);
3278    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3279
3280    return ptr;
3281}
3282
3283/* Unmaps a memory region previously mapped by address_space_map().
3284 * Will also mark the memory as dirty if is_write is true.  access_len gives
3285 * the amount of memory that was actually read or written by the caller.
3286 */
3287void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3288                         bool is_write, hwaddr access_len)
3289{
3290    if (buffer != bounce.buffer) {
3291        MemoryRegion *mr;
3292        ram_addr_t addr1;
3293
3294        mr = memory_region_from_host(buffer, &addr1);
3295        assert(mr != NULL);
3296        if (is_write) {
3297            invalidate_and_set_dirty(mr, addr1, access_len);
3298        }
3299        if (xen_enabled()) {
3300            xen_invalidate_map_cache_entry(buffer);
3301        }
3302        memory_region_unref(mr);
3303        return;
3304    }
3305    if (is_write) {
3306        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3307                            bounce.buffer, access_len);
3308    }
3309    qemu_vfree(bounce.buffer);
3310    bounce.buffer = NULL;
3311    memory_region_unref(bounce.mr);
3312    qatomic_mb_set(&bounce.in_use, false);
3313    cpu_notify_map_clients();
3314}
3315
3316void *cpu_physical_memory_map(hwaddr addr,
3317                              hwaddr *plen,
3318                              bool is_write)
3319{
3320    return address_space_map(&address_space_memory, addr, plen, is_write,
3321                             MEMTXATTRS_UNSPECIFIED);
3322}
3323
3324void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3325                               bool is_write, hwaddr access_len)
3326{
3327    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3328}
3329
3330#define ARG1_DECL                AddressSpace *as
3331#define ARG1                     as
3332#define SUFFIX
3333#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3334#define RCU_READ_LOCK(...)       rcu_read_lock()
3335#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3336#include "memory_ldst.c.inc"
3337
3338int64_t address_space_cache_init(MemoryRegionCache *cache,
3339                                 AddressSpace *as,
3340                                 hwaddr addr,
3341                                 hwaddr len,
3342                                 bool is_write)
3343{
3344    AddressSpaceDispatch *d;
3345    hwaddr l;
3346    MemoryRegion *mr;
3347    Int128 diff;
3348
3349    assert(len > 0);
3350
3351    l = len;
3352    cache->fv = address_space_get_flatview(as);
3353    d = flatview_to_dispatch(cache->fv);
3354    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3355
3356    /*
3357     * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3358     * Take that into account to compute how many bytes are there between
3359     * cache->xlat and the end of the section.
3360     */
3361    diff = int128_sub(cache->mrs.size,
3362                      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3363    l = int128_get64(int128_min(diff, int128_make64(l)));
3364
3365    mr = cache->mrs.mr;
3366    memory_region_ref(mr);
3367    if (memory_access_is_direct(mr, is_write)) {
3368        /* We don't care about the memory attributes here as we're only
3369         * doing this if we found actual RAM, which behaves the same
3370         * regardless of attributes; so UNSPECIFIED is fine.
3371         */
3372        l = flatview_extend_translation(cache->fv, addr, len, mr,
3373                                        cache->xlat, l, is_write,
3374                                        MEMTXATTRS_UNSPECIFIED);
3375        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3376    } else {
3377        cache->ptr = NULL;
3378    }
3379
3380    cache->len = l;
3381    cache->is_write = is_write;
3382    return l;
3383}
3384
3385void address_space_cache_invalidate(MemoryRegionCache *cache,
3386                                    hwaddr addr,
3387                                    hwaddr access_len)
3388{
3389    assert(cache->is_write);
3390    if (likely(cache->ptr)) {
3391        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3392    }
3393}
3394
3395void address_space_cache_destroy(MemoryRegionCache *cache)
3396{
3397    if (!cache->mrs.mr) {
3398        return;
3399    }
3400
3401    if (xen_enabled()) {
3402        xen_invalidate_map_cache_entry(cache->ptr);
3403    }
3404    memory_region_unref(cache->mrs.mr);
3405    flatview_unref(cache->fv);
3406    cache->mrs.mr = NULL;
3407    cache->fv = NULL;
3408}
3409
3410/* Called from RCU critical section.  This function has the same
3411 * semantics as address_space_translate, but it only works on a
3412 * predefined range of a MemoryRegion that was mapped with
3413 * address_space_cache_init.
3414 */
3415static inline MemoryRegion *address_space_translate_cached(
3416    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3417    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3418{
3419    MemoryRegionSection section;
3420    MemoryRegion *mr;
3421    IOMMUMemoryRegion *iommu_mr;
3422    AddressSpace *target_as;
3423
3424    assert(!cache->ptr);
3425    *xlat = addr + cache->xlat;
3426
3427    mr = cache->mrs.mr;
3428    iommu_mr = memory_region_get_iommu(mr);
3429    if (!iommu_mr) {
3430        /* MMIO region.  */
3431        return mr;
3432    }
3433
3434    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3435                                            NULL, is_write, true,
3436                                            &target_as, attrs);
3437    return section.mr;
3438}
3439
3440/* Called from RCU critical section. address_space_read_cached uses this
3441 * out of line function when the target is an MMIO or IOMMU region.
3442 */
3443MemTxResult
3444address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3445                                   void *buf, hwaddr len)
3446{
3447    hwaddr addr1, l;
3448    MemoryRegion *mr;
3449
3450    l = len;
3451    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3452                                        MEMTXATTRS_UNSPECIFIED);
3453    return flatview_read_continue(cache->fv,
3454                                  addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3455                                  addr1, l, mr);
3456}
3457
3458/* Called from RCU critical section. address_space_write_cached uses this
3459 * out of line function when the target is an MMIO or IOMMU region.
3460 */
3461MemTxResult
3462address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3463                                    const void *buf, hwaddr len)
3464{
3465    hwaddr addr1, l;
3466    MemoryRegion *mr;
3467
3468    l = len;
3469    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3470                                        MEMTXATTRS_UNSPECIFIED);
3471    return flatview_write_continue(cache->fv,
3472                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3473                                   addr1, l, mr);
3474}
3475
3476#define ARG1_DECL                MemoryRegionCache *cache
3477#define ARG1                     cache
3478#define SUFFIX                   _cached_slow
3479#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3480#define RCU_READ_LOCK()          ((void)0)
3481#define RCU_READ_UNLOCK()        ((void)0)
3482#include "memory_ldst.c.inc"
3483
3484/* virtual memory access for debug (includes writing to ROM) */
3485int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3486                        void *ptr, size_t len, bool is_write)
3487{
3488    hwaddr phys_addr;
3489    vaddr l, page;
3490    uint8_t *buf = ptr;
3491
3492    cpu_synchronize_state(cpu);
3493    while (len > 0) {
3494        int asidx;
3495        MemTxAttrs attrs;
3496        MemTxResult res;
3497
3498        page = addr & TARGET_PAGE_MASK;
3499        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3500        asidx = cpu_asidx_from_attrs(cpu, attrs);
3501        /* if no physical page mapped, return an error */
3502        if (phys_addr == -1)
3503            return -1;
3504        l = (page + TARGET_PAGE_SIZE) - addr;
3505        if (l > len)
3506            l = len;
3507        phys_addr += (addr & ~TARGET_PAGE_MASK);
3508        if (is_write) {
3509            res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3510                                          attrs, buf, l);
3511        } else {
3512            res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3513                                     attrs, buf, l);
3514        }
3515        if (res != MEMTX_OK) {
3516            return -1;
3517        }
3518        len -= l;
3519        buf += l;
3520        addr += l;
3521    }
3522    return 0;
3523}
3524
3525/*
3526 * Allows code that needs to deal with migration bitmaps etc to still be built
3527 * target independent.
3528 */
3529size_t qemu_target_page_size(void)
3530{
3531    return TARGET_PAGE_SIZE;
3532}
3533
3534int qemu_target_page_bits(void)
3535{
3536    return TARGET_PAGE_BITS;
3537}
3538
3539int qemu_target_page_bits_min(void)
3540{
3541    return TARGET_PAGE_BITS_MIN;
3542}
3543
3544bool cpu_physical_memory_is_io(hwaddr phys_addr)
3545{
3546    MemoryRegion*mr;
3547    hwaddr l = 1;
3548    bool res;
3549
3550    RCU_READ_LOCK_GUARD();
3551    mr = address_space_translate(&address_space_memory,
3552                                 phys_addr, &phys_addr, &l, false,
3553                                 MEMTXATTRS_UNSPECIFIED);
3554
3555    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3556    return res;
3557}
3558
3559int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3560{
3561    RAMBlock *block;
3562    int ret = 0;
3563
3564    RCU_READ_LOCK_GUARD();
3565    RAMBLOCK_FOREACH(block) {
3566        ret = func(block, opaque);
3567        if (ret) {
3568            break;
3569        }
3570    }
3571    return ret;
3572}
3573
3574/*
3575 * Unmap pages of memory from start to start+length such that
3576 * they a) read as 0, b) Trigger whatever fault mechanism
3577 * the OS provides for postcopy.
3578 * The pages must be unmapped by the end of the function.
3579 * Returns: 0 on success, none-0 on failure
3580 *
3581 */
3582int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3583{
3584    int ret = -1;
3585
3586    uint8_t *host_startaddr = rb->host + start;
3587
3588    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3589        error_report("ram_block_discard_range: Unaligned start address: %p",
3590                     host_startaddr);
3591        goto err;
3592    }
3593
3594    if ((start + length) <= rb->max_length) {
3595        bool need_madvise, need_fallocate;
3596        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3597            error_report("ram_block_discard_range: Unaligned length: %zx",
3598                         length);
3599            goto err;
3600        }
3601
3602        errno = ENOTSUP; /* If we are missing MADVISE etc */
3603
3604        /* The logic here is messy;
3605         *    madvise DONTNEED fails for hugepages
3606         *    fallocate works on hugepages and shmem
3607         *    shared anonymous memory requires madvise REMOVE
3608         */
3609        need_madvise = (rb->page_size == qemu_host_page_size);
3610        need_fallocate = rb->fd != -1;
3611        if (need_fallocate) {
3612            /* For a file, this causes the area of the file to be zero'd
3613             * if read, and for hugetlbfs also causes it to be unmapped
3614             * so a userfault will trigger.
3615             */
3616#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3617            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3618                            start, length);
3619            if (ret) {
3620                ret = -errno;
3621                error_report("ram_block_discard_range: Failed to fallocate "
3622                             "%s:%" PRIx64 " +%zx (%d)",
3623                             rb->idstr, start, length, ret);
3624                goto err;
3625            }
3626#else
3627            ret = -ENOSYS;
3628            error_report("ram_block_discard_range: fallocate not available/file"
3629                         "%s:%" PRIx64 " +%zx (%d)",
3630                         rb->idstr, start, length, ret);
3631            goto err;
3632#endif
3633        }
3634        if (need_madvise) {
3635            /* For normal RAM this causes it to be unmapped,
3636             * for shared memory it causes the local mapping to disappear
3637             * and to fall back on the file contents (which we just
3638             * fallocate'd away).
3639             */
3640#if defined(CONFIG_MADVISE)
3641            if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3642                ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3643            } else {
3644                ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3645            }
3646            if (ret) {
3647                ret = -errno;
3648                error_report("ram_block_discard_range: Failed to discard range "
3649                             "%s:%" PRIx64 " +%zx (%d)",
3650                             rb->idstr, start, length, ret);
3651                goto err;
3652            }
3653#else
3654            ret = -ENOSYS;
3655            error_report("ram_block_discard_range: MADVISE not available"
3656                         "%s:%" PRIx64 " +%zx (%d)",
3657                         rb->idstr, start, length, ret);
3658            goto err;
3659#endif
3660        }
3661        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3662                                      need_madvise, need_fallocate, ret);
3663    } else {
3664        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3665                     "/%zx/" RAM_ADDR_FMT")",
3666                     rb->idstr, start, length, rb->max_length);
3667    }
3668
3669err:
3670    return ret;
3671}
3672
3673bool ramblock_is_pmem(RAMBlock *rb)
3674{
3675    return rb->flags & RAM_PMEM;
3676}
3677
3678static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3679{
3680    if (start == end - 1) {
3681        qemu_printf("\t%3d      ", start);
3682    } else {
3683        qemu_printf("\t%3d..%-3d ", start, end - 1);
3684    }
3685    qemu_printf(" skip=%d ", skip);
3686    if (ptr == PHYS_MAP_NODE_NIL) {
3687        qemu_printf(" ptr=NIL");
3688    } else if (!skip) {
3689        qemu_printf(" ptr=#%d", ptr);
3690    } else {
3691        qemu_printf(" ptr=[%d]", ptr);
3692    }
3693    qemu_printf("\n");
3694}
3695
3696#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3697                           int128_sub((size), int128_one())) : 0)
3698
3699void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3700{
3701    int i;
3702
3703    qemu_printf("  Dispatch\n");
3704    qemu_printf("    Physical sections\n");
3705
3706    for (i = 0; i < d->map.sections_nb; ++i) {
3707        MemoryRegionSection *s = d->map.sections + i;
3708        const char *names[] = { " [unassigned]", " [not dirty]",
3709                                " [ROM]", " [watch]" };
3710
3711        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3712                    " %s%s%s%s%s",
3713            i,
3714            s->offset_within_address_space,
3715            s->offset_within_address_space + MR_SIZE(s->size),
3716            s->mr->name ? s->mr->name : "(noname)",
3717            i < ARRAY_SIZE(names) ? names[i] : "",
3718            s->mr == root ? " [ROOT]" : "",
3719            s == d->mru_section ? " [MRU]" : "",
3720            s->mr->is_iommu ? " [iommu]" : "");
3721
3722        if (s->mr->alias) {
3723            qemu_printf(" alias=%s", s->mr->alias->name ?
3724                    s->mr->alias->name : "noname");
3725        }
3726        qemu_printf("\n");
3727    }
3728
3729    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3730               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3731    for (i = 0; i < d->map.nodes_nb; ++i) {
3732        int j, jprev;
3733        PhysPageEntry prev;
3734        Node *n = d->map.nodes + i;
3735
3736        qemu_printf("      [%d]\n", i);
3737
3738        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3739            PhysPageEntry *pe = *n + j;
3740
3741            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3742                continue;
3743            }
3744
3745            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3746
3747            jprev = j;
3748            prev = *pe;
3749        }
3750
3751        if (jprev != ARRAY_SIZE(*n)) {
3752            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3753        }
3754    }
3755}
3756
3757/* Require any discards to work. */
3758static unsigned int ram_block_discard_required_cnt;
3759/* Require only coordinated discards to work. */
3760static unsigned int ram_block_coordinated_discard_required_cnt;
3761/* Disable any discards. */
3762static unsigned int ram_block_discard_disabled_cnt;
3763/* Disable only uncoordinated discards. */
3764static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3765static QemuMutex ram_block_discard_disable_mutex;
3766
3767static void ram_block_discard_disable_mutex_lock(void)
3768{
3769    static gsize initialized;
3770
3771    if (g_once_init_enter(&initialized)) {
3772        qemu_mutex_init(&ram_block_discard_disable_mutex);
3773        g_once_init_leave(&initialized, 1);
3774    }
3775    qemu_mutex_lock(&ram_block_discard_disable_mutex);
3776}
3777
3778static void ram_block_discard_disable_mutex_unlock(void)
3779{
3780    qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3781}
3782
3783int ram_block_discard_disable(bool state)
3784{
3785    int ret = 0;
3786
3787    ram_block_discard_disable_mutex_lock();
3788    if (!state) {
3789        ram_block_discard_disabled_cnt--;
3790    } else if (ram_block_discard_required_cnt ||
3791               ram_block_coordinated_discard_required_cnt) {
3792        ret = -EBUSY;
3793    } else {
3794        ram_block_discard_disabled_cnt++;
3795    }
3796    ram_block_discard_disable_mutex_unlock();
3797    return ret;
3798}
3799
3800int ram_block_uncoordinated_discard_disable(bool state)
3801{
3802    int ret = 0;
3803
3804    ram_block_discard_disable_mutex_lock();
3805    if (!state) {
3806        ram_block_uncoordinated_discard_disabled_cnt--;
3807    } else if (ram_block_discard_required_cnt) {
3808        ret = -EBUSY;
3809    } else {
3810        ram_block_uncoordinated_discard_disabled_cnt++;
3811    }
3812    ram_block_discard_disable_mutex_unlock();
3813    return ret;
3814}
3815
3816int ram_block_discard_require(bool state)
3817{
3818    int ret = 0;
3819
3820    ram_block_discard_disable_mutex_lock();
3821    if (!state) {
3822        ram_block_discard_required_cnt--;
3823    } else if (ram_block_discard_disabled_cnt ||
3824               ram_block_uncoordinated_discard_disabled_cnt) {
3825        ret = -EBUSY;
3826    } else {
3827        ram_block_discard_required_cnt++;
3828    }
3829    ram_block_discard_disable_mutex_unlock();
3830    return ret;
3831}
3832
3833int ram_block_coordinated_discard_require(bool state)
3834{
3835    int ret = 0;
3836
3837    ram_block_discard_disable_mutex_lock();
3838    if (!state) {
3839        ram_block_coordinated_discard_required_cnt--;
3840    } else if (ram_block_discard_disabled_cnt) {
3841        ret = -EBUSY;
3842    } else {
3843        ram_block_coordinated_discard_required_cnt++;
3844    }
3845    ram_block_discard_disable_mutex_unlock();
3846    return ret;
3847}
3848
3849bool ram_block_discard_is_disabled(void)
3850{
3851    return qatomic_read(&ram_block_discard_disabled_cnt) ||
3852           qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3853}
3854
3855bool ram_block_discard_is_required(void)
3856{
3857    return qatomic_read(&ram_block_discard_required_cnt) ||
3858           qatomic_read(&ram_block_coordinated_discard_required_cnt);
3859}
3860