qemu/target/ppc/power8-pmu.c
<<
>>
Prefs
   1/*
   2 * PMU emulation helpers for TCG IBM POWER chips
   3 *
   4 *  Copyright IBM Corp. 2021
   5 *
   6 * Authors:
   7 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "cpu.h"
  15#include "helper_regs.h"
  16#include "exec/exec-all.h"
  17#include "exec/helper-proto.h"
  18#include "qemu/error-report.h"
  19#include "qemu/main-loop.h"
  20#include "hw/ppc/ppc.h"
  21#include "power8-pmu.h"
  22
  23#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
  24
  25static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
  26{
  27    if (sprn == SPR_POWER_PMC1) {
  28        return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
  29    }
  30
  31    return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
  32}
  33
  34void pmu_update_summaries(CPUPPCState *env)
  35{
  36    target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
  37    target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
  38    int ins_cnt = 0;
  39    int cyc_cnt = 0;
  40
  41    if (mmcr0 & MMCR0_FC) {
  42        goto hflags_calc;
  43    }
  44
  45    if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
  46        target_ulong sel;
  47
  48        sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
  49        switch (sel) {
  50        case 0x02:
  51        case 0xfe:
  52            ins_cnt |= 1 << 1;
  53            break;
  54        case 0x1e:
  55        case 0xf0:
  56            cyc_cnt |= 1 << 1;
  57            break;
  58        }
  59
  60        sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
  61        ins_cnt |= (sel == 0x02) << 2;
  62        cyc_cnt |= (sel == 0x1e) << 2;
  63
  64        sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
  65        ins_cnt |= (sel == 0x02) << 3;
  66        cyc_cnt |= (sel == 0x1e) << 3;
  67
  68        sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
  69        ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
  70        cyc_cnt |= (sel == 0x1e) << 4;
  71    }
  72
  73    ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
  74    cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;
  75
  76 hflags_calc:
  77    env->pmc_ins_cnt = ins_cnt;
  78    env->pmc_cyc_cnt = cyc_cnt;
  79    env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0);
  80}
  81
  82static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
  83{
  84    target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
  85    unsigned ins_cnt = env->pmc_ins_cnt;
  86    bool overflow_triggered = false;
  87    target_ulong tmp;
  88
  89    if (ins_cnt & (1 << 1)) {
  90        tmp = env->spr[SPR_POWER_PMC1];
  91        tmp += num_insns;
  92        if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
  93            tmp = PMC_COUNTER_NEGATIVE_VAL;
  94            overflow_triggered = true;
  95        }
  96        env->spr[SPR_POWER_PMC1] = tmp;
  97    }
  98
  99    if (ins_cnt & (1 << 2)) {
 100        tmp = env->spr[SPR_POWER_PMC2];
 101        tmp += num_insns;
 102        if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
 103            tmp = PMC_COUNTER_NEGATIVE_VAL;
 104            overflow_triggered = true;
 105        }
 106        env->spr[SPR_POWER_PMC2] = tmp;
 107    }
 108
 109    if (ins_cnt & (1 << 3)) {
 110        tmp = env->spr[SPR_POWER_PMC3];
 111        tmp += num_insns;
 112        if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
 113            tmp = PMC_COUNTER_NEGATIVE_VAL;
 114            overflow_triggered = true;
 115        }
 116        env->spr[SPR_POWER_PMC3] = tmp;
 117    }
 118
 119    if (ins_cnt & (1 << 4)) {
 120        target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
 121        int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
 122        if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
 123            tmp = env->spr[SPR_POWER_PMC4];
 124            tmp += num_insns;
 125            if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
 126                tmp = PMC_COUNTER_NEGATIVE_VAL;
 127                overflow_triggered = true;
 128            }
 129            env->spr[SPR_POWER_PMC4] = tmp;
 130        }
 131    }
 132
 133    if (ins_cnt & (1 << 5)) {
 134        tmp = env->spr[SPR_POWER_PMC5];
 135        tmp += num_insns;
 136        if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
 137            tmp = PMC_COUNTER_NEGATIVE_VAL;
 138            overflow_triggered = true;
 139        }
 140        env->spr[SPR_POWER_PMC5] = tmp;
 141    }
 142
 143    return overflow_triggered;
 144}
 145
 146static void pmu_update_cycles(CPUPPCState *env)
 147{
 148    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 149    uint64_t time_delta = now - env->pmu_base_time;
 150    int sprn, cyc_cnt = env->pmc_cyc_cnt;
 151
 152    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
 153        if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
 154            /*
 155             * The pseries and powernv clock runs at 1Ghz, meaning
 156             * that 1 nanosec equals 1 cycle.
 157             */
 158            env->spr[sprn] += time_delta;
 159        }
 160    }
 161
 162    /* Update base_time for future calculations */
 163    env->pmu_base_time = now;
 164}
 165
 166/*
 167 * Helper function to retrieve the cycle overflow timer of the
 168 * 'sprn' counter.
 169 */
 170static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
 171{
 172    return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
 173}
 174
 175static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
 176{
 177    QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
 178    int64_t timeout;
 179
 180    /*
 181     * PMC5 does not have an overflow timer and this pointer
 182     * will be NULL.
 183     */
 184    if (!pmc_overflow_timer) {
 185        return;
 186    }
 187
 188    if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
 189        !pmc_has_overflow_enabled(env, sprn)) {
 190        /* Overflow timer is not needed for this counter */
 191        timer_del(pmc_overflow_timer);
 192        return;
 193    }
 194
 195    if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
 196        timeout = 0;
 197    } else {
 198        timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
 199    }
 200
 201    /*
 202     * Use timer_mod_anticipate() because an overflow timer might
 203     * be already running for this PMC.
 204     */
 205    timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
 206}
 207
 208static void pmu_update_overflow_timers(CPUPPCState *env)
 209{
 210    int sprn;
 211
 212    /*
 213     * Scroll through all PMCs and start counter overflow timers for
 214     * PM_CYC events, if needed.
 215     */
 216    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
 217        pmc_update_overflow_timer(env, sprn);
 218    }
 219}
 220
 221static void pmu_delete_timers(CPUPPCState *env)
 222{
 223    QEMUTimer *pmc_overflow_timer;
 224    int sprn;
 225
 226    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
 227        pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
 228
 229        if (pmc_overflow_timer) {
 230            timer_del(pmc_overflow_timer);
 231        }
 232    }
 233}
 234
 235void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
 236{
 237    bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0;
 238    bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0;
 239
 240    pmu_update_cycles(env);
 241
 242    env->spr[SPR_POWER_MMCR0] = value;
 243
 244    /* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */
 245    env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0);
 246    env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1);
 247
 248    pmu_update_summaries(env);
 249
 250    /* Update cycle overflow timers with the current MMCR0 state */
 251    pmu_update_overflow_timers(env);
 252}
 253
 254void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
 255{
 256    pmu_update_cycles(env);
 257
 258    env->spr[SPR_POWER_MMCR1] = value;
 259
 260    /* MMCR1 writes can change HFLAGS_INSN_CNT */
 261    pmu_update_summaries(env);
 262}
 263
 264target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
 265{
 266    pmu_update_cycles(env);
 267
 268    return env->spr[sprn];
 269}
 270
 271void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
 272{
 273    pmu_update_cycles(env);
 274
 275    env->spr[sprn] = value;
 276
 277    pmc_update_overflow_timer(env, sprn);
 278}
 279
 280static void fire_PMC_interrupt(PowerPCCPU *cpu)
 281{
 282    CPUPPCState *env = &cpu->env;
 283
 284    pmu_update_cycles(env);
 285
 286    if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) {
 287        env->spr[SPR_POWER_MMCR0] &= ~MMCR0_FCECE;
 288        env->spr[SPR_POWER_MMCR0] |= MMCR0_FC;
 289
 290        /* Changing MMCR0_FC requires a new HFLAGS_INSN_CNT calc */
 291        pmu_update_summaries(env);
 292
 293        /*
 294         * Delete all pending timers if we need to freeze
 295         * the PMC. We'll restart them when the PMC starts
 296         * running again.
 297         */
 298        pmu_delete_timers(env);
 299    }
 300
 301    if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) {
 302        env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE;
 303        env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO;
 304    }
 305
 306    raise_ebb_perfm_exception(env);
 307}
 308
 309void helper_handle_pmc5_overflow(CPUPPCState *env)
 310{
 311    env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL;
 312    fire_PMC_interrupt(env_archcpu(env));
 313}
 314
 315/* This helper assumes that the PMC is running. */
 316void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
 317{
 318    bool overflow_triggered;
 319    PowerPCCPU *cpu;
 320
 321    overflow_triggered = pmu_increment_insns(env, num_insns);
 322
 323    if (overflow_triggered) {
 324        cpu = env_archcpu(env);
 325        fire_PMC_interrupt(cpu);
 326    }
 327}
 328
 329static void cpu_ppc_pmu_timer_cb(void *opaque)
 330{
 331    PowerPCCPU *cpu = opaque;
 332
 333    fire_PMC_interrupt(cpu);
 334}
 335
 336void cpu_ppc_pmu_init(CPUPPCState *env)
 337{
 338    PowerPCCPU *cpu = env_archcpu(env);
 339    int i, sprn;
 340
 341    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
 342        if (sprn == SPR_POWER_PMC5) {
 343            continue;
 344        }
 345
 346        i = sprn - SPR_POWER_PMC1;
 347
 348        env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 349                                                       &cpu_ppc_pmu_timer_cb,
 350                                                       cpu);
 351    }
 352}
 353#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */
 354